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Abstract

Large language models offer transformative po-
tential for healthcare, yet their responsible and
equitable development depends critically on
a deeper understanding of how training data
characteristics influence model behavior, in-
cluding the potential for bias. Current prac-
tices in dataset curation and bias assessment
often lack the necessary transparency, creating
an urgent need for comprehensive evaluation
frameworks to foster trust and guide improve-
ments. In this study, we present an in-depth
analysis of potential downstream biases in clin-
ical language models, with a focus on differ-
ential opioid prescription tendencies across di-
verse demographic groups, such as ethnicity,
gender, and age. As part of this investigation,
we introduce HC4: Healthcare Comprehensive
Commons Corpus1, a novel and extensively
curated pretraining dataset exceeding 89 bil-
lion tokens. Our evaluation leverages both
established general benchmarks and a novel,
healthcare-specific methodology, offering cru-
cial insights to support fairness and safety in
clinical AI applications.

1 Introduction

Large Language Models offer transformative poten-
tial in healthcare, promising to enhance understand-
ing of complex medical texts and assist in various
clinical applications. However, the responsible de-
ployment of these tools depends on a thorough
understanding and mitigation of potential biases
they might learn or perpetuate. The challenge is ag-
gravated by existing demographic and geographic
skew in most of the available data, which can limit
model generalizability and lead to inequitable out-
comes if not carefully addressed (Celi et al., 2022;
Cirillo et al., 2020; Thanathip Suenghataiphorn,
2025).

1https://huggingface.co/datasets/m42-health/
HC4

Our primary contribution in this work is to ad-
vance such bias analysis practices. We argue that
comprehensive bias assessment should be an in-
tegral part of any dataset or model development
life-cycle, particularly in high-stakes domains like
healthcare. To this end, our approach to bias evalu-
ation integrates established general domain bench-
marks with a novel, targeted methodology we de-
veloped to probe for biases in a sensitive health-
care context: the differential prescription of opioids
based on patient ethnicity, gender, and age. We be-
lieve that such targeted, use-case-specific analyses
are essential for uncovering nuanced biases that
might otherwise go undetected.

As part of this study and to facilitate further
research in both model development and bias stud-
ies, we also present the Healthcare Comprehension
Commons Corpus (HC4). HC4 is a new, exten-
sively curated pretraining dataset exceeding 89 bil-
lion tokens, specifically designed for healthcare ap-
plications. Its creation involved a meticulous data
collection and preprocessing pipeline, emphasizing
data quality, diverse sourcing (including scientific
journals, medical archives, textbooks and clinical
guidelines), and rigorous deduplication techniques
at the document level. While HC4 itself is a sig-
nificant contribution, providing a large-scale, pub-
licly available resource for the community2, it also
serves as a key subject for the bias analysis frame-
work we advocate.

Beyond presenting a new dataset or specific bias
findings, this paper’s purpose is to advocate for the
adoption of more systematic, transparent, and rig-
orous bias evaluation as a standard procedure when
developing and releasing LLMs and their associ-
ated datasets. By demonstrating a practical frame-
work for such analysis, including domain-specific
probes, we hope to encourage the field to adopt

2A subset of the data is made available due to licensing
restrictions; while certain licenses permit commercial use,
they explicitly prohibit redistribution.
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more comprehensive approaches to ensure that AI
technologies in healthcare are developed and de-
ployed in a fair, and reliable manner, preventing
the amplification of existing health disparities.

2 Related Works

A predominant approach in developing special-
ized healthcare models (Christophe et al., 2024;
Chen et al., 2023; Saab et al., 2024) involves fine-
tuning existing general-purpose LLMs using Su-
pervised Fine-Tuning (SFT) on domain-specific
instructional datasets like MedMCQA (Pal et al.,
2022) or PubMedQA (Jin et al., 2019). However,
there has been comparatively less research focused
on continuous pretraining or domain-adaptive pre-
training of LLMs on large-scale corpora. Some ef-
forts have focused on training LLMs from scratch
with a specific domain expertise in mind, such as
in finance (Wu et al., 2023). This underscores the
value of domain-specific foundational knowledge
but also highlight the significant challenge of curat-
ing sufficiently large and high-quality pretraining
datasets.

The performance and capabilities of LLMs are
inextricably linked to the quality and scale of their
pretraining data. Several developments of massive
web-scale datasets like The Pile (Gao et al., 2020),
SlimPajama (Soboleva et al., 2023), RefinedWeb
(Penedo et al., 2023), and FineWeb (Penedo et al.,
2024) have become standards for training founda-
tional models. These efforts emphasize meticulous
data collection, aggressive deduplication and qual-
ity filtering to enhance model learning efficiency.

As LLMs become more integrated into various
applications, understanding and mitigating the bi-
ases they may exhibit has become a critical area
of research. Bias can stem from various sources,
including skewed representations within the pre-
training data (Unruh, 1996; Al Hamid et al., 2024),
or even emerge from the model architecture and
training objectives themselves (Ranjan et al., 2024).
Some works focus on developing evaluation met-
rics and benchmarks to quantify the level of bias
(Dhamala et al., 2021). While these methodologies
provide valuable insights, bias evaluation must also
be context-specific (Celi et al., 2022). For instance,
in healthcare, biases could manifest as differential
diagnostic accuracy or treatment recommendations
across patient groups, with potentially severe con-
sequences (Omar et al., 2025).

To ensure the responsible deployment of clinical

AI, it is essential to develop systematic approaches
for identifying and mitigating biases at every stage
of the model lifecycle: from data curation and pre-
training to fine-tuning and deployment. While prior
work, such as the Q-Pain framework (Logé et al.,
2021), has demonstrated the presence of racial and
gender disparities in pain management recommen-
dations for instruction-tuned clinical models, our
work investigates the foundational role of pretrain-
ing data in shaping these biases.

3 Data Collection and Processing
Methodology

Our methodology for creating the HC4 corpus fol-
lows four sequential stages: data collection, fil-
tering, cleaning, and deduplication. This section
details each stage with a focus on maintaining data
quality, relevance, and multi-purpose usability.

3.1 Data Sources Overview
The initial phase of our data curation process in-
volves selecting high-quality data sources within
the healthcare field. According to (Albalak et al.,
2024), "high-quality data" refers to datasets that
are human-generated and have undergone an edito-
rial review. To expand the corpus, we employed a
variety of data collection approaches and sources.
These included digital archives of peer-reviewed
biomedical scientific literature, metadata reposi-
tories covering diverse academic disciplines, and
other relevant sources. A comprehensive list of the
data sources utilized can be found in Table 2 of
Appendix A.

3.2 Data Collection
We compiled our dataset from multiple scientific
and medical sources to ensure a comprehensive
coverage of the healthcare literature.

Scientific Articles and Abstracts First, we ob-
tained a complete data dump (dated 2024-01-24)
via the Semantic Scholar Open Research Corpus
(S2ORC) API3, which provided both abstracts and
full-text articles with comprehensive metadata.

Second, we accessed the PubMed Central FTP
service4 to download abstracts, applying consistent
processing methodology to maintain data unifor-
mity.

Third, we collected metadata from OpenAlex,
the database containing scholarly entities and their

3https://www.semanticscholar.org/product/api
4https://pmc.ncbi.nlm.nih.gov/tools/ftp/
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Data source # samples # samples after
dedup.

dedup.
rate (%)

Size
(# B tokens)

Composition
(%)

abstracts 24,873,275 24,699,369 0.70 7.45 8.4
articles-s2orc-non-pmc 1,185,820 1,175,283 0.89 8.34 9.4
articles-s2orc-pmc 3,583,470 3,522,678 1.70 27.50 30.9
open-alex 5,610,839 5,231,457 6.76 38.80 43.6
plos 342,530 336,890 1.65 2.19 2.5
frontiers 253,615 246,629 2.75 1.86 2.1
biorxiv 171,477 170,820 0.38 1.39 1.6
medrxiv 91,059 81,453 10.55 0.48 0.5
elife 26,738 24,118 9.80 0.24 0.3
nature 140,445 117,364 16.43 0.62 0.7
intechopen 15,037 14,965 0.48 0.10 0.1

clinical-guidelines 9,377 9,377 0.00 0.03 0.0
wiki-doc 17,898 17,898 0.00 0.02 0.0
open-books 20 20 0.00 0.00 0.0
med-wiki 35,923 35,923 0.00 0.05 0.1

Total: 36,357,523 35,684,244 1.85 89.08 100.0

Table 1: HC4 Dataset Composition: Data sources, sample counts before and after MinHash deduplication, dedupli-
cation rates, dataset size in billions of tokens (estimated using GPT2 tokenizer), and percentage composition of each
source. Rows for ’articles-s2orc-pmc’ represent full-text articles from S2ORC with PubMed or PubMedCentral IDs,
while ’articles-s2orc-non-pmc’ represent those without these IDs.

relationships, including works, authors, sources,
institutions, topics, publishers, and funders. Since
OpenAlex contains only metadata without article
text, we employed a multi-stage process to filter
relevant records and subsequently retrieve the cor-
responding full-text content. Our OpenAlex ac-
quisition pipeline involved: (a) Downloading the
complete OpenAlex Data Snapshot (updated 2024-
01-24) from AWS S3 storage; (b) Extracting the
compressed files to JSONL format, resulting in
approximately 2TB of metadata; (c) Selectively
extracting critical metadata fields from ’work’ ob-
jects for optimization purposes: pmid, pmcid, doi,
openalex ID, concept information (display_name,
level, score), type, publication_year, pdf_url, li-
cense, and open access status; (d) Restructuring
the JSON objects while preserving all records; (e)
Following the filtering process (detailed in Section
3.3), downloading PDFs using the URLs contained
in metadata.

Clinical Guidelines Clinical guidelines repre-
sent a critical resource for information on health-
care practices produced by federal government
agencies. We incorporated guideline documents
into the HC4 Dataset to provide diagnostic and
treatment protocols. Building on the foundation

established by Meditron (Chen et al., 2023), we in-
cluded only sources with commercially permissible
licenses.

Supplementary Sources To enhance dataset di-
versity, we supplemented our core collection with
content from: 1) WikiDoc: Content collected via
gpt-crawler tool5; 2) Nature Open Access Journals:
Approximately 140,000 full-text articles acquired
through PDF download and subsequent parsing us-
ing GROBID (GRO, 2008–2024); 3) Additional
scientific repositories including PLOS, Frontiers,
bioRxiv, medRxiv, eLife, IntechOpen, and Med-
Wiki.

3.3 Data Filtering

To construct our dataset, we applied a multi-step
filtering process to ensure the inclusion of high-
quality, relevant, and commercially usable biomed-
ical content.

Initial Selection: We started by including all ar-
ticles with existing PubMed or PubMed Central
identifiers, as these are inherently biomedical in na-
ture. Language Filtering: To restrict our dataset to
English-language documents, we employed a com-

5https://github.com/BuilderIO/gpt-crawler
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bination of metadata analysis and the langdetect
Python library6. License Verification: We retained
only articles with licenses that allow commercial
use (CC0, CCBY, CCBYND, CCBYSA, pd, and
public-domain). Domain Relevance (for S2ORC
subset only): For articles without PubMed identi-
fiers, we applied a filtering step based on relevant
academic categories, including Medicine, Biology,
Physics, Chemistry, Psychology, Environmental
Science, Sociology, and Engineering. Deduplica-
tion: We eliminated duplicate records by analyzing
and matching Corpus ID, PubMed ID, PMC ID,
and DOI fields. Publications already present in
our S2ORC subset were removed from the Ope-
nAlex collection, prioritizing S2ORC data for their
superior quality. Content Validation: We remove
records with insufficient content (< 500 characters)
or non-English text that had bypassed the initial
language screening.

This comprehensive filtering process yielded a
refined dataset ready for the subsequent parsing
and cleaning stages.

3.4 Data Parsing and Cleaning

This stage in our methodology involved converting
documents to a standardized format and ensuring
the quality of the content.

For OpenAlex PDF content, we used the Gen-
eration Of Bibliographic Data machine learning
library (GROBID) (GRO, 2008–2024), which spe-
cializes in extracting text from scientific and tech-
nical publications. The parsing workflow consisted
of three steps: 1) Extracting text content from PDFs
using GROBID’s machine learning algorithms; 2)
Converting the resulting XML files to JSON for-
mat; 3) Applying Python-based cleaning scripts to
standardize the output.

Our preprocessing pipeline for biomedical lit-
erature obtained from S2ORC and Supplemen-
tary Sources implements a comprehensive cleaning
strategy. The pipeline filters non-English content
using language detection, removes URLs and ref-
erences via regular expressions (regex) patterns
matching. Section headers are systematically for-
matted with hierarchical notation, distinguishing
main sections from subsections when available. To
avoid redundancy, we removed abstracts when full-
text versions of the articles are available. This
approach preserves the scientific discourse struc-
ture while standardizing the corpus for downstream

6https://pypi.org/project/langdetect/

natural language processing tasks.

3.5 MinHash Deduplication

To further exclude duplicated documents that may
have multiple DOIs and therefore could not be re-
moved via classical deduplication by IDs, we used
MinHash Locality Sensitive Hashing (LSH) tech-
nique (Broder, 1997; Indyk and Motwani, 1998;
Lee et al., 2022). MinHash deduplication method
aims to approximate the calculation of Jaccard simi-
larity (Jaccard, 1912) of two documents by calculat-
ing the similarity between the minhash signatures
of the documents instead. This involves breaking
down each document into a set of n-grams, then
applying a set of hash functions to each set of n-
grams and computing minhash signatures of the
documents by collecting minimum values obtained
from each hash function. In MinHash LSH, the
signatures are divided into bands, which are then
hashed into buckets. Documents with similar sig-
natures are located in the same bucket with high
probability and, therefore, are considered as candi-
date pairs. Finally, a pairwise comparison of can-
didate pairs from the same bucket is performed to
identify duplicate pairs. We implemented MinHash
LSH deduplication using a set of 256 hashes per
document, applied over 5-grams, and the threshold
value 0.85.

Through this systematic approach to data collec-
tion, filtering, and cleaning, we ensured that the
HC4 Dataset maintains high standards of quality,
relevance, and usability for healthcare language
model pretraining. The composition of the result-
ing HC4 data set is shown in Table 1.

4 Generation Bias Analysis

This section details our investigation into poten-
tial biases embedded within pretrained LLMs. We
present the methodology for training nine distinct
language models across three different architec-
tures: GPT-2 (Radford et al., 2019), Llama-3
(Grattafiori et al., 2024), and Mistral (Jiang et al.,
2023). Our bias evaluation includes a general
domain bias assessment using the BOLD frame-
work (Dhamala et al., 2021). Then, we introduce
a novel, targeted analysis specifically designed for
the healthcare domain. This analysis aims to quan-
tify the propensity of a model to over-prescribe or
under-prescribe opioids to different patient profiles,
providing insights into potential disparities learned
from the pretraining data.
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4.1 Language Models Training Methodology

To assess bias in generated text, we conducted a
comprehensive pretraining experiment involving
three distinct language model architectures and
three different datasets. The datasets used were
our proposed HC4, SlimPajama (Soboleva et al.,
2023), and FineWeb (Penedo et al., 2024). For each
of these three datasets, we trained models based
on the GPT-2, Llama-3, and Mistral architectures,
resulting in a total of nine individual models.

A consistent tokenization strategy was applied.
For each of the three datasets, we first trained a
GPT-2 style Byte Pair Encoding (BPE) tokenizer
with a vocabulary size of 50,257, using approxi-
mately 1 billion tokens sampled from that specific
dataset. Subsequently, each full dataset was tok-
enized with its corresponding custom tokenizer. To
ensure fair comparison with a consistent amount
of training data, we down-sampled FineWeb and
SlimPajama datasets to 89 billion tokens, matching
the size of our HC4 dataset. This process yielded
training sets of 89 billion tokens for each of the
nine model configurations.

All nine models were then trained for one
epoch on their respective 89 billion token prepared
datasets. Architectural hyperparameters, such as
the number of layers and attention heads for each
model type, are provided in Table 3. Due to in-
herent architectural differences, the models have
slightly varying parameter counts. However, we
believe these minor variations will not significantly
impact our comparative bias analysis. All models
were trained on 4x H100s GPUs.

4.2 Bias Evaluation in General Domain

4.2.1 Experimental Design
We used BOLD (Dhamala et al., 2021) as a bias
evaluation dataset. This dataset consists of text
samples from Wikipedia pages that span five differ-
ent categories: race, gender, profession, religious
ideologies, and political ideologies. Each sample
in the dataset has a corresponding prompt, which
is created by selecting the first several words from
the sample, which contain attribute words associ-
ated with a particular group (e.g. ’gender’ category
prompt containing male name ’Jacob Zachar is an
American actor whose’). Only samples falling un-
der the categories of "race" and "gender" were used
for our analysis. More details about BOLD dataset
can be found in Appendix B.2.

We then used the pretrained models to gen-

erate completions for these prompts. Follow-
ing (Dhamala et al., 2021), we then performed
sentiment classification of the generated comple-
tions and baseline Wikipedia text samples, using
DistilBERT-based (Sanh et al., 2019) sentiment
analysis model 7. By doing this, we are aiming to
assess the sentiment of generated texts when the
model is prompted with words related to different
demographic groups. We then compare the ratio
of the samples classified as positive, neutral, and
negative and compare the obtained ratios with the
baseline ones.

4.2.2 Results
Analysis of the generated completions revealed dis-
tinct sentiment patterns across models and datasets
compared to Wikipedia baseline. The baseline
itself showed some disparities: male-associated
text had a higher proportion of negative senti-
ment (4.4%) than female-associated text (2.9%).
Hispanic / Latino Americans showed the most
pronounced negative sentiment at (12.6%), while
Asian Americans exhibited the highest positive sen-
timent (44.3%) among ethnic groups. European
Americans displayed the greatest prevalence of neu-
tral sentiment (60.4%) (Figure 7).

The key results from the sentiment shifts in
model-generated text, compared to the baseline sen-
timent of Wikipedia data, are presented in Figure 8
and Figure 1. They reveal the following trends
related to gender and ethnicity:

Gender: Most models shifted sentiment from
neutral to positive for both genders, often more
pronounced for females. Statistically significant
shifts towards positive sentiment were primarily ob-
served in general domain models (e.g., GPT2-FW,
Mistral-SP) for male-associated prompts. However,
the GPT-FW model exhibited a subtle, yet statisti-
cally significant, shift towards negative sentiment
in the male category. Notably, models trained on
HC4 showed no statically significant shifts for gen-
der categories.

Ethnicity: HC4-trained models generally pro-
duced more neutral completions compared to
the baseline, particularly for European American
prompts, consistently showing statistically signif-
icant shifts towards neutrality. FineWeb-trained
models tended to generate more positive comple-
tions across all ethnicities. Most models, regardless

7https://huggingface.co/tabularisai/
multilingual-sentiment-analysis
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Figure 1: Sentiment distribution shifts from Wikipedia baseline across different language models and pretraining
datasets for ethnicity groups. Each subplot represents a specific model (GPT-2, LLaMA-3.2, Mistral) and dataset
(HC4, SP, FW) combination. Bars show the difference in sentiment proportions (negative, neutral, positive) between
model-generated completions and Wikipedia baseline texts for different ethnicity groups. Positive values indicate
higher proportion in generated text compared to baseline, while negative values indicate lower proportion. Asterisks
(*) denote statistically significant shifts after FDR correction (pcorr < 0.05). The analysis reveals systematic
differences in how language models portray different genders compared to the original Wikipedia distribution, with
notable variations across models and datasets. HC4: Healthcare Comprehensive Commons Corpus; SP: SlimPajama;
FW: FineWeb.

of training data, reduced the high baseline neg-
ative sentiment associated with Hispanic/Latino
Americans. The high neutral sentiment for Euro-
pean Americans was further increased by HC4 and
SlimPajama-trained models. Finally, the high posi-
tive sentiment for Asian Americans in the baseline
was generally maintained or amplified by models
trained on general domain data.

The models demonstrated a tendency to amplify
existing sentiment patterns present in the Wikipedia
baseline data or enhance neutrality for already neu-
tral groups. However, a positive corrective trend
was observed where models often mitigated high
baseline negative sentiment. Models trained on
our HC4 dataset produced more neutral outputs for
ethnicity prompts and avoided sentiment shifts in
gender categories, suggesting a potentially more
balanced sentiment representation in the pretrain-
ing data.

4.3 Bias Evaluation in Healthcare Domain

Research consistently reveals implicit biases in
healthcare providers towards racial and ethnic mi-
nority groups (Penner et al., 2013; Hall et al., 2015).
These biases manifest in various areas that can
affect patient outcomes. Evidence indicates that
Black rectal and colon cancer patients were less
likely to receive chemotherapy and radiation treat-
ments than their White counterparts, and that Black
prostate cancer patients were less likely to receive
required therapy (Murphy et al., 2015; Morris et al.,
2008; Hayn et al., 2011). Such inequities also
impact the quality of medical procedures, with
Black women facing higher risks of pregnancy
complications compared to White women (Hin-
kle et al., 2023). Another example is the gender,
age, and racial disparities in pain management,
where Black patients are documented to receive
inadequate pain relief compared to White patients
(Hoffman et al., 2016; Tamayo-Sarver et al., 2003;
Goyal et al., 2015; Landi et al., 2001; Calderone,
1990). Conversely, opioid prescriptions are more
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common among White, middle-aged married pa-
tients than those from other demographic groups
(Keister et al., 2021).

4.3.1 Experimental Design
To evaluate bias within the healthcare domain,
specifically focusing on differential opioid prescrip-
tion tendencies, we designed an experimental setup
centered on pain management scenarios. We con-
structed three new evaluation datasets targeting
race, gender, and age by processing and adapting
clinical cases from the MedQA dataset (Jin et al.,
2020) that involved patient pain. This process in-
cluded filtering relevant cases, generating demo-
graphic variations (e.g., "Asian patient", "female
patient") for each case alongside a neutral control
version using an LLM (GPT-4o (OpenAI, 2024)),
and structuring these into prompts querying for
prescribed medications. The analysis of outputs
from our pretrained models relied on a Net Bias
Prescription Score (NBPS):

NBPS = Mover −Munder (1)

which quantifies statistically significant overpre-
scription (Mover) and underprescription (Munder)
for specific demographic groups relative to con-
trols, based on the median probability ratios of pre-
scribed medications. The comprehensive method-
ology for dataset creation, including multi-step fil-
tering, LLM-based demographic attribute variation,
construction of specialized prompts for ethnicity,
gender, and age categories, specific sample counts
and details on statistical formulation, is elaborated
in Appendix B.3

4.3.2 Results
Statistical analysis confirmed robust, significant dif-
ferences (P < αcorr) in the probabilities of medica-
tion generation based on ethnicity, age, and gender
in all models. However, the nature and direction of
these biases varied substantially depending on the
model architecture and the training dataset used.

Ethnicity-Specific Bias Patterns Figure 2 shows
net prescription bias across studied ethnicity groups
for different models. Models trained on HC4 ex-
hibited distinct patterns. For instance, Llama-HC4
and Mistral-HC4 consistently overprescribed opi-
oid and non-opioid pain medication for "Ameri-
can Indian or Alaska Native" and "Middle East-
ern or North African" groups, often without any
corresponding underprescription. For the "Asian"

ethnic group, HC4-trained models also tended to-
wards overprescription, contrasting with general
domain models which showed a tendency to under-
prescribe opioids. Similarly, for "Black or African
American" individuals, HC4 models leaned to-
wards overprescription, while general domain mod-
els, particularly for non-opioids, tended toward un-
derprescription.

Age-Specific Bias Patterns Figure 10 show net
bias for different age groups for opioid and non-
opioid drugs. For children, most models, especially
those trained on HC4, showed significant overpre-
scription of opioids. For young adults, a general
tendency to over-prescribe drugs in general was
observed, although models trained on HC4 exhib-
ited lower overprescription levels than models in
the general domain. HC4 trained models exhibit a
strong underprescription tendency for opioids for
elderly patients when general-domain trained mod-
els tended to over-prescribe pain relief drugs to
this group. For middle-aged patients, strong opioid
overprescription was associated with SlimPajama-
trained models. Most models also over-prescribed
non-opioid medications for this age group.

Gender-Specific Bias Patterns Both female and
male prompts were generally associated with over-
prescription for pain relief medications in most
models. For women, the exceptions were GPT2-
HC4 and GPT2-FW in which underprescription of
opioids was observed. For men, a similar trend
was observed in overprescription, with some ex-
ceptions such as the GPT2-FW model showing net
underprescription of pain relief drugs in general.

Training Dataset Impact Notably, models
trained on healthcare domain-specific data show
different bias patterns than those trained in general
web data. (Figure 9).

HC4 trained models demonstrated the most pro-
nounced ethnic overprescription bias for pain re-
liever medications, although they showed lower
ethnic underprescription bias compared to models
trained on other datasets. In particular, for "Ameri-
can Indian or Alaska Native" and "Middle Eastern
or North African" groups, Llama-HC4 shows an
overprescription bias across all opioid medications
studied. Furthermore, the healthcare domain train-
ing dataset tends to produce models which lean
towards opioid underprescription for older groups
and overprescription for younger groups.

However, models trained in general domain data
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Figure 2: Bar charts displaying ethnicity prescription bias across different model architectures (GPT-2, Llama-3,
Mistral) trained on three datasets (HC4, SlimPajama, FineWeb) for opioid (left) and non-opioid medications (right).
Each bar represents the Net Bias Prescription Score (NBPS), calculated as the difference between the number of
medications with statistically significant higher prescription probabilities and those with statistically significant
lower probabilities relative to ethnicity-neutral prompts. Positive values indicate overprescription bias, while
negative values show underprescription bias. Statistical significance was determined using Wilcoxon signed-rank
tests with Bonferroni correction for multiple comparisons.

tend to prescribe pain relief medications much less
when the ethnicity factor is provided. In particu-
lar, for the ethnicity categories of "Asian", "Black
or African American", and "White", these mod-
els tend to under-prescribe opioid medications the
most. Models trained on the FineWeb dataset also
show higher underprescription for "Middle Eastern
or North African" ethnicity, except for the Llama-
FW model, which tends to over-prescribe opioid
medications to all ethnicities but "Asian". For age
bias case, SlimPajama trained models are associ-
ated with strong overprescription tendencies across
most age groups. Detailed results can be found in
Appendix C.

5 Conclusion

In this paper, we introduced the Healthcare Com-
prehension Commons Corpus (HC4), a large-scale,
89 billion token healthcare dataset for pretraining
LLMs, and presented a bias evaluation approach

for language models trained on this corpus. Our
analysis, using both general domain benchmarks
and a novel methodology focused on differential
opioid prescription tendencies, revealed significant
sensitivity of language models to demographic in-
formation, with bias patterns varying across model
architectures and training datasets.

This underscores a fundamental challenge: pre-
training data, regardless of its source or curation
efforts, contains inherent biases that models learn
and potentially amplify. Our findings demon-
strate that models trained on different datasets
(HC4, SlimPajama, FineWeb) and different ar-
chitectures (GPT-2, Llama-3, Mistral) manifest
these sensitivities in distinct, often unpredictable
ways. For instance, HC4-trained models showed
unique patterns in healthcare-specific opioid pre-
scription tasks, overprescribing for certain demo-
graphic groups ("American Indian or Alaska Na-
tive" and "Middle Eastern or North African" ethnic-

23028



ity) while under-prescribing for others (elderly age
group); these patterns that differed from models
trained on general web corpora.

Our research demonstrates that rigorous bias
analysis must become an indispensable component
of dataset and model development, especially in
sensitive domains like healthcare. By contributing
HC4 as an open resource and detailing our analyti-
cal approach, we aim to encourage further investi-
gation into understanding and mitigating biases in
language models, supporting the development of
AI systems that are both powerful and equitable.

Limitations

This study has several important limitations that
should be considered when interpreting the find-
ings.

First, the experiments were conducted on rel-
atively small language models (124M -179M pa-
rameters), which may not represent the behavior
of the models in typical real-world scenarios (typ-
ically exceeding billions of parameters). We hy-
pothesize that some of the observed sensitivities to
demographic attributes might diminish with larger
models, though verifying this and understanding
the scaling laws of bias requires substantial compu-
tational resources best undertaken by organizations
training foundational models.

Second, in this study, the exact causes of differ-
ent architectures yielding different bias profiles on
identical datasets are not covered. They potentially
stem from differences in attention mechanisms, nor-
malization techniques, or other architectural nu-
ances and remain an open research question, which
is outside the scope of this work.

Third, our novel opioid prescription analysis
methodology, while providing important insights,
represents just one dimension of potential health-
care bias. Other aspects such as treatment efficacy
or diagnostic accuracy may exhibit different bias
patterns. Expanding the evaluation to additional
dimensions would provide a more comprehensive
understanding of bias in clinical language models.

Despite these limitations, our work offers three
significant contributions: the HC4 dataset as a com-
prehensive resource for healthcare LLM develop-
ment; the bias evaluation methodology, which ex-
tends beyond generic metrics to healthcare-specific
contexts; and empirical measurements of bias pat-
terns across different model architectures and train-
ing datasets. The openly available dataset enables

reproducible research, while our bias analysis ap-
proach sets a new standard for evaluating fairness
in clinical applications. The empirical results, par-
ticularly the demographic-specific medication pre-
scription biases, reveal patterns that must be ad-
dressed in the clinical AI systems. Together, these
contributions establish a foundation for developing
healthcare AI systems that are not only powerful
but also equitable, helping to reduce rather than am-
plify the existing healthcare disparities in clinical
practice.

References
2008–2024. Grobid. https://github.com/

kermitt2/grobid. Preprint, swh:1:dir:
dab86b296e3c3216e2241968f0d63b68e8209d3c.

Abdullah Al Hamid, Rachel Beckett, Megan Wilson,
Zahra Jalal, Ejaz Cheema, Dhiya Al-Jumeily Obe,
Thomas Coombs, Komang Ralebitso-Senior, Sulaf
Assi, and Sulaf Assi Sr. 2024. Gender bias in di-
agnosis, prevention, and treatment of cardiovascular
diseases: a systematic review. Cureus, 16(2).

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne
Longpre, Nathan Lambert, Xinyi Wang, Niklas
Muennighoff, Bairu Hou, Liangming Pan, Hae-
won Jeong, Colin Raffel, Shiyu Chang, Tatsunori
Hashimoto, and William Yang Wang. 2024. A sur-
vey on data selection for language models. arXiv
preprint arXiv:2402.16827. https://arxiv.org/
abs/2402.16827.

Yoav Benjamini and Yosef Hochberg. 1995. Control-
ling the false discovery rate: A practical and pow-
erful approach to multiple testing. Journal of the
Royal Statistical Society: Series B (Methodological),
57(1):289–300.

A.Z. Broder. 1997. On the resemblance and con-
tainment of documents. In Proceedings. Compres-
sion and Complexity of SEQUENCES 1997 (Cat.
No.97TB100171), pages 21–29.

Karen L. Calderone. 1990. The influence of gender
on the frequency of pain and sedative medication
administered to postoperative patients. Sex Roles,
23(11):713–725.

Leo Anthony Celi, Jacqueline Cellini, Marie-Laure
Charpignon, Edward Christopher Dee, Franck Der-
noncourt, Rene Eber, William Greig Mitchell, Lama
Moukheiber, Julian Schirmer, Julia Situ, Joseph
Paguio, Joel Park, Judy Gichoya Wawira, Seth Yao,
and for MIT Critical Data. 2022. Sources of bias
in artificial intelligence that perpetuate healthcare
disparities—a global review. PLOS Digital Health,
1(3):1–19.

Zeming Chen, Alejandro Hernández-Cano, Angelika
Romanou, Antoine Bonnet, Kyle Matoba, Francesco

23029

https://arxiv.org/abs/1:dir:\dab86b296e3c3216e2241968f0d63b68e8209d3c
https://github.com/kermitt2/grobid
https://github.com/kermitt2/grobid
https://arxiv.org/abs/2402.16827
https://arxiv.org/abs/2402.16827
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1007/BF00289259
https://doi.org/10.1007/BF00289259
https://doi.org/10.1007/BF00289259
https://doi.org/10.1371/journal.pdig.0000022
https://doi.org/10.1371/journal.pdig.0000022
https://doi.org/10.1371/journal.pdig.0000022


Salvi, Matteo Pagliardini, Simin Fan, Andreas
Köpf, Amirkeivan Mohtashami, Alexandre Sallinen,
Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk,
Deniz Bayazit, Axel Marmet, Syrielle Montariol,
Mary-Anne Hartley, Martin Jaggi, and Antoine
Bosselut. 2023. Meditron-70b: Scaling medical
pretraining for large language models. Preprint,
arXiv:2311.16079.

Clément Christophe, Praveen K Kanithi, Tathagata
Raha, Shadab Khan, and Marco AF Pimentel. 2024.
Med42-v2: A suite of clinical llms. arXiv preprint
arXiv:2408.06142.

Davide Cirillo, Silvina Catuara-Solarz, Czuee Morey,
Emre Guney, Laia Subirats, Simona Mellino, Annal-
isa Gigante, Alfonso Valencia, María José Remente-
ria, Antonella Santuccione Chadha, and et al. 2020.
Sex and gender differences and biases in artificial
intelligence for biomedicine and healthcare. npj Dig-
ital Medicine, 3(1).

Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya
Krishna, Yada Pruksachatkun, Kai-Wei Chang, and
Rahul Gupta. 2021. Bold: Dataset and metrics for
measuring biases in open-ended language generation.
In Proceedings of the 2021 ACM Conference on Fair-
ness, Accountability, and Transparency, FAccT ’21,
page 862–872, New York, NY, USA. Association for
Computing Machinery.

Olive Jean Dunn. 1961. Multiple comparisons among
means. Journal of the American Statistical Associa-
tion, 56(293):52–64.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, and 1
others. 2020. The pile: An 800gb dataset of di-
verse text for language modeling. arXiv preprint
arXiv:2101.00027.

Monika K. Goyal, Nathan Kuppermann, Sean D. Cleary,
Stephen J. Teach, and James M. Chamberlain. 2015.
Racial disparities in pain management of children
with appendicitis in emergency departments. JAMA
Pediatrics, 169(11):996–1002.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 82 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783. Ver-
sion 3.

William J. Hall, Mimi V. Chapman, Kent M. Lee, Yese-
nia M. Merino, Tainayah W. Thomas, B. Keith Payne,
Eugenia Eng, Steven H. Day, and Tamera Coyne-
Beasley. 2015. Implicit racial/ethnic bias among
health care professionals and its influence on health
care outcomes: A systematic review. American
Journal of Public Health, 105(12):e60–e76. PMID:
26469668.

Matthew H Hayn, Heather Orom, Vickie L Shavers,
Martin G Sanda, Mark Glasgow, James L Mohler,
and Willie 3rd Underwood. 2011. Racial/ethnic dif-
ferences in receipt of pelvic lymph node dissection
among men with localized/regional prostate cancer.
Cancer, 117(20):4651–4658.

Stefanie N. Hinkle, Enrique F. Schisterman, Danping
Liu, Anna Z. Pollack, Edwina H. Yeung, Sunni L.
Mumford, Katherine L. Grantz, Yan Qiao, Neil J.
Perkins, James L. Mills, Pauline Mendola, and Cuilin
Zhang. 2023. Pregnancy complications and long-
term mortality in a diverse cohort. Circulation,
147(13):1014–1025.

Kelly M. Hoffman, Sophie Trawalter, Jordan R. Axt,
and M. Norman Oliver. 2016. Racial bias in pain as-
sessment and treatment recommendations, and false
beliefs about biological differences between blacks
and whites. Proceedings of the National Academy of
Sciences, 113(16):4296–4301.

Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: towards removing the curse of di-
mensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC
’98, page 604–613, New York, NY, USA. Associa-
tion for Computing Machinery.

Paul Jaccard. 1912. The distribution of the flora in the
alpine zone. New Phytologist, 11(2):37–50.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. arXiv
preprint arXiv:2310.06825.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng,
Hanyi Fang, and Peter Szolovits. 2020. What dis-
ease does this patient have? a large-scale open do-
main question answering dataset from medical exams.
arXiv preprint arXiv:2009.13081.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. Pubmedqa: A dataset
for biomedical research question answering. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2567–2577.

Lisa A. Keister, Chad Stecher, Brian Aronson, William
McConnell, Joshua Hustedt, and James W. Moody.
2021. Provider bias in prescribing opioid analgesics:
a study of electronic medical records at a hospi-
tal emergency department. BMC Public Health,
21(1):1518.

Francesco Landi, Graziano Onder, Matteo Cesari,
Giovanni Gambassi, Knight Steel, Andrea Russo,
Fabrizia Lattanzio, Roberto Bernabei, and for the

23030

https://arxiv.org/abs/2311.16079
https://arxiv.org/abs/2311.16079
https://doi.org/10.1038/s41746-020-0288-5
https://doi.org/10.1038/s41746-020-0288-5
https://doi.org/10.1145/3442188.3445924
https://doi.org/10.1145/3442188.3445924
https://doi.org/10.1080/01621459.1961.10482090
https://doi.org/10.1080/01621459.1961.10482090
https://doi.org/10.1001/jamapediatrics.2015.1915
https://doi.org/10.1001/jamapediatrics.2015.1915
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.2105/AJPH.2015.302903
https://doi.org/10.2105/AJPH.2015.302903
https://doi.org/10.2105/AJPH.2015.302903
https://doi.org/10.1002/cncr.26103
https://doi.org/10.1002/cncr.26103
https://doi.org/10.1002/cncr.26103
https://doi.org/10.1161/CIRCULATIONAHA.122.062177
https://doi.org/10.1161/CIRCULATIONAHA.122.062177
https://doi.org/10.1073/pnas.1516047113
https://doi.org/10.1073/pnas.1516047113
https://doi.org/10.1073/pnas.1516047113
https://doi.org/10.1073/pnas.1516047113
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2009.13081
https://doi.org/10.48550/arXiv.2009.13081
https://doi.org/10.48550/arXiv.2009.13081
https://doi.org/10.1186/s12889-021-11551-9
https://doi.org/10.1186/s12889-021-11551-9
https://doi.org/10.1186/s12889-021-11551-9


SILVERNET-HC Study Group. 2001. Pain man-
agement in frail, community-living elderly patients.
Archives of Internal Medicine, 161(22):2721–2724.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rod-
ney Michael Kinney, and Daniel S. Weld. 2020.
S2orc: The semantic scholar open research corpus.
In Annual Meeting of the Association for Computa-
tional Linguistics.

Cécile Logé, Emily Ross, David Dadey, Saahil Jain,
Adriel Saporta, Andrew Ng, and Pranav Rajpurkar.
2021. Q-pain: A question answering dataset to mea-
sure social bias in pain management.

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157.

Queremel Milani and Daniel D Davis. 2025. Pain man-
agement medications. In StatPearls. StatPearls Pub-
lishing, Treasure Island (FL). [Updated 2023 Jul 3;
Accessed 2025 Apr 25].

Andrew M Morris, Karen G Billingsley, A James
Hayanga, Brian Matthews, Laura M Baldwin, and
John D Birkmeyer. 2008. Residual treatment dispari-
ties after oncology referral for rectal cancer. Journal
of the National Cancer Institute, 100(10):738–744.

Caitlin C Murphy, Linda C Harlan, Jessica L Warren,
and Amy M Geiger. 2015. Race and insurance differ-
ences in the receipt of adjuvant chemotherapy among
patients with stage iii colon cancer. Journal of Clini-
cal Oncology, 33(23):2530–2536.

Mahmud Omar, Shelly Soffer, Reem Agbareia,
Nicola Luigi Bragazzi, Donald U Apakama, Carol R
Horowitz, Alexander W Charney, Robert Freeman,
Benjamin Kummer, Benjamin S Glicksberg, and 1
others. 2025. Sociodemographic biases in medical
decision making by large language models. Nature
Medicine, pages 1–9.

OpenAI. 2024. Gpt-4o system card. arXiv.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan
Sankarasubbu. 2022. Medmcqa: A large-scale multi-
subject multi-choice dataset for medical domain ques-
tion answering. In Proceedings of the Conference
on Health, Inference, and Learning, volume 174 of
Proceedings of Machine Learning Research, pages
248–260. PMLR.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben al-
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A HC4 Dataset Details

Source type Source name
Digital
archives

PubMed Central1

Metadata
repositories

OpenAlex (Priem et al., 2022),
Semantic Scholar (Lo et al.,
2020)

Peer-reviewed
open-access
journals

PLOS2, Frontiers3, Elife4, Nature5

Open-access
book and
journal
publishers

Intechopen6

Preprint
servers

MedRxiv7, BioRxiv8

Open-source
medical
platforms

MedWiki9, WikiDoc 10

1 https://www.ncbi.nlm.nih.gov/pmc/
2 https://plos.org/
3 https://www.frontiersin.org/
4 https://elifesciences.org/
5 https://www.nature.com/
6 https://www.intechopen.com/
7 https://www.medrxiv.org/
8 https://www.biorxiv.org/
9 https://mdwiki.org/
10 https://www.wikidoc.org/

Table 2: Data sources used in creating the HC4 corpus,
including digital archives, metadata repositories, peer-
reviewed open-access journals, open-access book and
journal publishers, preprint servers, and open-source
medical platforms.

B Evaluation Sets

B.1 Training Details

Table 3 shows the parameters of the models which
were used in the experiments.

Figure 3 and Tables 4, 4, 6 present the validation
perplexity of the various Llama-3.2 model variants,

each trained on distinct datasets: FineWeb, SlimPi-
jama, and HC4. These findings indicate that the per-
plexity remains at a relatively high level, suggest-
ing that the models have not yet reached saturation.
This implies that additional training could likely
result in reduced perplexity. Notably, the model
trained on HC4 displays a markedly lower perplex-
ity compared to those trained on general-domain
datasets. This disparity is likely attributable to the
homogeneity of the HC4 data, which is character-
ized by a single domain and uniform writing style,
predominantly comprising scientific texts. Conse-
quently, the model achieved lower perplexity with
the same number of training steps.

Figure 4 presents examples of text generated by
different variants of the GPT2 model. The models
demonstrate the capability to produce coherent and
well-structured text.

B.2 General Domain Bias
The BOLD dataset is constructed through a system-
atic process. For each category, a list of Wikipedia
pages corresponding to these categories was com-
piled. In the "gender" category, the list included
articles about American actors and actresses. For
the "race" category, pages about notable actors, en-
trepreneurs, musicians, and others were collected
and categorized into four groups based on the in-
dividuals’ names: "Asian Americans", "African
Americans", "European Americans", and "Hispanic
and Latino Americans".

After scraping the text from these pages, only
sentences where the person’s name was mentioned
within the first eight words were selected. These
text samples constitute the baseline Wikipedia set.
Prompts were then created by truncating these sen-
tences to include the first several words plus the
name. Consequently, the final dataset comprises
baseline Wikipedia sentences that mention a per-
son’s name, reflecting their gender or race for the
respective categories. For all baseline samples,
there are corresponding truncated samples in the
prompts set (Figure 5).

To identify statistically significant differences in
sentiment between the baseline Wikipedia texts and
model-generated completions, we employed the
McNemar test with Benjamini-Hochberg false dis-
covery rate (FDR) correction for multiple compar-
isons (McNemar, 1947; Benjamini and Hochberg,
1995). This test was selected due to the categori-
cal nature of the sentiment data (positive, negative,
neutral) and the paired design of our samples. We
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Architecture # params # layers # heads
GPT2 124M 12 12

Llama-3 141M 12 12
Mistral 179M 12 12

Table 3: Hyper-parameters used to train three different model architectures

Figure 3: Validation set perplexity for three Llama-3.2 model variants, trained on three datasets.

Table 4: Validation perplexity of Llama-3.2 model
trained on FineWeb dataset. The perplexity value is
averaged for three runs and the standard deviation is
shown in brackets.

Steps Perplexity Avg

45k 23.21 (0.04)
90k 21.13 (0.04)

135k 20.23 (0.03)
180k 19.73 (0.03)
225k 19.52 (0.03)

set the initial significance threshold at α = 0.05,
and then applied the FDR correction to control for
false discovery rate in multiple comparisons (the
number of comparisons is equal to the number of
categories, which is 4 in ethnicity experiments and
2 in gender experiments).

B.3 Healthcare Specific Bias in Pain
Management

To evaluate bias within the healthcare domain, we
use the pain management scenario as a basis to
develop prompts and create an evaluation dataset
for this specific bias dimension.

Table 5: Validation perplexity of Llama-3.2 model
trained on SlimPijama dataset. The perplexity value
is averaged for three runs and the standard deviation is
shown in brackets.

Steps Perplexity Avg

45k 23.55 (0.04)
90k 21.36 (0.04)

135k 20.40 (0.04)
180k 19.88 (0.04)
225k 19.65 (0.04)

Subsequently, we trained different small lan-
guage models (SLMs) on three datasets and an-
alyzed the output of each model to detect the pres-
ence or absence of these disparities in the models.

In order to detect disparities associated with a
specific demographic group, we created three eval-
uation datasets for pain medication prescription
scenarios. To achieve this, the MedQA (Jin et al.,
2020) dataset was used, which originally consists
of more than 12k questions from medical exams.
To filter samples with pain-related cases, we used
an SQL query to collect samples where the word
"pain" was present. Samples obtained from the re-
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Table 6: Validation perplexity of Llama-3.2 model
trained on HC4 dataset. The perplexity value is aver-
aged for three runs and the standard deviation is shown
in brackets.

Steps Perplexity Avg

45k 13.79 (0.02)
90k 12.70 (0.02)

135k 12.22 (0.02)
180k 11.95 (0.02)
225k 11.84 (0.02)

sult of the SQL query underwent additional process-
ing and filtering, and eventually formed the evalua-
tion dataset. This processing involved six steps: 1)
The LLM-based filtering pipeline (GPT4o) (Ope-
nAI, 2024) and regular expressions were used to
identify the gender and age of the patient described
in the clinical case; 2) Resulting samples were fil-
tered to keep only those which have the word "pain"
present in the first or second sentences (which usu-
ally contain the patient’s demographic and case
description); 3) Truncate the samples by removing
all sentences after the sentence in which the word
"pain" was detected; 4) The string " He was pre-
scribed" or " She was prescribed" was appended
depending on the patient’s gender (except for the
gender variations prompt); 5) Then the same LLM
was used to create samples with different demo-
graphic groups attribute terms (e.g. for ethnicity
demographic groups the attribute terms are "Asian",
"Black", "North African" and etc), i.e. creating vari-
ations sets. 6) Finally, the control set was created
by removing any attributes of the studied demo-
graphic group.

We also performed additional filtering stage,
where we removed all samples that contain string
"pain" but the patient in this sample does not actu-
ally have any pain ( for example "A person presents
with painless swelling of the neck over the past
week. He was prescribed") to avoid contamination
in the evaluation set.

Then we calculate the net bias prescription score
as NBPS = Mover − Munder. The number of
over-prescribed and under-prescribed medications
is calculated as follows:

Mover =
M∑

m=1

1

[
(Rmedian

m,v > 1) ∧ (pvm < αcorr)
]

(2)

Figure 4: Qualitative examples of the text generated
by three Llama-3.2 model variants, trained on three
datasets. Black text represents the prompt and the blue
text was generated by the models given that prompt.
FW: FineWeb, SP: SlimPijama, HC4: our dataset.

Munder =
M∑

m=1

1

[
(Rmedian

m,v < 1) ∧ (pvm < αcorr)
]

(3)
where M is the total number of medications,

pvm is the Wilcoxon test p-value for medication m
and variation v, αcorr = α

M ·|V | is the Bonferroni-
corrected significance threshold, α = 0.05 is the
significance level, |V | is the number of variations
(e.g., 7 for race, 4 for age, 2 for gender). The
Rmedian

m,v is median of a vector of probability ratios
defined as

Rmedian
m,v = median(

{
P (m|vi)
P (m|ci)

}N

i=1

) (4)

where N is a number of prompts in evaluation set,
P (m|vi) is the probability of medication m token
sequence given i-th prompt in given variation set,
P (m|ci) is the probability of medication m token
sequence given i-th control prompt.

Statistical analysis of differential medication
generation probabilities between the control
and variation prompts was conducted using the
Wilcoxon signed-rank test with Bonferroni correc-
tion for multiple comparisons (Wilcoxon, 1992;
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Figure 5: Example from the baseline BOLD Wikipedia
set (above), corresponding prompt and generated text
(below). The baseline sample sentiment is positive,
whereas sentiment of the completion generated by the
model can be different.

Dunn, 1961). The Wilcoxon signed-rank test was
selected due to the non-normal distribution of the
probability ratios and the paired nature of the sam-
ples. For opioid medications, αcorr was calculated
by dividing α by 63 (7 ethnicity variations × 9 med-
ications), while for non-opioid medications, adjust-
ment involved division by 70 (7 ethnicity variations
× 10 medications), ensuring appropriate control of
familywise error rate at α = 0.05.

Racial Bias Ethnicity bias evaluation set consists
of 576 samples, with 7 variation sets for each eth-
nicity and a control set, each 72 samples. We used
the list of ethnicities from the US Census Bureau8

to create sets of ethnic variations. For terms which
consists of two ethnic groups such as "American
Indian or Alaska Native" we used mixed set ap-
proach. To create such a mixed variation set we
first created two base variation sets for each ethnic
group. Then, we constructed a third variation set
by randomly choosing prompt from two base sets
with probability 0.5. Thus, we obtained a mixed
set of prompts which contains samples for both
sub-ethnicity groups. An example of the resulting
prompts is shown in Figure 6.

Gender Bias Gender bias evaluation dataset con-
sists of 192 samples, with 2 variation sets and a
control set, each 64 samples. In the control set, we
substituted all gender-specific terms with gender-
neutral counterparts (e.g., "she" became "they,"
"man" became "person"), and we used the phrase
"They were prescribed" instead of "She/He was pre-
scribed." In the male and female variation sets, we
modified all gender-related terms to correspond to
the specific gender variation set. Additionally, we

8https://www.census.gov/about/our-research/
race-ethnicity/standards-updates.html

excluded samples that contained only men or only
women-related conditions, such as those involving
pregnancy, to prevent contamination of the dataset.

Age Bias Age bias evaluation dataset consists of
325 samples, with 4 variation sets and a control
set, each 65 samples. We removed the samples
which were not logically consistent in any of the
variations (e.g. samples with cases of pregnant
patients since they cannot be applied to children or
eldery patients) to avoid dataset contamination.

Studied Medications The list of opioid and
non-opioid medications used in this study is de-
rived from (Keister et al., 2021) and (Milani and
Davis, 2025), respectively. Opioid medications
list: oxycodone, morphine, hydromorphone, fen-
tanyl, hydrocodone, codeine, methadone, tapenta-
dol, or meperidine. Non-opioid medication list:
acetaminophen, paracetamol, aspirin, acetylsal-
icylic acid, diclofenac, ibuprofen, indomethacin,
meloxicam, naproxen, celecoxib. In the list of non-
opioid medications, there are effectively 8 unique
medications, since acetaminophen and paraceta-
mol refer to the same medication, as do aspirin
and acetylsalicylic acid. In our experiments, we
treat them as distinct medication token sequences
to cover all widely used names for each drug.

C Statistical Analysis Results

To understand bias patterns in the prescription sce-
nario of pain management medications, the number
of medications with statistically significant output
probability difference compared to baseline were
counted. Tables 7, 8, and 9 present detailed results
of statistical tests for the ethnicity category. Tables
10, 11, and 12 provide the corresponding results
for the age category. Finally, Tables 13, 14, and 15
show the results for the gender category.

For general bias analysis experiments, the pro-
portions of positive, negative, and neutral senti-
ment in the models completions were compared to
the same proportions in the baseline Wikipedia set.
The sentiment proportions in the baseline set are
shown in Figure 7. The differences in proportions
between the models’ completions and the baseline
Wikipedia set are shown in Figures 8 and 1.
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Table 7: Results of pain management medications pre-
scription analysis for Ethnicity variation prompts. The
Table shows the number of opioid medications which
had statistically significant difference with baseline con-
trol prompts probability ratios. Munder and Mover are
the numbers of medications which had lower and higher
probability ratios, respectively. Total number of opi-
oid medications is 9, non-opioid is 10. The results are
shown for models trained on HC4 dataset.

Ethnicity Munder Mover

GPT2-HC4 (Opioid)

American Indian or Alaska Native 4 1
Asian 2 5
Black or African American 1 3
Hispanic or Latino 3 1
Middle Eastern or North African 1 1
Native Hawaiian or Pacific Islander 3 3
White 1 5

GPT2-HC4 (Non-Opioid)

American Indian or Alaska Native 4 4
Asian 2 7
Black or African American 3 5
Hispanic or Latino 5 2
Middle Eastern or North African 4 4
Native Hawaiian or Pacific Islander 5 4
White 1 7

LLAMA-HC4 (Opioid)

American Indian or Alaska Native 0 9
Asian 0 4
Black or African American 0 7
Hispanic or Latino 0 7
Middle Eastern or North African 0 9
Native Hawaiian or Pacific Islander 0 6
White 1 4

LLAMA-HC4 (Non-Opioid)

American Indian or Alaska Native 0 9
Asian 2 5
Black or African American 0 8
Hispanic or Latino 0 7
Middle Eastern or North African 0 9
Native Hawaiian or Pacific Islander 0 6
White 2 3

MISTRAL-HC4 (Opioid)

American Indian or Alaska Native 0 6
Asian 1 1
Black or African American 1 2
Hispanic or Latino 2 3
Middle Eastern or North African 0 5
Native Hawaiian or Pacific Islander 0 2
White 2 3

MISTRAL-HC4 (Non-Opioid)

American Indian or Alaska Native 0 7
Asian 3 3
Black or African American 4 2
Hispanic or Latino 1 3
Middle Eastern or North African 0 4
Native Hawaiian or Pacific Islander 0 1
White 4 2

Table 8: Results of pain management medications pre-
scription analysis for Ethnicity variation prompts. The
Table shows the number of opioid medications which
had statistically significant difference with baseline con-
trol prompts probability ratios. Munder and Mover are
the numbers of medications which had lower and higher
probability ratios, respectively. Total number of opi-
oid medications is 9, non-opioid is 10. The results are
shown for models trained on SlimPajama dataset.

Ethnicity Munder Mover

GPT2-SP (Opioid)

American Indian or Alaska Native 4 3
Asian 3 3
Black or African American 7 0
Hispanic or Latino 4 4
Middle Eastern or North African 2 1
Native Hawaiian or Pacific Islander 3 2
White 8 1

GPT2-SP (Non-Opioid)

American Indian or Alaska Native 5 2
Asian 1 9
Black or African American 5 1
Hispanic or Latino 5 2
Middle Eastern or North African 3 2
Native Hawaiian or Pacific Islander 3 4
White 6 1

LLAMA-SP (Opioid)

American Indian or Alaska Native 0 6
Asian 5 0
Black or African American 1 1
Hispanic or Latino 0 5
Middle Eastern or North African 1 3
Native Hawaiian or Pacific Islander 4 2
White 4 1

LLAMA-SP (Non-Opioid)

American Indian or Alaska Native 5 4
Asian 7 3
Black or African American 4 2
Hispanic or Latino 3 4
Middle Eastern or North African 4 4
Native Hawaiian or Pacific Islander 3 3
White 5 2

MISTRAL-SP (Opioid)

American Indian or Alaska Native 5 0
Asian 6 2
Black or African American 4 0
Hispanic or Latino 5 1
Middle Eastern or North African 2 0
Native Hawaiian or Pacific Islander 3 1
White 2 1

MISTRAL-SP (Non-Opioid)

American Indian or Alaska Native 4 1
Asian 5 4
Black or African American 6 0
Hispanic or Latino 6 1
Middle Eastern or North African 5 1
Native Hawaiian or Pacific Islander 5 1
White 6 1
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Table 9: Results of pain management medications pre-
scription analysis for Ethnicity variation prompts. The
Table shows the number of opioid medications which
had statistically significant difference with baseline con-
trol prompts probability ratios. Munder and Mover are
the numbers of medications which had lower and higher
probability ratios, respectively. Total number of opi-
oid medications is 9, non-opioid is 10. The results are
shown for models trained on FineWeb dataset.

Ethnicity Munder Mover

GPT2-FW (Opioid)

American Indian or Alaska Native 9 0
Asian 6 1
Black or African American 8 0
Hispanic or Latino 1 4
Middle Eastern or North African 9 0
Native Hawaiian or Pacific Islander 7 0
White 7 0

GPT2-FW (Non-Opioid)

American Indian or Alaska Native 7 0
Asian 6 2
Black or African American 10 0
Hispanic or Latino 3 2
Middle Eastern or North African 8 0
Native Hawaiian or Pacific Islander 7 0
White 8 2

LLAMA-FW (Opioid)

American Indian or Alaska Native 0 8
Asian 6 1
Black or African American 1 5
Hispanic or Latino 0 6
Middle Eastern or North African 1 4
Native Hawaiian or Pacific Islander 0 4
White 0 6

LLAMA-FW (Non-Opioid)

American Indian or Alaska Native 4 4
Asian 7 1
Black or African American 7 1
Hispanic or Latino 2 4
Middle Eastern or North African 6 2
Native Hawaiian or Pacific Islander 4 4
White 6 1

MISTRAL-FW (Opioid)

American Indian or Alaska Native 3 0
Asian 4 2
Black or African American 6 1
Hispanic or Latino 4 1
Middle Eastern or North African 5 1
Native Hawaiian or Pacific Islander 3 2
White 3 2

MISTRAL-FW (Non-Opioid)

American Indian or Alaska Native 4 2
Asian 3 4
Black or African American 6 1
Hispanic or Latino 6 2
Middle Eastern or North African 4 3
Native Hawaiian or Pacific Islander 4 3
White 9 0

Table 10: Results of pain management medications pre-
scription analysis for Age variation prompts. The Table
shows the number of opioid medications which had
statistically significant difference with baseline control
prompts probability ratios. Munder and Mover are the
numbers of medications which had lower and higher
probability ratios, respectively. Total number of opi-
oid medications is 9, non-opioid is 10. The results are
shown for models trained on HC4 dataset.

Age Group Munder Mover

GPT2-HC4 (Opioid)

Child 1 6
Young Adult 3 4
Middle Age 4 3
Elderly 5 3

GPT2-HC4 (Non-Opioid)

Child 2 5
Young Adult 3 5
Middle Age 1 5
Elderly 3 5

LLAMA-HC4 (Opioid)

Child 1 6
Young Adult 2 5
Middle Age 2 2
Elderly 5 1

LLAMA-HC4 (Non-Opioid)

Child 5 4
Young Adult 2 4
Middle Age 0 8
Elderly 4 2

MISTRAL-HC4 (Opioid)

Child 0 3
Young Adult 4 3
Middle Age 3 5
Elderly 5 3

MISTRAL-HC4 (Non-Opioid)

Child 4 4
Young Adult 4 3
Middle Age 1 6
Elderly 2 2
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Table 11: Results of pain management medications pre-
scription analysis for Age variation prompts. The Table
shows the number of opioid medications which had
statistically significant difference with baseline control
prompts probability ratios. Munder and Mover are the
numbers of medications which had lower and higher
probability ratios, respectively. Total number of opi-
oid medications is 9, non-opioid is 10. The results are
shown for models trained on SlilmPijama dataset.

Age Group Munder Mover

GPT2-SP (Opioid)

Child 4 5
Young Adult 3 5
Middle Age 0 7
Elderly 0 3

GPT2-SP (Non-Opioid)

Child 1 9
Young Adult 0 5
Middle Age 2 3
Elderly 2 7

LLAMA-SP (Opioid)

Child 1 3
Young Adult 0 7
Middle Age 0 6
Elderly 3 3

LLAMA-SP (Non-Opioid)

Child 3 5
Young Adult 4 5
Middle Age 1 4
Elderly 3 5

MISTRAL-SP (Opioid)

Child 2 4
Young Adult 0 5
Middle Age 2 5
Elderly 0 5

MISTRAL-SP (Non-Opioid)

Child 3 5
Young Adult 2 3
Middle Age 3 2
Elderly 3 5

Table 12: Results of pain management medications pre-
scription analysis for Age variation prompts. The Table
shows the number of opioid medications which had
statistically significant difference with baseline control
prompts probability ratios. Munder and Mover are the
numbers of medications which had lower and higher
probability ratios, respectively. Total number of opi-
oid medications is 9, non-opioid is 10. The results are
shown for models trained on FineWeb dataset.

Age Group Munder Mover

GPT2-FW (Opioid)

Child 3 4
Young Adult 4 3
Middle Age 4 3
Elderly 1 5

GPT2-FW (Non-Opioid)

Child 4 4
Young Adult 1 5
Middle Age 3 5
Elderly 3 4

LLAMA-FW (Opioid)

Child 5 1
Young Adult 0 5
Middle Age 5 2
Elderly 2 2

LLAMA-FW (Non-Opioid)

Child 5 4
Young Adult 2 4
Middle Age 1 6
Elderly 0 7

MISTRAL-FW (Opioid)

Child 3 4
Young Adult 2 6
Middle Age 1 6
Elderly 2 3

MISTRAL-FW (Non-Opioid)

Child 4 6
Young Adult 2 4
Middle Age 0 6
Elderly 1 7
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Figure 6: Example prompt from our evaluation set and
its corresponding variation prompts sets for different
ethnicity terms. Note that for ethnicity terms encom-
passing two ethnic groups (e.g., ’Hispanic or Latino’),
the variation set consists of a mix of prompts represent-
ing both groups.

Table 13: Results of pain management medications pre-
scription analysis for Gender variation prompts. The
Table shows the number of opioid medications which
had statistically significant difference with baseline con-
trol prompts probability ratios. Munder and Mover are
the numbers of medications which had lower and higher
probability ratios, respectively. Total number of opi-
oid medications is 9, non-opioid is 10. The results are
shown for models trained on HC4 dataset.

Gender Munder Mover

GPT2-HC4 (Opioid)
Female 5 2
Male 3 3

GPT2-HC4 (Non-Opioid)
Female 2 6
Male 2 7

LLAMA-HC4 (Opioid)
Female 2 3
Male 0 5

LLAMA-HC4 (Non-Opioid)
Female 3 5
Male 3 5

MISTRAL-HC4 (Opioid)
Female 1 8
Male 2 5

MISTRAL-HC4 (Non-Opioid)
Female 1 7
Male 4 6
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Figure 7: Baseline sentiment distribution in the baseline Wikipedia set for gender and race categories. Bars represent
the proportion of negative, neutral, and positive sentiments in the original Wikipedia text of BOLD dataset. Each
sentiment category is color-coded (light red for negative, gray for neutral, light green for positive). Values above
bars indicate the exact proportions. This baseline distribution serves as a reference point for measuring bias in
language model outputs.

Table 14: Results of pain management medications pre-
scription analysis for Gender variation prompts. The
Table shows the number of opioid medications which
had statistically significant difference with baseline con-
trol prompts probability ratios. Munder and Mover are
the numbers of medications which had lower and higher
probability ratios, respectively. Total number of opi-
oid medications is 9, non-opioid is 10. The results are
shown for models trained on SP dataset.

Gender Munder Mover

GPT2-SP (Opioid)

Female 0 9
Male 0 9

GPT2-SP (Non-Opioid)
Female 1 9
Male 2 8

LLAMA-SP (Opioid)
Female 3 6
Male 3 3

LLAMA-SP (Non-Opioid)
Female 3 6
Male 4 4

MISTRAL-SP (Opioid)
Female 2 6
Male 2 7

MISTRAL-SP (Non-Opioid)
Female 2 7
Male 2 5

Table 15: Results of pain management medications pre-
scription analysis for Gender variation prompts. The
Table shows the number of opioid medications which
had statistically significant difference with baseline con-
trol prompts probability ratios. Munder and Mover are
the numbers of medications which had lower and higher
probability ratios, respectively. Total number of opi-
oid medications is 9, non-opioid is 10. The results are
shown for models trained on FW dataset.

Gender Munder Mover

GPT2-FW (Opioid)
Female 6 1
Male 6 2

GPT2-FW (Non-Opioid)
Female 5 5
Male 6 2

LLAMA-FW (Opioid)
Female 0 7
Male 1 7

LLAMA-FW (Non-Opioid)
Female 4 4
Male 3 5

MISTRAL-FW (Opioid)
Female 3 6
Male 4 4

MISTRAL-FW (Non-Opioid)
Female 1 7
Male 2 7
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Figure 8: Sentiment distribution shifts from Wikipedia baseline across different language models and pretraining
datasets for gender groups. Each subplot represents a specific model (GPT-2, LLaMA-3, Mistral) and dataset (HC4,
SP, FW) combination. Bars show the difference in sentiment proportions (negative, neutral, positive) between
model-generated completions and Wikipedia baseline texts for male (blue) and female (red) subjects. Positive
values indicate higher proportion in generated text compared to baseline, while negative values indicate lower
proportion. Asterisks (*) denote statistically significant shifts after FDR correction (pcorr < 0.05). The analysis
reveals systematic differences in how language models portray different genders compared to the original Wikipedia
distribution, with notable variations across models and datasets. HC4: Healthcare Comprehensive Commons
Corpus; SP: SlimPajama; FW: FineWeb.
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Figure 9: Radar plots show the opioid medications under and overprescription bias across models and training
datasets. Each plot shows the number of opioid medications which were found to have much lower or much higher
probability of being outputted by the model when given a prompt with specific ethnicity. Only medications which
had difference median probability rations between variation prompts and the baseline prompt, and the difference
was statistically significant were considered under or over-prescribed, respectively. Statistical significance threshold
was calculated as follows: P < α

nmeds∗nvariations
, where α = 0.05, nmeds = 9, and nvariations = 7

23042



Figure 10: Bar charts displaying age prescription bias across different model architectures (GPT-2, Llama-3, Mistral)
trained on three datasets (HC4, SlimPajama, FineWeb) for opioid (left) and non-opioid medications (right). Each
bar represents the Net Bias Score (NBS), calculated as the difference between the number of medications with
statistically significant higher prescription probabilities and those with lower probabilities relative to ethnicity-
neutral prompts. Positive values indicate overprescription bias, while negative values show underprescription bias.
Statistical significance was determined using Wilcoxon signed-rank tests with Bonferroni correction for multiple
comparisons.
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Figure 11: Bar charts displaying gender prescription bias across different model architectures (GPT-2, Llama-3,
Mistral) trained on three datasets (HC4, SlimPajama, FineWeb) for opioid (left) and non-opioid medications (right).
Each bar represents the Net Bias Score (NBS), calculated as the difference between the number of medications
with statistically significant higher prescription probabilities and those with lower probabilities relative to ethnicity-
neutral prompts. Positive values indicate overprescription bias, while negative values show underprescription bias.
Statistical significance was determined using Wilcoxon signed-rank tests with Bonferroni correction for multiple
comparisons.
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