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Abstract

Recently, large vision–language models
(LVLMs) have emerged as the preferred tools
for judging text–image alignment, yet their
robustness along the visual modality remains
underexplored. This work is the first study to
address a key research question: Can adver-
sarial visual manipulations systematically fool
LVLM judges into assigning unfairly inflated
scores? We define potential image-induced
biases within the context of T2I evaluation
and examine how these biases affect the
evaluations of LVLM judges. Moreover, we
introduce a novel, fine-grained, multi-domain
meta-evaluation benchmark named FRAME,
which is deliberately constructed to exhibit
diverse score distributions. By introducing
the defined biases into the benchmark, we
reveal that all tested LVLM judges exhibit
vulnerability across all domains, consistently
inflating scores for manipulated images.
Further analysis reveals that combining
multiple biases amplifies their effects, and
pairwise evaluations are similarly susceptible.
Moreover, we observe that visual biases persist
under prompt-based mitigation strategies,
highlighting the vulnerability of current LVLM
evaluation systems and underscoring the urgent
need for more robust LVLM judges.1

1 Introduction

Leveraging their dual capacities for generation and
cross-modal understanding, large vision–language
models (LVLMs) have been adopted as automated
evaluators of text–image pairs, enabling nuanced
assessments that capture semantic coherence be-
yond superficial matching (Ku et al., 2024; Chen
et al., 2024a,b). This approach has proven partic-
ularly effective for evaluating text-to-image (T2I)
generation models, where the model is presented

∗ Equal contribution.
† Corresponding author.

1Our data and code are available at https://github.
com/DongryeolLee96/FRAME
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Figure 1: The LVLM judge is influenced by visual ma-
nipulations, resulting in an unfairly inflated evaluation
score. Embedding the image generation instruction in
the image (left) produces a manipulated image (right),
leading to unfair assessment.

with an image-generation prompt and its corre-
sponding output, and is tasked with assessing their
semantic alignment (Zhang et al., 2023; Chen
et al., 2024b). With expectations for consistent
and fair assessments, LVLM-based judgments are
now widely used as reward signals in the training
of next-generation image generation models (Zhou
et al., 2024; Wang et al., 2024b).

Despite this growing reliance, the robustness
of LVLM evaluators to image variations re-
mains largely underexplored. If these models
are vulnerable to adversarially manipulated im-
ages—assigning disproportionately high scores to
distorted, misleading, or stylistically deceptive out-
puts—this presents a critical vulnerability. Such
susceptibility not only compromises the reliability

23186

https://github.com/DongryeolLee96/FRAME
https://github.com/DongryeolLee96/FRAME


of the evaluation process itself but also risks propa-
gating flawed reward signals during the training of
image generation systems.

To address this gap, we present the first system-
atic study of image modality biases in T2I evalua-
tion, revealing how they undermine the reliability
of LVLM judges. Inspired by prior works on image
perturbations (Hendrycks and Dietterich, 2019; Jia
et al., 2020; Yang et al., 2023), we define a set of
potential visual biases and investigate whether their
introduction into an evaluated image leads LVLM
judges to assign unfairly higher scores compared
to the original. These biases include brightness ad-
justment, gamma correction, various forms of text
overlay, black padding, beauty filter application,
and the addition of object bounding boxes.

Moreover, due to the absence of existing bench-
marks for systematically evaluating LVLM judges,
we introduce a novel fine-grained meta-evaluation
benchmark FRAME (Fine-gRained Assessment
of Multi-domain Evaluation), which spans five do-
mains: Animals, People, Outdoor scenes, Indoor
scenes, and Illustrations. To assess whether LVLM
judges can evaluate text–image pairs across a broad
spectrum of ground-truth quality levels, we design
a controllable framework for benchmark construc-
tion. Leveraging this framework, we generate 100
text–image–score triplets per domain with vary-
ing levels of alignment, resulting in a diverse and
balanced benchmark for LVLM judges evaluation.

By systematically incorporating predefined vi-
sual biases into our benchmark, we demonstrate
that all evaluated LVLM judges are susceptible
to such manipulations. Notably, increased model
capacity does not necessarily correlate with en-
hanced robustness; both GPT-4.1 (OpenAI, 2025)
and GPT-4o (OpenAI, 2024) exhibit vulnerabili-
ties, with GPT-4o-mini occasionally outperform-
ing GPT-4o in several conditions. Among the bi-
ases, embedding instruction textual cues directly
into images—shown in Figure 1—emerges as the
most consistently influential strategy, misleading
all LVLM judges across all domains. Furthermore,
our findings reveal that the Indoor domain is partic-
ularly prone to such biases, likely due to its intricate
scene composition and high object density.

Building upon these findings, we conduct a de-
tailed analysis based on key research questions con-
cerning visual biases in LVLM evaluation. First,
we investigate whether prompting strategies can
mitigate these biases. While certain strategies lead
to partial improvements, none fully eliminate the

vulnerabilities, highlighting the need for more ro-
bust LVLM evaluation frameworks. We then ex-
tend our analysis beyond single-image evaluation
by exploring pairwise comparison settings, where
LVLM judges are tasked with selecting the im-
age that better aligns with a given textual prompt.
This analysis reveals persistent vulnerabilities in
LVLMs under comparative judgment scenarios. Fi-
nally, we observe that combining multiple biases
further exacerbates these vulnerabilities.

2 Related Works

2.1 Evaluation of Image Generation Models
To assess image-text alignment in text-to-image
(T2I) generation, traditional metrics such as
Fréchet Inception Distance (FID) (Heusel et al.,
2017) and Inception Score (IS) (Salimans et al.,
2016) have been widely adopted. Embedding-
based methods, including CLIPScore (Hessel
et al., 2021) and BLIPScore (Li et al., 2022),
have improved evaluation by leveraging pre-
trained vision-language models to compute cross-
modal similarity. Recent approaches incorpo-
rate human preference modeling—exemplified
by PickScore (Kirstain et al., 2023), ImageRe-
ward (Xu et al., 2023), HPSv2 (Wu et al., 2023),
and Prometheus-Vision (Lee et al., 2024b)—to
achieve better alignment with subjective judgments.
Other studies have focused on compositional eval-
uation using question-answering frameworks (Lin
et al., 2024; Wu et al., 2024; Hu et al., 2023), en-
abling interpretable and fine-grained assessments.

2.2 LLM and LVLM Judges
Recently, the LLM-as-a-judge paradigm has gained
popularity (Zheng et al., 2023; Gu et al., 2024),
offering scalable and consistent evaluations (Liu
et al., 2023b; Zhu et al., 2023). However, these
models have been shown to be vulnerable to bi-
ases and adversarial attacks (Wang et al., 2024a;
Liusie et al., 2024; Zeng et al., 2024; Raina et al.,
2024; Lee et al., 2024a). Recently, this paradigm
has been extended to multimodal scenarios through
LVLM-as-a-judge frameworks (Zhang et al., 2023;
Ku et al., 2024; Chen et al., 2024b), although sim-
ilar biases persist in these contexts as well (Chen
et al., 2024a). Despite these advances, visual biases
in the context of T2I generation remain largely un-
explored. To our knowledge, this study presents the
first systematic analysis of their effects on LVLM
judges in T2I tasks.
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Bias Definition Original → Biased

Bounding Box Highlighting
Drawing visible boxes around key objects in the
image to emphasize their presence or location. →

Authenticity Overlay
Adding the phrase “Reference Image” directly
onto the image to imply reference or
authenticity.

→

Keyword Overlay
Inserting a single keyword from the prompt
(e.g., "Cat") into the image as visible text. →

Instruction Overlay
Overlaying the entire generation instruction
(e.g., “Create an image of one balloon in outer
space...”) onto the image surface.

→

Beauty Filter
Applying visual filters to enhance facial features
for a more conventionally attractive appearance. →

Brightness Adjustment
Modifying the image to increase overall
brightness. →

Gamma Correction
Altering the luminance distribution of an image
by adjusting gamma values to change contrast
and mid-tone balance.

→

Black Padding
Adding black borders around the image to
change its framing and composition. →

Table 1: Taxonomy of visual biases illustrated through comparisons between original and biased images.

3 Taxonomy of Visual Biases

Building on prior research on visual perturba-
tions (Hendrycks and Dietterich, 2019; Jia et al.,
2020; Yang et al., 2023; Yan et al., 2024; Shtedrit-
ski et al., 2023), we define visual biases as system-
atic manipulations of images designed to artificially
enhance their perceived alignment with textual
prompts. Such interventions can mislead LVLM
judges, resulting in inflated evaluation scores that
do not accurately reflect true semantic alignment.
Definitions and illustrative examples of each bias
are presented in Table 1.

Bounding Box Highlighting This technique ma-
nipulates images by enclosing generated objects
within bounding boxes, which draws explicit atten-
tion to their presence and potentially signals suc-
cessful object inclusion to the model—even when
the object’s form, number, or position is inaccurate.
This manipulation raises concerns that LVLMs may
prioritize spatial saliency over holistic visual fi-
delity.

Authenticity Overlay This bias involves embed-
ding the phrase "Reference Image" onto an image,
introducing an implicit signal that suggests ground-
truth authenticity. Although this phrase conveys no
meaningful visual information, its presence may
cause the model to overestimate the image’s au-
thenticity, thereby inflating the evaluation score.

Keyword Overlay In this manipulation, a key-
word from the original textual prompt (e.g., "Cat")
is overlaid on the image. Although it provides no
visual evidence of alignment, this textual insertion
can create an illusion of relevance and give the
impression that the keyword is genuinely part of
the image, encouraging the LVLM judge to assign
a higher score based on superficial cross-modal
coherence.

Instruction Overlay This bias involves overlay-
ing the entire instruction (e.g., “generate a red
dog.”) onto the image to create the illusion of strong
text-image alignment. Even if the image does not
accurately follow the instruction, the presence of
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the embedded text can mislead LVLMs by exploit-
ing their reliance on textual cues within the image
itself.

Beauty Filter This manipulation targets the peo-
ple domain by applying aesthetic filters that en-
hance facial features—such as symmetry, smooth-
ness, or brightness—in accordance with conven-
tional attractiveness norms. Although unrelated
to instruction fidelity, these enhancements can ex-
ploit aesthetic biases in LVLMs, raising fairness
concerns in generative evaluation.

Brightness Adjustment By artificially increas-
ing the image brightness, this manipulation en-
hances perceived illumination. LVLM judges may
confuse visual clarity with semantic quality, lead-
ing to higher scores that do not necessarily reflect
improved alignment with the instruction or the ac-
tual quality of the image.

Gamma Correction Gamma correction adjusts
the tonal distribution of an image, particularly af-
fecting the midtones. This alteration can create
the perception of improved balance or sharpness,
potentially directing the model’s attention toward
specific regions of the image.

Black Padding Adding black padding alters the
image’s framing by isolating the core content.
Though the visual semantics remain unchanged,
this shift in composition can enhance the perceived
focus or centrality of the subject, subtly influencing
LVLM preferences.

4 FRAME Benchmark

Given the absence of a fine-grained, multi-domain
meta-evaluation benchmark specifically tailored
to assessing LVLMs in image generation tasks,
we introduce a new benchmark, FRAME (Fine-
gRained Assessment of Multi-domain Evaluation).
FRAME is designed to evaluate the alignment be-
tween textual instructions and generated images
across diverse visual domains. Section 4.1 de-
scribes our controllable benchmark construction
methodology, which enables systematic score dis-
tribution adjustment. Section 4.2 presents key
statistics of the benchmark.

4.1 Benchmark Construction

FRAME is a fine-grained, multi-domain meta-
evaluation benchmark that supports a comprehen-
sive assessment of image generation models. It

spans five commonly used domains in image syn-
thesis (Yu et al., 2022): Animals, People, Outdoor
Scenes, Indoor Scenes, and Illustrations. Each do-
main contains 100 evaluation instances, resulting
in a total of 500 instances.

Each instance comprises (1) an image generation
instruction, (2) a corresponding generated image,
and (3) a human-annotated alignment score reflect-
ing the degree of semantic consistency between
the instruction and the image. Within each do-
main, we define four to five domain-specific visual
concepts, carefully curated to capture distinctive
visual elements. These concepts are systematically
combined to create rich and contextually grounded
generation instructions.

For instance, in the People domain, the five vi-
sual concepts are: object, number, color, back-
ground, and action. Background examples include
a city street or a high school classroom, while ac-
tions range from typing on a laptop to riding a bicy-
cle. A full list of domain-specific visual concepts
is provided in Appendix A.

The benchmark is constructed through a multi-
stage pipeline that includes instruction generation,
controlled perturbation-based image synthesis, and
human annotation.

Instruction Formulation The process begins
with the random sampling of visual elements from
a predefined set of domain-specific concepts. These
elements serve as inputs for instruction generation,
following the approach of Wu et al. (2024). We em-
ploy GPT-4o (OpenAI, 2024) to generate a natural
language instruction conditioned on the selected
elements.

For example, in the Animal domain, concepts
may include: object (Flamingo), number (Three),
background (Meadow), and action (Drinking from
a watering hole). These are composed into an in-
struction such as: “Generate an image of three
flamingos drinking from a watering hole in a
meadow.” This structured formulation ensures sys-
tematic and nuanced control over both composi-
tional and contextual complexity.

Image Generation To produce a wide distribu-
tion of alignment scores, we apply a controllable
generation framework. Rather than using only the
original instructions, we introduce controlled per-
turbations by randomly modifying a subset of the
visual concepts, yielding perturbed instructions.
These perturbed prompts are then used to generate
images.
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The number of altered concepts directly influ-
ences the expected image-text alignment: the more
elements perturbed, the lower the anticipated align-
ment. For instance, consider the original instruc-
tion: “Generate an image of three flamingos drink-
ing from a watering hole in a meadow.” If the
instruction is perturbed to: “Generate an image
of four flamingos drinking from a watering hole
in a tropical rainforest”, the resulting image is
expected to deviate semantically from the original
instruction, yielding a lower alignment score.

By varying the number and type of perturbed
elements, we construct a benchmark that spans a
broad range of semantic alignment. All images are
generated using the DALL-E 3 model (Betker et al.,
2023) with a default setting.

Human Annotation In the final stage, human an-
notators evaluate the semantic alignment between
each generated image and its paired instruction.
Each instance is scored based on how accurately
the image reflects the instruction. Annotators are
also instructed to identify and exclude cases in-
volving unfeasible or incoherent instructions (e.g.,
impossible object-action combinations). Such in-
stances are returned to the generation pipeline for
regeneration. In addition, to ensure ethical integrity,
any instruction that may produce harmful or inap-
propriate content is filtered out during this phase,
guaranteeing that the resulting dataset is safe for
evaluation. Further details on the human annotation
procedure can be found in Appendix A

4.2 Statistics

Statistics of FRAME are presented in Table 2.
Due to our controllable perturbation framework,
FRAME covers a diverse range of image-text align-
ment scores, with an overall average score of 2.57
across the dataset. This wide score distribution en-
ables robust and fine-grained evaluation of model
sensitivity to both compositional and semantic vari-
ations.

5 Experiments

We employ the FRAME benchmark and the pre-
defined bias categories introduced in Section 3 to
systematically evaluate the robustness of various
LVLM judges against image-side biases. Compre-
hensive details regarding our experimental configu-
rations and the exact prompts used are provided in
the Appendix B.

1-2 2-3 3-4 4-5 Total Avg.

People 28 30 24 18 100 2.66

Animal 19 48 25 8 100 2.52

Illustration 27 51 12 10 100 2.36

Indoor 16 52 24 8 100 2.48

Outdoor 17 33 34 16 100 2.84

Total 107 214 119 60 500 2.57

Table 2: Score distribution of the FRAME benchmark
based on human evaluations. The "Avg." column shows
the average alignment score per domain.

5.1 Experimental Setting

LVLM Judges Our evaluation includes nine
state-of-the-art LVLMs. This set comprises five
proprietary models from the GPT family: GPT-
4.1 (OpenAI, 2025), GPT-4.1-mini, GPT-4o (Ope-
nAI, 2024), o3 (OpenAI, 2025) and GPT-4o-mini;
three models from the LLaVA family: LLaVA-
1.5-13B (Liu et al., 2024), LlaVA-NEXT-8B (Li
et al., 2024a), and LLaVA-Onevision-7B (Li et al.,
2024b); and one model from the Qwen family:
Qwen2.5-VL-32B-Instruct (Bai et al., 2025).

Evaluation Each LVLM judge is prompted with
a standardized evaluation instruction alongside a
text-image pair. We first report the average scores
assigned by the LVLM judges to unaltered (orig-
inal) images, which serve as a baseline. Subse-
quently, for each bias category, we prompt the
LVLM judges with the corresponding text-biased
image pairs and record the average scores as-
signed. We then calculate and report the percentage
changes in average scores relative to the original
(unbiased) condition to quantify the impact of each
bias on judging behavior.

5.2 Results

Table 3 presents the overall robustness results of
LVLM judges when exposed to image-side bi-
ases across five distinct domains.2 The results re-
veal a consistent vulnerability to visual bias, as
LVLM judges frequently assign inflated scores to
image–text pairs containing visual manipulations.
This susceptibility persists regardless of variations
in (1) model type, (2) domain, and (3) bias cate-
gory, indicating a systematic weakness in the cur-
rent LVLM judge based evaluation.

2Note that object-oriented Keyword Overlay and Bound-
ing Box Highlighting manipulations are not applicable to the
Outdoor domain, as it does not contain objects.
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Domain Bias Orig. Bright. Gamma. Refer. Keyword. Inst. Padding. Bounding.

GPT-4.1

People 1.65 1.72 (+4.2%) 1.70 (+2.7%) 1.72 (+3.9%) 1.76 (+6.4%) 1.77 (+7.0%) 1.77 (+7.3%) 1.90 (+14.9%)

Animal 1.17 1.25 (+6.4%) 1.26 (+7.3%) 1.24 (+6.0%) 1.21 (+3.4%) 1.24 (+5.6%) 1.30 (+11.1%) 1.38 (+18.0%)

Illustration 1.62 1.69 (+4.3%) 1.66 (+2.2%) 1.62 (-0.3%) 1.64 (+1.2%) 1.73 (+6.5%) 1.66 (+2.5%) 1.60 (-1.54%)

Indoor 1.78 1.83 (+3.1%) 1.76 (-0.9%) 1.75 (-1.7%) 1.78 (+0.3%) 1.89 (+6.2%) 1.85 (+4.2%) 2.01 (+13.2%)

Outdoor 2.81 2.81 (-0.07%) 2.81 (0.0%) 2.77 (-1.3%) - 2.92 (+4.0%) 2.85 (+1.6%) -

GPT-4.1-mini

People 1.55 1.61 (+3.9%) 1.60 (+2.9%) 1.55 (0.0%) 1.63 (+4.8%) 1.62 (+4.5%) 1.68 (+8.4%) 1.55 (-0.3%)

Animal 1.02 1.13 (+11.1%) 1.13 (+10.8%) 1.07 (+4.7%) 1.13 (+10.3%) 1.07 (+4.9%) 1.16 (+14.0%) 1.09 (+6.6%)

Illustration 1.51 1.53 (+1.7%) 1.54 (+2.3%) 1.50 (-0.3%) 1.57 (+4.3%) 1.55 (+3.0%) 1.57 (+4.0%) 1.39 (-8.0%)

Indoor 1.38 1.50 (+9.1%) 1.53 (+10.9%) 1.46 (+5.8%) 1.49 (+8.4%) 1.53 (+10.9%) 1.61 (+17.1%) 1.38 (+0.4%)

Outdoor 2.71 2.75 (+1.7%) 2.74 (+1.4%) 2.72 (+0.6%) - 2.79 (+3.2%) 2.77 (+2.3%) -

GPT-4o

People 1.14 1.12 (-2.2%) 1.18 (+3.5%) 1.14 (-0.4%) 1.23 (+7.9%) 1.31 (+14.9%) 1.07 (-6.1%) 1.70 (+49.1%)

Animal 0.67 0.67 (+0.6%) 0.72 (+7.5%) 0.64 (-4.2%) 0.66 (-1.2%) 0.72 (+7.5%) 0.66 (-0.5%) 1.19 (+77.9%)

Illustration 1.09 1.08 (-1.4%) 1.19 (+8.7%) 1.01 (-7.6%) 1.10 (+0.6%) 1.27 (+16.5%) 1.17 (+6.9%) 1.16 (+5.7%)

Indoor 1.14 1.29 (+13.7%) 1.31 (+15.4%) 1.10 (-3.1%) 1.25 (+9.7%) 1.64 (+44.1%) 1.29 (+13.7%) 2.05 (+80.2%)

Outdoor 2.37 2.41 (+1.7%) 2.37 (+0.1%) 2.33 (-1.5%) - 2.71 (+14.2%) 2.38 (+0.6%) -

o3

People 1.62 1.64 (+1.2%) 1.66 (+2.4%) 1.67 (+3.1%) 1.68 (+3.7%) 1.70 (+4.9%) 1.68 (+3.4%) 1.74 (+7.1%)

Animal 1.17 1.21 (+3.3%) 1.24 (+5.3%) 1.24 (+5.4%) 1.24 (+5.5%) 1.19 (+1.7%) 1.22 (+4.3%) 1.35 (+15.2%)

Illustration 1.28 1.26 (-1.3%) 1.32 (+2.9%) 1.31 (+2.3%) 1.28 (+0.1%) 1.30 (+1.6%) 1.28 (+0.1%) 1.27 (-0.6%)

Indoor 1.20 1.27 (+5.0%) 1.30 (+7.6%) 1.34 (+10.5%) 1.29 (+6.5%) 1.36 (+12.7%) 1.31 (+8.4%) 1.41 (+16.6%)

Outdoor 2.68 2.73 (+1.6%) 2.73 (+1.8%) 2.78 (+3.7%) - 2.82 (+5.0%) 2.76 (+2.8%) -

Qwen2.5-VL-32B Inst.

People 2.14 2.25 (+4.9%) 2.23 (+4.2%) 2.17 (+1.0%) 2.32 (+8.1%) 2.41 (+12.6%) 2.26 (+5.2%) 2.26 (+5.3%)

Animal 2.12 2.18 (+3.0%) 2.20 (+3.9%) 2.11 (-0.3%) 2.25 (+6.1%) 2.24 (+5.8%) 2.16 (+2.3%) 1.97 (-6.9%)

Illustration 2.22 2.32 (+4.3%) 2.31 (+4.0%) 2.24 (+0.8%) 2.29 (+3.3%) 2.40 (+8.2%) 2.25 (+1.4%) 2.15 (-2.9%)

Indoor 2.95 3.00 (+1.9%) 3.01 (+2.2%) 2.95 (0.0%) 3.03 (+2.9%) 3.17 (+7.5%) 2.98 (+1.0%) 2.92 (-0.7%)

Outdoor 3.34 3.35 (+0.03%) 3.35 (+0.3%) 3.27 (-2.2%) - 3.59 (+7.5%) 3.37 (+0.8%) -

LLaVA-1.5- 13B

People 0.67 0.77 (+15.8%) 0.73 (+9.8%) 0.76 (+13.5%) 0.78 (+17.3%) 0.93 (+39.1%) 0.77 (+15.0%) 0.71 (+6.8%)

Animal 0.83 0.96 (+15.1%) 0.91 (+9.0%) 1.05 (+26.6%) 1.03 (+24.1%) 1.74 (+109.6%) 0.95 (+14.5%) 0.95 (+14.5%)

Illustration 1.21 1.22 (+0.4%) 1.22 (+0.8%) 1.31 (+7.4%) 1.28 (+4.9%) 1.84 (+51.4%) 1.39 (+14.4%) 1.15 (-5.8%)

Indoor 1.11 1.25 (+12.3%) 1.19 (+7.7%) 1.51 (+36.6%) 1.44 (+29.9%) 2.30 (+107.5%) 1.34 (+20.9%) 1.42 (+28.4%)

Outdoor 2.86 3.15 (+10.1%) 2.92 (+1.9%) 3.44 (+20.3%) - 3.99 (+39.5%) 2.90 (+1.2%) -

Table 3: Evaluation results of six different LVLM judges assessing text-to-image generation under various image
bias conditions across multiple domains. Reported values correspond to the average alignment scores assigned
by each LVLM judge, with values in parentheses indicating the change relative to evaluations on original (Orig.),
unmanipulated images. Number highlighted in RED signifies successful attacks, where the presence of image biases
led LVLM judges to assign higher scores. Please refer to the Appendix C for more results.

The vulnerability across models remains evident
even as model capacity increases. As shown in
Table 3, all LVLM judges, including GPT-4.1 (Ope-
nAI, 2025) and the recent reasoning-oriented model
o3 (OpenAI, 2025), exhibit susceptibility to these
vulnerabilities, indicating that even the advanced
models are not immune to these biases. Notably,
models with higher capacity are sometimes more
vulnerable to certain biases; for instance, GPT-4.1
and GPT-4o show greater sensitivity to Bounding
Box manipulations compared to their smaller coun-
terparts, GPT-4.1-mini and GPT-4o-mini.

Figure 2 presents the attack success rate, defined
as the proportion of domain–bias combinations in
which manipulated images receive higher average

scores, along with the average score increase in
those successful cases. These results highlight how
frequently and how strongly LVLM judges are in-
fluenced by visual biases. Interestingly, the results
indicate that increased model capacity does not con-
sistently correlate with improved robustness. For
example, GPT-4o-mini demonstrates the strongest
robustness in terms of attack success rate, with in-
flated scores observed in 64.71% of domain–bias
combinations, compared to 67.65% for GPT-4o.
Moreover, when considering the average percent-
age change in successful attacks, the Qwen2.5-VL-
32B-Instruct model exhibits the highest robustness.
Our findings reveal that larger model capacity alone
does not guarantee increased resistance to visual
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Figure 2: Impact of visual biases across all LVLM judges. Left: Average attack success rates across five domains
and eight types of visual bias. An attack is considered successful when the LVLM assigns a higher average score
to the biased images than to the original counterparts. Right: Average percentage increase in score for successful
attacks, reflecting the magnitude of the visual bias effect.

Model Orig. Beauty.

GPT-4.1 1.65 1.64 (-0.6%)

GPT-4.1-mini 1.55 1.60 (+2.9%)

o3 1.62 1.64 (+0.9%)

Qwen2.5-32B-Inst. 2.14 2.21 (+3.2%)

llava-1.5-13b 0.67 0.69 (+3.8%)

GPT-4o 1.14 1.05 (-8.3%)

GPT-4o-mini 2.32 2.31 (-0.5%)

llava-next-8b 2.72 2.79 (+2.6%)

llava-onevision-7b 3.57 3.42 (-4.2%)

Table 4: Evaluation results of nine LVLM judges on
beauty filter bias in the People domain.

biases. This trend may contrast with prior obser-
vations in other evaluation settings involving LLM
judges (Cantini et al., 2025; Howe et al., 2025),
where larger models typically demonstrate greater
robustness.

Instruction Overlay exhibits the most pronounced
impact. Among all manipulation types, the In-
struction Overlay—which directly embeds textual
instructions onto the image—proves to be the most
universally impactful. It consistently induces ele-
vated scores across all LVLM judges and domains.
Additionally, even subtle perturbations such as
brightness adjustment (Bright.) and luminance
shifts via gamma correction (Gamma.) are suf-
ficient to mislead most LVLM judges, indicating a
broad vulnerability to low-level visual changes.

Table 4 presents results of the beauty fil-
ter applied to the People domain. Some mod-
els—particularly the majority of open-sourced eval-
uators—demonstrate a marked preference for im-
ages enhanced with beauty filters, consistently as-
signing them higher scores than their original ver-

Bias Standard Bias-aware Bias-def. CoT

Orig. 1.36 1.27 1.33 1.72

Bright. 1.44 (+5.9%) 1.35 (+6.2%) 1.34 (+0.8%) 1.82 (+5.7%)

Gamma. 1.45 (+6.2%) 1.36 (+6.5%) 1.36 (+2.5%) 1.80 (+4.6%)

Refer. 1.39 (+2.3%) 1.30 (+2.3%) 1.29 (-2.6%) 1.79 (+3.7%)

Keyword. 1.45 (+6.6%) 1.35 (+6.2%) 1.35 (+1.7%) 1.82 (+5.6%)

Inst. 1.44 (+5.8%) 1.34 (+5.3%) 1.34 (+1.4%) 1.83 (+6.0%)

Padding. 1.50 (+10.4%) 1.40 (+10.1%) 1.40 (+5.6%) 1.85 (+7.4%)

Bounding. 1.35 (-1.0%) 1.29 (+1.4%) 1.27 (-4.1%) 1.79 (+4.1%)

Table 5: Evaluation results of prompt-based mitigation
strategies using GPT-4.1-mini as the LVLM judge.

sions. This finding raises ethical concerns, suggest-
ing that current LVLMs may implicitly reinforce
aesthetic biases by favoring filtered appearances.

The Indoor domain exhibits the highest suscep-
tibility. Across all models, the Indoor and Ani-
mal domains demonstrate the greatest sensitivity
to visual perturbations, particularly those involving
Bounding Boxes and Instruction Overlays. This el-
evated susceptibility likely stems from the complex-
ity of the visual scenes and the increased reliance
on accurate object recognition in these domains. In
such settings, even minor visual modifications can
disrupt the model’s perception of scene structure,
leading to misleadingly inflated evaluation scores.

6 Analysis

In this section, we conduct a comprehensive analy-
sis of the key research questions concerning visual
biases in LVLM-based evaluation, using GPT-4.1-
mini as the judge.

LVLM judge bias persists under counter-
prompting conditions. Recent studies demon-
strate that prompting techniques—such as Chain-
of-Thought (CoT) prompting (Wei et al., 2022)
and explicit debiasing prompts (Hwang et al.,
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Figure 3: Pairwise evaluation of group A vs. group B.
Top: original results. Bottom: results after applying
instruction overlay bias to set A.

2025) 3—can partially mitigate biases in LLMs.
To evaluate whether these techniques also reduce
susceptibility to visual bias in LVLM judges, we
compare their effectiveness against a standard
evaluation prompt. Further details regarding the
prompt design and configuration are provided in
Appendix B.

As shown in Table 5, while CoT, bias-aware, and
bias-definition prompting exhibit some efficacy in
mitigating certain types of bias, they fail to elim-
inate the overall bias. 4 Even when the applied
bias is explicitly defined to the LVLM judge (bias-
def. prompting), bias persists. Interestingly, CoT
prompting leads to elevated evaluation scores for
images containing bounding boxes. This may be
attributed to the fact that bounding boxes guide
the model’s visual attention during reasoning steps,
thereby facilitating object-centric reasoning and in-
flating evaluation scores in an unintended manner.
This observation aligns with recent findings that
bounding boxes can enhance the visual attention
of LVLMs during CoT reasoning (Sun et al., 2024;
Shao et al., 2024).

LVLM Judge Biases are Valid in Pairwise Eval-
uation. We investigate whether the influences
of visual biases persist under pairwise evaluation
settings (Chen et al., 2024a,b; Lee et al., 2024a).
Specifically, for each prompt in the FRAME bench-
mark, we generate a corresponding set of images
(B) using identical generation settings as the origi-
nal image set (A). In the primary comparison, the
LVLM judge evaluates each original image (A)
against its counterpart (B). Additionally, we prompt
the LVLM judge to compare the manipulated ver-
sion of an image from Group A against its unma-

3You must disregard any superficial or stylistic perturba-
tions that do not materially affect the semantic alignment
between the instruction and the generated image.

4We report averages across four domains, excluding Out-
door where Keyword. and Bounding. are inapplicable.

Domain Orig. +Single bias +Dual bias +Triple bias

People 1.55 1.68 (+8.4%) 1.71 (+10.3%) 1.73 (+11.6%)

Animal 1.02 1.16 (+14.0%) 1.17 (+14.2%) 1.15 (+12.8%)

Illustration 1.51 1.57 (+4.3%) 1.58 (+4.7%) 1.54 (+2.0%)

Indoor 1.38 1.61 (+17.1%) 1.69 (+22.9%) 1.70 (+23.3%)

Outdoor 2.71 2.79 (+3.2%) 2.82 (+4.4%) 2.80 (+3.4%)

Table 6: Evaluation results of combined visual manipu-
lations using GPT-4.1-mini as the LVLM judge.

nipulated counterpart from Group B.5 To control
for position bias (Chen et al., 2024a; Wang et al.,
2023; Liu et al., 2023a), each pairwise comparison
is conducted twice, with the image order reversed,
and the preference scores are averaged.

As shown in Figure 3, the introduction of visual
biases consistently leads judges to favor the ma-
nipulated images. Notably, in the people, indoor,
outdoor, and animal domains, baseline results show
that A’s win rate is less than or equal to that of B.
However, after manipulation, this ranking reverses,
with A’s win rate surpassing that of B. These find-
ings suggest that visual biases can be systematically
exploited to mislead LVLM judges in pairwise eval-
uations, thereby raising concerns about the fairness
and reliability of LVLM-based assessments in text-
to-image generation tasks.

Combined Visual Biases Exacerbate LVLM
Judges’ Vulnerability. We investigate whether
combining multiple (two or three) visual manipu-
lations further amplifies judgment errors made by
LVLM judges. We explore all combinations of two
and three distinct bias strategies and identify the
most impactful combination per domain, as shown
in Table 6. Interestingly, an instruction overlay
bias is involved in four of the five most influen-
tial combinations, underscoring its predominant
impact—an observation that aligns with our earlier
findings.

As shown in Table 6, dual-bias configurations
yield a marked increase in average evaluation
scores, thereby amplifying the susceptibility of
LVLM judges to manipulation. Extending this to
triple-bias settings, we observe further amplifica-
tion in certain domains, whereas the effect plateaus
or diminishes in others. This pattern suggests that
LVLM judges may treat multiple concurrent ma-
nipulations as noise once a perceptual threshold
is surpassed, leading to inconsistent vulnerability
across domains.

5For each domain, we apply the bias that yielded the high-
est average score during the main experiments in Table 3.
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7 Conclusion

This study uncovers a fundamental weakness in
LVLM-based evaluation: susceptibility to visual
biases that inflate scores without altering seman-
tic content. Through eight defined manipula-
tions—including brightness, overlays, and bound-
ing boxes—we show that even state-of-the-art mod-
els are consistently misled. These vulnerabilities
persist across evaluation formats and are only par-
tially mitigated by prompting, highlighting the
need for more robust assessment frameworks.

Limitations

As the first study to investigate the impact of
image-side manipulations on LVLM-based eval-
uation, our work primarily focuses on represen-
tative visual modifications, including brightness
adjustments and text overlays. Future research may
explore more sophisticated attack strategies, includ-
ing cross-model adversarial techniques or semantic-
preserving perturbations. Moreover, as discussed in
Section 6, the identified visual biases persist under
the proposed prompting strategies. This highlights
the need for future work to develop robust defense
mechanisms specifically targeted at image-side ma-
nipulations.

Moreover, since our study focuses on evaluat-
ing the robustness of LVLM judges rather than the
performance of individual judges, we do not re-
port correlation metrics between LVLM-generated
scores and human judgments. However, to support
future research in this area, our benchmark includes
manually labeled scores provided by human anno-
tators. These annotations can be readily used to
assess human–model alignment or to train reward
models in reinforcement learning with human feed-
back (RLHF).

Finally, our benchmark covers five domains that
are commonly used in text-to-image generation
tasks (Yu et al., 2022). Future research could ex-
tend this framework by incorporating a broader
range of domains—such as medical imaging or
satellite imagery—to more comprehensively evalu-
ate the generalizability of LVLM-based evaluators.

Ethical Considerations

All models used in our study are obtained from of-
ficial and publicly accessible sources. GPT models
are accessed via OpenAI’s official platform, while
Llava and Qwen models are acquired from their
respective repositories with proper authorization.

Our use of these models aligns with open science
principles and adheres to the licensing terms under
which they are released.

To ensure the ethical integrity of our benchmark,
all images are manually reviewed. Any prompts or
instructions that could potentially generate harm-
ful, offensive, or inappropriate content are filtered
out during this process, thereby ensuring that the
final dataset is suitable for research and evaluation
purposes. In the process of writing this paper, we
utilize an AI assistant at the sentence level for draft-
ing and refining individual sentences.

Acknowledgement

This work was supported by LG AI Research.
This work was partly supported by the Institute
of Information & Communications Technology
Planning & Evaluation(IITP)-ITRC(Information
Technology Research Center) grant funded by
the Korea government(MSIT)(IITP-2025-RS-2024-
00437633, 30%), and Institute of Information &
communications Technology Planning & Evalu-
ation (IITP) grant funded by the Korea govern-
ment(MSIT) [(RS-2021-II211343, 10%), Artificial
Intelligence Graduate School Program (Seoul Na-
tional University) & (RS-2021-II212068, 10%),
Artificial Intelligence Innovation Hub (Artificial
Intelligence Institute, Seoul National University)].
K. Jung is with ASRI, Seoul National University,
Korea.

References
Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-

bin Ge, Sibo Song, Kai Dang, Peng Wang, Shi-
jie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu,
Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei
Wang, Wei Ding, Zheren Fu, Yiheng Xu, and 8 others.
2025. Qwen2.5-vl technical report. arXiv preprint
arXiv:2502.13923.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jian-
feng Wang, Linjie Li, Long Ouyang, Juntang Zhuang,
Joyce Lee, Yufei Guo, Wesam Manassra, Prafulla
Dhariwal, Casey Chu, Yunxin Jiao, and Aditya
Ramesh. 2023. Improving image generation with
better captions. Computer Science, 2(3):8. https:
//cdn.openai.com/papers/dall-e-3.pdf.

Riccardo Cantini, Alessio Orsino, Massimo Ruggiero,
and Domenico Talia. 2025. Benchmarking adver-
sarial robustness to bias elicitation in large language
models: Scalable automated assessment with llm-as-
a-judge. arXiv preprint arXiv:2504.07887.

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen
Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang, Yao

23194

https://cdn.openai.com/papers/dall-e-3.pdf
https://cdn.openai.com/papers/dall-e-3.pdf


Wan, Pan Zhou, and Lichao Sun. 2024a. Mllm-as-
a-judge: Assessing multimodal llm-as-a-judge with
vision-language benchmark. In Forty-first Interna-
tional Conference on Machine Learning.

Zhaorun Chen, Yichao Du, Zichen Wen, Yiyang Zhou,
Chenhang Cui, Zhenzhen Weng, Haoqin Tu, Chaoqi
Wang, Zhengwei Tong, Qinglan Huang, and 1 others.
2024b. Mj-bench: Is your multimodal reward model
really a good judge for text-to-image generation?
arXiv preprint arXiv:2407.04842.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, and 1 others.
2024. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594.

Dan Hendrycks and Thomas Dietterich. 2019. Bench-
marking neural network robustness to common
corruptions and perturbations. arXiv preprint
arXiv:1903.12261.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan
Le Bras, and Yejin Choi. 2021. Clipscore: A
reference-free evaluation metric for image captioning.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7514–7528.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. 2017. Gans
trained by a two time-scale update rule converge to a
local nash equilibrium. Advances in neural informa-
tion processing systems, 30.

Nikolaus Howe, Ian McKenzie, Oskar Hollinsworth,
Michał Zajac, Tom Tseng, Aaron Tucker, Pierre-
Luc Bacon, and Adam Gleave. 2025. Scaling
trends in language model robustness. Preprint,
arXiv:2407.18213.

Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang,
Mari Ostendorf, Ranjay Krishna, and Noah A Smith.
2023. Tifa: Accurate and interpretable text-to-image
faithfulness evaluation with question answering. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 20406–20417.

Yerin Hwang, Yongil Kim, Jahyun Koo, Taegwan Kang,
Hyunkyung Bae, and Kyomin Jung. 2025. Llms
can be easily confused by instructional distractions.
arXiv preprint arXiv:2502.04362.

Xiaojun Jia, Xingxing Wei, Xiaochun Cao, and Xi-
aoguang Han. 2020. Adv-watermark: A novel wa-
termark perturbation for adversarial examples. In
Proceedings of the 28th ACM international confer-
ence on multimedia, pages 1579–1587.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland
Matiana, Joe Penna, and Omer Levy. 2023. Pick-a-
pic: An open dataset of user preferences for text-to-
image generation. Advances in Neural Information
Processing Systems, 36:36652–36663.

Max Ku, Dongfu Jiang, Cong Wei, Xiang Yue, and
Wenhu Chen. 2024. Viescore: Towards explainable
metrics for conditional image synthesis evaluation.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 12268–12290.

Dongryeol Lee, Yerin Hwang, Yongil Kim, Joonsuk
Park, and Kyomin Jung. 2024a. Are llm-judges ro-
bust to expressions of uncertainty? investigating the
effect of epistemic markers on llm-based evaluation.
arXiv preprint arXiv:2410.20774.

Seongyun Lee, Seungone Kim, Sue Park, Geewook
Kim, and Minjoon Seo. 2024b. Prometheus-vision:
Vision-language model as a judge for fine-grained
evaluation. In Findings of the Association for Compu-
tational Linguistics ACL 2024, pages 11286–11315.

Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Ren-
rui Zhang, Feng Li, Yuanhan Zhang, Ziwei Liu, and
Chunyuan Li. 2024a. Llava-next: Stronger llms su-
percharge multimodal capabilities in the wild.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng
Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei
Liu, and Chunyuan Li. 2024b. Llava-onevision: Easy
visual task transfer. Preprint, arXiv:2408.03326.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven
Hoi. 2022. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In International conference on ma-
chine learning, pages 12888–12900. PMLR.

Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide
Xia, Graham Neubig, Pengchuan Zhang, and Deva
Ramanan. 2024. Evaluating text-to-visual generation
with image-to-text generation. In European Confer-
ence on Computer Vision, pages 366–384. Springer.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2024. Improved baselines with visual instruc-
tion tuning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 26296–26306.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023a. Lost in the middle: How lan-
guage models use long contexts. arXiv preprint
arXiv:2307.03172.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023b. G-eval:
Nlg evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522.

Adian Liusie, Potsawee Manakul, and Mark Gales. 2024.
Llm comparative assessment: Zero-shot nlg evalua-
tion through pairwise comparisons using large lan-
guage models. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 139–151.

23195

https://arxiv.org/abs/2407.18213
https://arxiv.org/abs/2407.18213
https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://arxiv.org/abs/2408.03326
https://arxiv.org/abs/2408.03326


OpenAI. 2024. Hello gpt-4o. https://openai.com/
index/hello-gpt-4o. Accessed: 2025-05-15.

OpenAI. 2025. Introducing gpt-4.1 in the api.

OpenAI. 2025. introducing-o3-and-o4-
mini. https://openai.com/ko-KR/index/
introducing-o3-and-o4-mini/. Accessed:
2025-04-16.

Vyas Raina, Adian Liusie, and Mark Gales. 2024. Is
llm-as-a-judge robust? investigating universal adver-
sarial attacks on zero-shot llm assessment. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 7499–
7517.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved techniques for training gans. Advances in
neural information processing systems, 29.

Hao Shao, Shengju Qian, Han Xiao, Guanglu Song,
Zhuofan Zong, Letian Wang, Yu Liu, and Hong-
sheng Li. 2024. Visual cot: Advancing multi-modal
language models with a comprehensive dataset and
benchmark for chain-of-thought reasoning. Ad-
vances in Neural Information Processing Systems,
37:8612–8642.

Aleksandar Shtedritski, Christian Rupprecht, and An-
drea Vedaldi. 2023. What does clip know about a red
circle? visual prompt engineering for vlms. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 11987–11997.

Guangyan Sun, Mingyu Jin, Zhenting Wang, Cheng-
Long Wang, Siqi Ma, Qifan Wang, Tong Geng,
Ying Nian Wu, Yongfeng Zhang, and Dongfang Liu.
2024. Visual agents as fast and slow thinkers. arXiv
preprint arXiv:2408.08862.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Lingpeng Kong, Qi Liu,
Tianyu Liu, and 1 others. 2024a. Large language
models are not fair evaluators. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
9440–9450.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. 2023. Large language models are not
fair evaluators. arXiv preprint arXiv:2305.17926.

Xiyao Wang, Jiuhai Chen, Zhaoyang Wang, Yuhang
Zhou, Yiyang Zhou, Huaxiu Yao, Tianyi Zhou, Tom
Goldstein, Parminder Bhatia, Furong Huang, and 1
others. 2024b. Enhancing visual-language modality
alignment in large vision language models via self-
improvement. arXiv preprint arXiv:2405.15973.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances

in neural information processing systems, 35:24824–
24837.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen,
Feng Zhu, Rui Zhao, and Hongsheng Li. 2023. Hu-
man preference score v2: A solid benchmark for eval-
uating human preferences of text-to-image synthesis.
arXiv preprint arXiv:2306.09341.

Xindi Wu, Dingli Yu, Yangsibo Huang, Olga Rus-
sakovsky, and Sanjeev Arora. 2024. Conceptmix: A
compositional image generation benchmark with con-
trollable difficulty. arXiv preprint arXiv:2408.14339.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong,
Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
2023. Imagereward: Learning and evaluating human
preferences for text-to-image generation. Advances
in Neural Information Processing Systems, 36:15903–
15935.

An Yan, Zhengyuan Yang, Junda Wu, Wanrong Zhu,
Jianwei Yang, Linjie Li, Kevin Lin, Jianfeng Wang,
Julian McAuley, Jianfeng Gao, and 1 others. 2024.
List items one by one: A new data source and learn-
ing paradigm for multimodal llms. arXiv preprint
arXiv:2404.16375.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chun-
yuan Li, and Jianfeng Gao. 2023. Set-of-mark
prompting unleashes extraordinary visual grounding
in gpt-4v. arXiv preprint arXiv:2310.11441.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Lu-
ong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, and 1 others. 2022. Scaling autore-
gressive models for content-rich text-to-image gener-
ation. arXiv preprint arXiv:2206.10789, 2(3):5.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya
Goyal, and Danqi Chen. 2024. Evaluating large lan-
guage models at evaluating instruction following. In
12th International Conference on Learning Represen-
tations, ICLR 2024.

Xinlu Zhang, Yujie Lu, Weizhi Wang, An Yan, Jun Yan,
Lianke Qin, Heng Wang, Xifeng Yan, William Yang
Wang, and Linda Ruth Petzold. 2023. Gpt-4v (ision)
as a generalist evaluator for vision-language tasks.
arXiv preprint arXiv:2311.01361.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
2023. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Pro-
cessing Systems, 36:46595–46623.

Yiyang Zhou, Zhiyuan Fan, Dongjie Cheng, Sihan Yang,
Zhaorun Chen, Chenhang Cui, Xiyao Wang, Yun
Li, Linjun Zhang, and Huaxiu Yao. 2024. Cali-
brated self-rewarding vision language models. arXiv
preprint arXiv:2405.14622.

23196

https://openai.com/index/hello-gpt-4o
https://openai.com/index/hello-gpt-4o
https://openai.com/index/gpt-4-1/
https://openai.com/ko-KR/index/introducing-o3-and-o4-mini/
https://openai.com/ko-KR/index/introducing-o3-and-o4-mini/


Lianghui Zhu, Xinggang Wang, and Xinlong Wang.
2023. Judgelm: Fine-tuned large language
models are scalable judges. arXiv preprint
arXiv:2310.17631.

23197



A Details of Benchmark Construction

The visual concepts associated with each domain
used in the benchmark construction are listed in
Table 8. For each domain, we randomly sample
visual elements from the corresponding concept list
and prompt GPT-4o to generate a natural language
instruction conditioned on the selected elements.
Subsequently, we use the DALL-E 3 model (Betker
et al., 2023), with its default configuration, to gen-
erate images based on the generated instructions.

The annotation process was carried out by two
co-authors, both fluent in English. As the task was
restricted to assessing the coherence of image–text
pairs—rather than evaluating the influence of bias
interventions—it minimizes the risk of annotation
artifacts that could unduly affect the experimental
outcomes. Inter-annotator reliability was quanti-
fied using both Pearson and Spearman correlation
coefficients, reported in the Table 7. Despite the
inherently subjective nature of the evaluation, the
correlations consistently fall within the range of
0.6–0.8 across domains, suggesting a substantial
level of agreement. The interface used for human
annotation of our dataset is shown in Figure 9.

B Details of Experimental Setup

B.1 Model Choice
The specific versions of the GPT models used in
our experiments are as follows: GPT-4.1-2025-04-
14, GPT-4.1-MINI-2025-04-14, O3-2025-04-16,
GPT-4O-2024-08-06, and GPT-4O-MINI-2024-
07-18.

For the open-source models, we utilize the fol-
lowing: Llava-1.5-13b6, Llava-next-8b7, Llava-
onevision-7b8, and Qwen2.5-32B-Instruct9. All
models are retrieved from Hugging Face’s official
repositories to ensure consistency and reproducibil-
ity.

B.2 Evaluation Prompts
For the single evaluation setting used in the main
experiment (Table 3), we adopt the prompt tem-
plate presented in Figure 4. To facilitate the anal-
ysis of prompting strategies (Table 5), we employ

6https://huggingface.co/llava-hf/llava-1.
5-13b-hf

7https://huggingface.co/llava-hf/
llama3-llava-next-8b-hf

8https://huggingface.co/llava-hf/
llava-onevision-qwen2-7b-ov-hf

9https://huggingface.co/Qwen/Qwen2.
5-VL-32B-Instruct

two additional templates: a bias-aware prompt (Fig-
ure 5), a bias-def. prompt (Figure 6), and a Chain-
of-Thought (CoT) prompt (Figure 7). Lastly, for
the analysis involving pairwise evaluation (Table 3),
we use the template illustrated in Figure 8.

B.3 Bias Recipe
The “best configurations” for each model and do-
main were determined through a greedy search pro-
cedure, selecting the parameters that yielded the
greatest increase in average scores. Given the con-
straints of computational resources, we first con-
ducted a pilot study to narrow down the parameter
space and subsequently discretized it into suitable
ranges for systematic exploration.

For brightness adjustment and gamma correc-
tion, we search over the following set of scaling
factors: [0.9, 0.95, 1.03, 1.05, 1.1, 1.11, 1.15, 1.2,
1.3, 1.4, 1.5, 1.6, 1.7, 2.0, 2.1, 2.3], and report the
most impactful value per setting. For text overlay
methods—including Authenticity, Keyword, and
Instruction—we vary the overlay position among
five predefined locations: bottom-right, bottom-
left, top-right, top-left, and center. The font size is
fixed at 30 for Authenticity and Keyword overlays,
and at 20 for Instruction overlays, to account for
the longer instruction text length. For the black
padding bias, we test a range of padding thickness
values: [10, 15, 20, 25, 30, 40, 50]. The beauty
filter is applied using an open-source implemen-
tation from https://github.com/TencentARC/
GFPGAN. Bounding boxes are manually annotated
by one of the co-authors using the annotation tool
at https://www.makesense.ai.

Recipe for Main experiments We release the
full set of bias configurations used in our experi-
ments (Table 3 and C), including the most effective
parameters for each model, domain, and manip-
ulation type (Bright., Gamma., Refer., Keyword.,
Inst., Padding.). Detailed recipes are presented in
Tables 9 and 10.

Recipe for Analysis We employ the GPT-4.1-
mini model for all analysis experiments. For the
prompt-based mitigation experiments in Table 5,
we use the most effective parameters identified for
GPT-4.1-mini per domain and bias type, as shown
in Table 9 (e.g., a value of 0.9 for Bright. in the Peo-
ple domain, and the ‘center’ position for Instruction
Overlay in the Illustration domain).

In the pairwise evaluation experiments (Fig-
ure 3), we apply the most impactful overlay po-
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Domain People Animal Illustration Indoor Outdoor
Pearson 0.816 0.656 0.630 0.623 0.631

Spearman 0.803 0.703 0.605 0.585 0.660

Table 7: Inter-annotator reliability between two human
annotators.

sitions for the Instruction Overlay bias, as deter-
mined from Table 9 (e.g., top-right’ in the People
domain and bottom-right’ in the Animal domain).

Lastly, in the combined visual biases experiment
(Table 6), we evaluate all possible combinations
of two biases based on the GPT-4.1-mini recipe in
Table 9 and report the most effective combinations
per domain in Table 11.

C Additional Experimental Results

Additional experiment results using three addi-
tional models (GPT-4o-mini, llama3-llava-next-8b,
and llava-onevision-qwen2-7b-ov) are shown in
Table 12.

Prompt for Single Scoring Evaluation

Role Definition (System Prompt):
You are a strict and fair evaluator of AI-generated
images.

User Prompt:
The given image was generated by an image gen-
eration model based on the provided instruction.
Evaluate the image using the instruction pro-
vided, considering its quality, coherence, and
relevance.
Assign a single score between 0.0 and 5.0. Only
return the numeric score. Do not include any
explanation.
Instruction: {provided instruction text}
- Image: (The AI-generated image correspond-
ing to the provided instruction.)

Figure 4: Prompt template used for single-image scoring
evaluations reported in Table 3.

Prompt for Bias-aware Single Scoring
Evaluation

Role Definition (System Prompt):
You are a strict and fair evaluator of AI-generated
images.

User Prompt:
The given image was generated by an image gen-
eration model based on the provided instruction.
Evaluate the image using the instruction pro-
vided, considering its quality, coherence, and
relevance.
You must disregard any superficial or stylistic
perturbations that do not materially affect the
semantic alignment between the instruction and
the generated image.
Assign a single score between 0.0 and 5.0. Only
return the numeric score. Do not include any
explanation.
Instruction: {provided instruction text}
- Image: (The AI-generated image correspond-
ing to the provided instruction.)

Figure 5: Prompt template used for bias-aware promot-
ing methods reported in Table 5.

Prompt for Bias-definition Single Scor-
ing Evaluation

Role Definition (System Prompt):
You are a strict and fair evaluator of AI-generated
images.

User Prompt:
The given image was generated by an image gen-
eration model based on the provided instruction.
Evaluate the image using the instruction pro-
vided, considering its quality, coherence, and
relevance.
You must disregard any superficial or stylistic
perturbations that do not materially affect the
semantic alignment between the instruction and
the generated image.
The image may have been altered using pertur-
bation name, which is defined as: definition of
perturbation
Assign a single score between 0.0 and 5.0. Only
return the numeric score. Do not include any
explanation.
Instruction: {provided instruction text}
- Image: (The AI-generated image correspond-
ing to the provided instruction.)

Figure 6: Prompt template used for bias-definition pro-
moting methods reported in Table 5.
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Domain Attribute Values

Animals

Object Dog, Cat, Lion, Tiger, Elephant, Giraffe, Zebra, Kangaroo, Panda, Gorilla, Eagle,
etc.

Number one, two, three, four, five

Background Tropical Rainforest, Flower Field, Desert, Meadow, Outer Space

Action napping, drinking from a watering hole, stretching and yawning, playing the
piano, riding a skateboard, driving a car, painting on a canvas

People

Object Teacher, Doctor, Nurse, Chef, Artist, Police Officer, Firefighter, Mechanic,
Farmer, Scientist, Pharmacist, Waiter

Number one, two, three, four, five

Color Red shirt, Blue shirt, Green shirt, Yellow shirt, Orange shirt, Purple shirt, Pink
shirt, Brown shirt, Black shirt, White shirt

Background A city street, A café, An open-plan office, A high school classroom, A restaurant
kitchen, A living room, etc.

Action Clapping and jumping, Raising a toast, Typing, Speaking on phone, Dancing,
Taking a photo, Riding a bicycle, Reading a book

Outdoor Scenes

Terrain Mountains, Forest, Sea, Grassland, Desert, Canyon, Glacier, Lake, Waterfall

Time of Day Sunrise, Afternoon, Sunset, Midnight

Climate Sunny, Cloudy, Rainy

Season Spring, Summer, Autumn, Winter

Indoor Scenes

Space Type Living room, Attic, Museum, Library, Office, Theater, Shopping mall, Classroom

Object Sofa, Table, Chair, Bookshelf, Frames, Plants, Lamp, Piano

Color Red, Blue, Green, Yellow, Orange, Purple, Pink, Brown, Black, White

Number one, two, three

Angle Eye-level view, Top-down view, Side view

Illustration

Art Style Watercolor, Oil Painting, Line Art, Pixel Art, Comic, Collage

Object Dog, Cat, People, Bird, Car, House, Tree, Flower, Bicycle, Guitar, Clock, Lamp,
Balloon

Number one, two, three, four, five

Background Forest, Underwater, Bedroom, Outer space, Beach, Desert, City street

Table 8: Visual Concepts List used for Benchmark Construction
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Domain
Bias Bright. Gamma. Refer. Keyword. Inst. Padding.

GPT-4.1
People 1.7 1.5 top-right top-right bottom-right 50
Animal 1.5 2.3 center top-left bottom-left 20

Illustration 1.3 0.9 bottom-left bottom-left bottom-right 30
Indoor 1.6 1.5 center bottom-right bottom-right 20

Outdoor 1.4 1.2 bottom-left bottom-left top-right 50
GPT-4.1-mini

People 0.9 0.9 center bottom-right top-right 40
Animal 1.5 1.3 center bottom-right bottom-right 30

Illustration 1.03 0.9 bottom-right bottom-right center 25
Indoor 1.7 1.3 bottom-right top-right center 40

Outdoor 0.9 1.3 center center center 50
GPT-4o

People 1.1 1.03 top-left top-left top-right 15
Animal 1.5 1.1 bottom-left bottom-left top-left 30

Illustration 1.3 1.1 bottom-right top-left top-left 20
Indoor 1.6 1.03 top-left top-right bottom-left 15

Outdoor 1.3 1.5 bottom-left bottom-left top-right 50
Qwen2.5-VL-32B Inst.

People 1.5 2.1 top-right center center 50
Animal 1.3 2.1 center center bottom-left 40

Illustration 0.95 1.03 center center top-left 10
Indoor 1.4 0.9 bottom-right bottom-left center 25

Outdoor 1.15 1.05 top-left top-left top-left 50
LLaVA-1.5-13B

People 1.4 0.95 top-left top-right bottom-left 15
Animal 1.5 1.05 top-left top-left bottom-right 40

Illustration 1.05 0.95 top-left top-left bottom-right 40
Indoor 1.5 1.05 top-left top-left bottom-left 15

Outdoor 2.1 0.95 top-left top-left bottom-left 50

Table 9: Most impactful parameters for each bias type across domains and model types (Part 1).
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Domain
Bias Bright. Gamma. Refer. Keyword. Inst. Padding.

GPT-4o-mini
People 1.2 1.3 top-left top-left top-right 20
Animal 1.2 1.7 bottom-left top-left top-right 50

Illustration 1.03 1.3 bottom-right bottom-left top-left 20
Indoor 1.1 1.2 bottom-right bottom-right top-right 30

Outdoor 1.2 1.1 bottom-right bottom-right top-left 10
LLaVA-NEXT-8B

People 2.0 1.5 top-left bottom-left bottom-right 10
Animal 2.1 2.0 top-left top-left top-left 15

Illustration 2.1 0.9 top-left bottom-left top-right 30
Indoor 2.3 2.0 top-left top-left bottom-right 15

Outdoor 2.0 1.15 top-right top-right top-right 15
LLaVA-Onevision-7B

People 1.4 1.7 bottom-right bottom-right center 30
Animal 0.9 1.05 center center center 25

Illustration 0.9 0.9 bottom-right bottom-right center 10
Indoor 1.05 1.11 top-left bottom-right center 15

Outdoor 0.95 0.9 center center center 25

Table 10: Most impactful parameters for each bias type across domains and model types (Part 2).
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Prompt for CoT Single Scoring Evalua-
tion

Role Definition (System Prompt):
You are a strict and fair evaluator of AI-generated
images.

User Prompt:
The given image was generated by an image gen-
eration model based on the provided instruction.
Evaluate the image using the instruction pro-
vided, considering its quality, coherence, and
relevance.
Think step-by-step before making your judgment.
First, explain your reasoning in detail, then as-
sign a single score between 0.0 and 5.0.
The final line of your response must be in the
format: Score: X.X (e.g., Score: 4.5). Do not
include any other text after the score.
Instruction: {provided instruction text}
- Image: (The AI-generated image correspond-
ing to the provided instruction.)

Figure 7: Prompt template used for CoT prompting
methods reported in Table 5.

Prompt for Pairwise Evaluation

Role Definition (System Prompt):
You are a strict and fair evaluator of
AI-generated images.

User Prompt:
Two images were generated from the same in-
struction. Instruction: provided instruction text
Which image is better? Respond with ’first’ (first
image is better), ’second’ (second image is bet-
ter), or ’tie’ (tie). Try to avoid a tie. Only return
either first, second or tie. Do not include any
explanation.
Image 1: Image 1
Image 2: Image 2

Figure 8: Prompt template used for pairwise scoring
evaluations reported in Figure 3.

Domain Combined bias recipe

People Inst.: “top-right” + Beauty.

Animal Refer.: “center” + Gamma.:“2.1”

Illustration Inst.: “center” + Gamma.: “0.9”

Indoor Inst.: “center” + Padding.: “40”

Outdoor Inst.: “center” + Padding: “50”

Table 11: Most impactful combinations of two visual
biases for GPT-4.1-mini across different domains.
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Domain Bias Orig. Bright. Gamma. Refer. Keyword. Inst. Padding. Bounding.

GPT-4o-mini

People 2.32 2.32 (0.0%) 2.32 (0.0%) 2.30 (-1.0%) 2.42 (+4.3%) 2.60 (+11.8%) 2.29 (-1.3%) 3.07 (+32.2%)

Animal 1.76 1.80 (+2.7%) 1.82 (+3.5%) 1.77 (+0.8%) 1.81 (+3.4%) 1.94 (+10.4%) 1.78 (+1.3%) 2.48 (+41.4%)

Illustration 1.98 1.98 (0.0%) 1.98 (-0.5%) 1.97 (-0.8%) 2.01 (+1.3%) 2.18 (+9.9%) 1.90 (-4.1%) 2.00 (+0.8%)

Indoor 2.69 2.72 (+1.0%) 2.70 (+0.5%) 2.63 (-2.1%) 2.74 (+2.1%) 3.06 (+13.8%) 2.65 (-1.2%) 3.07 (+14.1%)

Outdoor 3.25 3.29 (+1.2%) 3.31 (+1.8%) 3.22 (-1.1%) - 3.57 (+9.6%) 3.31 (+1.6%) -

LLaVA-NEXT-8B

People 2.72 2.90 (+6.6%) 2.79 (+2.6%) 2.85 (+4.8%) 3.00 (+10.3%) 3.73 (+37.1%) 2.92 (+7.4%) 2.81 (+3.3%)

Animal 2.81 2.87 (+2.1%) 2.87 (+2.1%) 2.82 (+0.4%) 3.19 (+13.5%) 3.74 (+33.1%) 2.95 (+5.0%) 2.97 (+5.7%)

Illustration 3.09 3.25 (+5.2%) 3.09 (0.0%) 3.15 (+1.9%) 3.18 (+2.9%) 3.63 (+17.5%) 3.18 (+2.9%) 3.18 (+2.9%)

Indoor 3.19 3.30 (+3.5%) 3.29 (+3.1%) 3.18 (-0.3%) 3.32 (+4.1%) 3.73 (+16.9%) 3.31 (+3.8%) 3.35 (+5.0%)

Outdoor 3.84 3.91 (+1.8%) 3.88 (+1.0%) 3.90 (+1.6%) - 4.00 (+4.2%) 3.93 (+2.3%) -

LLaVA-Onevision-7B

People 3.57 3.82 (+7.0%) 3.73 (+4.5%) 3.65 (+2.2%) 3.85 (+7.7%) 4.59 (+28.6%) 3.72 (+4.1%) 3.49 (-2.4%)

Animal 3.17 3.31 (+4.4%) 3.27 (+3.2%) 3.40 (+7.3%) 3.35 (+5.9%) 4.56 (+43.9%) 3.17 (+0.2%) 3.00 (-5.2%)

Illustration 3.73 4.09 (+9.7%) 3.78 (+1.3%) 3.87 (+3.8%) 3.93 (+5.4%) 4.62 (+23.9%) 3.65 (-2.1%) 3.72 (-0.4%)

Indoor 4.51 4.52 (+0.1%) 4.50 (-0.3%) 4.44 (-1.8%) 4.51 (-0.2%) 4.73 (+4.8%) 4.51 (-0.2%) 4.33 (-4.1%)

Outdoor 4.32 4.56 (+5.6%) 4.51 (+4.5%) 4.59 (+6.4%) - 4.89 (+13.3%) 4.43 (+2.6%) -

Table 12: Evaluation results of three additional LVLM judges assessing text-to-image generation under various
image bias conditions across multiple domains. Reported values correspond to the average alignment scores assigned
by each LVLM judge, with values in parentheses indicating the change relative to evaluations on original (Orig.),
unmanipulated images. Number highlighted in RED signifies successful attacks, where the presence of image biases
led LVLM judges to assign higher scores.
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Task Description 

You are presented with a set of image-instruction pairs. Your task is to evaluate the semantic alignment between 

each natural language instruction and its corresponding generated image. Specifically, you should assess how 

accurately the visual content in the image reflects the details and intent of the instruction. 

For each pair, please follow the steps below: 

1. Read the instruction carefully. Identify all key visual concepts, including the object(s), quantity, 

colors, background setting, and actions, if applicable. 

2. Examine the image. Determine whether the visual elements mentioned in the instruction are correctly 

depicted in the image. 

3. Assign an alignment score (1–5) 

4. Flag any problematic cases, such as: 

o Instructions that are nonsensical or unfeasible. 

o Images that are inappropriate, offensive, or appear distorted. 

o Images that clearly result from generation failures. 

Your annotations will help evaluate how well image generation models align visual outputs with complex, 

multi-attribute textual instructions across various domains. Please proceed carefully and consistently. 

 

Figure 9: Human annotation task interface.
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