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Abstract

Geospatial Entity Resolution (GER) plays a
central role in integrating spatial data from di-
verse sources. However, existing methods are
limited by their reliance on large amounts of
training data and their inability to incorporate
commonsense knowledge. While recent ad-
vances in Large Language Models (LLMs) of-
fer strong semantic reasoning and zero-shot
capabilities, directly applying them to GER re-
mains inadequate due to their limited spatial
understanding and high inference cost. In this
work, we present GER-LLM, a framework
that integrates LLMs into the GER pipeline.
To address the challenge of spatial understand-
ing, we design a spatially informed block-
ing strategy based on adaptive quadtree par-
titioning and Area of Interest (AOI) detec-
tion, preserving both spatial proximity and
functional relationships. To mitigate infer-
ence overhead, we introduce a group prompt-
ing mechanism with graph-based conflict res-
olution, enabling joint evaluation of diverse
candidate pairs and enforcing global consis-
tency across alignment decisions. Extensive ex-
periments on real-world datasets demonstrate
the effectiveness of our approach, yielding
significant improvements over state-of-the-art
methods. The data and code is available in
https://github.com/luck-seu/GER-LLM.

1 Introduction

A high-quality, comprehensive geospatial database
is the cornerstone of modern Location-Based Ser-
vices (LBSs) such as turn-by-turn navigation,
ride-hailing, and personalised place recommenda-
tion. These services rely on Points of Interest
(POIs)—geospatial entities described by spatial
attributes (latitude and longitude) and textual at-
tributes (name, address, category). In practice, POI
records are scattered across multiple providers (e.g.,
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Figure 1: An example of GER problem and comparison
of previous GER and GER-LLM.

low computation

OpenStreetMap', Yelp?, municipal open data),
each covering only a partial and often noisy view of
the real world. Consolidating these heterogeneous
records into a single, clean dataset is therefore in-
dispensable.

Geospatial Entity Resolution (GER) is one of
the core components of data integration. It aims
to find which spatial entities belong to the same
physical entity (Sehgal et al., 2006; Isaj et al.,
2022). Figure 1 shows an example of GER, where
four POI records taken from different providers
describe POIs located only meters apart. Cor-
rectly merging ey ("Sbux Coffee, 101 Main St"),
e4 ("Starbucks, 101-A Main St"), while keeping e
("Starbucks, 327 Main St") separate requires the
model to resolve brand abbreviations ("Sbux") and
to understand that "101" and "101-A" denote the
same storefront. Such judgments require the model
to possess commonsense knowledge. However,

"https://www.openstreetmap.org/
https://www.yelp.com/
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early approaches relied on token-level similarity
and hand-crafted rules or thresholds (Isaj et al.,
2022; Deng et al., 2019; Shivaprabhu et al., 2017),
which limit their capacity to understand entity se-
mantics or handle subtle attribute variations. Re-
cent advances have turned to Pre-trained Language
Models (PLMs) (Devlin et al., 2019; Liu et al.,
2019), framing GER as a sequence-pair classifica-
tion task (Balsebre et al., 2022, 2023). While these
models offer improved semantic information, they
remain blind to spatial context and require large
amounts of labeled GER data for effective fine-
tuning—resources that are often scarce in practice.

Recent Large Language Models (LLMs) have
showcased remarkable abilities in many fields.
Trained on trillions of tokens, they implicitly en-
code much of the background knowledge that GER
depends on, enabling them to make informed pre-
dictions even in the absence of task-specific labeled
data. A growing body of work has therefore begun
leveraging LLMs for general entity-resolution tasks
(Narayan et al., 2022; Peeters et al., 2025; Steiner
et al., 2024; Li et al., 2024; Fan et al., 2024; Wang
et al., 2025). However, directly applying these
LLM-based ER methods to GER remains inade-
quate for two key reasons: (1) Shortage in spatial
information understanding. Existing LLM-based
ER methods typically overlook the additional in-
formation provided by spatial relationships. They
mostly include pipelines that treat each record as
text and ask the model to decide whether two de-
scriptions match. Yet spatial cues are often nu-
merical (lat/lon) rather than linguistic. Current
LLMs excel at narrative context but are poor at
metre-level distance calculation or coordinate com-
parison (Yang et al., 2025). (2) Limited scalabil-
ity due to pairwise comparison overhead. GER
involves exhaustively comparing all possible en-
tity pairs to identify potential matches, resulting
in an inherent O(N?) candidate space where N is
the number of entities. While feasible for small
datasets, this approach becomes impractical at the
city scale, where millions of POIs translate into bil-
lions of candidate pairs. Even when candidate filter-
ing or blocking techniques are applied, the number
of pairs remains extremely large (Papadakis et al.,
2016). Since each LLM invocation incurs signif-
icant computational time and cost, applying the
model to all pairs would lead to prohibitive runtime
and resource demands.

To address these challenges, we propose GER-
LLM, a novel framework that integrates spatial-

aware pre-processing with LLM-based matching.
Our approach consists of two key components: (1)
A spatially informed blocking strategy that simul-
taneously reduces the candidate space while lever-
aging both spatial proximity and functional rela-
tionships (e.g., shared Areas of Interest). (2) A
group-wise matching pipeline that jointly evaluates
diverse candidate pairs to reduce LLM inference
cost. To ensure consistent global alignment, we
further introduce a graph-based conflict resolution
mechanism. Together, these components enable ac-
curate and scalable entity resolution with minimal
supervision.

Contributions:

* We present the first framework to integrate LLMs
into Geospatial Entity Resolution (GER).

* We develop GER-LLM, a framework that com-
bines spatially informed blocking and group-wise
LLM matching.

* We conduct extensive experiments on GER-LLM
and discuss the value and limitations of LLMs in
entity alignment tasks.

2 Related Work

2.1 Geospatial Entity Resolution

Early GER approaches predominantly relied on
comparing coordinate distances and textual simi-
larities using hand-crafted rules or thresholds (Isaj
et al., 2022; Deng et al., 2019; Shivaprabhu et al.,
2017; Morana et al., 2014). These methods, how-
ever, often struggled with capturing nuanced at-
tribute semantics and effectively handling subtle
variations, thus limiting their capacity for deeper
understanding.

The advent of PLMs (Devlin et al., 2019; Liu
et al., 2019) signified a notable progression, re-
casting GER as a sequence-pair classification task.
This approach yielded improved semantic under-
standing via context-aware embeddings from fine-
tuning (Balsebre et al., 2022, 2023). Despite these
strides, the considerable demand for labeled data in
fine-tuning PLMs and their inherent limitations in
deeply integrating spatial context continue to spur
methodological innovation.

2.2 Entity Resolution with LL.Ms

LLMs, via In-Context Learning (ICL), enable zero-
shot or few-shot entity matching, significantly re-
ducing reliance on extensive training data. For
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Figure 2: The overview framework of our proposed , which consists of two main components namely: (1) AOI-aware

Spatial Blocking and (2) Group-wise Matching with LLM.

general ER, LLMs often surpass PLMs, as demon-
strated by work like Peeters et al. (2025), particu-
larly in low-data settings. Research also addresses
ICL operational aspects such as cost (Fan et al.,
2024) and advanced matching paradigms (Wang
et al., 2025), alongside broader explorations of
LLMs in ER (Narayan et al., 2022; Steiner et al.,
2024; Li et al., 2024).

However, directly applying these general LLM-
based ER methods to GER is not straightforward.
Current approaches often overlook potential con-
flicts from independent LLM evaluations and typi-
cally lack specific designs tailored to GER’s unique
spatial intricacies. While Pyo and Chiang (2024)
applied LLLMs to geospatial data generation for
PLM fine-tuning, enhancing LLMs directly for
GER tasks remains largely unaddressed.

3 Preliminaries

We begin by defining the basic unit of GER—the
spatial entity. A spatial entity refers to an object
in the urban space, which in most cases can be
considered a Point of Interest (POI). Each entity is
associated with a set of attributes, including both
spatial attributes (e.g., latitude and longitude) and
textual or categorical attributes (e.g., name, address,
category). Formally, we represent a spatial entity e
as a key—value dictionary {(k; : v;) }1<i<n, Where
(k; : v;) represents a pair of attribute and value.
We make use of the concept of Area of Inter-
est (AOI) to incorporate spatial semantics in our
method. An AOI refers to a localized region in ur-

ban space that groups together spatial entities with
shared functional or semantic context. Examples
include shopping malls or university campuses.

We now formalize the Geospatial Entity Res-
olution (GER) task. Given two sets of spatial
entities 51 = {e; | 1 <1 < |S1|} and Sz = {e; |
1 < j < |S2|} from different data sources, the goal
of GER is to identify entity pairs (e;, ;) such that
e; € 51, ej € So, and the two refer to the same
real-world object.

4 Overview

As shown in Figure 2, the GER-LLM framework
includes two main components namely: (1) AOI-
aware Spatial Blocking and (2) Group-wise Match-
ing with LLM.

We first design an AOI-aware spatial blocking
strategy to integrate spatial semantic. Unlike tra-
ditional GER methods that rely solely on distance
thresholds, our approach leverages both spatial
proximity and functional relationships—such as
shared AOIs—to group entities likely to be related.
Specifically, we extract AOIs from spatial entities
using a classification model and apply a density-
based algorithm to detect flexible AOI boundaries.
We then propose an adaptive quadtree algorithm
that assigns boundary entities to multiple blocks
based on shared AOIs, ensuring that matches are
preserved even across partition edges. This strat-
egy not only narrows down the candidate scope
for each entity but also integrates both spatial adja-
cency information within the urban space.
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To further address the computation overhead, we
introduce a group-wise matching pipeline that
reduces the need for exhaustive pairwise compar-
isons. Rather than evaluating each candidate pair
individually, we organize pairs into diverse groups
and prompt the LLM to jointly assess alignment
scores. To maximize the effectiveness of group
prompting, we first cluster the candidate pairs and
then construct groups by sampling pairs from dif-
ferent clusters to ensure diversity—an approach
shown to enhance entity resolution performance
(Fan et al., 2024). Finally, since independent group
assessments may produce conflicting alignments,
we develop a graph-based conflict resolution mech-
anism to enforce global consistency across the
matching results.

5 AOI-aware Spatial Blocking

In this section, we introduce our spatially informed
blocking strategy for GER. We hope our blocking
method maintains spatial proximity and functional
relationships throughout the blocking process. To
achieve this, we propose a quadtree-based method
enhanced with AOL

5.1 Quadtree with AOI-Aware Splitting

The quadtree is a hierarchical spatial index that
recursively partitions a 2D space into four quad-
rants, efficiently organizing spatial data by assign-
ing objects to leaf nodes based on their location (Fu
et al., 2021; Tsuzuki et al., 2019; Li et al., 2018).
In our GER setting, spatial entities from both data
sources are jointly partitioned by the same quadtree
structure. Each leaf node corresponds to a spatial
block containing entities from both sources that fall
within the same spatial region, while internal nodes
represent coarser subdivisions of the urban space.
Split Strategy: The core difference between our
method and conventional spatial blocking lies in
its customized splitting strategy. Traditional meth-
ods use fixed geometric boundaries to split space,
which can arbitrarily separate spatially or seman-
tically related entities across partition lines. This
often leads to fragmented candidate sets and lower
recall. To address this, we propose a soft split-
ting strategy that incorporates AOI information.
During splitting, it not only assigns spatial entities
based on their spatial coordinates but also propa-
gates semantically related spatial entities—those
sharing the same AOIs—into the same or adjacent
blocks. This ensures that potential matches are not

Algorithm 1 AOI-Aware Split Strategy

Require: node g, AOI-POI relations Z,p, Zp, 4
Ensure: four child nodes child[1..4]
1: initialize child[1..4] + empty child nodes
2: for e € g.internal_set do
3: assign e to corresponding child([i] by spa-
tial position
end for
for e € g.external_set do
related_pois < Za,p|Zp,ale]]
for each ¢ such that child[i] contains a
pot € related_pois do

A A

8: add e to child[i].external_set
9: end for
10: end for
11: fori € 1..4do
12: for e € childli].internal_set do
13: related_pois < Za,p[Lp,ale]]
14: add missing related_pois to
childli].external_set
15: end for
16: end for

17: return child[l..4]

excluded simply due to rigid spatial boundaries.

Specifically, Algorithm 1 outlines the AOI-aware
split process, which recursively divides a quadtree
node into four child nodes, assigning spatial entities
based on both spatial position and shared AOIs to
preserve semantic locality. Internal spatial entities
are allocated by coordinates, while external spatial
entities are propagated across children if they share
AOIs with any internal points.

In most cases, the complexity of our method is
no more than O((|.S1]|+|S2|) log D) where D is the
diagonal length of the square region covering all
POIs. A more detailed complexity analysis, which
depends on the spatial density and AOI coverage,
is provided in the Appendix A.1.

5.2 AOI Inference via Classification and
Boundary Detection

Our blocking strategy assumes the availability of
AOI-POI relationships. However, such labels are
often missing in real-world geospatial data. Exist-
ing approaches commonly approximate AOIs using
fixed-radius circles around these points (Balsebre
et al., 2023), but such heuristics fail to reflect the
actual irregular shapes of AOIs and can introduce
significant overlap or redundancy.

AOI inference via classification model: To ad-
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dress the absence of AOI labels, we train a bi-
nary classification model that predicts whether
a given entity is an AOI based on its at-
tributes—particularly textual features such as name
or category. Since AOIs often have distinguish-
able naming patterns (e.g., "Campus", "Industrial
Park"), we use a lightweight text encoder followed
by a classifier to make predictions. For training,
we construct a labeled dataset by selecting entities
of known types (e.g., campuses, malls) as positive
examples and randomly sampling other entities as
negatives.

Boundary detection via density-based detec-
tion algorithm: Once AOIs are identified, we infer
their spatial boundaries using a density-based detec-
tion algorithm. By analyzing the local distribution
of surrounding spatial entities, the algorithm adap-
tively identifies the high-density region associated
with each AOI. This allows us to infer more re-
alistic boundaries and more accurately determine
which entities fall within a given AOL

Specifically, we classify each entity as a core,
reachable, or outlier. An entity is marked as a
core if it has at least M neighbors within a given
radius (; otherwise, it is either reachable—if it’s
close to at least one core—or an outlier. We first
examine each AOI and retain only those that qualify
as core entities; others are treated as individual
POIs. For the remaining POIs, we identify nearby
core AOIs within the same radius ¢ and establish
bidirectional links between them. This allows POIs
to associate with the most relevant AOIs based on
local spatial density. A more detailed description of
the algorithm, including pseudocode and algorithm
details, is provided in Appendix A.2.

6 Group-wise Matching with LLM

After spatial blocking, each block yields a large
number of candidate entity pairs via Cartesian prod-
uct. To address this, we introduce a group-wise
matching strategy that organizes candidate pairs
into semantically diverse batches and prompts the
LLM to assess them jointly. Moreover, to enhance
reasoning quality, each group is constructed to max-
imize internal diversity, enabling the LLM to lever-
age richer comparative context when distinguishing
true matches from non-matches (Section 6.1). Ad-
ditionally, since individual group assessments may
produce conflicting decisions across the dataset,
we resolve inconsistencies through a graph-based
matching algorithm (Section 6.2).

6.1 Diversity-aware Group Prompting

The core idea behind our group prompting strategy
is to maximize the diversity within each prompt
group. To achieve this, we aim to avoid grouping
similar candidate pairs together. We first cluster
similar pairs and then construct each prompt group
by sampling from different clusters. Our group
prompting pipeline consists of four steps: feature
extraction, pairs clustering, pairs group, and group
prompting.

Feature Extraction: We transform each can-
didate entity pair (a, b) into a feature vector r by
computing similarity scores across all aligned at-
tributes. For each attribute—such as name, address,
or category—we calculate a corresponding simi-
larity score. For textual attributes, we apply stan-
dard metrics such as token-based similarity (e.g.,
Jaccard) and normalized edit distance (e.g., Leven-
shtein). For spatial attributes, such as latitude and
longitude, we compute normalized geographical
distance to capture spatial closeness. These com-
puted similarity scores are then concatenated in a
predefined order to form the final feature vector
r = [$1,892,...,Sy]. This concise vector aims to
capture essential relational knowledge from multi-
attribute matching signals for subsequent model
processing.

Pairs Clustering: Next, we cluster candidate
entity pairs based on Euclidean distances between
their n-dimensional feature vectors. We employ the
HDBSCAN algorithm (Campello et al., 2013), val-
ued for its density-based identification of arbitrarily
shaped clusters and effective noise point designa-
tion. This could yields a primary set of clusters /C,
alongside some identified noise points. To ensure
comprehensive clustering, these identified noise
points are then assigned to existing clusters using a
K-Nearest Neighbors (KNN) approach (Cover and
Hart, 1967). Each noise point adopts the majority
cluster label of its k£ nearest clustered neighbors.
This two-stage process ensures every candidate pair
is assigned to a cluster.

Pairs Grouping: We then construct prompt
groups GG of size g by selecting candidate entity
pairs from the previously formed clusters K to max-
imize intra-group diversity. This process has two
stages: if at least g distinct clusters with available
pairs remain, we ensure diversity by randomly se-
lecting one pair from each of g different clusters.
Otherwise, we employ a round-robin selection from
the remaining available clusters until the group
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reaches size g. This method consistently yields
prompt groups with varied entity pairs, thereby op-
timizing the contextual information for the LLM.

Group Prompting: Once the diverse prompt
groups G are constructed, we leverage an LLM for
the matching task. Each group is systematically
formatted into a single, consolidated prompt, the
specifics of which are detailed in Appendix A.6.
This consolidated prompt is then submitted to the
LLM. The LLM, in turn, jointly evaluates all can-
didate entity pairs, assigning to each pair p a pre-
diction y, € {0, 1} and an associated confidence
score ¢p.

6.2 Graph-based Conflict Resolution

Independent LLM evaluations of distinct prompt
groups can yield globally inconsistent alignments.
For instance, an entity e; from one data source
might be matched by the LLM to both entities e
and e3 from another, violating the expected one-to-
one correspondence often assumed in GER, espe-
cially when dealing with well-maintained source
datasets. Such ambiguities, arising from the LLM’s
isolated assessment of groups without a global
view, directly reduce the precision of the final reso-
lution.

To resolve these conflicts and enforce global
consistency, we adopt a graph-based strategy. As
illustrated in Figure 2, we construct a bipartite
graph where nodes represent candidate entities, par-
titioned into two disjoint sets according to their
original data sources. An edge is added between
two entities from different partitions if the LLM
predicts them as a match, with the edge weight cor-
responding to the LLM’s confidence score c¢,. We
then apply the Hungarian algorithm (Kuhn, 1955)
to identify the maximum weight matching in the
graph, which yields a globally consistent set of
aligned entity pairs—effectively reconciling poten-
tially conflicting predictions made across different
prompt groups.

7 Experiments

In this section, we present an experimental evalua-
tion of GER-LLM, using three real-world datasets.
Our evaluation aims to answer the following re-
search questions:

* RQ1: How does GER-LLM compare to state-of-
the-art methods in GER performance?

* RQ2: How efficient is GER-LLM compared to
other LLM-based ER methods?

* RQ3: How does each component contribute to
GER-LLM?

7.1 Experimental Setup

Datasets. For our experiments, we create three
datasets by collecting geospatial entities from five
real-world LBSs, accessed via their respective
APIs. These datasets are constructed from pair-
ings of these services and cover three distinct cities.
Within each dataset, we manually annotated the
matching entity pairs and labeled AOIs. Detailed
statistics and sources of the data set are available
in Appendix A.3.
Baselines. We compare our model with a repre-
sentative set of baseline methods. These include
approaches for general ER (GraphER (Li et al.,
2020), CollaborEM (Ge et al., 2021)), dedicated
frameworks for GER (SkyEx (Isaj et al., 2022),
GeoER (Balsebre et al., 2022), GTMiner (Balse-
bre et al., 2023)), and recent LLM-based ER meth-
ods (BATCHER (Fan et al., 2024), COMEM
(Wang et al., 2025)). We follow the descriptions
in these works to preprocess the data into the cor-
responding format and run the baselines with the
best parameter settings to ensure fairness. More
details can be found in the Appendix A.4.
Metrics and Implementation. To evaluate over-
all performance, we employ three widely recog-
nized metrics: Precision (P), Recall (R), and F1
score (F1). Following related studies (Neuhof et al.,
2024), we assess blocking performance using three
key metrics: Pair Completeness (PC), Pair Quality
(PQ), and Reduction Ratio (RR).

Pair Completeness corresponds to recall, mea-
suring the proportion of detectable matched pairs
in C' with respect to those in .S1 X Ss:

DO

_ 1
Do xS WP

PC(C,51,52) =
where D(z) denotes the set of matched pairs in set
x.

Pair Quality corresponds to precision, measuring
the proportion of pairs in C' that are true matches:
DO
PQ(C) = —=—. 2
C]

Reduction Ratio measures the reduction in the
number of candidate pairs in C' with respect to the

brute-force approach:

C]

RR(C,S51,5)=1— ———.
( ! 2) |S1><SQ|

3)
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Table 1: Effectiveness comparison of different models across three datasets. The best results for each metric are

highlighted in bold, the second-best are underlined.

| NJ | HZ | PIT
Model
| P R F1 | P R F1 | P R F1
GraphER 0.5698 0.5698 0.5698 | 0.6137 0.6458 0.6293 | 0.5563 0.6146 0.5840
CollaborEM | 0.9604 0.5253 0.6791 | 0.9263 0.6391 0.7564 | 0.9053 0.3660 0.5212
SkyEx 0.6431 0.5830 0.6116 | 0.6395 0.5846 0.6108 | 0.6034 0.5362 0.5678
GeoER 0.8146 09389 0.8723 | 0.8345 0.8962 0.8643 | 0.8740 0.8127 0.8422
GTMiner 0.9333 0.8077 0.8660 | 0.9076 0.8233 0.8634 | 0.8831 0.8281 0.8547
PairMatching | 0.6454 0.9343 0.7634 | 0.7464 0.9728 0.8447 | 0.7528 0.9628 0.8450
BATCHER 0.7265 09410 0.8200 | 0.8268 0.9523 0.8851 | 0.7704 0.9484 0.8502
COMEM 0.8746 0.8425 0.8582 | 0.9468 0.8830 0.9138 | 0.9036 0.8624 0.8825
GER-LLM | 0.8665 09132 0.8892 | 0.9407 09418 0.9412 | 0.9064 09313 0.9187

For these metrics, higher values consistently
signify more effective performance. Detailed
specifics of our implementation are provided in
Appendix A.S.

7.2 RQ1&RQ2: Overall Performance

We first evaluate the GER performance of GER-
LLM compared to the baselines.

7.2.1 Effectiveness

The effectiveness results of all methods across the
three datasets are shown in Table 1. These results
reveal GER-LLM’s strong performance, with an
average F1 score of 0.9164 and top F1 scores on
all datasets. Although some baselines may achieve
higher precision or recall individually, GER-LLM
consistently outperforms them in terms of F1 score,
highlighting its stronger balance between precision
and recall, and its overall effectiveness in GER
tasks. GER-LLM out performs the general ER
methods, GER methods, and LLM-based ER meth-
ods.

GER-LLM vs. general ER methods. General en-
tity resolution (ER) methods often fail to account
for the spatial characteristics critical to GER. By
explicitly incorporating spatial awareness into the
LLM matching process, our GER-specific frame-
work effectively addresses this gap in spatial con-
text understanding.

GER-LLM vs. GER methods. GER-LLM pro-
vides stronger semantic understanding than ear-
lier rule-based approaches and surpasses recent
PLM-based methods by more effectively integrat-
ing LLMs with spatial context. While PLM-based
models often rely on task-specific training data,
GER-LLM achieves competitive performance with-

Table 2: Efficiency comparison with contemporary
LLM-based ER methods. Best runtimes are in bold,
second-best are underlined. ("s" denotes seconds; "m"
denotes minutes)

Model [ NJ [ HZ [ PIT
PairMatching | 157m 23s | 161m42s | 176m 42s
BATCHER 7m 35s 8m 12s 11m 20s
COMEM 43m 40s 54m 18s 60m 9s

GER-LLM | 5m28s | 6m10s | 8m35s

Table 3: Comparison of LLM interaction counts with
contemporary LL.M-based ER methods, highlighting
the best entries in bold and second-best entries with an
underline.

Model | NJ | HZ | PIT
PairMatching | 6008 | 6423 | 6623
BATCHER | 319 | 324 | 371
COMEM | 1804 | 1966 | 2185

GER-LLM | 229 | 245 | 284

out requiring labeled GER datasets, highlighting
its adaptability and practical scalability.

GER-LLM vs. LLM-based ER methods. Direct
applications of LLMs to GER—such as our Pair-
Matching baseline with independent pairwise eval-
uation—struggle to interpret spatial nuances and
suffer from the scalability challenges of O(N?)
comparisons. Even more advanced LLM-based
ER methods often lack deep integration of spatial
context or fail to provide robust conflict resolution.
In contrast, GER-LLM addresses these limitations
through a geospatially tailored architecture. This
architecture combines specialized blocking, which
itself demonstrates strong benchmark performance
(Table 10), with diversity-aware group-wise match-
ing and global consistency enforcement.
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7.2.2 Efficiency

We validate the runtime efficiency of our frame-
work against contemporary LLM-based ER meth-
ods. For a fair and reliable comparison, all eval-
uated methods use parallelized LLM interactions.
The reported runtimes and LLM interaction counts,
obtained using the DeepSeek-V3 model and aver-
aged over five independent executions, are shown
in Table 2 and Table 3.

The results demonstrate GER-LLM’s superior
runtime. It substantially outperforms PairMatch-
ing, which is constrained by its slow pairwise eval-
uations, and COMEM, characterized by a costly
two-stage filtering process. Furthermore, GER-
LLM achieves an approximate 26% runtime reduc-
tion over the more optimized BATCHER. This effi-
ciency stems from its GER-specific design, combin-
ing effective blocking to reduce candidate entities
with group-wise matching to lessen LLM calls.

7.2.3 Scalability

To evaluate scalability at larger scales, we expand
the number of POIs and measure runtime versus
data growth. Table 4 shows near-linear growth
from 1.0x to 2.0x, indicating our efficiency gains
persist at large scale.

Table 4: Runtime vs. dataset expansion (min-
utes:seconds).

Expand / Time NJ HZ PIT

1.0x Sm28s 6m10s 8m35s
1.25x 6m59s Tm53s 10m58s
1.5% 8m31s 9m37s 13m22s
1.75% 10mo6s 11m24s  15m52s
2.0x 11m43s 13ml13s 18m24s

7.3 RQ3: Ablation Studies

To evaluate the distinct contributions of GER-
LLM’s core components, we conduct a series of
ablation studies.

7.3.1 Ablation on Blocking Component

We perform an ablation study on our spatially
informed blocking method to examine the im-
pact of its constituent elements. Variants include:
Quadtree, which uses a conventional quadtree,
omitting our adaptive assignment of boundary enti-
ties via shared AOIs. AOI-Only, which removes
quadtree partitioning, generating candidate pairs
directly from entities within the same AOI. Circu-
lar AOIs, which replaces our density-based AOI
boundary detection with a simpler circular buffer

7] Our Method [0 Quadtree [ AOI-Only E= Circular AOIls
10 PC s PQ 10 RR
§ 0.9 | 0.6 0.8
0.8 } 0.4 | 0.6 H
N HzZ PIT N HZ PIT N HZ PIT

Figure 3: Ablation results for the blocking component.
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Figure 4: Ablation results for the matching component.

method. Figure 3 shows these results. Remov-
ing any designed component degrades the blocking
performance of our method, confirming each ele-
ment’s contribution.

7.3.2 Ablation on Matching Component

To assess the effectiveness of GER-LLM’s indi-
vidual group-wise matching components, ablation
studies on three datasets evaluate the following vari-
ants: PLM employs PLMs for entity pair feature
extraction. For grouping, Similar and Random
substitute diverse grouping with similarity-based
and random strategies, respectively. /CR omits
the Conflict Resolution module, and /Group elim-
inates group-wise matching strategies, reverting
to pairwise LLM interaction. Results (Figure 4)
demonstrate each module’s contribution, with the
Conflict Resolution module notably yielding the
largest improvements.

In addition, we compare HDBSCAN with k-
means, DBSCAN, and agglomerative clustering for
pair grouping. As shown in Table 5, HDBSCAN
yields the best average F1.

Table 5: Clustering methods for grouping (F1).

Method NJ HZ PIT

k-means 0.8760  0.9331  0.9091
DBSCAN 0.8682 0.9306 0.9156
Agglomerative 0.8744 09318 0.9117
HDBSCAN (ours) 0.8892 0.9412 0.9187
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Table 6: F1 scores of GER-LLM with different un-
derlying LLMs across three datasets. Best F1 scores
are highlighted in bold, the second-best are underlined.
("gemini-2.5-flash" in the table refers to gemini-2.5-
flash-preview-04-17.)

Model | NJ | HZ | PIT
DeepSeek-V3 | 0.8892 | 0.9412 | 0.9187
DeepSeek-R1 | 0.8922 | 0.9340 | 0.9004

gemini-2.0-flash | 0.7534 | 0.9312 | 0.9149
gemini-2.5-flash | 0.8930 | 0.9355 | 0.9163
gpt-4.1-mini | 0.8341 | 0.9280 | 0.9115
o4-mini 0.9155 | 0.9442 | 0.9437
Qwen3-14B | 0.7552 | 0.8383 | 0.7979
DeepSeek-R1 | 0.7583 | 0.9079 | 0.8654
Qwen3-32B | 0.7926 | 0.8954 | 0.8676
QwQ-32B | 0.8231 | 0.8889 | 0.8947

7.3.3 Performance with Different LL.Ms

Besides these component-specific ablation stud-
ies, we evaluate GER-LLM’s adaptability across
diverse LLMs (Table 6), encompassing both
reasoning-focused and efficiency-optimized types.
While o4-mini consistently yields the highest F1
scores, our framework demonstrates robust and
effective performance across all tested LLMs. No-
tably, models such as DeepSeek-V3 and gemini-
2.5-flash also deliver strong results, underscoring
GER-LLM’s broad applicability and consistent
high performance. In addition, we include sev-
eral budget-friendly open-source 14B—32B models;
the best 32B model (QwQ-32B) remains within 7
F1 points of the 671B reference on HZ and PIT,
and even 14B models deliver competitive results,
showing GER-LLM is effective without relying on
proprietary premium LLMs.

7.4 Case Study

To intuitively study the superiority of GER-LLM,
we illustrate two cases from the test set.

Case of AOI-Aware Splitting. Two records for the
same café—p;: "The Bean Scene, Unit K5, City-
Plaza Mall" and p>: "Bean Scene Coffee, Kiosk
5A, CityPlaza"-lie inside the shopping-mall AOI
"CityPlaza Mall" but have coordinates that differ
by a few metres. Standard quadtree blocking as-
signs them to adjacent tiles, so the pair is never
compared, lowering recall. In contrast, our AOI-
aware split strategy first recognises that both points
belongs to the same AOI, then keeps them in the
same block after quadtree partitioning.

Graph-Based Conflict Resolution. Table 11 (Ap-
pendix A.8) lists representative pairs from the PIT
dataset that the LLLM, when evaluated in group-
wise mode, incorrectly labelled as mutual matches,
creating one-to-many conflicts. Our graph-based
conflict resolution strategy resolves the conflicts
and measurably improves overall precision.

7.5 Cross-city Generalization of the AOI
Classifier

We examine whether one AOI classifier trained in
a city can be reused in another city of the same
language without retraining. Table 7 reports cross-
city classification results, and Table 8 shows the
end-to-end GER F1 impact. A model trained on NJ
and applied to HZ only drops 8% in AOI classifica-
tion F1, and the final GER F1 decreases by merely
~ 2.6%; the reverse transfer (HZ—NJ) exhibits
similarly strong robustness. These results suggest
a single pretrained AOI model can be reused across
cities, reducing annotation and deployment costs.

Table 7: Cross-city AOI classification results.

Train Test Precision Recall F1
NJ HZ 0.9103 0.8621  0.8855
HZ NJ 0.8755 0.8904 0.8829

Table 8: Cross-city reuse and GER F1 impact.

Train Test Precision Recall F1 Drop

NJ NJ 0.8665 09132 0.8892 Baseline
HZ NJ 0.8581 0.8715 0.8647 —2.76%
HZ HZ 0.9407 0.9418 09412 Baseline
NJ HZ 0.9325 0.9023 09172 —2.55%

8 Conclusion

In this work, we revisited the GER problem through
the lens of recent advances in LLMs. We showed
that LLMs—despite their strong zero-shot capabil-
ities—cannot be directly applied due to their inef-
ficiency and lack of spatial grounding. To bridge
this gap, we proposed GER-LLM, a novel frame-
work that integrates spatially informed blocking
with group-wise LLM-based matching and global
consistency resolution. Our experiments demon-
strate that this approach enables accurate and scal-
able entity resolution across real-world geospatial
datasets, offering new insights into the potential
and challenges of deploying LLMs for spatial data
integration.
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9 Limitations

While GER-LLM demonstrates strong perfor-
mance across multiple real-world datasets, there are
several limitations worth noting. First, due to the
time and resource constraints of manual annotation,
we did not conduct city-scale human evaluation
beyond the current benchmark datasets. Expanding
the test set with broader geographic coverage and
finer-grained labels could offer further insights into
the model’s generalizability. Second, although our
method performs well with powerful LLMs, we did
not explore its effectiveness when combined with
smaller or more resource-efficient models. Evaluat-
ing the trade-off between performance and compu-
tational cost in low-resource settings is a promising
direction for future work.

10 Ethical Impact

All datasets in this study are constructed from pub-
licly available, open-licensed POI records (e.g.,
commercial LBS providers and open platforms).
We do not use individual mobility trajectories, de-
vice identifiers, or any data that could directly track
persons. Therefore, the typical privacy risks associ-
ated with trajectory data do not arise in our setting,
and our use complies with community ethics guide-
lines and licenses.
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A Appendix

A.1 Time Complexity Analysis of Our
Blocking Method

Let S1 and S, represent two datasets to be linked,
with ¢ being the minimum distance between any
two points in these datasets. D; and D5 represent
the dimensions of the initial region containing all
points, and ¢ is the average coverage diameter of
the AOI, approximated as a circle. It is clear that
the physical diagonal length of the quadtree node
Lyhysical at the i-th level (where ¢ > 0) is given by

| D? + D3
Lphysical,i = 1T2 (4)

In our method, to accommodate more potential
matching entity pairs, the quadtree logically ex-
pands during its splitting process using the AOlIs.
As a result, the actual maximum size of each node
is increased by a distance of ¢ in both the length
and width directions. Based on this, the logical
diagonal length of each quadtree node Ljog;cqr at
level ¢ (where ¢ > 1) is calculated using the follow-
ing formula:

L \/D%+Dg L (D14 D)
logical,i — 4 9i—1

+ 262.
®)
Since c represents the minimum distance be-
tween any two points from the two datasets, the
distance dist(p1,p2) between any two points p;
and py within a quadtree node at any level i (i > 1)
will always satisfy the following inequality:

c< diSt(pl;pZ) < Llogical,i' (6)

Thus, we can conclude that ¢ satisfies the in-
equality:
c< Llogical,i~ (N

By squaring both sides of Ineq. (7), shifting
terms, and applying other operations, and setting
x = 2¢, the inequality is obtained:

(?—20%) 22 —2(D1+D2)§ -z — (D3 +D3) < 0.
®)

We can analyze the solution to Ineq. (8) by con-
sidering different cases:

(1) When ¢? — 262 < 0, the inequality always
holds. This case indicates that the current datasets
has a relatively dense distribution of POIs, with
most of them falling within the semantic coverage
of the AOIs. In this case, manually set thresholds —
such as the maximum diagonal length of the node

or the POI density within the node — determine
when the construction process should stop. For in-
stance, with the maximum diagonal length thresh-
old, the diagonal length of the nodes decrease al-
most exponentially by a factor of 2 as the quadtree
splits starting from level 0. A constant number of
splits is sufficient for the node’s diagonal to reach
the set threshold, halting further splitting of the
quadtree. As a result, in such case, the overall time
complexity for constructing the quadtree is

O((IS1] +152[) logy \/ DI + D3). (9

(2) When ¢? — 262 > 0, the specific solution
to the inequality needs to be found. This case
suggests that the distribution of POIs in the current
datasets is quite sparse, and in most cases, it falls
outside the semantic coverage of the AOIs. In such
case, the datasets itself determines the termination
of the construction process. Solving the inequality
above gives:

i <logy (w) + 1, (10)
where ¢ > 0 and w = ﬁ, with
_ (Df + D3)(¢* — &%)
A—é(DlJng)Jr\/ 49D, Dy6? . (11)

The total time complexity for constructing the
structure of our method, considering all POIs in the
two datasets, is:

O((I51] + [S2])(logz (w) +1)). (12

A.2 Density-based AOI Boundary Refinement

We adopt the idea of density-based (Ester et al.,
1996), (Kriegel et al., 2011) and design a density-
based boundary detection algorithm. Specifically,
for each entity in the geospatial database, we first
define three types of entity ( i.e., core entity, reach-
able entity, and outlier entity) as follows.

Core Entity: An entity e is considered a core
entity when it has more than M neighbors within
¢. Specifically, the indicated function f.(e) is cal-
culated as follows.

fe(e) = [N¢(e)| = M (13)

N¢(e) = {e' | distance(e, €') < ¢} (14)

Here, N¢(e) represents the entities within the (-
neighborhood of e, and M denotes the number of
neighbors required for e to become a core entity.
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Reachable Entity A reachable entity is a non-
core entity that can reach core entities within its
(-neighborhood. The formal definition of its indi-
cator function f,(e) is as follows.

fr(€) = |Nee(e)| = 1 (15)
N (e) = {¢' | distance(e, e’) < ¢ and f.(e')}
(16)

Here, N, ¢ (e) denotes the core entities within the
(-neighborhood of e.

Outlier Entity An outlier entity is an entity that
is neither a core entity nor a reachable entity.

Then, we eliminate isolated AOIs and detect the
boundaries of the remaining ones according to Al-
gorithm 2. First, for each AOI in S, we check
if it is a core entity. If it is, we add it to Syepair 43
otherwise, we refine it as a non-core POI and add
it to Sp (Lines 4-12). Next, for each POI in Sp,
we find its (-neighborhood and compute the inter-
section with Sy.cpqir , . If the POl is reachable from
any core AOI, we establish the relationship index
between the POI and its reachable AOIs (Lines 13-
21). Finally, the algorithm outputs the refined set
of POIs and AOIs, Sp and Syepair ,» along with the
corresponding relationship indexes between AOIs
and POlIs, specifically Z4,p and Zp, 4 (Line 22).

A.3 Dataset Statistics and Sources
Table 9: Statistics of the datasets used in our exper-

iments. The column #Positive shows the number of
positive samples.

Source City |5i] [S2|  |Saor| #Positive

DP-MT NJ 12176 828 180 411

GD-DP HZ 1982 2959 107 808
OSM-FSQ PIT 2383 2474 181 1237

This section provides details on the datasets used
in our experiments, including their sources and key
statistics. The data originates from five Location-
Based Services (LBSs): Dianping3 (DP), Meituan®
(MT), Gaode® (GD), OpenStreetMap6 (OSM), and
Foursquare7 (FSQ). These services were used to
construct datasets for three cities: Nanjing (NJ),
Hangzhou (HZ), and Pittsburgh (PIT).

Table 9 summarizes these datasets. In this table,
the "Source" column indicates the specific LBS

*https://www.dianping.com/
*https://www.meituan.com/
Shttps://www.amap.com/
®https://www.openstreetmap.org/
"https://foursquare.com/

Algorithm 2 Density-based Boundary Detection

Require: set of spatial entities 5, set of AOIs ex-
tracted from spatial entities .S 4; density param-
eters ( and M

Ensure: refined set of POIs and AOIs Sp,

Srepair 4> Telationship indexes between AOIs

and POIs Za,p, Zp,a

Sp+ S—54

ZaspiLpya < {

S’repairA — @

for aoi € S, do
N¢(aoi) < find the (-neighborhood of ao:

inS

6: /I Check if the aoi is a core entity.

7: if |[N¢(aoi)| > M then

8

9

A

add aoi to Syepair 4

: else
10: add aoi to Sp
11: end if
12: end for

13: for poi € Sp do
14: N¢(poi) < find the (-neighborhood of poi
inS

15: // Find the aois reachable from the current
poi.

16: shares < N¢(poi) N Srepaira

17: for aoi € sharey do

18: add aot — poi to Za,p

19: add poi — aoi to Ip, 4

20: end for

21: end for

22: return Sp, Srepair s LA, Py Lpya

pairing (e.g., DP-MT for the dataset from Dianping
and Meituan), while the "City" column uses the
respective city abbreviations defined above. The
table further presents the number of entities from
each LBS in the pair (|S1| and |S2]), the count
of identified AOIs (|Sa01|), and the number of
manually verified positive matches (#Positive).

A.4 Baselines Descriptions

We compare our model with representative baseline
models, including approaches for general ER, dedi-
cated frameworks for GER and recent LLM-based
ER methods.

I. Approaches for general ER:

e GraphER (Li et al., 2020) performs token-
centric ER by using an Entity Record Graph Con-
volutional Network (ER-GCN) to generate in-
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formed token embeddings and aggregating token-
level features for matching.

¢ CollaborEM (Ge et al., 2021) enables self-
supervised ER by first automatically generating
training labels and then collaboratively learning
matching signals from combined graph and sen-
tence tuple features.

II. Dedicated frameworks for GER:

* SkyEx (Isaj et al., 2022) achieves GER by rank-
ing candidate pairs using Pareto optimality on
multi-attribute similarities and classifying them
via an optimal skyline-level cut-off.

* GeoER (Balsebre et al., 2022) performs GER by
combining Transformer-based language models
for textual analysis with specialized embeddings
for spatial distance and neighborhood context.

e GTMiner (Balsebre et al., 2023) mines geospa-
tial relationships to construct knowledge graphs
by jointly modeling textual and geospatial data
through a pre-trained language model, a geospa-
tial encoder, and a Geo-Textual interaction mech-
anism.

II1. Recent LLM-based ER methods:

* BATCHER (Fan et al., 2024) enables cost-
effective LLM-based ER via a batch prompting
framework that explores question batching and
demonstration selection, notably introducing a
covering-based strategy for demonstrations.

* COMEM (Wang et al., 2025) executes en-
tity matching by first filtering candidates with a
medium-sized LLM using local strategies (match-
ing/comparing), then employs a powerful LLM
with a global selection strategy for precise identi-
fication.

To specifically assess the performance of our
proposed spatially informed blocking method, we
benchmark it against the following established
blocking techniques within the GER domain:

* GeoPrune (Shah et al., 2021) is an efficient and
lightweight blocking technique that uses the geo-
hash encoding mechanism.

* GeoER (Balsebre et al., 2022) utilises a rule-
based blocking method, which filters candidate
entity pairs by combining their name similarity
and geographical distance.

* QuadFlex (Isaj et al., 2022) is an unsupervised
quadtree-based method for spatial entity block-
ing.

¢ GTMiner (Balsebre et al., 2023) extracts AOIs
from spatial entities to select a small number of
candidate pairs.

A.5 Implementation Details

AOI Inference via Classification and Boundary
Detection. For the AOI classification model, the
text encoder F is implemented using pre-trained
BERT models: bert-base-uncased® for English data
and bert-base-chinese” for Chinese data. The subse-
quent classifier C is a multi-layer perceptron (MLP).
We utilize the [CLS] token output from BERT as
the input feature vector for the MLP. Key training
parameters include a maximum sequence length of
128, a dropout rate of 0.1, a learning rate of 3e-5,
and a batch size of 32.

To train the model, we first split our overall
dataset into training, validation, and test sets with
a 5:2:3 ratio, respectively. We then employ a
weighted binary cross-entropy loss function. In
this function, the positive class (AOIs) is assigned
a higher weight (w, > w,,) than the negative class.
This approach more heavily penalizes false nega-
tives, which is crucial for improving the recall rate
for AOI identification. Real-world datasets often
exhibit a significant class imbalance where non-
AOI entities (POIs) greatly outnumber AOls; train-
ing directly on such imbalanced data can adversely
affect classifier performance. To mitigate this, we
construct a balanced training dataset by randomly
sampling (without replacement) p negative exam-
ples for each positive AOI example. The optimal
values for p (selected from the set {1,3,5,7,10}),
along with the weights w,, and w,, are determined
based on achieving the best performance on the
validation set.

For the density-based boundary detection algo-
rithm, we set M to 5 and determined the value of
by plotting the k-distance graph (Ester et al., 1996).
Quadtree with AOI-Aware Splitting. In this
module, we tune hyperparameters by grid search.
Specifically, the diagonal d is selected from
{1, 20, 40,60, 80, 100}, and the density m is se-
lected from {0.01,0.03,0.05,0.07,0.09}.
Group-wise Matching with LLM. For textual
attribute similarity, we utilized Levenshtein sim-

8https://huggingface.co/bert-base-uncased
*https://huggingface.co/bert-base-chinese
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ilarity. Spatial proximity was quantified using
the Haversine formula (Robusto, 1957) to com-
pute distances between entity coordinates, subse-
quently normalized to the [0,1] range. The fea-
ture vector dimension n was 4 for the Nanjing
and Hangzhou datasets (comprising similarities for
name, category, address, and spatial distance) and
3 for the Pittsburgh dataset (name, address, and
spatial distance). In the HDBSCAN algorithm, we
set min_cluster_size to 12 and min_samples to 5.
For the assignment of any remaining noise points,
the KNN algorithm used £ = 5. The prompt group
size g for selecting candidate entity pairs was set
to 32.

We conducted experiments across a range of
contemporary LL.Ms, including various versions
of DeepSeek!® (V2.5, V3, R1), Gemini!' (2.0-
flash, 2.5-flash-preview-04-17), and ChatGPT!?
(4.1-mini, o4-mini). These models represent di-
verse offerings and capabilities. DeepSeek-V3 was
chosen for reporting primary experimental results
due to its observed balance of speed and effective-
ness; it also formed the basis for our LLM-based
baselines. For LLM interactions, a temperature
of 0.7 was used. The maximum number of out-
put tokens was set to 2048 for models designated
as non-reasoning types and 16384 for those desig-
nated as reasoning types. Specific examples of the
prompts used are detailed in Appendix A.6. We in-
structed the LLMs to return outputs in a predefined
format, enabling straightforward parsing of match
decisions and confidence scores.

The Hungarian algorithm, employed for conflict
resolution, was implemented using the SciPy'? li-
brary.

We implemented our model with Pytorch 1.8,
and conducted experiments on a machine equipped
with a NVIDIA RTX 3090 GPU, a 64 GB RAM
and a 3.50 GHz CPU.

A.6 Specific Example of the Prompt

To illustrate our group-wise matching approach,
a concrete example of the prompt designed for a
group size of 32 candidate pairs is detailed in the
display box below. Each prompt is structured to in-
clude three core components: a clear description of
the GER task, the specific information for each can-
didate POI pair, and strict formatting requirements

Ohttps://www.deepseek.com/
"https://deepmind.google/technologies/gemini/
"Zhttps://openai.com/chatgpt/
Bhttps://scipy.org/

for the LLM’s output.

Determine if each pair of Points of Interest (POIs) refers
to the same real-world entity by synthesizing textual
attributes (name, category, address) and spatial distance.

Question 1:

POI A: (Name: Alumni House, Category: University
Building, Address: 4765 Forbes Ave)

POI B: (Name: Henderson House, Category: Campus
Residence, Address: Margaret Morrison St, at Carnegie
Mellon University)

The distance between the POIs A and B is 485.06m.

Question 32:

POI A: (Name: BNY Mellon Center, Category: Office
Building, Address: Grant Street, 500)

POI B: (Name: Mellon Garage, Category: Parking
Facility, Address: 410 Sixth Ave)

The distance between the POIs A and B is 206.66m.

INSTRUCTION:

1. Process ALL 32 question pairs above sequentially.
For each question, first determine if POI A and POI
B refer to the same real-world entity (1 means same,
0 means different). Second, provide your confidence
score for this determination (a numerical value between
0.0 and 1.0, where 1.0 is highest confidence and 0.0 is
lowest).

2. Strictly format each response line as:

Question X: <0 or 1> <confidence_score>

(Example for one line: Question 1: 0 0.95 - This means
for Question 1, the POIs are considered different (0)
with a confidence of 0.95)

(Example for another line: Question 2: 1 0.80 - This
means for Question 2, the POIs are considered the same
(1) with a confidence of 0.80)

The output should look like this for 32 ques-
tions:
Question 1: <0 or 1> <confidence_score_1>

Question n: <0 or 1> <confidence_score_n>

STRICT SCHEMA REQUIREMENTS:

1. Sequential continuity: Lines must progress from
Question 1 to Question 32 without any breaks or missing
question numbers.

2. Lexical purity: Each line MUST start with "Question
X: " (where X is the question number), followed by a
single space, then the O or 1 determination, followed
by a single space, and then the confidence score. The
confidence score must be a decimal number inclusively
between 0.0 and 1.0. To illustrate the expected format,
such a score might look like 0.7, 0.85, or 0.99, reflecting
the confidence from 0.0 (no confidence) to 1.0 (full
confidence); these are format examples only, not a
restrictive list of allowed values.

3. Output EXACTLY 32 lines, one for each question.
4. Do NOT include any explanations, comments, slashes,
or any additional characters beyond the specified format
for each line.

A.7 More Experimental Results

Here we provide the benchmark results for our
spatially informed blocking method against other

23275



Table 10: Blocking performance of our method versus baselines on three datasets using PC, PQ, and RR metrics.
The best results for each metric are highlighted in bold, the second-best are underlined.

| Nanjing | Hangzhou | Pittsburgh
| PC PQ RR | PC  PQ RR | PC PQ RR

GeoPrune 0.8042 0.6154 0.9344 | 0.7985 0.6494 0.9569 | 0.8473 0.6282 0.9735
GeoER 0.9818 0.3731 0.5853 | 0.9362 0.2741 0.5937 | 0.9401 0.3318 0.5723
QuadFlex 0.8981 0.4059 0.8246 | 0.8543 0.4176 0.7801 | 0.8927 0.3841 0.7838
GTMiner 0.9012 0.3982 0.7631 | 0.9144 0.4412 0.7736 | 0.9104 0.4236 0.7901

Our Method | 0.9690 0.7488 0.9596 | 0.9452 0.7412  0.9649 | 0.9531 0.6765 0.9345

Model

methods (Table 10)

A.8 Examples of LLM Misjudgments
Corrected by Graph-based Conflict
Resolution

Table 11 presents characteristic examples of en-
tity pairs from the PIT dataset that were initially
misjudged as matches by the LLM during group-
wise evaluation. These errors were subsequently
corrected by our graph-based conflict resolution
module, which enforces global consistency. The
examples highlight common scenarios where the
LLM, lacking a global view, might make incorrect
inferences based on local similarities.
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Table 11: Characteristic Examples of LLM Misjudgments Rectified by Graph-based Conflict Resolution

Record 1 (OpenStreetMap)

Record 2 (Foursquare)

Reason for Initial LLM Misjudgment
/ Key Distinction

Name: Murray Avenue Lock-
smith
Address: Murray Avenue,
2004

Name: Squirrel Hill Lock-
smith
Address: nan

Different business names despite both
being locksmiths in a similar area (Squir-
rel Hill / Murray Ave). LLM might over-
weigh category and general location.

Name: Amberson Apart-
ments Buildings #1 & #2
Address: Bayard Rd, 2

Name: Amberson Apart-
ments and Towers: Building
3

Address: Bayard Rd

Both are "Amberson Apartments" on
"Bayard Rd", but refer to distinct build-
ing numbers/groups. LLM initially over-
looked specific building identifiers.

Name: Kennywood Park
Address: nan

Name: Kennywood maint.
shop
Address: nan

"Kennywood maint. shop" is likely re-
lated to or within "Kennywood Park" but
is a distinct, more specific entity. LLM
confused a part/related service with the
main entity.

Name: Southside Works Cin-
ema
Address: Cinema Drive, 425

Name: South Side Works
Address: 445 S 27th St

The cinema is a specific venue within the
larger "South Side Works" development
area. LLM misidentified a component
as the whole.

Name: Bouquet Gardens
Building J
Address: nan

Name: Bouquet Building D
Address: nan

Shared "Bouquet" name and likely close
proximity, but clearly distinct building
letters (J vs. D). LLM focused on the
common "Bouquet" and missed the spe-
cific designator.

Name: Bouquet Gardens
Building G
Address: nan

Name: Bouquet Gardens -
Building J
Address: 315 Oakland Ave

Both are "Bouquet Gardens" but with
different building letters (G vs. J). LLM
potentially confused due to the primary
name match and one missing address.
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