
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 23323–23337
November 4-9, 2025 ©2025 Association for Computational Linguistics

ZERA: Zero-init Instruction Evolving Refinement Agent
From Zero Instructions to Structured Prompts via Principle-based Optimization

Seungyoun Yi Minsoo Khang

Upstage AI Research
{kyle, mkhang, sungrae.park}@upstage.ai

Sungrae Park

Abstract

Automatic Prompt Optimization (APO) im-
proves large language model (LLM) perfor-
mance by refining prompts for specific tasks.
However, prior APO methods typically focus
only on user prompts, rely on unstructured feed-
back, and require large sample sizes and long
iteration cycles—making them costly and brit-
tle. We propose ZERA (Zero-init instruction
Evolving Refinement Agent), a novel frame-
work that jointly optimizes both system and
user prompts through principled, low-overhead
refinement. ZERA scores prompts using eight
evaluation principles with automatically in-
ferred weights, and revises prompts based on
these structured critiques. This enables fast
convergence to high-quality prompts using min-
imal examples and short iteration cycles. We
evaluate ZERA across five LLMs and nine
diverse datasets spanning reasoning, summa-
rization, and code generation tasks. Experi-
mental results demonstrate consistent improve-
ments over strong baselines. Further ablation
studies highlight the contribution of each com-
ponent to more effective prompt construction.
Our implementation including all prompts is
publicly available at https://github.com/
younatics/zera-agent.

1 Introduction

The effectiveness of LLMs significantly depends on the
quality of prompts used to guide their behavior. Crafting
effective prompts is essential not only for general LLM
application but also crucial when integrating LLMs into
larger agent-based systems. However, developing these
prompts typically relies on handcrafted templates, do-
main intuition, or extensive trial-and-error processes,
which pose considerable challenges in scalability and
transferability (Brown et al., 2020; Perez and et al.,
2021; Zhao et al., 2021). Moreover, optimal prompts
are often model-specific, necessitating careful tuning of
prompts to the particular LLM being employed.

To address these challenges, automatic prompt opti-
mization (APO) methods have recently been proposed.
The core objective of these approaches is to systemati-
cally derive prompts that yield desired outputs for given

inputs in a specific task. This typically involves an itera-
tive process where an LLM evaluates the effectiveness
of a prompt, identifies shortcomings, and incremen-
tally updates the prompt to enhance performance (Wang
et al., 2024; Yang et al., 2024; He et al., 2025). How-
ever, these methods predominantly rely on task-specific
metric scores and feedback derived solely from the pro-
vided examples, making them prone to overfitting and
limiting their robustness in generalization.

To mitigate this limitation, we propose ZERA (Zero-
init instruction Evolving Refinement Agent), a novel
APO approach designed to improve the generality and
robustness of optimized prompts. Instead of relying
solely on task-specific feedback or metric scores derived
from a small set of examples, ZERA employs eight
evaluation principles for prompt optimization: Com-
pleteness, Conciseness, Correctness, Expression Style,
Faithfulness, Meaning Accuracy, Reasoning Quality,
and Structural Alignment. These principles serve as
high-level evaluation criteria that guide feedback gen-
eration and prompt refinement, enabling the system to
generalize beyond individual examples and avoid over-
fitting.

Specifically, ZERA consists of two iterative stages:
Principle-based Critique Generation (PCG) and Meta-
cognitive Prompt Refinement (MPR). PCG utilizes task-
specific sample data to (1) evaluate the relative impor-
tance of each principle for a given task and (2) mea-
sure performance against each principle, generating out-
put analysis and actionable feedback. MPR integrates
this feedback to iteratively refine task-related meta-
information, including task descriptions and the targeted
optimization objectives—system and user prompt.

The iterative interaction between these two stages
based on the meta principles results in the development
of highly optimized system and user prompts. Notably,
ZERA can generate effective prompts even when pro-
vided with only a few task samples and no handcrafted
prompts or task descriptions. Furthermore, because task
evaluation and definition are driven by general princi-
ples, the optimized prompts exhibit resistance to overfit-
ting. Additionally, the influence of these general prin-
ciples promotes rapid convergence during the prompt
optimization steps, demonstrating ZERA’s practicality
and effectiveness.

We validated our proposed method across nine bench-
mark tasks—MMLU, MMLU-Pro, GSM8K, MBPP,
HumanEval, BBH, HellaSwag, CNN/DM, and Sam-
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sum—optimizing prompts for models such as GPT-
3.5, GPT-4o, LLaMA-3.1-70B-Instruct (LLaMA-3.1),
Qwen-2.5-70B-Instruct (Qwen-2.5), and Mistral-7B-
Instruct-v0.3 (Mistral-7B). In most cases, ZERA-
derived prompts outperformed predefined prompts pro-
vided for each task. Additionally, we compared ZERA
with recent APO methodologies, including PromptA-
gent (Wang et al., 2024), OPRO (Yang et al., 2024), and
CriSPO (He et al., 2025), and observed that ZERA deliv-
ered superior performance. Furthermore, we conducted
an ablation study to analyze the distinct characteristics
and effectiveness of individual components within our
proposed approach.

2 Related Work

A wide range of methods have been proposed in the
field of APO, broadly categorized by whether they re-
quire training or gradient updates (Chen et al., 2024;
Zhang and Sang, 2025; Jafari et al., 2024; Chen et al.,
2025; Srivastava and Yao, 2025), or operate in a training-
free manner (He et al., 2025; Xiang et al., 2025; Peng
et al., 2025; Wang et al., 2024; Pryzant et al., 2023).
Training-based approaches offer the advantage of task-
specific optimization through reinforcement learning or
supervised tuning, often leading to higher performance
on narrowly defined tasks. In contrast, training-free
methods are more readily adaptable to new tasks, as
they eliminate the computational and data requirements
associated with model training.

Among training-free methods, one of the earlier no-
table works is APE (Zhou et al., 2023) which iteratively
generates prompt variants and selects the best prompt
based on task-specific metric scores. While effective,
the use of scalar feedback offers limited guidance for
understanding why a prompt is better or how to improve
it further. To address this, subsequent works such as
(Pryzant et al., 2023; Peng et al., 2025; Wang et al.,
2024) enhance the optimization process by incorporat-
ing natural language feedback derived from error exam-
ples. These textual signals offer more descriptive and
interpretable suggestions, guiding the LLM to generate
improved prompts through enriched context.

Building on this trajectory, more recent approaches
such as OPRO (Yang et al., 2024) and CriSPO (He
et al., 2025) further enhance prompt optimization by in-
corporating additional signals beyond natural language
feedback. OPRO stabilizes the optimization process by
leveraging historical prompt traces, while CriSPO intro-
duces a multi-aspect critique–suggestion agent that pro-
vides aspect-specific feedback. These innovations en-
able more targeted and robust improvements in prompt
quality across iterations.

While ZERA incorporates common strategies from
prior work, such as natural language feedback and his-
torical prompt traces, it distinguishes itself by grounding
the optimization process in eight generalizable princi-
ples. These principles guide structured feedback and
drive the joint optimization of the user prompt, system

prompt, and task description—components that are typ-
ically fixed or ignored in earlier approaches. To the best
of our knowledge, ZERA is the first to unify the opti-
mization of all three prompt types (system prompt, user
prompt and task description) within a principle-driven
framework.

3 Methodology
ZERA approaches prompt optimization through an itera-
tive, training-free framework comprising two key stages:
evaluation and refinement. This section introduces the
APO formulation and details the core components of
ZERA: principle-based evaluation and meta-cognitive
refinement modules, which work together to iteratively
improve prompts from generic initial prompts.

3.1 Problem Formulation
We begin by formalizing the prompt optimization ob-
jective and outlining its core challenges. We define a
task D as a set of paired examples (x, y), where x is the
raw input and y is the desired output. In prompt-based
learning, LLMs do not consume x directly; rather, it is
embedded into a textual prompt ptask that conditions the
model’s output. We denote the output of the LLM as
ŷ = LLM(x| ptask).

The objective of APO is to find an optimal prompt
function ptask that minimizes the expected distance be-
tween model output and the ground-truth label:

J(ptask) = E(x,y)∼D [dist(LLM(x| ptask), y)] . (1)

Here, dist(ŷ, y) denotes a distance metric quantifying
the discrepancy between the LLM-generated output ŷ
and the ground-truth target y. The goal of APO is to
identify an optimal prompt function p∗task that minimizes
this objective. However, there are three key challenges
in APO: (1) the LLM is typically accessed as a black
box, offering no gradient or parameter-level informa-
tion; (2) optimizing ptask is non-trivial, as traditional
gradient-based methods are inapplicable without model
retraining; and (3) the available data for D is often lim-
ited, posing a challenge for generalization.

3.2 Design Rationale
To address these challenges, ZERA adopts the following
design choices. As the first two challenges make it in-
feasible to directly optimize prompts using task-specific
objectives, prior work has explored training-free alterna-
tives for prompt optimization. Recent work (Wang et al.,
2024; He et al., 2025), for example, introduces natural
language-based feedback and optimization frameworks,
where LLM-generated qualitative feedback is used to
guide prompt refinement. Following this line of re-
search, ZERA leverages natural language feedback as
the central supervision signal for iteratively improving
prompts.

The third challenge poses a significant risk to gen-
eralization. When prompt optimization relies heavily
on LLM-generated evaluations and feedback, there is a
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Figure 1: Overview of the ZERA system. Given task samples and their corresponding output results, PCG
produces the critique comprising of: importance weight, evaluation score, analysis result and suggestion across
eight principles. MPR refines the task prompt by integrating prior prompt information with the critiques observed in
the current task examples, along with historical feedback from previous iterations (Eq. 6).

heightened risk that prompts may overfit to a small set
of biased or unrepresentative examples. To address this
issue, our method introduces meta-level principles that
serve as high-level guides for evaluation and feedback.
By grounding prompt updates in these general reasoning
frameworks, rather than just task-specific signals, our
approach promotes broader applicability and reduces
the risk of overfitting.

Given these constraints, prompt optimization is best
approached in a heuristic, training-free framework com-
posed of two iterative stages: evaluation and refinement.
These two stages can be described as follows:

ŷ(t) ← LLMtask

(
p
(t)
task(x

(t))
)

(2)

c(t) ← Aeval

(
x(t), ŷ(t),y(t)

)
(3)

p
(t+1)
task ← Arefine

(
x(t), ŷ(t),y(t), c(t), p

(t)
task

)
(4)

Here, x(t) and y(t) denote the input and reference out-
put sets at iteration t, and ŷ(t) is the set of outputs
generated by the task LLM using the current prompt
p
(t)
task. The evaluation agent Aeval produces critique tu-

ples c(t) containing natural language suggestions and
scores grounded in the meta-level principles, to assess
the quality of the generated outputs. These critiques,
along with the original inputs, outputs, and prompt, are
then passed to the prompt modification agent Arefine,
which generates an updated prompt p(t+1)

task .
As this formulation highlights, the effectiveness of

the overall optimization process depends critically on
the design of both Aeval and Arefine, which determine
how feedback is generated and how prompts are refined.

3.3 System Overview and Principles
As illustrated in Figure 1, ZERA follows a two-stage
iterative process of evaluation and refinement. While
structurally similar to conventional APO frameworks,

it uniquely integrates principle-based evaluations to as-
sess the current prompt and guide its refinement. The
motivation for this design is to incorporate pre-defined
meta-level information—namely, a set of general prin-
ciples—to reduce the risk of bias that may arise when
optimizing prompts from a limited number of task ex-
amples.

Based on our analysis across diverse benchmark tasks,
we identified eight generalizable principles that consis-
tently guided effective prompt evaluation and refine-
ment. These principles were inductively derived from
recurring evaluation criteria observed in summarization,
translation, and reasoning tasks, and are grounded in
cognitive science (e.g., Bloom’s taxonomy), linguistic
pragmatics (e.g., Gricean maxims), and NLP evaluation
rubrics (e.g., factuality, fluency, coherence). Designed
to balance coverage, generality, and interpretability, they
enable ZERA to operate across diverse tasks without
relying on handcrafted instructions or dataset-specific
scoring rubrics. Summarized in Table 1, they form the
foundation for assessing and improving prompts, and
are systematically applied by both PCG and MPR to
ensure coherence and consistency throughout the opti-
mization process.

3.4 Principle-based Critique Generation (PCG)

Given the task inputs x(t) and the corresponding LLM
outputs ŷ(t) generated using the current prompt p(t)task,
the evaluation agent Aeval produces a detailed assess-
ment and feedback for each sample. Our proposed PCG
structures this process around a set of eight general prin-
ciples, producing four key outputs. First, it analyzes
the task description to estimate the relative importance
of each principle, assigning a real-valued weight in the
range [0-1] to reflect its priority. Second, it evaluates
the generated outputs against each principle, produc-
ing a score [1-10] per principle to reflect output quality.
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Table 1: Short description of eight principles. The detailed criteria be found in Appendix A1.

Principle Description

Meaning Accuracy Preserves intended meaning and logical consistency with the expected answer (output fidelity).
Completeness Includes all key ideas or steps; no critical elements are missing.
Expression Style Matches tone, format, and stylistic elements of the expected answer.
Faithfulness Avoids hallucination; stays true to given input and context.
Conciseness Maintains brevity; avoids unnecessary or repetitive content.
Correctness Final answer is factually/logically correct and meets formatting constraints.
Structural Alignment Matches the structure, formatting, and layout of the expected answer.
Reasoning Quality Provides logically sound & well-structured reasoning process aligned with task goals.

Third, it conducts an error analysis to determine which
aspects of the outputs were well-handled or problem-
atic based on the eight principles. Lastly, it outputs
targeted suggestions for improvement aligned with each
principle.

For clarity and formalization, we define the critique
tuple for the n-th task sample as cn = (αn, sn, an, fn).
Here, αn is an eight-dimensional vector representing
the estimated importance weights of the eight principles,
and sn denotes the corresponding evaluation scores as-
signed to the generated output. The component an cap-
tures the qualitative analysis of the output with respect
to each principle, while fn provides principle-specific
suggestions for improvement.

The critique tuple at time t can be identified through
the following:

c(t)n ←− LLMeval

(
T(t)

task, ŷ
(t)
n , y(t)n , x(t)

n

∣∣∣ peval

)
. (5)

Here, T(t)
task denotes the task description at the t-th iter-

ation, and peval corresponds to the critique generation
prompt including predefined principle definitions. Note
that the task prompt, ptask, is not directly utilized in this
stage; rather, the outputs generated from it on task sam-
ples are evaluated through the lens of the predefined
principles.

3.5 Meta-cognitive Prompt Refinement (MPR)
In the prompt refinement stage, the core objective is to
update the task prompt using the structured feedback
produced during evaluation. Central to this process is
our Meta-cognitive Prompt Refinement Agent, which
leverages multi-dimensional, principle-based evalua-
tions to guide refinement. By identifying which prin-
ciples are most critical to the task—based on scalar
importance scores—the agent redefines the task descrip-
tion and adjusts the prompt accordingly. This principled
approach ensures that the updated prompts align with
high-level quality dimensions such as reasoning, ac-
curacy, and structure, making it the primary driver of
generalizable and task-aligned prompt improvement.

To further stabilize and enhance the refinement pro-
cess, the agent also incorporates historical information
from past iterations. It considers (1) recent prompts
and their evaluation results, (2) the best-performing
prompt to date and its scores, and (3) exemplar task
samples—specifically, the three with the highest scores

and two with the lowest. These historical references
provide meta-level context, helping the agent maintain
consistent progress, avoid local optima, and balance
prompt quality across a range of task instances. While
secondary to principle-based feedback, incorporating
the historical information trajectory enhances optimiza-
tion stability by enabling the model to avoid prior errors
and reinforce effective strategies (He et al., 2025).

For formal description, let F(t)
task be a tuple of

(p
(t)
task, c(t)), indicating the task prompt feedback at the

t-th iteration. For the task sample, we denote F(t)
sample as

a tuple of (x(t), ŷ(t), y(t), c(t)), corresponds to the task
sample feedback at the t-th iteration. Using this defini-
tions, the task prompt and description refinement can be
described as the follow:

p
(t+1)
task ,T(t+1)

task ←− LLMrefine(T
(t)
task,F(t)

task,F(t−1)
task ,F(t−2)

task ,

F(t),∗
task ,F(t),top-3

sample ,F(t),bottom-2
sample | prefine), (6)

where F(t),∗
task represents the tuple showing the best feed-

back score among all previous iterations. F(t),top-3
sample and

F(t),bottom-2
sample indicate the top three and the bottom two of

task sample feedback along with the evaluated scores
at the iteration t. By combining the current task and
sample feedback and the historical records, LLMrefine
refines the task prompt and description.

Since our evaluation is based on multiple principles,
it naturally produces multi-dimensional scores for each
output. To identify the best and worst prompt cases in
the historical data, we compute a unified score that inte-
grates these dimensions. This aggregation relies on the
principle importance weights generated during the eval-
uation stage, allowing the system to weigh each criterion
according to its relevance to the task. In other words,
for each sample, the unified score, u(t)

n is calculated as
follows:

u(t)
n =

∑

k

α
(t)
n,ks

(t)
n,k, (7)

where α(t)
n,k represents the principle importance ratio and

s
(t)
n,k indicates the evaluation score of ŷ(t)n in the view

of the k-th principle. These scores can be identified
from the critique tuple c

(t)
n,k. The weighting vector α is

adaptively determined based on the characteristics of
each task and sample, allowing the system to assess the
relative importance of different principles. As a result,
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the multi-dimensional evaluation scores are aggregated
in a way that reflects what matters most for the specific
task. For instance, in tasks where reasoning is not a criti-
cal factor, the weight assigned to the reasoning principle
will be low. Consequently, scores related to reasoning
will have minimal influence in identifying strong or
weak task cases or in guiding prompt refinement.

3.6 Prompt Refinement from Zero Initialization

ZERA is initialized with a deliberately underspecified
prompt configuration, using a generic system prompt
("You are a helpful assistant") and a minimal
user prompt ("Hello! I’m here to help you").
Unlike prior approaches, ZERA does not rely on task-
specific evaluation metrics. Instead, it leverages a multi-
principle scoring framework grounded in generalizable,
meta-level principles. Through iterative evaluation and
refinement, ZERA progressively discovers prompts that
guide the LLM toward outputs aligned with target re-
sponses. Notably, all experiments are conducted with-
out access to task-specific knowledge—such as eval-
uation metrics or pre-defined task descriptions (often
provided in datasets)—beyond a few example (5-20)
instances drawn from the training data. Note that the
“pre-defined task descriptions” mentioned here refer to
those provided in benchmark datasets, and should not
be confused with the task descriptions used earlier in
this work, which are generated and refined as part of the
optimization process.

4 Experiments

4.1 APO Experimental Setting

APO seeks to generate a task-specific prompt that en-
ables a LLM to perform well on a given task, using only
a small number (5-20) of representative samples. In
this setting, the optimization process must rely on lim-
ited data while ensuring generalization across unseen
examples.

To simulate this scenario, we construct a task sample
pool using the training and validation sets from stan-
dard benchmark datasets. The optimized prompt is then
evaluated on the benchmark’s held-out test set using the
official evaluation metrics defined for each task. This
experimental protocol aligns with widely adopted prac-
tices in prior APO literature, ensuring consistency and
comparability across different methods.

Our benchmark suite spans nine datasets covering
structured, unstructured, and reasoning-intensive tasks:
GSM8K (Cobbe et al., 2021), MMLU-Pro (Hendrycks
et al., 2021), and BBH (Suzgun et al., 2022) require
symbolic or multi-step reasoning; MBPP (Austin et al.,
2021) and HumanEval (Austin et al., 2021) involve
functional code generation; CNN/DailyMail (Hermann
et al., 2015), SAMSum (Gliwa et al., 2019), and Hel-
laSwag (Zellers et al., 2019) test summarization and
commonsense inference; and MMLU (Hendrycks et al.,
2021) covers broad-domain factual QA. This diversity

enables a comprehensive evaluation of ZERA’s prompt
generalization capabilities across varying tasks.

4.2 Performance Comparison from Baselines

To demonstrate the effectiveness of ZERA, we con-
ducted a series of comparative experiments against
state-of-the-art prompt optimization methods, includ-
ing PromptAgent, OPRO, and CriSPO. To ensure fair-
ness, each comparison was carried out under the orig-
inal experimental settings proposed and reproduced
by the respective methods. Specifically, we report
results from (1) direct comparisons with OPRO and
CriSPO, (2) head-to-head evaluation with PromptAgent,
and (3) performance analysis across nine benchmark
datasets, where ZERA is also compared against the
default prompts provided by each benchmark. All ex-
periments are conducted using a variety of LLMs to
measure robustness and generalization across models
and tasks.

4.2.1 Comparison with OPRO and CriSPO

We compare ZERA with two recent APO baselines,
OPRO (Yang et al., 2024) and CriSPO (He et al., 2025),
on three tasks spanning math reasoning and summariza-
tion: GSM8K, CNN/DailyMail, and SAMSum. Follow-
ing the original CriSPO setup, we evaluate all methods
on 500 randomly sampled test instances per dataset us-
ing the LLaMA-3.1. Results for OPRO and CriSPO are
reproduced using their official codebase.1

As shown in Table 3, ZERA achieves the highest av-
erage performance across the three tasks, outperforming
both OPRO and CriSPO on GSM8K and SAMSum. No-
tably, ZERA delivers a substantial improvement of +6.0
ROUGE-L on SAMSum, demonstrating strong capa-
bilities in dialogue-style summarization. Appendix A2
shows the final prompt from ZERA in this task.

4.2.2 Comparison with PromptAgent

To further assess ZERA’s reasoning capabilities, we
evaluate it against PromptAgent on six BBH sub-
tasks—Penguins in a Table, Geometry, Epistemic Rea-
soning, Object Counting, Temporal Sequences, and
Causal Judgment—following the experimental setup
of the original PromptAgent paper. All evaluations are
conducted using GPT-3.5-turbo as the base model for
response generation, with GPT-4o used as the optimizer
for prompt refinement in both ZERA and PromptAgent.

As shown in Table 2, ZERA outperforms PromptA-
gent in 5 out of 6 sub-tasks, including substantial gains
in epistemic reasoning (+20.0) and temporal reasoning
(+4.9). ZERA also achieves the highest overall average
score (0.818), surpassing PromptAgent’s 0.767. These
results highlight ZERA’s robust capabilities in complex
multi-step reasoning and deep inference. Appendix A3
shows the final prompt from ZERA for the epistemic
task.

1https://github.com/amazon-science/CriSPO
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Table 2: Performance across BBH subcategories. All results are re-evaluated under a consistent setting: GPT-3.5-
turbo is used as the base model for response generation, and GPT-4o is used for prompt refinement where applicable
(e.g., PromptAgent and ZERA). *Object Counting score for PromptAgent is taken from the original paper.

Method Penguins Geometry Epistemic Object Count Temporal Causal Judge Avg.

Human (0 shot) 0.595 0.227 0.452 0.612 0.720 0.470 0.513
CoT (0 shot) 0.747 0.320 0.532 0.542 0.734 0.610 0.581
PromptAgent (Wang et al., 2024) 0.853 0.577 0.740 0.860* 0.902 0.670 0.767

ZERA (Ours) 0.877 0.520 0.940 0.930 0.951 0.690 0.818

Table 3: GSM8K accuracy, CNN/DailyMail and SAM-
Sum ROUGE-L scores evaluated with LLaMA-3.1.

Method GSM8K CNN Samsum Avg.

Baseline (0 shot) 0.341 0.280 0.266 0.296
Baseline (5 shot) 0.357 0.296 0.286 0.313
OPRO (2024) 0.892 0.295 0.273 0.487
CRiSPO (2025) 0.896 0.309 0.270 0.492

ZERA 0.927 0.296 0.333 0.519

4.2.3 Comparison with Primary Prompts

To evaluate ZERA’s generalization across model fam-
ilies and task types, we benchmark it using five di-
verse LLMs: GPT-3.5-turbo(Ye et al., 2023), GPT-
4o(OpenAI, 2024), Qwen2.5-72B-Instruct(Team, 2024),
LLaMA-3.1-70B-Instruct(Dubey et al., 2024), and
Mistral-7B-Instruct-v0.3(Jiang et al., 2023). All models
are evaluated via API or open checkpoints without ad-
ditional fine-tuning. We use the same nine benchmark
datasets introduced in Section 4, sampling 500 test in-
stances per task, following the evaluation protocol of
previous literature (He et al., 2025; Wang et al., 2024).

For baseline comparison, we adopt minimal yet
format-compliant prompts (See Appendix A4.) that
satisfy basic evaluation criteria without manual opti-
mization. These serve as practical lower bounds for
fair and reproducible measurement. Performance is
measured using task-specific metrics: exact match for
reasoning and classification tasks (e.g., MMLU, BBH,
GSM8K), ROUGE-L for summarization (CNN/Daily-
Mail, SAMSum), and pass@1 for code generation tasks
(MBPP, HumanEval).

ZERA consistently improves over baseline prompts
across a variety of models and tasks (Table 4). The
gains are especially pronounced on structured reason-
ing benchmarks: on GSM8K, for example, ZERA
boosts LLaMA-3.1 to 92.6% accuracy—approaching
the 95.1% reported in the original LLaMA paper us-
ing 8-shot chain-of-thought prompting Dubey et al.
(2024). It also outperforms instruction-tuned models
such as Qwen2.5, exceeding their published scores on
GSM8K (91.5% vs. 96.1%) and MMLU-Pro (58.1% vs.
72.8%) Team (2024). These results highlight ZERA’s ro-
bustness across diverse models and tasks, even relative
to expert-tuned few-shot configurations.
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Figure 2: APO performance comparison across varied
task sample sizes, required to conduct the prompt opti-
mization for GSM8K. The comparison shows how many
task samples are required to identify optimized the task
prompt through APO methods.

4.2.4 APO Efficiency Comparison
The APO process diagnoses and improves task prompts
based on multiple LLM calls. The number of LLM
calls and tokens processed during the optimization of
a single task prompt indicates the cost involved in
prompt optimization. Table 5 compares the costs re-
quired for APO across three benchmarks. As shown,
ZERA demonstrates the lowest number of API calls
due to its principle-based evaluation and improvement
approach, thereby enabling APO with relatively fewer
tokens processed.

Additionally, the number of task samples required
for the APO process is a critical resource, as creating
samples to define a task is highly cost-intensive. Fig-
ure 2 illustrates a performance comparison based on the
size of task samples utilized during APO. Despite defin-
ing and utilizing only 20 task samples, ZERA achieves
higher performance than CRiSPO and OPRO, which
rely on 200 samples—10 times the quantity. As demon-
strated, ZERA can attain a high level of APO with fewer
samples, showcasing the efficacy of its principle-based
prompt critique mechanism.

4.3 Process Analysis of ZERA

As described in Section 3.5, ZERA begins with zero
prompt initialization and optimizes based solely on a
small number of task samples—typically around five
per iteration. In this section, we analyze ZERA’s opti-
mization dynamics from two perspectives: (1) tracking
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Table 4: Performance comparison between baseline prompts and ZERA prompts across models and tasks. Each
cell shows Baseline / ZERA score using the task’s standard evaluation metric. All values are reported as Baseline /
ZERA score. EM = exact match, ROUGE-L = recall-oriented summary metric, pass@1 = functionally correct code
generation on first attempt.

Dataset (Metric) GPT-4o GPT-3.5-turbo LLaMA-3.1 Qwen2.5 Mistral-7B

MMLU (EM) 84.1 / 85.5 65.4 / 66.9 75.8 / 75.4 80.4 / 79.8 56.4 / 55.7
MMLU-Pro (EM) 58.7 / 75.3 37.3 / 46.2 50.8 / 60.1 54.5 / 72.8 30.0 / 30.1
GSM8K (EM) 95.8 / 95.3 72.55 / 78.2 34.1 / 92.6 92.12 / 96.1 11.5 / 53.0
MBPP (pass@1) 28.4 / 61.8 36.2 / 60.4 62.3 / 63.4 22.1 / 68.0 42.6 / 45.4
HumanEval (pass@1) 82.9 / 85.4 65.2 / 61.6 71.3 / 73.8 75.0 / 76.2 15.24 / 29.9
BBH (EM) 75.4 / 84.1 45.9 / 59.8 58.7 / 72.9 62.3 / 77.4 34.5 / 36.2
HellaSwag (EM) 90.6 / 90.0 46.3 / 66.6 81.6 / 84.2 87.8 / 89.2 66.0 / 62.6
CNN/DM (ROUGE-L) 27.8 / 29.0 28 / 29.9 28 / 29.6 26.5 / 30.0 28.0 / 29.8
Samsum (ROUGE-L) 27.7 / 38.2 28.0 / 31.9 26.2 / 33.7 29.8 / 36.0 24.5 / 34.0

Avg. Gain (∆) +8.1 +8.5 +10.8 +10.6 +7.6

Table 5: Inference cost (# of request / # of tokens)
comparison across OPRO, CriSPO and ZERA.

Method GSM8K CNN SAMSum Avg.

OPRO
5,065/ 15,024/ 1,607/ 7,232/
1,767K 19,913K 482K 7,387K

CriSPO
2,273/ 1,509/ 723/ 1,504/
1,469K 6,950K 661K 3,027K

ZERA
287/ 205/ 205/ 233/

887K 759K 596K 747K
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Figure 3: The trajectories of evaluation scores identified
by PCG. Each iteration samples 5 task examples and
evaluate the current prompt based on the eight principles.
Avg. anc Top-3. indicate the average over all sampled
examples and the average of top-3 scored samples.

the trajectory of the unified evaluation score to illustrate
how the prompt converges over iterations, and (2) quali-
tatively examining how the prompt content evolves and
expands throughout the refinement process.

4.3.1 Analysis on Evaluation Score Trajectory
We analyze how prompt quality evolves over refinement
iterations by tracking the unified evaluation score at
each step (up to 20 iterations). Figure 3 shows the score
trajectories for three representative datasets: (GSM8K,

BBH, and CNN). Substantial gains often emerge within
the first 1–5 iterations, especially in GSM8K and CNN,
which tend to converge quickly with as few as 5 train-
ing examples. In contrast, BBH, which requires more
complex reasoning, show continued improvement even
in later iterations, reflecting the benefit of extended re-
finement on more complex task structures.

Although each iteration of ZERA uses only a small
number of task samples, we observe that the result-
ing prompts yield stable unified scores across steps.
This indicates that the principle-based evaluation and
prompt refinement process remains stable, even as the
task samples vary at each step. These findings suggest
that ZERA’s optimization trajectory is both stable and
convergent, with minimal fluctuation in performance
despite changes in the evaluation data per iteration.

4.3.2 Analysis on Prompt Evolution

ZERA incrementally transforms underspecified prompts
into task-adapted formats through iterative self-
refinement. Across iterations, the prompts increas-
ingly encode task structure, role assignments, output
constraints, and formatting conventions—progressively
aligning with task-specific demands. This evolution
occurs both semantically (e.g., shifting from vague to
expert roles) and structurally (e.g., introducing reason-
ing steps or enforcing output schemas).

As shown in Table 6, ZERA adaptively introduces
self-generated reasoning exemplars and reasoning scaf-
folds for BBH, adopts a question → reasoning → an-
swer format for BBH. These structures emerge not from
handcrafted examples, but through self-refinement us-
ing task-weighted feedback. These evolved prompts
converge toward task-effective formats without relying
on external supervision or manual prompt engineering.
More prompt optimization results on other benchmarks
can be found in Appendix A5.
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Table 6: Prompt evolution across iterations on BBH.

# System Prompt

1 You are a helpful assistant.
2 You are a helpful AI assistant. Reason freely through

problems before providing precise, concise responses
formatted clearly per the question’s requirements.

19 You are a logical reasoning expert. Clearly reason
each question step-by-step in natural, explicit lan-
guage. Upon completing your analysis, distinctly sep-
arate it from your final concise answer, which must
strictly follow the provided formatting instructions.

# User Prompt

1 Hello! I’m here to help you.
2 Please answer the following questions clearly and con-

cisely. [ZERA-generated reasoning exemplar, 1-shot]
Begin now.

19 Solve these logical reasoning problems by explicitly
thinking through them step-by-step before providing
your final answer.[ZERA-generated reasoning exem-
plar, 3-shot] Now, begin solving.

Figure 4: Visualization of task-adaptive scoring weights
over nine benchmarks. The values are averaged over
task examples, sampled at the optimal step from the
experiment in section 4.2.3.

4.4 Ablation Studies
Beyond overall performance, we conduct a focused abla-
tion study to assess the contribution of key components
in ZERA, including its scoring strategy, evaluation crite-
ria, prompt component coverage, and base model align-
ment.

4.4.1 Analysis on Principle Weights
Beyond the structure and content of the prompts them-
selves, the evaluation mechanism used during refine-
ment plays a critical role in overall performance. To as-
sess this, we compare three variants: a minimal baseline,
ZERA with fixed uniform weights, and full ZERA with
dynamically inferred task-specific weights. As shown
in Table 7, dynamic weighting consistently improves
performance in BBH and MMLU-Pro, validating the

Table 7: Ablation on task-adaptive principle weight.
Fixed. indicates to ZERA using uniform weights; Dyn-
maic. refers to ZERA with task-adaptive weights.

principle weight type BBH MMLU-Pro

Fixed. (uniform) 42.6 41.1
Dynamic. 59.8 46.2

Table 8: Effect of principle-based criteria. Baseline eval-
uates prompts without any principles and other utilize
the subset or all principles.

Criteria BBH MMLU-Pro

No principles (baseline) 45.9 37.3
Correctness, reasoning 26.2 45.4
All w/o correctness, reasoning 55.2 43.2
All eight principles 59.8 46.2

effectiveness of task-adaptive prioritization. The fixed-
weight variant generally performs between the baseline
and full ZERA, indicating that structure-inducing re-
finement offers meaningful benefits, while task-specific
weighting further amplifies these gains.

We further investigate how the principle weights vary
across different types of tasks, shown in Figure 4. They
guide MPG toward structure-sensitive prompt strategies
tailored to each task’s demands. For instance, “reason-
ing quality” receives the highest weight in tasks such
as GSM8K and MMLU-Pro, both of which demand
multi-step logical inference. Meanwhile, “correctness”
is also emphasized in MMLU-Pro and MMLU, reflect-
ing its need for factual precision in knowledge-intensive
QA. In contrast, summarization tasks like CNN and
SAMSum assign greater weight to “conciseness” and
“faithfulness”, highlighting the importance of generating
informative yet succinct summaries.

These task-adaptive scoring patterns indicate that
PCG aligns evaluation emphasis with task de-
mands—prioritizing structural, semantic, or reasoning
criteria as needed—without relying on manual heuristics
or fixed weights.

4.4.2 Analysis on Principles
We investigate how the number and type of evaluation
criteria affect prompt refinement. Specifically, we com-
pare three variants of ZERA: one using all eight criteria,
one using only two (reasoning quality and correctness),
and one using the remaining six. This split reflects the
high weight scores of Correctness and Reasoning, ob-
served from Figure 4. As shown in Table 8, using the
full set of eight criteria yields the best performance on
both BBH and MMLU-Pro. Reducing the evaluation
to only two dimensions leads to a substantial drop on
BBH (–33.6), highlighting the importance of structural
and stylistic signals in tasks requiring multi-step reason-
ing. Even when using six criteria, performance remains
slightly below the full setting, suggesting that ZERA
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Table 9: Ablation study on the prompt components.
User Only indicates no use of system prompt in a tar-
geted task prompt.

Method GSM8K CNN Samsum BBH Avg.

w/o T(t)
task 0.930 0.266 0.345 0.728 0.567

User Only 0.914 0.270 0.327 0.726 0.559

ZERA 0.927 0.296 0.337 0.729 0.571

Table 10: Analysis on transferability of optimized
prompt by ZERA. LLMZERA indicates LLM model used
in both PCG and MPR.

LLMZERA LLMtask BBH MMLU-Pro GSM8K MBPP

GPT-3.5 LLaMA 72.9 57.3 92.6 57.9
LLaMA LLaMA 76.9 60.7 92.7 58.3

benefits from a holistic view of output quality that bal-
ances reasoning, faithfulness, clarity, and structure.

4.4.3 Ablation on Prompt Components
Complementing the analysis of evaluation criteria diver-
sity, we examine how the structure of the prompt itself,
specifically, the inclusion of different prompt compo-
nents, affects performance. We compare the full version
of ZERA, which incorporates the system prompt, task
specification, and user prompt, with two ablated vari-
ants: one that omits the explicit task type definition (w/o
Task) and another that uses only the user prompt (User
Only). As shown in Table 9, both variants result in per-
formance drops across tasks, with the User Only setting
yielding the lowest average score. These results suggest
that including both task specification and system-level
intent improves alignment with evaluation objectives
and enables more effective prompt optimization.

4.4.4 Analysis on Transferability of Prompt
Lastly, we assess how the alignment between the base
model used during prompt refinement and the model
used at inference time affects performance. Specifically,
we compare prompts refined using GPT-3.5-turbo and
LLaMA-3.1, with both evaluated on LLaMA-3.1. As
shown in Table 10, prompts optimized on LLaMA-3.1
consistently outperform those generated with GPT-3.5,
across all tasks. The gap is most notable on BBH and
MMLU-Pro, where alignment between the refinement-
time and inference-time models appears crucial for max-
imizing performance. While prompts transferred from
GPT-3.5 still yield competitive results (e.g., 92.6 on
GSM8K), model-specific nuances—especially in rea-
soning or formatting—are better captured when prompts
are tuned on the target architecture.

5 Conclusion

This paper introduces ZERA, a novel APO method that
operates solely on target task samples without rely-

ing on predefined initial prompt and evaluation met-
rics. ZERA generates critiques of prompt outputs based
on eight generalizable principles and refines prompts
accordingly through an iterative process. By leverag-
ing prompt update history and principle-based scor-
ing, ZERA achieves stable refinement and consistently
converges toward high-performing prompts. Extensive
experiments across diverse tasks and models demon-
strate the efficiency and effectiveness of the proposed
approach. These results highlight ZERA’s potential
as a general-purpose, model-agnostic solution for scal-
able and interpretable prompt engineering across a wide
range of domains.

6 Limitations
While ZERA demonstrates strong performance across
diverse tasks and models, it has several limitations. First,
our score reporting on summarization tasks such as CN-
N/DailyMail relies entirely on automatic metrics (e.g.,
ROUGE-L) without human judgment, which may over-
look nuances like coherence or factuality. Second, al-
though ZERA operates with minimal supervision, it still
requires a small number of training samples (typically
5–20) for each task. Fully zero-shot refinement remains
an open challenge. Third, as prompts evolve over iter-
ations, they often become longer to encode structural
or reasoning constraints. While this improves accuracy,
it may lead to increased inference latency or context
overflow in constrained environments. However, we
observe that optimized prompts typically converge to a
stable length after the early refinement stages rather than
growing indefinitely. Thus, this limitation highlights an
area for further efficiency improvements rather than an
impractical barrier to deployment. Lastly, ZERA de-
pends on an internal LLM to provide multi-level criteria
feedback. Although effective in practice, its reliability
under ambiguous or adversarial outputs has not been
fully analyzed and may introduce bias in certain edge
cases.
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A.1 Justification for Selecting Eight Principles
We selected eight principles to balance **coverage**,
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decision was informed by both empirical observations
and established best practices in rubric design.

Educational assessment literature recommends limit-
ing the number of evaluation dimensions to between 6
and 8 to ensure reliability and manageability in scoring.
According to Stevens and Levi (2005), "more levels
typically means more time spent on assessment," and
a rubric should be designed to "break down a task into
components and identify the importance of these com-
ponents" without overwhelming the evaluator.

In our case, we began by identifying over a dozen
quality dimensions commonly used across summariza-
tion, translation, instruction-following, and reasoning
evaluation settings. We then merged semantically over-
lapping or operationally redundant criteria—such as
combining factuality and logical consistency into Cor-
rectness, or fluency and stylistic coherence into Expres-
sion Style.

The resulting eight principles are:

A.2 Detailed Criteria of Eight Principles
Table 11 presents the detailed criteria of principles em-
ployed in peval. The subsequent guidelines elaborate
on each principle, and the PCG framework generates
critiques based on these criteria.

A.3 Optimized Prompt for SAMsum
Table 12 shows the prompt, identified by ZERA from
the experiment in Section 4.2.1. The system and user
prompts are adapted by including task input context.

A.4 Optimized Prompt for Epstemic Task in BBH
Table 13 shows the prompt, identified by ZERA from
the experiment in Section 4.2.1. The system and user
prompts are adapted by including task input context.

A.5 Primary Prompts of Benchmarks
Table 14 shows the primary prompts of Benchmarks.
The baseline performance used over the main paper indi-
cate the task performance utilizing the primary prompts.

A.6 Prompt Evolution Examples of ZERA
Table 15 and 16 show another examples of prompt eva-
lution. They start zero initialization but improve the
instruction and guidelines by observing task samples in
the lens of the principles.
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Table 11: Detailed Criteria of Eight Principles

principle description

completeness Does the output include all key elements present in the expected output?
Are any core ideas, steps, or facts missing compared to the expected answer?

conciseness Does the output maintain a similar level of brevity as the expected output?
Are there unnecessary additions or repeated content beyond what is expected
If visible reasoning is expected or allowed by the task, do not penalize the
output for justified length due to reasoning steps. Only penalize verbosity that is
unrelated to the task objective or that repeats content unnecessarily.

correctness Does the final output match the correct result, based strictly on factual or logical
correctness?
Do not consider the reasoning or explanation here—only whether the final output
is correct and aligned with task constraints.
For fixed-format tasks or tasks requiring structured answers, the final answer
must match the expected output exactly in format, content, and position (e.g., on
a separate line if required)

expression style Does the output follow the format, tone, and structure shown in the expected
output?
Are there unnecessary differences in sentence style, layout, or tone?

faithfulness Does the output avoid adding content not present in the expected output?
Are all statements supported by the original question and context?

meaning accuracy Does the output convey the same intended meaning as the expected output?
Is the reasoning process logically consistent with the way the expected output
addresses the task?

reasoning quality Is the reasoning process logically valid, step-by-step, and aligned with the task
intent?
Are intermediate steps necessary, accurate, and well-structured?
If the prompt expects visible reasoning, ensure it is included in the output and
forms a logically coherent path to the answer.

structural alignment Does the output follow the expected structural organization (e.g., headline-body
separation, bullet points, code block structure)?
Are the sections, hierarchy, or formatting explicitly aligned with the expected
style?
If the task expects visible reasoning followed by a final answer, check that the
reasoning precedes the final answer and that the final answer is clearly isolated
(e.g., on a separate line and in the required format). The final answer must appear
in the same structure and format as shown in the expected output.
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Table 12: Optimized Prompt on SAMSum Task. In this optimization, LLaMA-3.1-70B-Instruct is used for PCG and
MPR. The same model is utilized as a task LLM. The reported performance in Table 3 can be easily reproducible
with the following prompt.

Prompt Type Content

System Prompt You are an expert in crafting structured summaries from
conversational text. Your task is to distill the conversation into
a single, clear sentence, highlighting crucial factual elements
like who, what, where, and when. Avoid adding interpretations or
including emotional content unless it is directly stated.

User Prompt Carefully read the given conversation. Extract the core facts
into a single concise sentence summary, ensuring you include who,
what, where, and when. Stick to information explicitly stated
and refrain from adding personal emotions or relationships unless
directly mentioned. TASK HINTS Focus on clear and directly stated
facts. Do not infer or fill in gaps unless explicitly prompted
by the conversation. Use a single sentence format to convey all
necessary details. FEW SHOT EXAMPLES Example 1 Question Dorothy
Happy anniversary to you and Sarah!! conversation continues...
Answer Damian and Sarah are celebrating their 17th anniversary
in Zakopane. Example 2 Question Madelene pizza 5 o’clock?
conversation continues... Answer Madelene and John will meet
for pizza and prosecco at their usual place at 5 pm. Example 3
Question Tory guys, I need your help conversation continues...
Answer Tim will borrow 3 books for Tory. Ensure your summary is
succinct and captures all critical factual details to match the
example structure.

Table 13: Optimized Prompt on BBH - epistemic Task. In this optimization, LLaMA-3.1-70B-Instruct is used for
PCG and MPR. The same model is utilized as a task LLM. The reported performance in Table 3 can be easily
reproducible with the following prompt.

Prompt Type Content

System Prompt You are an expert at solving logical deduction puzzles related
to truth-tellers and liars. Reason naturally and freely through
each puzzle, exploring logical relationships step-by-step without
constraints. Only after fully completing your logical analysis,
clearly and succinctly state your conclusion in the exact format:
Final Answer: Yes or Final Answer: No

User Prompt Analyze the given statements carefully and determine if
the indicated individual tells the truth. Clearly reason
step-by-step, explicitly stating after each deduction whether
each individual ẗells the truthör l̈ies.̈ Conclude clearly. Example
1: Question: Alejandro lies. Amberly says Alejandro tells
the truth. Osvaldo says Amberly lies. Vernell says Osvaldo
lies. Shenna says Vernell lies. Does Shenna tell the truth?
Reasoning:1. Alejandro lies (given); Alejandro lies.2. Amberly
claims Alejandro tells the truth; thus, Amberly lies.3. Osvaldo
says Amberly lies, which is accurate; therefore, Osvaldo tells
the truth.4. Vernell claims Osvaldo lies, but this is false;
Vernell lies.5. Shenna correctly says Vernell lies; Shenna tells
the truth.Final Answer: Yes Example 2: Question: Delbert tells
the truth. Delfina says Delbert lies. Antwan says Delfina tells
the truth. Helene says Antwan lies. Sima says Helene lies.
Does Sima tell the truth?Reasoning:1. Delbert tells the truth
(given); Delbert tells the truth.2. Delfina claims Delbert lies,
making Delfina’s claim false; therefore, Delfina lies.3. Antwan
says Delfina tells the truth, but Delfina lies; thus, Antwan
lies.4. Helene says Antwan lies, which is accurate; Helene tells
the truth.5. Sima claims Helene lies, but Helene is truthful;
therefore, Sima lies.Final Answer: No
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Table 14: Minimal baseline prompts used for each dataset. These prompts are deliberately simple, designed only
to meet standard evaluation criteria such as format compliance, without optimization or handcrafted instruction
engineering.

Dataset Baseline Prompt

GSM8K Provide the final answer prefixed with "####". Do not include any explanation.
MMLU / MMLU-Pro Choose the best answer from the options A–D. Answer using only the option

letter in parentheses.
BBH Choose the correct option from A–J. Return only the final answer enclosed in

parentheses.
CNN/DailyMail / SAM-
Sum

Summarize the passage below in 3–5 sentences. Be concise.

MBPP Complete the function definition to pass all test cases. Output only the completed
function code.

HumanEval Implement the function as described. Return only executable Python code.
HellaSwag Select the most plausible ending (A–D). Return only the correct letter.

Table 15: Prompt Structure Evolution Across Iterations (Example: GSM8K)

Iteration System Prompt User Prompt

1 You are a helpful assistant. Hello! I’m here to help you.
2 You are an expert problem solver who

provides clear and concise reasoning be-
fore stating the final answer.

For each math problem, carefully walk through
the reasoning step-by-step to solve it. At each
calculation step, make sure to show your work
using inline explanations with calculations in
the format «operation=result». Once the rea-
soning is complete, present the final answer on
a separate line, formatted with #́###b́efore the
number to match the expected output structure.
[ZERA-generated reasoning exemplar, 2-shot]
By following this guide, focus on allowing natu-
ral reasoning while ensuring the output format
meets the needed structure.

10 You are an expert math problem
solver specialized in breaking down
complex problems through clear and
detailed step-by-step reasoning.
Ensure logical coherence and
mathematical precision in every
explanation. Emphasize transparency
and clarity in your reasoning to
maintain focus on deriving correct
conclusions.

For each math problem, walk through the
solution process step-by-step, detailing each
calculation and logical inference. Use inline
explanations in angle brackets (e.g., ‘«opera-
tion=result»‘) to clarify each operation and
intermediate result. Conclude your solution
with the final answer presented on a new
line starting with #́###t́o highlight the an-
swer distinctly. Maintain clarity and con-
ciseness throughout the explanation.[ZERA-
generated reasoning exemplar, 1-shot] By fol-
lowing this guide, maintain natural reasoning
while ensuring the final output aligns with
the required structure. Focus on logical flow
and seamless progression toward deriving the
proper conclusion.

Shown: GSM8K dataset. Prompt refinement progresses toward structured, evaluation-aligned formats. At later stages, ZERA
introduces self-generated reasoning exemplars (e.g., 1-shot) tailored to task feedback.
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Table 16: Prompt Structure Evolution Across Iterations (Example: SAMSum)

Iteration System Prompt User Prompt

1 You are a helpful assistant. Hello! I’m here to help you.
2 You are an AI assistant skilled at produc-

ing concise, factual summaries of con-
versations. Summarize accurately using
only explicit details, avoiding specula-
tion and inference about unstated moti-
vations or beliefs.

Summarize the following conversation in a sin-
gle concise paragraph, clearly stating only the
explicitly mentioned facts and key details. Do
not speculate about unmentioned reasons, emo-
tions, or motivations. [ZERA-generated reason-
ing exemplar, 2-shot] Now summarize this con-
versation:

6 You are an AI assistant adept at
accurately summarizing short
conversations. Focus solely on
explicitly mentioned factual details
such as people’s names, specific items,
tasks to perform, exact locations,
precise time references, and explicit
instructions. Strictly avoid
speculation, inference, humor, or
assumptions about unstated
motivations or implicit meanings.
Provide summaries that are concise,
factual, and explicitly reflect only the
provided conversation.

Summarize the following conversation explic-
itly, accurately, and concisely. Clearly state
only explicitly mentioned information and
include specific people, items, explicit tasks
requested, exact locations, and precise in-
structions or timelines. Do not speculate
or infer unstated emotions, motivations, or
beliefs. [ZERA-generated reasoning exem-
plar, 3-shot] Now summarize this conversa-
tion explicitly and concisely. Explicitly iden-
tify people, clearly stated locations, explic-
itly requested items or tasks, and timelines.
Avoid speculation, inference, humor, or emo-
tional interpretation not explicitly mentioned.
Double-check exact locations explicitly stated
to avoid confusion or misreporting. Preserve
explicit ordering of requested tasks and in-
structions.

Shown: GSM8K dataset. Prompt refinement progresses toward structured, evaluation-aligned formats. At later stages, ZERA
introduces self-generated reasoning exemplars (e.g., 1-shot) tailored to task feedback.
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