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Abstract

Scientific fact-checking has largely focused on
textual and tabular sources, neglecting scien-
tific charts—a primary medium for convey-
ing quantitative evidence and supporting sta-
tistical reasoning in research communication.
We introduce CLIMATEVIZ, the first large-
scale benchmark for scientific fact-checking
grounded in real-world, expert-curated scien-
tific charts. CLIMATEVIZ comprises 49,862
claims paired with 2,896 visualizations, each
labeled as support, refute, or not enough in-
formation. To enable interpretable verification,
each instance includes structured knowledge
graph explanations that capture statistical pat-
terns, temporal trends, spatial comparisons, and
causal relations. We conduct a comprehen-
sive evaluation of state-of-the-art multimodal
large language models, including proprietary
and open-source systems, under zero-shot and
few-shot settings. Our results show that cur-
rent models struggle to perform fact-checking
when statistical reasoning over charts is re-
quired: even the best-performing systems, such
as Gemini 2.5 and InternVL 2.5, achieve only
76.2–77.8% accuracy in label-only output set-
tings, which is far below human performance
(89.3% and 92.7%). While few-shot prompt-
ing yields limited improvements, explanation-
augmented outputs significantly enhance per-
formance in some closed-source models, no-
tably o3 and Gemini 2.5. We released our
dataset and code alongside the paper.1

1 Introduction

Scientific fact-checking—the task of assessing
the validity of scientific claims through cross-
referencing with established literature, empirical
observations, or experimental data (Wadden et al.,
2020; Vladika and Matthes, 2023)—is essential
for maintaining the integrity of research findings,
combating misinformation, and preserving public
confidence in scientific discourse (Wadden et al.,

1https://github.com/Albasu120491/ClimateViz

2022). This challenge is particularly acute in the
visual domain, where data visualizations have be-
come a battleground for controversial scientific un-
derstandings. During the COVID-19 pandemic,
for instance, coronavirus skeptics actively created
and circulated their own visualizations, often us-
ing the same official datasets as health authorities,
to argue that the crisis was exaggerated and pub-
lic health measures were unnecessary (Lee et al.,
2021). These actors frequently employ what are de-
scribed as ’counter-visualizations’: charts that use
orthodox, scientifically-sound methods to promote
unorthodox arguments and misinformation. Wor-
ryingly, research shows that the majority of charts
used to support misleading arguments online do
not contain visual tricks like truncated axes but are,
in fact, faithfully plotted visualizations taken from
reputable sources and reframed with a misleading
narrative (Lisnic et al., 2023).

However, the rapid accumulation of scholarly
findings and the increasing demand for domain-
specific expertise often exceed the capacity of man-
ual verification, making scientific fact-checking a
critical focus in the NLP community.

Significant progress has been made with the de-
velopment of benchmarks such as SciFact (Wad-
den et al., 2020), SciFact-Open (Wadden et al.,
2022), and SciTab (Lu et al., 2023). Despite these
advances, existing resources exhibit critical limi-
tations in scope. Specifically, prior benchmarks
predominantly focus on verifying scientific claims
against textual (Wadden et al., 2020; Diggelmann
et al., 2021; Sarrouti et al., 2021; Saakyan et al.,
2021) or tabular (Mohr et al., 2022; Lu et al., 2023)
evidence, particularly from literature abstracts or
tables. These claims are typically validated using
semantic or structural logical reasoning between
claims and corresponding evidence. In contrast,
real-world scientific findings often involve claims
that are intrinsically tied to quantitative data. In
such contexts, charts serve as both visual and sta-
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Figure 1: (a) A sample from CLIMATEVIZ showing a scientific chart, caption, claim, and its label. (b) Knowledge
graph creation pipeline: raw triplets are extracted by a multimodal LLM and canonicalized. (c) Subgraph of relevant
facts representing structured reasoning from the chart to the claim.

tistical representations, summarizing complex nu-
merical information, revealing trends, supporting
quantitative reasoning, and effectively communi-
cating scientific insights (Huang et al., 2024). How-
ever, chart-based verification is largely absent from
prior fact-checking benchmarks—despite requiring
explicit chart understanding and statistical reason-
ing over visualized data, beyond what semantic or
structural inference alone can handle (Akhtar et al.,
2023b, 2024).

More specifically, scientific claims often involve
not only raw data observations but also interpreta-
tions of patterns, anomalies, correlations, and sta-
tistical aggregation. For example, the claim in Fig-
ure 1 implies a statistical relationship between ice
sheet mass loss and sea-level rise. Verifying such
information is inherently challenging and requires:
(i) visual understanding of charts with non-uniform
temporal granularity (e.g., dual-axis time series),
spatial dimensions (e.g., geographic insets), and un-
certainty bands; (ii) nuanced statistical reasoning
to interpret temporal trends, quantify cumulative
change, and relate ice mass loss to sea-level rise;
and (iii) cross-modal reasoning to establish logi-
cal coherence between the linguistic embedding
of scientific claims and the perceptual features of
the chart. This example illustrates the depth of
reasoning needed to understand complex scientific

findings, yet the absence of benchmarks that re-
quire such statistical reasoning severely limits the
evaluation of models designed for general scientific
understanding. To address these challenges and sys-
tematically evaluate model capabilities, our work
is guided by the following core research questions:

(RQ1) How accurately can state-of-the-art mul-
timodal large language models (MLLMs)
perform fact-checking that requires com-
plex statistical reasoning over real-world
scientific charts?

(RQ2) To what extent do intermediate representa-
tions, such as structured knowledge graph
explanations or extracted data tables, im-
prove model performance and interpretabil-
ity?

In this paper, we introduce CLIMATEVIZ, a
novel dataset sourced from reputable climate in-
stitutions (e.g., the National Oceanic and Atmo-
spheric Administration2 and the UK Met Office3),
designed to advance scientific fact-checking with a
focus on statistical reasoning over charts. CLIMAT-
EVIZ comprises 49,862 claim–chart–knowledge
graph (KG) triplets, each accompanied by rele-
vant metadata (e.g., chart caption, chart type).
Claims are systematically constructed based on

2https://www.noaa.gov/
3https://www.metoffice.gov.uk/
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2,896 expert-curated scientific charts and annotated
with one of three labels: support, refute, or not
enough information (NEI). A key innovation of the
dataset is the inclusion of chart-specific knowledge
graphs that provide structured, interpretable expla-
nations for fact verification. These KGs capture
core scientific information aligned with the claims,
such as quantities, trends, spatial and temporal con-
texts, and causal relationships—enabling explicit
multi-hop reasoning. To construct CLIMATEVIZ,
we launched a large-scale project on the citizen
science platform Zooniverse4, which ensured sci-
entifically literate annotations. Each chart was in-
dependently annotated by six contributors, and the
resulting claims were reviewed and verified by two
domain experts to ensure correctness and quality.

We utilize CLIMATEVIZ as a diagnostic bench-
mark to evaluate the zero-shot and in-context learn-
ing capability across a varied range of state-of-
the-art models, including open- and closed-source
language models, and chart-based vision-language
models. Comprehensive experiments reveal that all
models struggle with verifying claims over scien-
tific charts when statistical reasoning is necessary.
Furthermore, the integration of a chart-specific
knowledge graph proves beneficial when models
are provided with both scientific charts and supple-
mentary KG data. In addition, while models gen-
erate semantically plausible explanatory triplets,
they typically fail to produce properly canonical-
ized outputs. These findings underscore the unique
challenges posed by CLIMATEVIZ and highlight
the need for further advances in models capable of
statistical reasoning, structured explanation genera-
tion, and deep scientific understanding from visual
evidence.

2 Related Work

Scientific Fact-checking Benchmarks. Several
benchmarks have been proposed to advance au-
tomated scientific fact-checking, primarily focus-
ing on textual evidence (see Table 1). SciFact
(Wadden et al., 2020) introduced claim verifica-
tion against biomedical research abstracts, while
Climate-FEVER (Diggelmann et al., 2021) ex-
tended claim verification to the climate domain
using Wikipedia articles. Other datasets, such as
HealthVer (Sarrouti et al., 2021) and COVID-Fact
(Saakyan et al., 2021), collected claims from health
news and pandemic-related sources, respectively.

4https://www.zooniverse.org/

More recently, CoVERT (Mohr et al., 2022) and
SciTab (Lu et al., 2023) shifted toward structured
evidence using tables from social media and scien-
tific papers. However, these benchmarks largely tar-
get shallow reasoning tasks, often allowing claims
to be verified through direct evidence matching
rather than deeper inferential processes. Moreover,
they rely exclusively on textual or tabular evidence
and overlook scientific charts, which are central
to communicating empirical findings in scientific
domains. In contrast, CLIMATEVIZ introduces a
large-scale, expert-verified benchmark grounded in
high-quality scientific charts, requiring statistical
reasoning for claim verification and aiming to more
closely reflect real-world scientific fact-checking
scenarios.

Fact-checking over Structured and Visual Data.
Beyond textual evidence, fact-checking over struc-
tured formats such as tables and visualizations has
attracted growing attention. TabFact (Chen et al.,
2020) introduced a benchmark for fact verification
against Wikipedia tables, while FEVEROUS (Aly
et al., 2021) extended claim verification to semi-
structured tables. Models such as TAPAS (Herzig
et al., 2020) and DePlot (Liu et al., 2023a) enable
direct reasoning over tabular data by treating tables
as inputs to pretrained language models. In parallel,
chart understanding has emerged as a distinct chal-
lenge, with datasets like PlotQA (Methani et al.,
2020a), ChartQA (Masry et al., 2022a), and Chart-
Bench (Xu et al., 2024) focusing on data extraction
or question answering over charts. However, these
efforts typically rely on synthetic charts and frame
the task narrowly, limiting their relevance for real-
world fact-checking (Guo et al., 2022). ChartCheck
(Akhtar et al., 2024) is a more recent dataset that
targets fact-checking over Wikimedia charts, but
its reliance on non-curated, relatively simple vi-
sualizations—mostly line and bar graphs—and its
focus on shallow observational claims restricts its
depth and utility. In contrast, CLIMATEVIZ intro-
duces high-quality, expert-curated scientific charts
exhibiting greater structural and semantic complex-
ity, and frames fact-checking as a task requiring
statistical reasoning over visualized data, offering a
significantly more realistic and challenging bench-
mark for scientific verification.

Statistical Reasoning in NLP. Statistical rea-
soning refers to the process of interpreting, ana-
lyzing, and drawing inferences from quantitative
data—often involving trends, comparisons, vari-
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Dataset Modality Domain #Claims Source

SciFact (Wadden et al., 2020) Text Biomedical 1.4K Medical literature
Climate-FEVER (Diggelmann et al., 2021) Text Climate 1.5K Wikipedia
HealthVer (Sarrouti et al., 2021) Text Health 14K News
COVID-Fact (Saakyan et al., 2021) Text COVID-19 4.1K News
CoVERT (Mohr et al., 2022) Table COVID-19 10K Social media
SciTab (Lu et al., 2023) Table CS 1.2K Scientific papers

CLIMATEVIZ Chart Climate 49.8K Expert-curated scientific charts

Table 1: Comparison of scientific fact-checking datasets by modality, domain, claim volume, and source. CLIMAT-
EVIZ is the first chart-based benchmark at this scale, grounded in real expert-curated scientific charts.

ability, and uncertainty—to reach logically sound
conclusions (Fertig, 1958). Unlike general reason-
ing (Chen et al., 2024, 2025a; Peng et al., 2025),
which may rely on commonsense or world knowl-
edge, statistical reasoning demands precise, data-
grounded inference directly from observed evi-
dence. This capability is particularly critical in
scientific fact-checking, where verifying claims
derived from charts requires understanding and
interpreting complex quantitative patterns. Chal-
lenges in visual reasoning are well-established;
early work on compositional question answering
over real-world images, such as the GQA dataset,
demonstrated that models struggle significantly
with multi-step relational and spatial reasoning,
even when the required logic is non-quantitative
(Hudson and Manning, 2019). While reasoning
tasks have been extensively studied in NLP, exist-
ing benchmarks rarely require statistical reasoning
over charts; most focus on discrete, categorical
reasoning (Pan et al., 2023; Akhtar et al., 2023a;
Glockner et al., 2024) rather than interpreting con-
tinuous data distributions. Techniques such as few-
shot prompting (Brown et al., 2020) have shown
promise in improving performance on symbolic
and arithmetic reasoning tasks, but our experiments
demonstrate that few-shot prompting yields min-
imal gains on CLIMATEVIZ —underscoring the
unique challenges posed by statistical reasoning
over scientific charts.

3 CLIMATEVIZ: Dataset Construction

3.1 Annotation

We manually selected 2,896 diverse scientific
charts from six respected open-domain climate
sources, each accompanied by metadata5. These

5https://www.noaa.gov/,
https://www.metoffice.gov.uk/,
https://www.copernicus.eu/,

charts—spanning topics such as temperature
anomalies, CO2 concentrations, precipitation
trends, and sea level rise—were used to design
a three-task annotation project on Zooniverse, a
well-established and influential citizen science plat-
form (Fortson et al., 2011; Simpson et al., 2014).
We provided annotators with a comprehensive field
guide, golden samples labeled by the authors for
pre-annotation training, and a live discussion board
to assist with challenging cases during the anno-
tation process (see Appendix A). Each chart was
independently annotated by six contributors.

3.1.1 Chart Type Annotation
In the first task, annotators were asked to identify
the chart type by selecting from a set of predefined
categories: line graph, pie chart, scatter plot, ge-
ographic map, or other (see Figure 4). Given the
complexity of many scientific charts, such as those
with overlapping modalities or multiple subplots
(see Figure 1), annotators were permitted to select
multiple chart types for a single instance. This task
aimed to categorize chart forms to support down-
stream analysis and model conditioning.

3.1.2 Caption Annotation
In the second task, annotators were instructed to
write or revise the caption associated with each
chart, ensuring clarity, accuracy, and conciseness
in describing its content. In addition, annotators
were asked to compose at least one true claim per
chart that required statistical reasoning and was
directly verifiable from the visualized data. We
applied an automated preprocessing step to filter
out incomplete or overly short claims (fewer than
10 words). The remaining claims were manually
validated by two domain experts according to two

https://earthobservatory.nasa.gov/,
https://www.climate.gov/,
https://climatereanalyzer.org/
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criteria: (i) factual correctness independent of ex-
ternal context, and (ii) direct verifiability using only
the information presented in the chart. Claims that
met both criteria were labeled as “keep”; those that
did not were discarded.

To generate refuted claims, we employed GPT-
4o (OpenAI, 2024), prompting it to apply com-
mon data fallacy strategies including trend modi-
fication, exaggeration, and metric swaps (Akhtar
et al., 2024; Xu et al., 2024). To ensure each gen-
erated claim was semantically contradictory to the
original, we filtered 20,148 candidates from 23,190
generated refuted claims using DeBERTa-Large-
MNLI (Laurer, 2022). Outputs passing this stage
were then reviewed by domain experts to verify
grammaticality and falsifiability with respect to the
associated chart.

For NEI (Not Enough Information) claims, we
employed conceptual generalization (Drchal et al.,
2024), transforming specific factual details into
broader or unverifiable language (e.g., “Florida” →
“a coastal region”). We combined 200 manually au-
thored NEI examples with GPT-4o-generated vari-
ants, additionally prompting entity replacements
(e.g., “average” → “maximum” anomaly) to in-
crease linguistic and semantic diversity. All NEI
claims were independently verified by two domain
experts to ensure that they were plausible yet unver-
ifiable based on the chart. See Table 7 for examples
of refuted and NEI claims.

3.1.3 Knowledge Graph-Based Explanation
We propose a method for generating structured
explanations in chart-based fact-checking by con-
structing chart-specific knowledge graphs (KGs)
composed of canonicalized (h, r, t) triplets. In con-
trast to prior work that applies LLMs to general-
purpose knowledge graph construction (Bi et al.,
2024; Li et al., 2023), we use a multimodal LLM
(GPT-4o (OpenAI, 2024)) to extract factual triplets.

The pipeline begins by parsing each chart and
its caption, followed by aggregating all supported
claims to construct a unified chart summary. GPT-
4o is then prompted with this context—chart im-
age, metadata, and summary—under a loosely de-
fined schema to extract factual triplets that reflect
the chart’s content. To reduce ambiguity and im-
prove consistency, we apply a self-canonicalization
stage inspired by the Extract, Define, Canonicalize
(EDC) framework (Zhang and Soh, 2024), which
standardizes the representation of entities and rela-
tions across triplets.

Statistic Value

Supported claims 15,100
NEI claims 15,258
Refuted claims 19,504
Total claims 49,862

charts 2,896

Avg. tokens per claim 19.0
Avg. claims per chart 17.2

Table 2: Dataset statistics for CLIMATEVIZ. NEI stands
for Not Enough Information.

Annotation Task Randolph’s Kappa

Chart Type Annotation 82.9
Caption Annotation 68.3
Claim Generation 76.5

Table 3: Randolph’s Kappa values for IAA across tasks.

These chart-derived triplets serve as structured
and interpretable explanations that support fact-
checking decisions. For schema details and repre-
sentative examples, see Appendix D.

3.2 Dataset Analysis

3.2.1 Dataset Statistics
CLIMATEVIZ comprises a total of 49,862 claims la-
beled as support, refute, or not enough information
(NEI) against 2,896 expert-curated charts from the
Climate field. The statistics of our CLIMATEVIZ

are shown in Table 2.
We computed inter-annotator agreement scores

using Randolph’s Kappa (Randolph, 2005) across
the three annotation tasks. For the first and second
tasks, agreement was measured among six annota-
tors per chart, while for the third task, agreement
was calculated between two domain experts respon-
sible for validating the final set of claims. The
resulting scores (see Table 3) indicate substantial
agreement across all tasks (Landis and Koch, 1977).

3.2.2 Statistical Reasoning in CLIMATEVIZ

We randomly sampled a balanced subset of 300
claims from the CLIMATEVIZ dataset, covering
a diverse range of chart types. Each claim was
manually annotated by an author with the types
of statistical reasoning required for its verification,
following the taxonomy defined in Table 4. We
observe that temporal comparison, value extrac-
tion, and anomaly detection are the most prevalent
reasoning types in our dataset.
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Figure 2: Distribution of statistical reasoning complex-
ity in CLIMATEVIZ claims.

We further analyze the complexity of claims by
examining the number of statistical reasoning types
required per instance (Figure 2). Our analysis re-
veals that multi-hop reasoning is prevalent: a major-
ity of claims (79.0%) require three or four distinct
types of statistical reasoning. This highlights the
inherently compositional nature of scientific fact
verification in CLIMATEVIZ.

This deeper analysis demonstrates that CLIMAT-
EVIZ is not merely a collection of simple lookup
tasks. Rather, it challenges models to perform com-
positional statistical inference—often across vary-
ing temporal scales, spatial contexts, and measure-
ment units. As such, CLIMATEVIZ serves as a
rigorous benchmark for evaluating a model’s abil-
ity to perform complex, multi-faceted statistical
reasoning over scientific visual evidence.

4 Experimental Setup

4.1 Task Settings
We define two input settings for the chart-based
fact-checking task:
• Chart + Text (CT): The model M receives a

chart Cchart, an associated caption Tcaption, and a
claim Tclaim, and predicts a fact-checking label
Y ∈ {support, refute, NEI}.

• Chart + Table + Text (CTT): We apply a
chart-to-table conversion model, DePlot (Liu
et al., 2023b), to extract a structured table
Ttable from Cchart. The model M then receives
(Cchart, Ttable, Tcaption, Tclaim) as input and predicts
Y .
We further consider two output settings:

• Label-Only Output: The model outputs only
the fact-checking label Y:

F(inputs) → Y.

• Explanation-Augmented Output: The model
outputs both a set of structured explanatory
triplets E and the final label Y:

F(inputs) → (E ,Y).

We evaluate label classification using accuracy and
macro F1. We further evaluate generated triplets
using BLEU (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005), ROUGE-L (Lin, 2004)
and BERTScore (Zhang et al., 2020).

To validate the use of DePlot-generated tables,
we conducted a manual evaluation of 50 chart-to-
table conversions, sampled across five chart types.
Each output was assessed according to three cri-
teria: fidelity to the original chart, omission of
relevant information, and presence of hallucinated
content. Our analysis (see Appendix E) shows that
DePlot produces high-fidelity tables for line and
bar charts, and reasonably accurate tables for pie
charts, scatter plots, and maps. These results sup-
port the reliability of Ttable as a structured input in
our experimental settings.

4.2 Baselines

We evaluate a suite of state-of-the-art multimodal
models across multiple configurations.

Open-source models. We include three pub-
licly available vision-language models: LLaMA-
4-Maverick-17B (MetaAI, 2025), InternVL-2.5-
78B (Chen et al., 2025b), and Qwen2.5-VL-
72B (Bai et al., 2025), evaluated under both zero-
shot and few-shot settings.

Closed-source models. We evaluate three propri-
etary multimodal large language models (MLLMs):
o3 (OpenAI, 2025), GPT-4o (OpenAI, 2024), and
Gemini 2.5 (DeepMind, 2025), under both zero-
shot and few-shot settings.

Chart-specific vision-language models. We in-
clude several variants of Matcha (Liu et al., 2023c),
an open-source model designed specifically for
chart understanding. In particular, we evaluate
two off-the-shelf variants: Matcha-ChartQA, pre-
trained on the ChartQA benchmark (Masry et al.,
2022b), and Matcha-PlotQA, trained on the PlotQA
dataset (Methani et al., 2020b), targeting chart ques-
tion answering and plot comprehension, respec-
tively. Additionally, we fine-tune the base Matcha
model on the CLIMATEVIZ training and develop-
ment sets for the fact-checking task.
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Statistical Reasoning Prop.
(%)

Definition Example

Temporal Comparison 75.7% Compare values across time points. temperature in 2020 higher than 2010

Value Extraction 63.0% Read exact values from charts. CO2 level was 412 ppm in 2020

Anomaly Detection 52.3% Spot unexpected patterns or values. a sudden spike in temperature

Temporal Aggregation 49.3% Summarize data over periods. average rainfall over a decade

Spatial Comparison 35.7% Compare across different regions. England warmer than Scotland in July

Trend Detection 26.3% Identify rising or falling trends. CO2 emissions rising over time

Unit Interpretation 14.0% Understand and convert units. mm of rain converted to inches

Uncertainty 13.0% Interpret variability or error bars. temperature estimate: 20◦ ± 1◦C

Table 4: Statistical reasoning types required in CLIMATEVIZ claims. “Prop. (%)” denotes the proportion of sampled
claims.

Human performance. To establish an upper
bound for model performance, we include a hu-
man evaluation baseline. We randomly sample 150
examples for each setting from the CLIMATEVIZ

benchmark. Each example is annotated by a human
with expertise in both climate science and natural
language processing, using the same input modali-
ties as the corresponding model configuration.
Evaluation protocol. The CLIMATEVIZ dataset
is split into training (70%), development (10%),
and test (20%) subsets. All models are evaluated
on the same held-out test set to ensure fair and con-
sistent comparison across model types and input
settings.

5 Results

We present the main findings from our experiments
in Tables 5 and 6, which report results for both
label classification and explanation generation.
Scientific chart-based fact-checking remains
challenging for current models. Despite recent
advances in multimodal reasoning (Wang et al.,
2024, 2025) and chart understanding (Akhtar et al.,
2024; Xu et al., 2024), a substantial performance
gap remains between models and human annotators.
Human evaluators achieve 89.3% accuracy in the
Chart + Text (CT) setting and 92.7% in the Chart
+ Table + Text (CTT) setting, outperforming all
model variants across both input conditions. These
results highlight the continued difficulty of scien-
tific chart-based fact verification and the limitations
of current models in capturing nuanced statistical
reasoning.
Explanation-augmented output improves closed–
source model performance. Closed-source mod-
els such as o3 and Gemini 2.5 show notable gains
when generating structured explanations alongside
label predictions. For example, o3 achieves the

highest explanation-augmented performance in the
CT setting, with 84.6% accuracy and a macro F1
score of 83.1—outperforming all other models.
These results suggest that incorporating intermedi-
ate reasoning steps enables closed-source models
to better ground their predictions, particularly when
interpreting complex scientific visualizations.

CTT setting significantly boosts the perfor-
mance of open-source models under few-shot
prompting. All open-source models—including
LLaMA-4, InternVL 2.5, and Qwen 2.5—achieve
their highest label accuracy and F1 scores in the
CTT setting when using few-shot prompting. For
example, Qwen 2.5 and InternVL both reach 77.8%
accuracy in the CTT few-shot condition, outper-
forming their CT counterparts. These results high-
light the value of structured tabular inputs and
prompt-based adaptation for improving factual rea-
soning in resource-constrained models.

Few-shot prompting offers limited benefit for
scientific fact-checking over charts in the CT set-
ting. While in-context learning is widely adopted
to improve model performance, its impact on scien-
tific fact-checking over charts is inconsistent. No-
tably, several closed-source models (e.g., GPT-4o
and Gemini 2.5) exhibit degraded performance un-
der few-shot prompting in the CT and label-only
setting, particularly in explanation and triplet gen-
eration tasks. Open-source models also show only
marginal gains except for LLaMA-4-Maverick, in-
dicating that a few-shot prompting alone is insuffi-
cient to support complex reasoning over scientific
visual data.

Fine-tuned Matcha-CLIMATEVIZ performs
best among chart-specific models but still
lags behind multimodal LLMs. Among
chart-specific baselines, the fine-tuned Matcha-
CLIMATEVIZ model achieves the highest accuracy
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Category Model Setting CT CTT

Acc-L F1-L Acc-E F1-E Acc-L F1-L Acc-E F1-E

Closed-source

o3 Zero-shot 59.3 58.9 84.6 83.1 64.0 63.3 68.9 67.8
o3 Few-shot 61.3 ↑ 61.0 ↑ 67.5 ↓ 67.0 ↓ 65.5 ↑ 64.9 ↑ 65.4 ↓ 64.5 ↓
GPT-4o Zero-shot 67.8 67.5 68.1 68.2 64.3 64.0 60.2 59.2
GPT-4o Few-shot 63.3 ↓ 59.5 ↓ 64.3 ↓ 64.9 ↓ 68.3 ↑ 67.9 ↑ 62.8 ↑ 61.8 ↑
Gemini 2.5 Zero-shot 76.2 75.9 73.2 71.2 57.6 57.0 85.7 57.3
Gemini 2.5 Few-shot 57.4 ↓ 53.8 ↓ 73.3 ↑ 73.9 ↑ 56.6 ↓ 56.2 ↓ 70.4 ↓ 70.3 ↑

Open-source

LLaMA-4-Maverick-17B Zero-shot 39.4 29.7 47.4 43.6 47.2 45.3 52.5 49.4
LLaMA-4-Maverick-17B Few-shot 54.5 ↑ 51.3 ↑ 37.8 ↓ 29.7 ↓ 79.4 ↑ 76.9 ↑ 57.9 ↑ 53.0 ↑
InternVL 2.5-78B Zero-shot 65.8 65.7 54.6 50.4 61.3 59.8 63.3 60.9
InternVL 2.5-78B Few-shot 61.3 ↓ 61.4 ↓ 63.8 ↑ 62.5 ↑ 77.8 ↑ 75.5 ↑ 76.4 ↑ 73.2 ↑
Qwen 2.5-VL-72B Zero-shot 68.3 68.3 54.3 53.8 60.8 57.9 54.3 47.7
Qwen 2.5-VL-72B Few-shot 67.3 ↓ 68.0 ≈ 65.8 ↑ 64.3 ↑ 77.8 ↑ 75.3 ↑ 72.1 ↑ 70.8 ↑

Chart-specific

Matcha-ChartQA Zero-shot 34.6 33.2 – – 31.3 30.2 – –
Matcha-PlotQA-V1 Zero-shot 21.3 21.7 – – 24.5 22.4 – –
Matcha-PlotQA-V2 Zero-shot 32.4 30.6 – – 33.4 32.9 – –
Matcha-CLIMATEVIZ Fine-tuned 51.2 50.7 – – 50.4 48.6 – –

Human Performance 89.3 89.3 – – 92.7 88.6 – –

Table 5: Accuracy and Macro-F1 scores (%) on the CLIMATEVIZ fact-checking benchmark across two input
settings and two output formats. CT (Chart+Text): chart image + caption + claim; CTT (Chart+Table+Text): chart
image + extracted table + caption + claim. Acc-L/F1-L: label-only output; Acc-E/F1-E: explanation-augmented
output. Bold indicates the best score per column. ↑ / ↓ / ≈ indicate intra-model differences.

Model CT CTT

BLEU METEOR ROUGE-L BERTScore BLEU METEOR ROUGE-L BERTScore

o3 (ZS) 20.2 66.0 57.3 92.6 21.8 66.2 56.3 92.6
o3 (FS) 10.3↓ 53.8↓ 43.2↓ 90.3↓ 11.3↓ 52.9↓ 42.5↓ 91.6↓
GPT-4o (ZS) 48.4 77.2 73.6 92.7 46.2 73.4 67.4 93.2
GPT-4o (FS) 13.8↓ 51.3↓ 38.0↓ 87.0↓ 14.7↓ 55.4↓ 43.8↓ 89.4↓
Gemini 2.5 (ZS) 37.8 68.6 61.0 90.9 34.7 72.1 65.6 92.7
Gemini 2.5 (FS) 15.2↓ 57.6↓ 50.2↓ 89.7↓ 15.6↓ 58.9↓ 53.8↓ 89.9↓
LLaMA-4-Maverick-17B (ZS) 35.3 68.3 60.3 92.3 34.8 60.2 60.2 91.3
LLaMA-4-Maverick-17B (FS) 13.0↓ 52.2↓ 41.5↓ 90.3↓ 13.1↓ 48.8↓ 38.9↓ 89.4↓
InternVL 2.5-78B (ZS) 30.8 65.2 56.6 91.4 27.6 68.1 61.2 93.1
InternVL 2.5-78B (FS) 20.7↓ 65.2≈ 53.6↓ 90.6↓ 23.9↓ 67.9↓ 54.1↓ 91.2↓
Qwen 2.5-VL-72B (ZS) 36.8 66.2 57.5 91.9 35.1 70.5 61.8 93.5
Qwen 2.5-VL-72B (FS) 25.7↓ 57.3↓ 45.7↓ 89.3↓ 9.6↓ 39.8↓ 29.9↓ 88.3↓

Table 6: Explanatory triplet generation results on CLIMATEVIZ. Models are evaluated in both zero-shot (ZS) and
few-shot (FS) settings across CT and CTT inputs.↑ / ↓ / ≈ indicate intra-model change. Bold indicates the best in
each column.

(51.2% in CT, 50.4% in CTT), outperforming
zero-shot variants like Matcha-ChartQA and
Matcha-PlotQA. However, its performance re-
mains substantially below that of general-purpose
multimodal LLMs. This performance gap suggests
that while task-specific fine-tuning improves chart
understanding, chart-specialized models still lack
the general reasoning capabilities and scalability
of large multimodal LLMs.

Explanatory triplet generation. Across both
CT and CTT settings, few-shot prompting con-
sistently degrades triplet quality for all models.
GPT-4o remains the strongest performer overall,
achieving the highest scores in BLEU, METEOR,
and ROUGE-L. While all models attain consis-
tently high BERTScore values—indicating seman-
tic plausibility—their BLEU scores remain low,

suggesting that models often generate logically cor-
rect triplets but fail to produce outputs in a standard,
canonicalized format.

Isolating the Contribution of the Visual Modal-
ity. To quantify the unique contribution of the
visual input, we conducted an ablation study where
the chart image was removed, leaving only the
DePlot-generated table and text as inputs (TT set-
ting). The results, detailed in Table 9 , reveal a
substantial drop in performance across all mod-
els, underscoring the indispensability of the visual
modality. This gap demonstrates that while struc-
tured tables can convey raw data, they fail to cap-
ture the relational, spatial, and contextual patterns
that are visually encoded in the chart and are essen-
tial for robust scientific fact-checking.
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6 Broader Implications

NLP for High-Stakes Domains. Despite recent
advances, current models fall short of human per-
formance in verifying claims from scientific charts,
highlighting the need for NLP systems that are both
trustworthy and verifiable in high-stakes domains
like science communication and policy.
Multimodal and Spatio-Temporal Reasoning.
CLIMATEVIZ goes beyond text and tables, requir-
ing reasoning over visual, spatial, and temporal
patterns. Current models struggle with this com-
plexity, especially in statistical interpretation, mo-
tivating new architectures that unify multimodal
reasoning.
Model Explainability. CLIMATEVIZ supports
joint evaluation of predictions and reasoning via ex-
planatory triplets. Explanation-augmented outputs
improve accuracy in closed-source models, while
the gap between BERTScore and BLEU reveals
a need for better canonicalization of semantically
correct outputs.
Countering Sophisticated Visual Misinforma-
tion. The COVID-19 pandemic demonstrated
that malicious actors do not necessarily lie with ’vi-
sual tricks’ but rather by reframing well-designed,
faithfully plotted charts from authoritative sources
to support false narratives (Lee et al., 2021; Lis-
nic et al., 2023). They achieve this by making
flawed causal inferences, cherry-picking data from
interactive dashboards, and failing to account for
statistical nuance, thereby creating plausible but
misleading arguments. Developing AI systems
capable of robust statistical reasoning, as bench-
marked by CLIMATEVIZ, is a critical step towards
automatically identifying and flagging such mis-
leading claims.

7 Conclusion

We introduce CLIMATEVIZ, the first large-scale
benchmark for scientific fact-checking grounded
in real-world expert-curated charts. By evaluat-
ing a diverse range of state-of-the-art models, we
reveal limitations in multimodal factual reason-
ing, especially when statistical interpretation is re-
quired. Our findings demonstrate that current mod-
els still lag behind human performance, and that
in-context learning alone offers limited gains. How-
ever, explanation-augmented outputs show promise
in improving model reliability and interpretabil-
ity. CLIMATEVIZ establishes a new foundation for

building multimodal systems that reason faithfully,
communicate transparently, and support scientific
decision-making in high-stakes domains.

Limitations

While CLIMATEVIZ introduces a comprehensive
benchmark for scientific fact-checking over real-
world charts and supports structured explanation
through knowledge graphs, our study has several
limitations.

First, our experiments focus primarily on in-
context learning under zero-shot and few-shot set-
tings. We do not explore more advanced prompting
strategies such as chain-of-thought (CoT) prompt-
ing (Wei et al., 2022), tree-of-thought (ToT) reason-
ing (Yao et al., 2023), or program-guided verifica-
tion (Pan et al., 2023), which may further improve
performance on compositional and multi-hop rea-
soning tasks. This restricts our ability to fully char-
acterize model capabilities in structured reasoning
scenarios.

Second, we evaluate factuality and explanation
quality using predefined structured output formats
(triplets), but our automatic metrics (e.g., BLEU,
METEOR) may not fully capture factual sound-
ness or semantic coherence of the generated expla-
nations (Schlichtkrull et al., 2023). Future work
could incorporate human evaluations or more tar-
geted reasoning metrics.

Lastly, while the dataset spans a wide range of
climate topics and chart types, it is domain-specific.
Generalization to other scientific disciplines with
different conventions, terminologies, or visual for-
mats remains untested.

Ethics Statement

We recognize the importance of ethical considera-
tions in our work.

All charts included in the ClimateViz benchmark
are sourced from publicly accessible, reputable sci-
entific institutions, and no proprietary or confiden-
tial data was used. The associated claims were
annotated through a large-scale citizen science cam-
paign on Zooniverse, with additional quality con-
trol by domain experts. Annotators were fully in-
formed about the research purpose and provided
their consent voluntarily. No personally identifi-
able or sensitive information was collected.

While our goal is to foster trustworthy AI, we
acknowledge potential risks. A primary concern
is automation bias: a model trained on CLIMAT-
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EVIZ, even at SOTA performance, may still make
significant errors. Over-reliance on such a sys-
tem for automated fact-checking without human
oversight could lead to the unintentional amplifica-
tion of misinformation or the discrediting of valid
scientific claims. Furthermore, there is a risk of
adversarial vulnerability, where malicious actors
could devise novel manipulation strategies not cov-
ered in our benchmark to evade detection. Besides,
we recognize a potential for dual-use, where the
very models designed to verify claims could be
repurposed to generate plausible-sounding, but ulti-
mately false claims to accompany scientific charts,
thereby accelerating targeted disinformation cam-
paigns.

To mitigate these risks, we emphasize that CLI-
MATEVIZ is intended for research purposes to
advance model capabilities, not for deployment
in unchecked, real-world applications. Outputs
from models trained or evaluated on ClimateViz
should not be used in isolation for critical decision-
making.

To support reproducibility and responsible use,
we have released the CLIMATEVIZ dataset un-
der the Creative Commons Attribution 4.0 Inter-
national (CC BY 4.0) license, and all associated
code under the MIT License on GitHub.
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A Annotation for CLIMATEVIZ

A.1 Before Annotation: Preparation Phase

Before starting the annotation process, we con-
ducted extensive preparation to ensure that annota-
tors had the necessary guidance, tools, and under-
standing of the scientific charts. We began with an
internal review involving climate science experts
and NLP practitioners. This was crucial to refine
the scope of the tasks, establish clear goals, and
identify potential challenges in the annotation of
complex visual scientific data.

Then, a beta test was conducted with a small
group of experienced annotators who provided
early feedback on the clarity and difficulty of the
tasks. This helped identify areas where instructions
or task complexity needed adjustment. Following
the beta test, we gathered feedback through detailed
forms, allowing us to iteratively improve the task
definitions and annotation interface.

The finalized workflows and task requirements
were then implemented on the Zooniverse plat-
form’s dedicated webpage, which served as the
main point of interaction for annotators.

A.2 During Annotation: Annotation Phase

The annotation phase was designed to facilitate a
smooth and productive experience for annotators,
equipping them with the resources necessary to
accurately interpret and label the charts. The tools
used during this phase include:

A.2.1 Field Guide

A comprehensive field guide was provided to the
annotators, covering the different types of data rep-
resentations commonly found in the charts. This
guide includes:

Types of Visuals: Examples of bar charts, line
graphs, pie charts, scatter plots, geographic maps,
and others, helping annotators become familiar
with each format.

Key Definitions: Explanations of essential con-
cepts, such as "anomalies" or "trends," that might
be important when describing climate-related visu-
als.
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A.2.2 Instructions

Each task was accompanied by explicit, step-by-
step instructions. This was especially important
for the third task, which involved summarizing
factual information from the charts. Annotators
were instructed to focus on objective descriptions,
providing factual statements that require statistical
reasoning regarding the chart without interpretation
or bias.

The following are the intructions shown to the
annotators for our three tasks.

Task 1: Write a Clear and Informative
Caption for the Scientific Chart

Welcome! Your task is to write a straightfor-
ward, clear caption that accurately describes
the main content of the scientific chart. This
caption should help a reader quickly under-
stand what the chart shows, without needing
to read all the details.
Guidelines for Writing the Caption:

• Summarize the Main Information:
Focus on the key message or trend
shown in the chart. What is the chart
primarily about?

• Use Straightforward English: Write
in plain, clear language without jargon.
Your caption should be understandable
even to readers outside the field.

• Ignore Sources and Logos: Do not
include any references to logos, foot-
notes, or sources. We assume the
charts are from reliable resources.

• If the Chart is Unclear: If you cannot
determine what the chart shows, type
“NA” as the caption.

• If Multiple Messages Appear: If the
chart covers multiple topics, focus on
the most important or prominent trend
or finding.

Where to Look for Clues:

• Chart Title: Use the chart title if avail-
able, but rewrite it slightly to form a
complete, descriptive sentence if nec-
essary.

• Axes Labels: Look at the x-axis and y-
axis labels to understand what is being
measured over what range.

• Legend and Annotations: If the chart
includes a legend or text annotations,
use them to guide your description.
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Task 2: Identify the Data Representation
Used in the Chart

Your next task is to specify how the data in
the chart is represented. Some charts use
only one form of representation, while oth-
ers may use several types together.
Click on all types of data representation that
you observe.
Refer to the Field Guide on the right side
for detailed descriptions of various data rep-
resentations used.
Available Options:

• Bar Chart

• Line Graph

• Pie Chart

• Scatter Plot

• Geographic Map

• Other

Task 3: Write Claims Using Statistical Rea-
soning Based on the Scientific Chart

Your final task is to carefully study the graphic and write
one or more factual claims that use statistical reasoning.
Each claim should be based directly on what the chart
shows.
Imagine you are explaining the information to some-
one who cannot see the graphic. Your claims should
summarize important quantitative patterns, relationships,
or trends, using straightforward English and specific
details (such as location, time, measurements, and units).
Guidelines for Writing Claims:
• Base Claims on the Graphic Only: Use only the

information visible in the graphic. Do not rely on
outside knowledge.

• State Quantitative Information Clearly: Use num-
bers, percentages, or comparisons whenever possible.

• Focus on Statistical Trends and Relationships:
– Changes over time
– Comparisons between groups
– Visible correlations

• Be Specific and Detailed: Include location, time pe-
riod, and units.

• One Sentence per Claim: Write each claim clearly
and concisely.

• Avoid Vague Statements: Prefer specific, measurable
facts.

• If the Chart is Ambiguous: Write “NA” if you cannot
state any confident claims.

Examples of Good Claims:
• This line graph shows that the average annual temper-

ature in Paris increased from approximately 12°C in
1970 to 15°C in 2020.

• The pie chart indicates that over 60% of global renew-
able energy production in 2022 came from solar and
wind sources combined.

A.2.3 Tutorials
We created interactive tutorials that walked anno-
tators through example charts and tasks. These
tutorials emphasized how to identify and describe
elements like key data points, trends, or anomalies.

Figure 3: Quality Control Process: before, during, and
after annotation

A.2.4 Talk Board
The Zooniverse platform also included an active
"Talk Board" during annotation, where annotators
could discuss uncertainties, ask questions, and re-
ceive support from both project moderators and
their peers. The authors of this paper play an active
role in explaining our tasks and discussing how to
annotate some particularly complex charts. This
collaborative environment was instrumental in re-
solving ambiguous cases and ensuring consistency
across annotations.

A.3 Post Annotation: Quality Assurance
Phase

Once the annotations were completed, an extensive
quality assurance phase was implemented to verify
the accuracy and reliability of the collected data.

A.3.1 Automatic Cleaning
Initially, automated data cleaning scripts were run
to detect potential issues such as outlier annota-
tions, incomplete tasks, or incorrect data types.
Also, we removed annotations less than 10 words
for the "fact" task, with the assumption that they
are not informative enough.

A.3.2 Manual Review
Following the automated cleaning, the data under-
went a manual review by domain experts with a
PhD degree in climate science and NLP. During this
review, we scrutinized the flagged annotations for
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correctness and consistency. We also went through
each claim to make sure it contained the necessary
context, which makes it a claim by itself. This dual-
step process was critical in catching errors that may
have been overlooked by automated methods and
ensuring that the dataset retained a high level of
reliability.

B Statistics for the Scientific Charts

The scientific charts used in CLIMATEVIZ were
manually selected from reputable public sources to
serve as high-quality, trustworthy visual evidence
for fact-checking. All charts were curated to ensure
interpretability, sufficient information density, and
alignment with key indicators of climate science.

Figure 4 presents the distribution of chart sources
and chart types. The majority of charts were
obtained from two primary sources: climateana-
lyzer(52.2%) and the UK Met Office (40.5%). A
smaller proportion of charts come from organiza-
tions such as Copernicus, NASA’s Earth Obser-
vatory, Skeptical Science, and Climate.gov, each
contributing less than 4%.

In terms of visual representation, line graphs
dominate the dataset, comprising 68.7% of all
charts. Bar charts are the second most common
(24.2%), while scatter plots, maps, pie charts, and
other types collectively account for the remain-
ing 7.1%. This reflects the prevalent use of time-
series and trend-based data visualization in scien-
tific charts.

By incorporating a wide variety of scientifically
valid visualizations from trusted institutions, CLI-
MATEVIZ ensures that models are evaluated on
realistic and diverse chart-based evidence, closely
mirroring the data presentation formats encoun-
tered in real-world scientific communication and
policymaking.

C Details for Refute and NEI claims

C.1 Refuted Claim Generation

Refuted claims are created by systematically modi-
fying supported claims to introduce factual inaccu-
racies while maintaining grammatical plausibility.
We apply three complementary strategies to gener-
ate diverse and realistic refutations:
Trend Modification: Directional trends in the
original claim are reversed to contradict the data.
This includes altering keywords such as “increased”
to “decreased,” or “rising” to “falling.” These

changes invert the implied statistical direction
while preserving the overall structure of the sen-
tence.

Exaggeration: Numerical values and descriptive
language are amplified to misrepresent the magni-
tude of a change. Quantities such as temperature
or precipitation are scaled by random multipliers,
and qualitative modifiers (e.g., “slight,” “moder-
ate”) are replaced with more extreme terms (e.g.,
“severe,” “dramatic”).

Metric Swap: The core metric or variable in the
claim is replaced with a similar but distinct one,
preserving the sentence form while altering the un-
derlying meaning. For example, “mean maximum
temperature” might be swapped with “mean mini-
mum temperature,” or “sunshine duration” replaced
by “cloud cover.”

Following generation, we use the DeBERTa-
Large-MNLI model (Laurer, 2022) to verify that
the modified claim contradicts the original. Each
claim pair is scored by the model, which classifies
their relationship as entailment, neutral, or contra-
diction. Only claims labeled as contradiction with
high confidence (score > 0.8) are retained.

All accepted refuted claims are then manually
reviewed by two domain experts to ensure: (i)
the claim is grammatically and semantically well-
formed, and (ii) the statement is clearly refuted by
the corresponding chart evidence.

C.2 NEI Claim Generation

NEI (Not Enough Information) claims are con-
structed to appear plausible while being unveri-
fiable based on the chart alone. We adopt a multi-
step generation strategy combining conceptual gen-
eralization, entity replacement, and LLM-based
generation:

Conceptual Generalization: Specific, verifiable
references in factual claims are replaced with
broader or vaguer terms to obscure direct traceabil-
ity to the chart. For instance, geographic entities
like “Florida” are generalized to “a coastal region,”
and temporal references such as “July 2020” are
broadened to “a recent summer month.”

Entity Replacement: Key variables or metrics
are substituted with related but unverifiable al-
ternatives. For example, “average temperature
anomaly” may be swapped with “maximum tem-
perature anomaly,” or “total precipitation” replaced
with “cloud cover.” This ensures the claim remains
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Figure 4: Distributions of source and type of the charts

topically relevant but cannot be definitively sup-
ported or refuted by the chart.

LLM-Based Generation: We manually curated
200 NEI claims and then used GPT-4o (OpenAI,
2024) to generate additional NEI examples by
prompting the model with existing NEI instances
and instructing it to maintain plausibility while
avoiding chart-verifiable details. We included
prompts to encourage diversity in language and
structure while preserving the overall scientific
tone.

All generated NEI claims were filtered to remove
overly vague or clearly irrelevant instances. Two
domain experts manually validated each claim us-
ing the following criteria: (i) the claim must be
semantically and grammatically correct, and (ii) it
must not be directly classifiable as support or re-
fute based on the chart. Only claims meeting both
criteria were included in the final NEI set.

Here are some real examples in the dataset, see
Table 7.

D Knowledge Graph-Based Explanation

To support interpretable and structured scientific
fact verification, we construct a knowledge graph
(KG) for each chart in CLIMATEVIZ. These
graphs consist of canonicalized triplets of the form
(h, r, t)—representing factual assertions extracted
from chart content. This appendix details our
triplet-centric schema, the construction pipeline,
and the canonicalization process.

D.1 Triplet-Aligned Schema

Each KG is structured as a set of atomic triplets
(h, r, t), where:

• head (h): a scientific entity (e.g., “Greenland ice
sheet”),

• relation (r): a semantic predicate (e.g., “con-
tributes to”, “amount”, “experienced”), and

• tail (t): a value, indicator, or another entity (e.g.,
“sea level rise”, “3900 Gt”).

To preserve key scientific details, each triplet
is accompanied by a metadata object that cap-
tures contextual qualifiers such as time period, unit,
trend, and uncertainty. This separation enables
clear logical reasoning while preserving fidelity to
the original chart.

Full triplets based on Figure 1 are shown below:
{
"triplets": [

{
"head": "Greenland Ice Sheet",
"relation": "experienced",
"tail": "cumulative mass loss",
"metadata": {
"head_type": "Region",
"tail_type": "Indicator",
"time_range": "1979--2022",
"temporal_granularity": "yearly"

}
},
{
"head": "cumulative mass loss",
"relation": "trend",
"tail": "decreasing",
"metadata": {
"head_type": "Indicator",
"tail_type": "Trend",
"time_range": "2000--2020"

}
},
{
"head": "cumulative mass loss",
"relation": "contributes to",
"tail": "sea level rise",
"metadata": {
"head_type": "Indicator",
"tail_type": "Indicator",
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Original Claim Method Refuted or NEI Claim

Refuted Claims

The mean winter temperature in Wales has
shown an upward trend from 1890 to 2020.

Trend Modification The mean winter temperature in Wales has
shown a downward trend from 1890 to
2020.

The general trend line for sunshine duration
in Northern Ireland during spring suggests
a slight upward shift over time since 1890.

Exaggeration The general trend line for sunshine duration
in Northern Ireland during spring suggests
a significant upward shift over time since
1890.

Average sunshine duration in August 2021
for England was approximately 186.6
hours.

Metric Swap Average maximum temperature in August
2021 for England was approximately 186.6
hours.

NEI (Not Enough Information) Claims

The average temperature anomaly in April
2015 in Florida was around +3°F.

Conceptual Generaliza-
tion

The average temperature anomaly in April
2015 in a coastal region was around +3°F.

The average temperature anomaly in April
2015 in Florida was around +3°F.

Conceptual Generaliza-
tion

The average temperature anomaly in 2015
in Florida was around +3°F.

The average temperature anomaly in April
2015 in Florida was around +3°F.

Entity Replacement The maximum temperature anomaly in
April 2015 in Florida was around +3°F.

Table 7: Examples of generating refuted and NEI (not enough information) claims from original climate statements
using different perturbation strategies. Color highlights the modified elements (red for refuted, blue for NEI).

"time_range": "2000--2020"
}

},
{
"head": "sea level rise",
"relation": "amount",
"tail": "14 mm",
"metadata": {

"head_type": "Indicator",
"tail_type": "Physical Measurement",
"unit": "mm",
"time_range": "2020",
"temporal_granularity": "yearly",
"uncertainty": "1 mm"

}
}

]
}

D.2 KG Construction Pipeline

We construct triplets automatically using GPT-4o
(OpenAI, 2024), using the chart, caption, and the
set of supported claims as the chart summary as
inputs. We formulate prompts using a lightly con-
strained schema, instructing the model to extract
semantically grounded (h, r, t) triplets with associ-
ated metadata fields.

D.3 Self-Canonicalization with LLMs

Following extraction, we canonicalize the surface
forms of both entities and relations. Inspired by
the Extract, Define, Canonicalize (EDC) frame-
work (Zhang and Soh, 2024), we prompt the model
to define and normalize semantically equivalent

terms. The canonicalized form is extracted from
chart captions and summaries. For instance:

• “was about” → amount
• “led to” → contributes to
• “Greenland” → Greenland Ice Sheet

This normalization enables consistency across
charts and supports downstream evaluation using
structured matching.

D.4 Coverage and Format
Triplets are generated only for supported claims to
ensure factual consistency with the chart evidence.
On average, each chart yields 6–8 canonicalized
triplets. The final knowledge graphs are stored in
structured JSON files, with each entry linked to
its corresponding chart ID. These structured expla-
nations serve dual purposes: (i) enhancing model
interpretability and (ii) supporting multi-hop rea-
soning during fact verification.

These triplets capture causal and quantitative re-
lationships essential for verifying scientific claims
and provide a structured representation of the un-
derlying chart semantics.

D.5 Limitations and Future Work
While the pipeline produces semantically coherent
triplets, errors may arise from ambiguous captions
or overloaded visual encodings. In future work,
we aim to improve schema alignment with external
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scientific ontologies, introduce confidence scoring
per triplet, and extend the pipeline to cover refuted
and NEI claims for contrastive reasoning.

E Manual Evaluation for Chart-to-Table
Conversion

This design is motivated by recent work showing
that supplementing visual inputs with structured
tabular representations improves multimodal rea-
soning abilities. We aim to study whether this trend
also holds for the task of chart-based fact-checking.

To ensure the reliability of our chart-to-table
conversions using DePlot, we conduct a manual
evaluation of a representative subset of charts in
the CLIMATEVIZ dataset. We randomly sample 50
charts, stratified by chart type: 10 each from line
graph, bar chart, scatter plot, map, and pie chart.

Each generated table is evaluated against three
criteria:
Fidelity Does the table faithfully represent all rel-
evant data values from the chart (e.g., axes, legends,
numerical values)?
Omission/Misread Does the table omit or mis-
interpret any visual content (e.g., missing labels or
incorrect numeric entries)?
Hallucination Does the table introduce spurious
values or labels not present in the original chart?

Based on these criteria, we assign each chart-
table pair to one of three categories: Fully Accurate,
Minor Issues, or Major Issues.

We find that DePlot performs reliably on line and
bar charts, where the data structure is linear and
labeling is clear. It struggles more with pie charts,
maps, and scatter plots, often due to overlapping
text, spatial encoding, or small font sizes. This
evaluation provides a level of trust in DePlot out-
puts while acknowledging limitations, especially
for spatial or complex chart types.

F Experiments

The total computational time for all evaluations
was approximately 300 GPU hours.

F.1 Prompt Templates
This appendix provides the full prompt templates
used in our experiments across different settings.
Each template reflects the exact structure used to
prompt models in zero-shot and few-shot config-
urations. For few-shot settings, we include two
demonstrations per class label (support, refute, and
not enough information) to ensure balance.

F.1.1 Zero-Shot Prompt (CT, Label-Only
Output)

Instruction: You are a scientific fact-checking
assistant. Based on the chart caption and the
claim, determine whether the claim is sup-
ported by the chart, refuted by the chart, or
if there is not enough information. Respond
with one of: support, refute, or not enough
information.

Caption: Between 2000 and 2020, the Green-
land Ice Sheet experienced accelerating mass
loss, contributing to sea level rise.
Claim: The Greenland Ice Sheet saw stable
mass over the period 2000–2020.
Answer:

F.1.2 Few-Shot Prompt (CT, Label-Only
Output)

Includes two examples per label. The final query
appears after all six examples.

Example 1
Caption: Average CO2 levels rose from 370
ppm in 2000 to 412 ppm in 2020.
Claim: CO2 levels have increased between
2000 and 2020.
Answer: support

Example 2
Caption: In 2022, the UK experienced the high-
est annual mean temperature on record.
Claim: The UK recorded its coldest year in
2022.
Answer: refute

Example 3
Caption: The Arctic sea ice extent varied sig-
nificantly between 1979 and 2020, with notable
seasonal fluctuations.
Claim: Arctic sea ice was 5 million sq km in
1999.
Answer: not enough information

Example 4
Caption: Annual rainfall in Southern England
fluctuated with no clear trend over the last 50
years.
Claim: Annual rainfall in Southern England
decreased significantly since 1970.
Answer: refute
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Chart Type # Samples Fully Accurate Minor Issues Major Issues

Line Graph 10 8 1 1
Bar Chart 10 7 2 1
Scatter Plot 10 5 3 2
Map 10 4 4 2
Pie Chart 10 5 3 2

Total 50 29 13 8

Table 8: Manual evaluation of DePlot’s chart-to-table outputs across five chart types. “Fully Accurate” indicates
complete table fidelity; “Minor Issues” include small omissions or rounding mismatches; “Major Issues” involve
missing core information or hallucinated values.

Example 5
Caption: Spring temperature anomalies in Scot-
land increased slightly between 1960 and 2020.
Claim: Scotland saw the largest anomaly in
1978.
Answer: not enough information

Example 6
Caption: Average summer temperature in
Wales increased by 1.2°C from 1980 to 2020.
Claim: Summer temperature in Wales has
warmed in the past 40 years.
Answer: support

Final Query
Caption: [Tcaption]
Claim: [Tclaim]
Answer:

F.1.3 Few-Shot Prompt (CTT,
Explanation-Augmented Output)

Includes two examples per label with structured
triplet explanations. The model must generate both
reasoning triplets and the final label.

Example 1
Caption: Annual mean surface temperature in
England from 2015 to 2020.
Table:

Year Temperature (°C)
2015 9.5
2016 9.7
2017 9.6
2018 9.9
2019 10.1
2020 10.2

Claim: England’s mean surface temperature
rose steadily from 2015 to 2020.

Triplets:

• (England, Experienced, Surface Tempera-
ture Increase)

• (Surface Temperature, Trend, Increasing)

• (Time Period, Range, 2015–2020)

• (Temperature, Start Year Value, 9.5°C)

• (Temperature, End Year Value, 10.2°C)

• (Increase Amount, Computed Difference,
0.7°C)

Label: support

Example 2
Caption: Total rainfall in Wales from 2010 to
2015.
Table:

Year Rainfall (mm)
2010 1400
2011 1380
2012 1450
2013 1390
2014 1420
2015 1410

Claim: Wales received significantly less rain-
fall in 2015 compared to earlier years.
Triplets:

• (Wales, Experienced, Rainfall)

• (Time Period, Range, 2010–2015)

• (Rainfall, Value in 2015, 1410 mm)

• (Rainfall, Mean Value 2010–2014, 1408
mm)

• (Rainfall in 2015, Comparative Trend, No
Significant Decrease)
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• (Rainfall Comparison, Difference from Av-
erage, +2 mm)

Label: refute

Example 3
Caption: Annual sunshine duration in Scotland
between 1995 and 2000.
Table:

Year Sunshine Hours
1995 1100
1996 1080
1997 1095
1998 1120
1999 1090
2000 1085

Claim: Scotland had the highest annual sun-
shine duration on record in 2001.
Triplets:

• (Scotland, Recorded, Sunshine Duration)

• (Time Period, Table Coverage, 1995–2000)

• (Sunshine Duration in 2001, Availability,
Missing)

• (Max Sunshine in Table, Year, 1998)

• (Assertion Year 2001, Not Covered in Ta-
ble, True)

Label: not enough information

Example 4
Caption: Annual CO2 concentrations globally
from 2010 to 2015.
Table:

Year CO2 (ppm)
2010 390.1
2011 392.6
2012 395.4
2013 397.9
2014 399.8
2015 402.3

Claim: CO2 levels increased each year from
2010 to 2015.
Triplets:

• (Global Atmosphere, Measured, CO2)

• (Time Period, Range, 2010–2015)

• (CO2, Trend, Increasing)

• (CO2 in 2010, Value, 390.1 ppm)

• (CO2 in 2015, Value, 402.3 ppm)

Label: support

Example 5
Caption: Average spring temperatures in North-
ern Ireland from 2000 to 2005.
Table:

Year Temperature (°C)
2000 8.2
2001 8.3
2002 8.5
2003 8.7
2004 8.9
2005 9.0

Claim: Spring temperatures in Northern Ire-
land gradually increased from 2000 to 2005.
Triplets:

• (Northern Ireland, Experienced, Spring
Temperature Increase)

• (Time Period, Range, 2000–2005)

• (Spring Temperature, Trend, Increasing)

• (Spring Temperature in 2000, Value,
8.2°C)

• (Spring Temperature in 2005, Value,
9.0°C)

• (Increase Amount, Computed, 0.8°C)

Label: support

Example 6
Caption: Monthly average rainfall in Scotland
in 2022.
Table:
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Month Rainfall (mm)
Jan 120
Feb 115
Mar 90
Apr 85
May 75
Jun 65
Jul 70

Aug 80
Sep 95
Oct 110
Nov 125
Dec 130

Claim: Rainfall in Scotland was highest in
winter months during 2022.
Triplets:

• (Scotland, Observed, Monthly Rainfall)

• (Winter Months, Include, Dec–Feb)

• (Rainfall, Highest Values, Dec:130mm,
Jan:120mm, Nov:125mm)

• (Winter Rainfall, Compared to, Higher
than Summer)

• (Time Period, Year, 2022)

• (Rainfall, Seasonal Trend, Peak in Winter)

Label: support

Final Query
Caption: [Tcaption]
Table: [Ttable]
Claim: [Tclaim]
Triplets:
Label:

F.2 Table + Text Only Ablation.

To evaluate the importance of visual input in sci-
entific chart-based fact-checking, we conduct an
ablation study by removing the chart image and
providing only the structured table (generated via
DePlot) along with the chart caption and the claim
as model input. This setting, denoted as Table +
Text, isolates the contribution of the tabular and
textual modalities, allowing us to assess whether
models can accurately verify claims without access
to the original chart. While this setup preserves key
quantitative patterns through table representations,
it lacks access to spatial, visual, and stylistic cues
embedded in the chart. Our results indicate that

performance drops noticeably compared to the full
Chart + Table + Text (CTT) setting, highlighting
the complementary role of visual features in sup-
porting accurate and interpretable fact verification.

Table 9 presents the ablation results under the
Table + Text (TT) setting, where the chart image
is omitted. Across both open- and closed-source
models, we observe that performance declines mod-
erately compared to the full CTT setting, indicating
that visual input contributes complementary infor-
mation beyond structured tabular data. InternVL
2.5 and Qwen 2.5 achieve strong performance, with
InternVL reaching the highest accuracy (55.6%)
in the few-shot condition. Interestingly, Gemini
2.5 yields the best zero-shot results (53.5% accu-
racy, 53.4% F1), but performance degrades slightly
with few-shot prompting—mirroring the instabil-
ity seen in other few-shot settings. Among open-
source models, all benefit consistently from few-
shot prompting, whereas closed-source models ex-
hibit marginal gains or regressions. These results
confirm that while structured table representations
alone are effective, incorporating chart visuals re-
mains essential for optimal fact verification perfor-
mance.
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Model Setting Acc-L (TT) F1-L (TT)

Closed-source

o3 Zero-shot 47.6 43.7
Few-shot 49.2 (↑) 45.1 (↑)

GPT-4o Zero-shot 51.5 48.0
Few-shot 52.9 (↑) 49.2 (↑)

Gemini 2.5 Zero-shot 53.5 53.4
Few-shot 52.2 (↓) 52.5 (↓)

Open-source

LLaMA-4-Maverick-17B Zero-shot 47.2 45.3
Few-shot 52.5 (↑) 49.7 (↑)

InternVL 2.5-78B Zero-shot 53.3 49.1
Few-shot 55.6 (↑) 51.0 (↑)

Qwen 2.5-VL-72B Zero-shot 52.8 48.8
Few-shot 54.4 (↑) 51.2 (↑)

Table 9: Ablation study results for the Table + Text (TT) setting, where models receive only the DePlot-generated
table, chart caption, and claim, omitting the chart image. Acc-L and F1-L denote label-only accuracy and macro F1,
respectively. Arrows indicate intra-model performance change from zero-shot to few-shot. Bolded values are the
best per column.
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