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Abstract

Scaling data and model size has driven recent
advances in language modeling, but this strat-
egy falters under scenarios with strict data con-
straints, as in the BabyLM Challenge. However,
insights from training compute-optimal large
language models highlight that smaller models
trained on more data outperform larger coun-
terparts trained inadequately, emphasizing the
need for compact architectures. Furthermore,
while embedding weight tying is a common
parameter-reduction technique, we find that it
significantly diminishes linguistic competence
in compact models. In response, we explore
alternative architectural strategies that preserve
the parameter-efficiency of tied models without
sacrificing the representational benefits of un-
tied embeddings. Consequently, we introduce
SLlama, a Llama-3 architecture variant that
incorporates targeted modifications—Repeated
Reduced Hidden Size and Projection (RRHP),
Permutated Weight Attention (PWA), Shared
Projection Multi-Layer Perceptron (SPMLP),
and Layer Weight Sharing—to compress Trans-
former components. Without relying on dis-
tillation, SLlama achieves a 31.72% improve-
ment in linguistic knowledge acquisition over
the Baby Llama baseline, with a comparable
GLUE score and significantly lower parame-
ter count. These results demonstrate that well-
designed, compact models can rival larger ones
under strict data constraints.

1 Introduction

Large-scale language models (LLMs) have shown
remarkable performance across a wide array of nat-
ural language understanding tasks. This success is
often attributed to the trend of scaling both model
size and training data, a strategy epitomized by
recent architectures such as GPT-3 and LLaMA.
But reliance on massive datasets and billions of
parameters poses challenges when data availabil-
ity is limited—a scenario increasingly relevant in

Figure 1: SLlama – Llama Architecture with Reduced
Embedding, Repeated Projection, Permuted Weight At-
tention, Shared Projection MLP and Weight Sharing

controlled research settings like the BabyLM Chal-
lenge.

Hoffmann et al. (2022) offers a pivotal insight
into this problem by demonstrating that, under
fixed compute or data budgets, models with fewer
parameters but trained on more data tend to outper-
form larger counterparts trained on less data. In
contexts where data resources are limited to barely
10M tokens, it is imperative to design architec-
turally compact models that can learn efficiently
from limited data. This often spurs the adoption of
embedding weight tying as a parameter-saving tech-
nique. Yet, we find that embedding weight tying im-
pairs the linguistic competence of small models by
collapsing distinct representational roles—input en-
coding and output prediction—into a single shared
space. To address this, we investigate architectural
strategies that circumvent the need for weight ty-
ing while retaining the parameter efficiency of tied
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models and the representational flexibility of un-
tied models. Our goal is to develop compact yet
competent language models optimized for training
on just 10 million tokens—the core constraint of
the BabyLM Challenge.

Hence, we introduce SLlama, a parameter-
efficient variant of the Llama-3 architecture de-
signed to balance representational capacity with
parameter efficiency. SLlama leverages four key
architectural innovations to reduce a model’s pa-
rameter count and maximize learning from limited
data: (1) Repeated Reduced Hidden Size and Pro-
jection (RRHP), (2) Permutated Weight Attention
(PWA), (3) Shared Projection Multi-Layer Percep-
tron (SPMLP), and (4) Hidden Layer Weight Shar-
ing.

Crucially, SLlama (with 2.6M model parame-
ters) is trained without distillation of teacher mod-
els. Despite this, it achieves a 31.72% improvement
in linguistic knowledge acquisition over the Baby
Llama1 baseline (58M), maintains comparable per-
formance on GLUE, and does so with significantly
fewer parameters. These results suggest that with
thoughtful architectural design, smaller models can
not only survive but thrive in data-scarce environ-
ments.

1.1 Contributions

Our key contributions are:

1. We demonstrate that embedding weight tying,
while widely used for model compression, has
a detrimental effect on the linguistic compe-
tence of small models.

2. We propose and evaluate architectural strate-
gies that eliminate the need for weight tying
while preserving both compactness of weight
tying and representational flexibility of un-
tied weights, achieving a 31.72% improve-
ment over the Baby Llama baseline.

3. We introduce SLlama—a novel variant of
the Llama-3 architecture tailored for data-
constrained settings, which combines several
transformer compression techniques to opti-
mize performance under a 10M token con-
straint.

To ensure transparency and reproducibility, we re-
lease code, trained models, and evaluation scripts

1A student Llama Model distilled from two teacher models
Llama (360M) and GPT-2 (705M)

on GitHub2 and Hugging Face3.

2 Preliminaries

The BabyLM Challenge. Choshen et al. (2024)
hosted a second round of a shared task where the
volume of training data was restricted to 10M to-
kens. The training and evaluation data contain
words that children under the age of 5 years are
likely to have heard. This was to motivate small-
scale pretraining, which can be a sandbox for de-
veloping novel techniques for improving data effi-
ciency. The resulting models would be evaluated
on linguistic competence (BLiMP), conceptual un-
derstanding (GLUE), and general world knowledge
(Ewok).4

Among these assessments, BLiMP is of partic-
ular interest to us, as we believe that a language
model, true to its name, should exhibit meaningful
linguistic competence. Moreover, if such compe-
tence can be acquired from as few as 10 million
tokens, we believe that collecting comparable vol-
umes of data for low-density languages is a fea-
sible goal. This would open the door to training
pure language models—those untainted by data
from other languages and thus less susceptible to
cross-linguistic or cultural bias—for linguistically
faithful modeling in low-density settings.

BLiMP Evaluation Unlike HELM (Liang et al.,
2022), MMLU (Hendrycks et al., 2020), and
FLASK (Cheng et al., 2023), which emphasize
high-level task performance and alignment with
user intent, BLiMP provides a fine-grained evalua-
tion of core linguistic competence. Although older,
BLiMP offers detailed probes into phenomena such
as anaphor agreement, argument structure, island
effects, irregular forms, and ellipsis—structures
fundamental to syntactic and semantic understand-
ing across languages. While recent frameworks
reflect the evolving capabilities of large language
models, they often obscure fine-grained linguistic
diagnostics by focusing on derived abilities like
reasoning and discourse. BLiMP, by contrast, fore-
grounds the grammatical structures that underlie
these abilities, offering a clearer lens into a model’s
linguistic fluency.

Initial Experiments. Motivated by our interest
in acquiring linguistic competence from just 10

2https://github.com/aiintelligentsystems/sllama
3https://huggingface.co/aiintelligentsystems/sllama
4Since models thrive on experience, the evaluation sets

were filtered by the organizers.
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million tokens, we adopted a standard approach
of sweeping over a range of model configura-
tions—varying hidden sizes from 64 to 1,024 and
the number of decoder layers from 2 to 10—while
tying the embedding layers and language model
heads. While we initially expected the largest
model to demonstrate the strongest linguistic com-
petence, we were surprised to find that the best-
performing model had a hidden size of 1,024 and
only 4 layers. Across the 24 configurations, we
observed only weak correlations between model
size and performance. Further details on this are
given in Appendix A.

Following Hoffmann et al. (2022), which rec-
ommends doubling training tokens with each dou-
bling of model size (approximate ratio 1:2), a 10M
token budget implies an ideal model size of 5M
parameters. In practice, this ratio is often higher.
Chinchilla itself has 70B parameters trained on
1.4T tokens (1:20). Based on this, we trained two
models with a hidden size of 64 and 6 decoder lay-
ers: one with 4.4M parameters and untied weights,
closely matching the theoretical target, and another
with 2.4M parameters and tied weights, which is
closer to the practical design ratio. We show the
performance of the two models in Table 1. The
experimental results show that the untied model far
surpasses the tied model, earlier larger models, as
well as the baseline model.

Model Name Size BLiMP IoB(%)
Small Tied 2.4M 56.0% -19.76
Small Untied 4.4M 91.9% 31.72
Big Tied 120M 64.5% -7.60
Baby Llama 58M 69.8% 0.00
SLlama 2.6M 91.9% 31.72

Table 1: BLiMP scores for models of different sizes
under a 10M token training budget and the baseline
model. The model in italics is the baseline model. IoB
means Improvement over Baseline.

This early finding suggests that weight tying neg-
atively affects the linguistic competence of small
language models. While we defer a detailed ex-
planation of this phenomenon to a later section, it
is important to acknowledge its impact. Despite
this drawback, the parameter savings from weight
tying are appealing—achieving comparable perfor-
mance with a 2.4M-parameter model relative to a
4.4M-parameter model offers clear advantages at
scale. To mitigate the adverse effects of embed-
ding weight tying while preserving its parameter

efficiency, we introduce several parameter reduc-
tion techniques into different Transformer compo-
nents: Linear Hidden-Size Reduction and Projec-
tion (LHRP), Attention Hidden-Size Reduction and
Projection (AHRP), Repeated Reduced Hidden-
Size Projection (RRHP), Shared Key Query Atten-
tion (SKQA), Repeat-Reduced-Attention (RRA),
Permutated Weight Attention (PWA) and Shared
Projection Multi-Layer Perceptron (SPMLP). We
adopted existing techniques like Hidden Layer
Weight Sharing and intermediate weight reuse. In
view of empirical evidence, we streamlined these
reduction techniques. The techniques we adopted
are collectively named SLlama.

3 Model Reduction Techniques

Recent studies have focused on minimizing the
memory footprint of models by reducing parame-
ters within the embedding layer, language model
head, and MLP units (Tang et al., 2024; Liu et al.,
2024; Zhang et al., 2024b). Our investigation of
parameter reduction schemes, detailed below, fo-
cuses on the embedding layer, Feed Forward Net-
work, and the self-attention blocks of a Transformer
model.

Linear(x,A) = xAT + b (1)

where:

x ∈ Rm×hr

A ∈ Rhr×h

3.1 Embedding Parameter Reduction

Inspired by the Mixed Dimension Embeddings
(MDE) approach proposed by Pansare et al. (2022)
and Ginart et al. (2021), we explored alternatives
to embedding weight sharing by reducing the di-
mensionality of the embedding layer. Specifically,
we reduced the hidden size (h) of the embedding
layer by a factor of four (hr) . Given that the hid-
den layers of the decoder are initialized with h, a
projection scheme is required to map the reduced
embedding dimension to the original hidden size
h. We investigated three projection methods: Lin-
ear Hidden-Size Reduction and Projection (LHRP),
Attention Hidden-Size Reduction and Projection
(AHRP), and Repeated Reduced Hidden-Size and
Projection (RRHP).

LHRP employs a linear layer as described in
Equation 1, reducing the parameters from vh to
vhr. It projects the embedding into a larger dimen-
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sional space, assuming the relationship between
the small and large representations is linear. AHRP
leverages the conventional attention mechanism
described in Equation 2. Attention becomes a pro-
jector when Q,K ∈ Ra×a and V ∈ Ra×b where
a ̸= b. AHRP utilises vhr+2hr+h2/r parameters
instead of vh. Conceptually, AHRP magnifies the
cogent dimensions of the smaller representations.
Finally, RRHP repeats the reduced embedding r
times before feeding it to the decoder layers, effec-
tively duplicating the information encoded in the
smaller representation r times, hence, reducing the
parameter count by 3vhr.

3.2 Self-Attention Parameter Reduction

Optimized attention mechanisms with reduced
complexity have shown performance comparable
to standard multi-head attention (MHA) (Zhang
et al., 2024a; Kitaev et al., 2020). While prior work
addresses inference-time KV cache memory, our
focus is on reducing the parameter count of self-
attention in compact language models. Building
on earlier embedding reduction strategies, we pro-
pose three lightweight attention variants: Shared
Key Query Attention (SKQA), Repeat-Reduced At-
tention (RRA), and Permutated Weight Attention
(PWA).

The design of SKQA stems from the interpre-
tation of the attention mechanism as a similarity
selection process, which is particularly relevant in
language modeling. The attention weights are com-
puted according to Equation (2), and the attention
output is derived using Equation (3). Equation (2)
can be viewed as computing a probability distribu-
tion of inter-token similarity when K and Q are
equivalent. We investigated the feasibility of this
similarity-based attention by equating the weights
of K and Q; effectively reducing parameter count
by h2.

Attn_weight(Q,K) = softmax
(
QKT

√
dk

)
(2)

Attn(Q,K, V ) = Attn_weight(Q,K)V (3)

where:

Q ∈ Rhr×hr

K ∈ Rhr×hr

V ∈ Rhr×h

RRA, in contrast, was inspired by the Repeated
Reduced Hidden-Size and Projection reduction

technique described earlier, where Q,K, V ∈
Rh×hr also making the hidden representation
h(l) ∈ Rh×hr , which we subsequently repeat by
hr along the last dimension. Finally, PWA was mo-
tivated by the embedding layer reduction strategy
presented by Li et al. (2017); Algorithm 1 illus-
trates its implementation. PWA effectively reduces
memory demand from 4h2 to 6h.

Algorithm 1 Permutated Weight Attention

Require: h, n,m > 0
Ensure: permutation(n,m) > 3h
permutes← list of permutation(n,m)
θ ← Embedding(n, h)
q_idx← permutes[0:h]
k_idx← permutes[h:2h]
v_idx← permutes[2h:3h]
Q = Linear(x, θ[q_idx])
K = Linear(x, θ[k_idx])
V = Linear(x, θ[v_idx])
attn = Attn(Q,K, V )

3.3 MLP Block Parameter Reduction

The Feed-Forward Network (FFN) in Transformers
accounts for a large share of parameters, typically
using two linear layers: one expanding the hidden
size h to nh (with n = 3) and another projecting
back to h, totaling 6h2 parameters. Llama adds a
gated projection layer, increasing this to 7h2. To
reduce this overhead, we propose Shared Projec-
tion MLP (SPMLP), which ties the weights of the
expansion and reduction layers. We set the weights
of the latter to the transpose of the weights of the
former thereby saving 3h2 parameters.

3.4 Inter-Layer Weight Reduction Strategies

To further reduce model size, we explored two com-
mon inter-layer weight reduction techniques: layer
reuse and weight sharing. Layer reuse (Liu et al.,
2024) passes the hidden state through a layer mul-
tiple times (in our case, twice). Thus, if layer reuse
r = 2, the model is initialized with n/r layers
where n is the number of layers, effectively reduc-
ing model size by 11nh2/2 parameters provided
no reduction scheme was introduced. In contrast,
weight sharing (Lan et al., 2020) ties the weights of
multiple layers, significantly reducing the number
of parameters to 11ngh

2, where ng is the number
of groups into which the layers are divided. We im-
plemented both techniques, sharing weights across
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Figure 2: SLlama performance in zero-shot BLiMP tasks relative to Baby Llama and other larger models.

all layers in the model for the weight-sharing ap-
proach.

4 Main Experiments

Training Setup. Our experiments (both those
described in Section 2 and this section) utilized
the BabyLM challenge dataset Choshen et al.
(2024), with a complete data description available
in Warstadt et al. (2023a). After initial hyperpa-
rameter search, all pretraining employed cosine
learning rate decay with minimum and maximum
rates of 4× 10−5 and 4× 10−4, respectively. We
set the gradient accumulation to 2, batch size to
128, and sequence length to 256. Training runs
were conducted for 3,000 iterations. We used a
single NVIDIA RTX A6000 to train every model
in this study. We trained each model multiple times
to ascertain consistent results.

Baseline Model and Evaluation Tasks The
Baby Llama model (Timiryasov and Tastet, 2023),
which was among the leading solutions in the orig-
inal BabyLM challenge and serves as the state-of-
the-art baseline for the second BabyLM challenge5,
was trained using knowledge distillation from two
larger teacher models (Llama and GPT2), with the
student model reportedly outperforming the teach-
ers.

Evaluations was performed using the pipeline
provided by Choshen et al. (2024); Gao et al.

5https://github.com/babylm/
evaluation-pipeline-2024?tab=readme-ov-file

(2023), encompassing four tasks: BLiMP, BLiMP
supplement (Warstadt et al., 2023c), GLUE (Wang
et al., 2019), and Ewok (Ivanova et al., 2024).
These tasks assess linguistic competence (BLiMP),
conceptual understanding (GLUE), and general
world knowledge (Ewok).

Successive Evaluations of the reduction tech-
niques We evaluated the impact of the reduction
techniques in each model block and report the re-
sults in Table 2. Linear Hidden Reduction and Pro-
jection (LHRP), Attention Hidden Reduction and
Projection (AHRP), Repeated Reduced Hidden-
Size and Projection (RRHP) are schemes to reduce
parameter count at the embedding layer. Shared
Key Query Attention (SKQA), Repeat-Reduced-
Attention (RRA), and Permutated Weight Attention
(PWA) were applied to the self-attention imple-
mentation. Shared Projection MLP (SPMLP) was
applied to the MLP of each decoder layer. Lastly,
intermediate layer reuse and inter-layer weight shar-
ing were applied to the decoder layers.

5 Results

We begin by examining the extent to which in-
dividual reduction techniques balance parameter
efficiency and model performance. Following this,
we turn our attention to the combined application
of the techniques which use least parameters. We
refer to the combination of those techniques as
SLlama. We analyse the results with the BLiMP
(Warstadt et al., 2023c) framework.
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Model Block
Reduction
Techniques

Model
Size(M)

BLiMP
(Sup.) (%) Ewok (%) GLUE (%) Avg. (%)

Embedding Layer

LHRP 2.8814 60.47 (49.22) 57.58 63.26 57.63
AHRP 2.8820 59.02 (52.80) 56.58 62.41 57.70
RRHP 2.8803 91.94 (77.61) 57.91 63.57 72.76 ↑

Self
Attention

PWA 4.3200 91.94 (77.61) 57.52 63.47 72.64
PWAR 2.7800 91.94 (77.61) 57.76 63.02 72.58 ↑
RRA 4.3400 59.20 (52.51) 57.88 63.33 58.23
RRAR 2.8100 62.28 (51.65) 57.87 62.83 58.66
SKQA 4.4200 91.94 (77.61) 58.25 63.18 72.75
SKQAR 2.8800 91.94 (77.61) 57.71 63.75 72.75

Decoder Layer

Reuse 2.6700 91.94 (77.61) 57.84 63.83 72.81
ReuseS 2.6700 91.94 (77.61) 57.63 62.40 72.41
Share 2.6300 91.94 (77.61) 57.76 63.14 72.62
ShareS 2.6100 91.94 (77.61) 57.22 62.33 72.28 ↑

Table 2: Performance of LlaMA-based models with different reduction techniques applied at various model
blocks. Upward arrows (↑) mark the final choices within each block. Gray shading indicates that a technique uses
the selected technique from the previous block. TechniqueR denotes the use of Repeated Reduced Hidden-size
Projection (RRHP), while TechniqueS denotes Shared Projection MLP (SPMLP).

5.1 Comparison of Reduction Techniques

Of the three reduction techniques applied to the
embedding layer, RRHP has the optimal balance
of reduction and performance as demonstrated in
Table 2. Recall that, for RRHP, we divide the hid-
den dimension by four then repeat for further pro-
cessing. This implies that the model learns salient
representations of tokens, which when repeated,
are sufficient to undertake down-stream tasks. In
further experiments, we disregarded LHRP and
AHRP.

At the self attention block, PWA uses the small-
est number of parameters while maintaining a com-
petitive overall performance, closely followed by
SKQA, as shown in Table 2. Relative to SKQA,
PWA reduces parameter count by a larger factor but
suffers a performance drop. Comparing RRPH to
PWAR and SKQAR, the performance of the latter
only dropped by 0.01 while that of PWAR dropped
by 0.18. We consider this drop as a weakness of
PWA. However, its gain in parameter reduction
compensates for its weakness. We disregarded
RRA and SKQA from subsequent experiments.

For the MLPs, although we observe a minor
decline in overall performance when SPMLP is in-
cluded in the architecture, the parameter reduction
remains compelling. Hence, we include SPMLP
in the SLlama architecture. Furthermore, Table 2
includes the performance of models that employ
intermediate layer weight reuse and layer weight
sharing in conjunction with SPMLP . The macro-

average scores across all models show minimal
variation. Thus, the parameter reduction achieved
through weight-sharing presents a compelling ad-
vantage. Note that the discrepancies introduced by
PWA and SPMLP in the overall performance of
RRPH variants emerge from the GLUE scores and
not the BLiMP scores. This signifies that our model
reduction techniques are optimised for linguistic
competence with a potential slight degradation of
conceptual competence.

SLlama Architecture The SLlama architecture
integrates reduction techniques with least param-
eter count while preserving competitive6 perfor-
mance. Specifically, SLlama combines Repeated
Reduced Hidden Size and Projection (RRHP), Per-
mutated Weight Attention (PWA), Shared Projec-
tion Multi-Layer Perceptron (SPMLP), and Layer
Weight Sharing to achieve architectural compact-
ness. Compared to a similar configuration of Llama
architecture, SLlama achieves a 40% reduction in
parameter count without compromising linguistic
competence.

5.2 Comparison with Baselines and other
Models

We compared SLlama with Baby Llama (58M, dis-
tilled), OPT (125M), RoBERTa (base), T5 (base),
Llama2 (58M), GPT-2 (705M) in Figures 2 and
3. All models are trained on the same BabyLM

6By competitive, we mean the drop in performance is less
than 1.0
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Figure 3: Comparing SLlama with other models on
SuperGLUE. All models are trained on the 10M corpus.

challenge dataset. Note the superiority of SLlama
architecture over other models in BLiMP tasks
maintaining the prowess of the base Llama ar-
chitecture despite size reduction. Compared to
Baby Llama (58M) (Timiryasov and Tastet, 2023),
SLlama (2.6M) has around 20× fewer parameters
and improves linguistic competence by 31.72%
without any knowledge distillation. It also main-
tains a comparable GLUE score without hyperpa-
rameter tuning.

We further evaluated Llama-3.2-3B-Instruct
(Grattafiori et al., 2024) on the BLiMP benchmark
(Warstadt et al., 2023c) in order to provide a strong
baseline for comparison. Interestingly, despite its
substantially larger parameter count and extensive
pretraining, Llama-3.2-3B-Instruct achieved only
81.79% on BLiMP and 78.82% on the BLiMP
supplement. By contrast, our compact 2.6M pa-
rameter model reached 91.94% and 77.61%, re-
spectively. This result is striking: it shows that
under small-data conditions, carefully designed
lightweight models can not only remain competi-
tive with, but in some cases even outperform, much
larger instruction-tuned models. Rather than contra-
dicting our central claim, these findings accentuate
it: given limited supervision, aligning model ca-
pacity to dataset size is more effective than scaling
parameters indiscriminately.

SLlama’s Strong Generalization Across Core
Grammar The BLiMP tasks span syntactic,
morphological, semantic, and pragmatic domains.
SLlama achieves near-perfect accuracy on core
grammatical phenomena such as anaphor agree-
ment, filler-gap dependencies, irregular forms,
and quantifier interpretation. It also excels in
subject–auxiliary inversion (99.9%) and binding

(99.98%). Following the observations of Warstadt
et al. (2023c), this performance suggests that
SLlama effectively encodes core syntactic depen-
dencies and morphological regularities despite its
small size. Such strong generalization indicates
that, with targeted architectural reductions, even
highly compact models can acquire grammatical
competence typically associated with much larger
models.

Furthermore, we assess out-of-domain gener-
alization, which provides a more stringent test
of model robustness. To this end, we evaluate
SLlama, Baby Llama, and other baseline archi-
tectures trained on the BabyLM dataset against
the MMLU benchmark (Hendrycks et al., 2020).
MMLU consists of high school–level examination
questions, a domain that lies far outside the scope
of the BabyLM training corpus. As shown in Ta-
ble 3, SLlama demonstrates a notably stronger gen-
eralization capacity compared to larger-parameter
baselines, reinforcing the view that compact mod-
els can achieve competitive performance even un-
der extreme domain transfer.

Improvements Over Comparable Models
Compared to Baby LLaMA (58M, distilled) and
even LLaMA-360M, SLlama frequently outper-
forms across categories: 1. Filler-gap: SLlama
(100%) > Baby LLaMA (71.8%) > LLaMA-360M
(70.6%) 2. NPI licensing: SLlama (99.11%) >
LLaMA-360M (57.3%) 3. Island effects: SLlama
(99.95%) > LLaMA-360M (50.4%) These suggest
that scaling down parameters does not necessarily
reduce linguistic competence, and may even
improve it when guided by effective architectural
design.

6 Discussion

We provide an explanation for the degradation in
linguistic performance caused by weight tying and
discuss how the employed reduction techniques
shed light on language processing dynamics in
parameter-efficient architectures.

6.1 Degraded Linguistic Competence with
Weight Tying

By weight tying, we refer to the practice of sharing
parameters between the input embedding matrix
and the language model output head. As demon-
strated in Table 1, this technique degrades linguistic
competence in small models—a phenomenon war-
ranting further investigation. Notably, the findings
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Group
SLlama

(2.6M) (%)
Baby Llama
(58M)(%)

Baby Llama-2
(345M)(%)

SmolLM135
(135M)(%)

Humanities 0.2339 0.2462 0.2527 0.2472
Social Sciences 0.3063 0.2213 0.2199 0.2222
STEM 0.2833 0.2200 0.2249 0.2191
Other 0.2559 0.2420 0.2389 0.2402
MMLU Overall 0.2698 0.2324 0.2341 0.2322

Table 3: Performance of SLlama and baseline models on the MMLU benchmark. Scores are reported as accuracy
across subject groups and overall. SLlama (2.6M parameters) achieves competitive or superior performance relative
to models more than 50× larger, underscoring the efficiency of compact architectures in low-resource regimes. All
models are trained on the BabyLM dataset.

of Eldan and Li (2023); Press and Wolf (2017);
Mnih and Teh (2012) offer insights that may justify
this degradation.

Mnih and Teh (2012) hypothesized that when
tying the embedding weights, rows correspond-
ing to semantically similar words should exhibit
near-identical representations—such that the in-
put embedding encodes synonyms in a comparable
manner, while the output embedding assigns sim-
ilar score distributions to interchangeable words.
Expanding on this, Press and Wolf (2017) empir-
ically demonstrated that tying input and output
embeddings produces a joint representation more
closely aligned to the output embedding of an un-
tied model.

However, their findings also suggest that untied
embeddings evolve into distinct representations.
By compressing these distinct roles into a shared
space, weight tying limits the model’s ability to re-
tain rich input representations essential to linguistic
competence.

Furthermore, Eldan and Li (2023) confirmed that
the embedding and shallow layers of a model host
most linguistic information. Given that the poor
performance of tied Llama are pronounced on lin-
guistic evaluation, we conclude that the drop in
performance is due to the observation of Press and
Wolf (2017); that is, the embedding aligns more to
the output layer and has lost salient linguistic in-
formation. Thus, empirically, untying embeddings
improves performance on linguistic tasks for small
language models.

This raises the question: would linguistic perfor-
mance improve without reducing the hidden size?
In practice, no—LLaMA models with a 64×6 con-
figuration and those with larger hidden sizes but
tied weights perform similarly, as shown in Table 4.

6.2 Implications of the Reduction Techniques

At the embedding layer, LHRP reveals that linguis-
tic information encoded in the embedding layer can-
not be linearly projected into a higher-dimensional
space without incurring a loss of critical content.
Similarly, even the more expressive attention mech-
anism fails to reliably upscale linguistic represen-
tations without degradation. In contrast, the ef-
fectiveness of RRHP suggests that simple repeti-
tion, rather than projection, offers a more viable
path for preserving and extending learned linguis-
tic representations. Shared Key-Query Attention
(SKQA) reframes self-attention as a linguistic oper-
ation based on token similarity. It enforces symme-
try by sharing the key and query weight matrices.
While future work may explore omitting one ma-
trix entirely, such simplifications require careful
evaluation. SKQA may also be less effective in
asymmetric tasks like machine translation, where
source–target distinctions are crucial.

Additionally, while repetition of learned em-
beddings (as seen in RRHP) has proven effective,
our experiments with Reduced Repeated Attention
(RRA) demonstrate that modifying the attention-
defining neurons—particularly by altering or com-
pressing them—can significantly impair model per-
formance. This highlights a key asymmetry: em-
bedding representations tolerate structural repeti-
tion, whereas the attention mechanism is more sen-
sitive to architectural perturbations during language
processing.

6.3 The Vicious Cycle

While RRHP in the embedding layer yields the
clearest gains in our setting, the effect of other
reduction techniques may only emerge at larger
depths and widths. Scaling, however, is limited by
both data and compute—data balance: as shown
by Hoffmann et al. (2022), smaller models trained
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on more data outperform larger ones trained on
less. With only 10M tokens, enlarging the model
would lead to under-training, while enlarging the
dataset would break comparability with BabyLM.
This dilemma motivates our focus on evaluating
reduction techniques strictly under BabyLM’s data-
scarce conditions, where RRHP delivers meaning-
ful improvements. Future work with larger data
regimes will be needed to fully assess the other
methods.

7 Related Work

As large models like PaLM (Chowdhery et al.,
2022) and GPT-3 (Brown et al., 2020) push perfor-
mance boundaries, their computational demands
have prompted interest in data-efficient and com-
pact alternatives. Data efficiency efforts include
dataset reduction via k-means clustering (Kaddour,
2023), deduplication (Lee et al., 2022), and high-
quality data curation (Mueller and Linzen, 2023; El-
dan and Li, 2023; Gunasekar et al., 2023; Huebner
et al., 2021), with studies emphasizing the role of
data diversity (Lu et al., 2024; Mekala et al., 2024).
We build on this by training SLlama under the
10M-token constraint of the BabyLM Challenge
(Warstadt et al., 2023b,a; Choshen et al., 2024),
highlighting performance under limited data.

Compression techniques such as ROBE (Desai
et al., 2022), MEmCom (Pansare et al., 2022),
Mixed Dimension Embeddings (Ginart et al.,
2021), and Slim Embeddings (Li et al., 2017) have
reduced large embedding table sizes. For Trans-
former models, inter-layer weight sharing and fac-
torized embeddings (Lan et al., 2020) helped re-
duce BERT’s footprint (Devlin et al., 2019). Con-
currently, smaller models like OPT (Zhang et al.,
2022), Phi (Gunasekar et al., 2023), and PanGu-π
(Tang et al., 2024) show that careful architectural
design—often overlooked under fixed-compute as-
sumptions (Kaplan et al., 2020)—can yield com-
petitive performance. SLlama continues this trend,
introducing novel reductions that preserve linguis-
tic competence.

Weight sharing, though common (Tang et al.,
2024; Lan et al., 2020; Ainslie et al., 2023), has
uneven effects. While normalized shared embed-
dings can mitigate performance loss (Liu et al.,
2020), we find that tying input-output embeddings
degrades linguistic quality. In contrast, sharing
attention weights (e.g., key–query) retains expres-
sivity, suggesting that selective weight sharing is

key to balancing efficiency and capability.

8 Conclusion

We introduced SLlama, a parameter-efficient
adaptation of the LLaMA architecture designed
for data- and scale-constrained settings like the
BabyLM Challenge. Combining reduction strate-
gies—Repeated Reduced Hidden Size and Pro-
jection (RRHP), Permutated Weight Attention
(PWA), Shared Projection MLP (SPMLP), and
Layer Weight Sharing—we show that small models
can achieve strong linguistic performance without
relying on embedding weight tying, which we find
degrades linguistic competence.

Our findings suggest that repetition-based pro-
jections offer a more robust path for preserving lin-
guistic representations than linear expansion or tied
embeddings. Moreover, our analysis of SLlama’s
components offers a deeper understanding of how
architectural efficiency and linguistic expressivity
interact, revealing design principles that extend be-
yond scaling.

SLlama contributes both a performant architec-
ture and a conceptual framework for future explo-
ration of efficient language models—particularly
in low-resource or edge deployment scenarios.

Limitations

While this study demonstrates promising results,
several limitations must be considered. Our find-
ings are primarily based on the LLama architecture,
and while certain trends may generalize, further
research is needed to assess the applicability of
our techniques across diverse model architectures.
Additionally, the BabyLM dataset, while useful
for studying small-data training, lacks linguistic
diversity, limiting the evaluation of our models to
English. Future work should explore performance
on more diverse datasets, including low-resource
languages, and assess the models’ ability to acquire
commonsense and factual knowledge.

Moreover, real-world deployment challenges re-
main, particularly regarding performance on edge
devices, where quantization-related degradation
has yet to be fully examined. The scalability of
our compression techniques to larger models and
datasets also requires further investigation. Ulti-
mately, striking an optimal balance between model
efficiency and linguistic richness is an ongoing
challenge, and future research should focus on re-
fining model reduction strategies to ensure robust
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language representation while maintaining compu-
tational efficiency.
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A Initial Experiments of Model Sweep

Characterizing the Llama Architecture To iso-
late the effect of distillation, we conducted exper-
iments to characterize the inherent capabilities of
the Llama architecture and to establish the rela-
tionship between its key configuration parameters
(hidden size, intermediate size, and number of lay-
ers) and performance on the aforementioned eval-
uation tasks. Following the recommendations of
Tang et al. (2024), we tie the embedding layer and
language model head, a widely used strategy to im-
prove parameter efficiency in small-scale language
models. Starting with a hidden size of 64 (to mini-
mize resource consumption), we varied the number
of layers from 2 to 12.

We observed that the macro-average scores for
models with six and eight layers were similar, as
were those for models with ten and twelve layers.
Based on this, we focused subsequent experiments
on layer counts of 2, 4, 6, and 10, while logarithmi-
cally increasing the hidden size from 64 to 1,024.
The model with a hidden size of 512 and 2 layers
achieved the best average macro score. However,
the model with hidden size 64 and 6 layers obtains
a competitive macro-averaged score while requir-
ing less time to train and evaluate. In order to
minimize computational cost, memory usage, and
experimental time, subsequent experiments were
based on the latter configuration (hidden size 64
and 6 layers). Finally, to ascertain the plausibility
of weight tying, we trained a 64 by 6 model with
untied weights.

Characterizing the Llama Architecture We
present the results of the experiment to characterize
the inherent ability of Llama architecture without
distillation in Table 1. We observed that the rela-
tionship between macro-averaged scores and model
size is not direct. Further analysis presented in Fig-
ure 4, shows the correlation between model size
parameters (hidden size and number of layers) and
the model’s performance across the different eval-
uation dimensions (linguistic competence, world
knowledge, and conceptual understanding). While
statistical significance was generally weak, several
trends emerged: 1) a weak but consistent positive
correlation between hidden size and BLiMP score
(linguistic knowledge); 2) an inconsistent positive
relationship between hidden size and GLUE score;
3) a strong and consistent negative correlation be-
tween hidden size and world knowledge; 4) an in-
consistent positive trend between the number of lay-

ers and linguistic competence; 5) a weak positive
trend between the number of layers and conceptual
understanding; and 6) a noticeable weak negative
trend between the number of layers and linguistic
competence. While these observations suggest the
need to carefully balance horizontal (hidden size)
and vertical (number of layers) scaling, particularly
while training on limited data, more data is needed
to fully concretize these claims. However, the pos-
itive impact of increasing layer count for smaller
hidden sizes was evident, supporting previous find-
ings of Liu et al. (2024).

The results in Table 4 influenced our hyper-
parameter selection.

B Architectural Comparison

We compare different language model architectures
and present them in Table 5. All models are trained
on the same dataset but for different epochs.

C SuperGLUE scores

We also include the performance of other architec-
ture reported in other studies in Table 6. While
SuperGLUE is not our focus in this work, it is note-
worthy to demonstrate that the architecture main-
tains a reasonable degree of conceptual competence
relative to the larger models.
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Figure 4: Correlation of hidden size and number of layers to BLiMP and GLUE scores with Spearman correlations
of 0.38 and 0.88, respectively.

Model Hidden Size Layers BLiMP GLUE EWoK BLiMP-Sup Macro Avg.
1 1,024 10 59.75% 63.51% 54.09% 49.45% 56.70%
2 1,024 2 59.10% 62.33% 53.86% 52.31% 56.90%
3 1024 4 64.53% 65.24% 53.30% 48.47% 57.89%
4 1,024 6 54.21% 65.25% 53.94% 50.87% 56.07%
5 128 10 60.72% 64.99% 56.14% 48.48% 57.58%
6 128 2 54.37% 63.89% 55.96% 48.51% 55.68%
7 128 4 54.68% 65.02% 56.10% 53.65% 57.36%
8 128 6 55.89% 63.70% 56.96% 48.48% 56.26%
9 256 10 59.32% 64.44% 55.65% 51.32% 57.68%
10 256 2 57.20% 64.57% 55.13% 56.06% 58.24%
11 256 4 58.03% 64.50% 55.72% 50.43% 57.17%
12 256 6 55.67% 63.34% 55.96% 49.66% 56.16%
13 512 10 58.60% 64.41% 55.13% 46.85% 56.25%
14 512 2 62.26% 63.50% 55.36% 53.28% 58.60%
15 512 4 63.44% 63.57% 55.73% 48.21% 57.74%
16 512 6 62.37% 64.07% 55.59% 51.58% 58.40%
17 64 10 59.54% 64.44% 58.01% 49.77% 57.94%
18 64 2 53.74% 62.90% 57.99% 55.07% 57.42%
19 64 4 52.85% 63.34% 57.91% 48.00% 55.52%
20 64 6 57.03% 62.20% 57.02% 48.71% 56.24%
21 768 10 59.87% 62.75% 54.85% 49.57% 56.76%
22 768 2 59.31% 63.06% 54.48% 54.54% 57.85%
23 768 4 56.08% 65.51% 54.07% 53.49% 57.29%
24 768 6 57.49% 63.67% 53.74% 53.18% 57.02%

Table 4: Evaluation scores across models with varying hidden sizes and number of layers. Best values per metric
are in bold.
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Task
OPT

(125M)
RoBERTa

(base)
T5

(base)
LLaMA2

(58M)
LLaMA2
(360M)

GPT-2
(705M)

BabyLlama
(58M)

SLlama
(2.6M)

Anaphor Agr. 63.80 81.50 68.90 87.00 87.60 89.60 89.80 100.00
Arg. Structure 70.60 67.10 63.80 72.30 73.50 73.50 73.10 74.98
Binding 67.10 67.30 60.40 71.20 72.10 71.50 72.70 99.98
Control/Raising 66.50 67.90 60.90 67.50 67.40 68.40 67.50 80.11
Det.-Noun Agr. 78.50 90.80 72.20 87.80 89.60 87.40 90.80 95.03
Ellipsis 62.00 76.40 34.40 67.30 68.50 69.90 73.30 73.13
Filler-Gap 63.80 63.50 48.20 70.90 70.60 70.20 71.80 100.00
Irregular Forms 67.50 87.40 77.60 74.10 68.90 83.10 93.10 100.00
Island Effects 48.60 39.90 45.60 57.30 50.40 51.60 51.20 99.95
NPI Licensing 46.70 55.90 47.80 51.10 57.30 50.50 56.50 99.11
Quantifiers 59.60 70.50 61.20 64.20 59.00 69.80 73.30 100.00
Subj.-Verb Agr. 56.90 65.40 65.00 73.00 69.70 67.50 75.40 87.29
Hypernym 50.00 49.40 48.00 48.70 49.40 49.20 49.30 79.45
QA Congr. (easy) 54.70 31.30 40.60 50.00 53.10 56.20 51.60 57.81
QA Congr. (tricky) 31.50 32.10 21.20 32.70 41.80 45.50 41.80 50.91
Subj.-Aux. Inversion 80.30 71.70 64.90 77.40 84.30 81.70 88.50 99.90
Turn Taking 57.10 53.20 45.00 63.90 68.60 65.70 66.10 100.00

Table 5: Comparative performance of SLlama and larger models on BLiMP tasks. Results for baseline models
(OPT, RoBERTa, T5, LLaMA, GPT-2, and Baby LLaMA) are taken from the original baseline paper. All models,
including SLlama, are trained on the same 10M-token dataset.

Task
OPT

(125M)
RoBERTa

(base)
T5

(base)
Baby Llama

(58M)
SLlama
(2.6M)

CoLA (MCC) 15.2 25.8 11.3 14.3 6.1
SST-2 81.9 87.0 78.1 87.2 80.1
MRPC (F1) 72.5 79.2 80.5 82.0 81.8
QQP(F1) 60.4 73.7 66.2 83.0 73.2
MNLI 57.6 73.2 48.0 72.9 59.7
MNLI-mm 60.0 74.0 50.3 73.7 31.7
QNLI 61.5 77.0 62.0 81.1 61.8
RTE 60.0 61.6 49.4 61.6 48.2
BoolQ 63.3 66.3 66.0 67.2 64.0
MultiRC 55.2 61.4 47.1 58.9 60.0
WSC 60.2 61.4 61.4 61.4 63.5

Table 6: Evaluation results on SuperGLUE. The reported scores are accuracy values except when specified otherwise.
All models are pretrained on the training dataset.

Parameter Value
gradient_accumulation_steps 2
batch_size 128
block_size block_size
dropout 0.1
learning_rate 4e-4
max_iters 3000
weight_decay 0.0
warmup_iters 200
lr_decay_iters 5000
min_lr 4e-5
train_or_dev train

Table 7: Training configuration for SLlama experiments
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