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Abstract

Recent advancements in tool-augmented large
language models have enabled them to interact
with external tools, enhancing their ability to
perform complex user tasks. However, existing
approaches overlook the role of personalisa-
tion in guiding tool use. This work investi-
gates how user preferences can be effectively
integrated into goal-oriented dialogue agents.
Through extensive analysis, we identify key
weaknesses in the ability of LLMs to person-
alise tool use. To this end, we introduce TAPS,
a novel solution that enhances personalised tool
use by leveraging a structured tagging tool and
an uncertainty-based tool detector. TAPS sig-
nificantly improves the ability of LLMs to in-
corporate user preferences, achieving the new
state-of-the-art for open source models on the
NLSI task1.

1 Introduction

Successfully completing complex user tasks
through conversation remains a fundamental chal-
lenge for goal-oriented dialogue agents. Consider
a user interacting with a task assistant to book a
last-minute flight. To effectively assist the user, the
system must (i) retrieve real-time flight availability,
(ii) find the flight that fits user constraints, includ-
ing airline, layover, and time preferences, (iii) and
execute the booking seamlessly, possibly across
multiple platforms. Despite their success in many
areas, Large Language Models (LLMs) are still
unable to fulfil these requirements on their own,
and there have been many attempts to address these
challenges throughout the years (Goel et al. 2018;
Muise et al. 2019; Agarwal et al. 2022, inter alia).

Recently, a growing number of studies have
emerged on tool-augmented language models
(TALMs), allowing LLMs to access real-world
APIs to perform a wide range of tasks (Parisi et al.,
2022; Schick et al., 2023). Tool use has enabled the

1The code is available at github.com/grill-lab/taps.

development of autonomous goal-oriented agents
capable of interacting with real-world environ-
ments and accessing external data to seamlessly
plan and execute complex user tasks (Mialon et al.,
2023; Qin et al., 2023; Liu et al., 2024a). Although
there have been efforts to incorporate tool use into
conversational agents (Farn and Shin, 2023; Li
et al., 2023; Lu et al., 2024), most of the research
in the area neglects conversational history and user
preferences. Recognising these can enhance the
user experience by tailoring the responses to in-
dividual users and improving the relevance and
efficiency of task execution, especially in complex
and dynamic environments. Moghe et al. (2024)
attempt to bridge this gap by introducing the Natu-
ral Language Standing Instructions dataset (NLSI).
To the best of our knowledge, it is the first work
that addresses the problem of personalisation in
TALMs, enabling more coherent and context-aware
tool use through standing instructions, phrases that
prescribe model behaviour based on the specific
scenario. While the work provides a strong basis
for further research on tool use personalisation, it
focuses on dataset construction and provides only
simple baselines.

In this work, we ask how we can effectively lever-
age user preferences to personalise and enhance
user-agent interactions. We conduct an extensive
behavioural analysis of commonly used LLMs on
the NLSI dataset and demonstrate their limited abil-
ity to accurately infer tool calls in the presence of
user preferences, leading to semantic errors, miss-
ing arguments, and hallucinations. We hypothesise
that introducing a high-quality intermediate repre-
sentation between natural language and code can
significantly enhance model performance and min-
imise said errors. To this end, we propose TAPS
– Tool-Augmented Personalisation via Structured
Tagging, the first solution that leverages a struc-
tured tagging tool for data augmentation as well as
an internal tool detection mechanism for person-
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Standing Instructions (user 
preferences)
●If I am looking for flights I 

prefer to fly American Airlines
●If I ask for restaurants, my 

default location is San Leandro
●If restaurant price range is 

cheap then look for Persian 
cuisine

User query
I’m hungry, find something not 
too fancy please

APIs
GetMovies(...)
GetRestaurants(...)
GetFlights(...)

Interpretation
GetRestaurants(
  city="San Leandro",    
  cuisine="Persian", 
  price_range=" cheap"
)

● If I ask for restaurants, my 
default location is San Leandro

● If restaurant price range is 
cheap then look for Persian 
cuisine

Selection

LLM

Figure 1: Example of the NLSI task. Given a user
query and user-specific list of preferences, and API
documentation, the model has to parse the input into
structured output. The model has to (i) select, which
preferences are relevant for the current query and (ii)
interpret the utterance into one or several API calls.
The diagram is a replica of Figure 1 from Moghe et al.
(2024).

alised tool use in a dialogue setting.
Our contributions are: (i) we analyse common

LLMs’ performance on the personalised tool-use
task and identify their current weaknesses; (ii) we
propose structured tagging, an annotation scheme
that bridges natural language and API calls by hier-
archically marking functions and their arguments
within user preferences, (iii) we introduce TAPS,
a tuning-free approach that uses a structured tag-
ging tool and an uncertainty-based tool detector to
facilitate integration of user preferences into tool-
augmented goal-oriented dialogue agents; (iv) we
demonstrate that our method improves the effective-
ness of LLMs on the task, achieving state-of-the-art
results for open-source models on the interpreta-
tion subtask of NLSI with an increase of +16.5% in
exact match (EM) and +16.9% in F1. Our findings
suggest TAPS’s potential for generalisation to other
goal-oriented tasks, where reductions in errors such
as hallucinations and missing arguments could im-
prove system reliability and user experience. With
this work, we hope to inspire future research on
tool-use personalisation.

2 Task Setup

2.1 Task Definition
The NLSI task is defined as follows. Given a

user query, standing instructions, and API doc-
umentation, an agent must generate up to three
API calls to fulfil the user request (Figure 1). The

standing instructions constitute the user profile –
their preferences regarding different aspects, e.g.,
favourite cuisine, preferred airline, or music taste.
The task requires complex reasoning to integrate
query details with user preferences to generate ap-
propriate API calls. Ultimately, the task consists
of two subtasks: selection, identifying the subset
of instructions relevant to the current query; and
interpretation, generation of API calls to perform
the user task using the user query, user profile, and
API documentation.

This work focuses on the interpretation subtask,
which is crucial for improving LLMs’ ability to
handle contextualised tool use – a key challenge
in real-world applications. Successful interpreta-
tion requires an agent to understand the user intent,
reason over the conversation and user profile, and
identify the appropriate APIs, necessary arguments,
and their values. To ensure a controlled evaluation,
we provide LLMs with the correct selected stand-
ing instructions, allowing them to access only the
relevant user profile information.

2.2 Evaluation

We follow the evaluation setup, described in
Moghe et al. (2024) to assess model performance.
We convert each API call into (function name, ar-
gument name, value) triplets, or slots, to compute
the metrics and report exact match (EM), slot-wise
F1, precision, and recall.

2.3 Behaviour Analysis

Model Source Size Instr.-Tuned Tools

CodeLlama
Rozière et al. (2024)

7B ✗ ✗

CodeLlama-Inst 7B ✓ ✗

Llama-2
Touvron et al. (2023)

7B ✗ ✗

Llama-2-Chat 7B ✓ ✗

Llama-3
Dubey et al. (2024)

8B ✗ ✗

Llama-3-Inst 8B ✓ ✗

Mistral-3
Jiang et al. (2023)

7B ✗ ✓

Mistral-3-Inst 7B ✓ ✓

OLMo-2-7B-Inst OLMo et al. (2024) 7B ✓ ✗

GPT4o OpenAI et al. (2024) unk ✓ ✓

Table 1: LLMs used in our work.

The challenge of NLSI is incorporating several
aspects: models must not only accurately identify
the users’ intended task but also select relevant
information from both the current user query and
the user profile, and effectively utilise it to generate
the appropriate API call. An additional complexity
arises from the limited availability of training data,
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Model EM F1 Prec. Rec.

CodeLlama 16.3 55.8 66.9 49.5
CodeLlama-Inst 18.1 57.0 68.3 49.7
Llama-2 10.3 51.0 51.3 52.0
Llama-2-Chat 10.3 45.6 53.2 41.7
Llama-3 10.1 52.2 47.5 69.3
Llama-3-Inst 32.5 70.3 68.5 77.97
Mistral-3 9.7 54.4 50.1 66.7
Mistral-3-Inst 32.7 65.5 67.6 65.5
OLMo-2-7B-Inst 10.8 43.0 44.6 46.4
GPT4o 50.4 84.4 84.4 87.2

Table 2: Comparison of baseline models on the NLSI
test set. EM: exact match. F1: Slot-wise F1 score.
Prec.: precision. Rec.: recall. All scores are in %. Best
performance is in bold, second best is underlined.

which significantly constrains our ability to use
learnable methods to solve this task.

Moghe et al. (2024) evaluate various language
models on NLSI but focus on a simple in-context
learning (ICL) setting. We extend this analysis
by investigating the behaviour of common LMs,
summarised in Table 1. Our experiments prioritise
7B/8B models to balance efficiency in low-resource
settings and latency – critical factors for interac-
tive task assistants – while recognising that larger
models do not universally yield proportional per-
formance gains despite their significantly higher
resource demands. We compare our approach
to GPT4o (gpt-4o-2024-08-06), a significantly
larger model, to assess capability and computa-
tional cost trade-offs. We follow Moghe et al.’s
evaluation setup, using their prompt in 1-shot set-
ting (see Appendix F) and report results in Table 2.

2.3.1 Model Comparison
Effect of Model Size GPT4o demonstrates the
highest scores across all evaluated metrics, suggest-
ing some innate ability to infer API calls from user
queries given their preferences. All smaller open-
source models underperform significantly, high-
lighting the need for better and more effective in-
terpretation techniques.

Pre-Training and Post-Training Effects A com-
parison of instruction-tuned models with their base
counterparts shows that instruction fine-tuning can
offer modest performance gains. However, the
inferior performance of the instruction-optimised
Llama-2-Chat relative to its base version indicates
that instruction fine-tuning does not universally re-
sult in improvements and may sometimes impede
performance. Notably, we did not optimise the
prompts for each model, which could affect model

performance and lead to sub-optimal results. The
significant drop in the scores of CodeLlama and
Llama-2 models compared to others implies that
optimising LLMs for tool use enhances their abil-
ity to handle complex interpretation tasks, allowing
them to better integrate various input sources and
produce accurate function calls.

The substantial gap between the EM and F1
scores across all models shows that while they can
produce plausible API calls, they struggle to accu-
rately incorporate all necessary data when translat-
ing natural language into executable code. Given
the lower scores of some models, we focus on
Mistral-3-Inst, Llama-3-Inst, and GPT4o in
our further experiments.

2.3.2 Effect of Example Complexity
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Figure 2: Average F1 scores of baseline models per each
reasoning type. All scores are in %.

NLSI includes examples of varying difficulty
based on the reasoning required to incorporate
the standing instructions into the response (see
Section 3.1. in Moghe et al. (2024) for a de-
tailed description of the types). Figure 2 demon-
strates that while GPT4o is able to consistently
score above 75% F1 on all reasoning types, open-
source models fall behind. Both Mistral-3-Inst
and Llama-3-Inst can effectively follow simple,
straightforward standing instructions where each
argument of the final API call directly corresponds
to one instruction (PLAIN, CONFLICT), suggesting
some capability to solve the task. However, they
struggle with cases that require reasoning across
multiple domains (MULTIDOMAIN) or incorporat-
ing multiple preferences (MULTIPREFERENCE).
All models achieve lower scores when no instruc-
tions are provided (NOINSTRUCTIONS).
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Figure 3: Distribution of errors on a sample of baseline
predictions.

2.3.3 Qualitative Analysis

Similarly to Moghe et al. (2024), we manu-
ally annotate a sample of 100 predictions for each
model and perform their qualitative analysis. We
classify the errors into several categories (Table 9
in Appendix D) and present the results in Figure 3.

Open-source models frequently confuse seman-
tically similar function and argument names (par-
ticularly Mistral-3-Inst, where the error is per-
sistent on 50% of the examples). This results in
semantic substitution errors, where predictions are
correct in meaning but deviate from documentation
(e.g., using argument city from GetRestaurants
instead of expected location in GetTravel). 35-
75% of examples include hallucinations, making
it the most common error type for Llama-3-Inst
and GPT4o. Hallucinations primarily involve the
generation of extra arguments and the creation of
new functions. We also observe value formatting
issues, ranging from extracting part of the correct
entity to canonicalisation issues, when models in-
correctly unify date and time formats, which is
common for GPT4o (over 25%). Often, LLMs ig-
nore available information, missing one or several
arguments, especially on examples requiring multi-
hop reasoning (MULTIDOMAIN, MULTIPREFER-
ENCE). However, this happens in simpler cases as
well (PLAIN, CONFLICT), where the models tend
to favour one information source (the user query or
instructions), leading to incomplete API calls.

Overall, our findings support Moghe et al.
(2024). These results underline the task’s inher-
ent complexity and demonstrate that current LLMs
cannot solve it on their own, highlighting the need
for specialised methods to overcome this challenge.

Prediction 
Model

output
predict        API calls

Uncertainty

call 
tool

tool 
output 

       API calls

User Query
User Preferences

API documentation

pr
ed

ict

Figure 4: TAPS pipeline. An LLM first generates a
response to the user query, and model uncertainty is
extracted from its logits. Based on the uncertainty score,
TAPS either accepts the response as is, or calls a struc-
tured tagging tool to augment the data before passing it
back to the LLM and regenerating the answer.

3 TAPS

In this work, we aim to address key limitations
of LLMs in personalised tool use, including seman-
tic substitution errors, hallucinations, and missing
arguments. We propose TAPS, a fully automated
approach for goal-oriented dialogue that (i) em-
ploys a structured tagging tool for data augmenta-
tion and (ii) independently determines when tool
use is required (iii) without additional training. Fig-
ure 4 illustrates the full pipeline of TAPS, which
we outline below.

3.1 Structured Tagging Tool
We define a data augmentation tool that intro-

duces an intermediate representation between the
natural language input and the function calls by an-
notating standing instructions with structured tags
that encode action-level and slot-level information
(Figure 5). Specifically, we label each instruction
with hierarchical tags, where high-level action tags
denote the relevant API and nested slot tags cap-
ture the arguments and their values. We call this
approach structured tagging. Unlike traditional
Named Entity Recognition or semantic parsing,
which converts natural language to a structured
representation, our method preserves the natural
language aspect of instructions while introducing
explicit nested tags, allowing models to leverage
both the original instruction phrasing and explicit
structural information. We hypothesise that adding
this intermediate representation before code gen-
eration will facilitate more accurate API argument
extraction and prevent information loss when gen-
erating API calls.
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If I’m looking for Events, I’d like them to be in New York. 

<a:GET_EVENTS> If I’m looking for Events, I’d like them 
to be in <sl:CITY> New York </sl> .  </a>

Original: 

Augmented: 

Figure 5: Example of structured tagging in TAPS. We
use <a:API> . . . </a> tags to denote relevant APIs
and <sl:ARGUMENT> . . . </sl> to label arguments and
their values.

Additionally, we explore two versions of the
tool:
• External Tagger (EXT-TAG): Relies on an ex-

ternal model for tagging, allowing us to use spe-
cialised models with improved tagging accuracy.
To isolate the effect of tagging quality, we use
the same model for both tagging and subsequent
API generation. Additionally, we include results
where GPT4o is used as an example of an optimal
tagger (EXT-TAGOPT) to demonstrate how varia-
tions in tag quality influence overall task results
(see Appendix B for tagger comparison).

• TAG-AND-GENERATE (JOINT-TAG): We ask
the same base model to generate the augmenta-
tion for the standing instructions and the final
API call jointly. This strategy allows us to rely
on the internal reasoning abilities of an LLM, hy-
pothetically making it easier for it to effectively
use the provided information and predict the final
answer.

3.2 When to use a tool?

Deciding when a tool is necessary is a challeng-
ing task. Recent approaches address tool detection
through either an external learned classifier (Gem-
mell and Dalton, 2023) or reinforcement learning
(Qiao et al., 2024). Given the limited availability of
training data for our task, we cannot rely on train-
able methods. Thus, we propose to utilise model
uncertainty to assess the confidence of an LLM
in its prediction and determine whether additional
help is needed to solve the task.

We explore three methods for uncertainty esti-
mation commonly used in text generation:
• Sequence Margin: the difference in the probabil-

ity scores of the top two most likely predictions;

• Margin@T: the difference in the probability
scores of the top T most likely tokens, where
T is a hyper-parameter;

Config Name Tags Tagger Model Tool Detector

DEFAULT ✗ ✗ ✗

EXT-TAG ✓ External Base model ✗ Naïve
EXT-TAGOPT ✓External GPT4o ✗ Naïve
JOINT-TAG ✓ Joint Base model ✗ Naïve
TAPS ✓ External Base model ✓ Uncertainty
TAPSOPT ✓ External GPT4o ✓ Uncertainty

TAPS-ORACLE ✓ External Base model ✓ Oracle
TAPS-ORACLEOPT ✓ External GPT4o ✓ Oracle

Table 3: Model configurations used in experiments.

• Least Confidence: the difference between the
probability of the top most confident prediction
and 100% confidence. The lower the score, the
more certain the model is in its prediction.

To choose the most effective method, we use the
Pearson correlation coefficient (Freedman et al.,
2007) between the uncertainty of the model and
the downstream task F1 metric on the validation
set and report the results in Table 8 (Appendix C).

Among the tested approaches, Least Confidence
performs best, with a moderate correlation score
(circa -0.45 for all models), suggesting that higher
uncertainty indicates lower target scores. Other
methods fail to provide reliable confidence esti-
mates. Both weakly correlate with F1, making a
comparison of top-2 most likely predictions, on se-
quence or token-level, unreliable. Thus, we choose
Least Confidence as the main tool-use detector in
TAPS.

To effectively utilise the uncertainty score, we
select a threshold value on the validation set. The
threshold is used to determine the confidence level
of the model, based on which we choose to employ
one of the following strategies: (i) output the model
answer, or (ii) use a tool and regenerate the answer.

4 Results & Discussion

In this section, we first investigate the effective-
ness of TAPS’s data augmentation tool on the NLSI
task (Section 4.1). Second, we illustrate the impor-
tance of tool detection and evaluate TAPS on the
test subset in NLSI (Section 4.2). Finally, we per-
form behavioural analysis of TAPS’s predictions
when both structural tagging and tool detection are
utilised to demonstrate the impact of the approach
(Section 4.3).

4.1 Effects of Structured Tagging

To show the effectiveness of structured tagging,
we compare the performance of both tagging tools
to default models without tools. We naïvely apply
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Model Aug. EM ↑ F1 ↑ Prec. ↑ Rec. ↑
Llama-3-Inst DEFAULT 42.23 78.19 80.30 78.60

EXT-TAG 44.22 80.34 81.90 81.49
EXT-TAGOPT 51.79 84.46 86.39 84.86
JOINT-TAG 41.43 78.31 82.97 77.19

Mistral-3-Inst DEFAULT 30.68 64.21 65.21 65.37
EXT-TAG 36.65 75.12 78.33 74.30
EXT-TAGOPT 42.63 79.34 82.23 79.04
JOINT-TAG 33.47 66.66 70.56 64.97

GPT4o DEFAULT 56.18 87.40 90.41 86.83
EXT-TAG 57.37 87.47 89.63 86.72
JOINT-TAG 52.99 83.94 86.00 83.24

Table 4: Model performance with and without naïve
tool-use. EXT-TAG: the same model is used for tagging
and API call generation sequentially; EXT-TAGOPT: tag-
ging is performed by a separate, high-performing tagger;
JOINT-TAG: tags and API calls are generated jointly in
a single step. EM: exact match. F1: Slot-wise F1 score.
Prec.: precision. Rec.: recall. All scores are in %. Best
performance is in bold, second best is underlined.

the tool to all instances in the validation set. Here
and in further experiments, we use ICL to evaluate
the models and optimise model performance by
bootstrapping a set of demonstrations with random
search (Khattab et al., 2023). Table 3 summarises
all model configurations used in our experiments.
Full implementation details are in Appendix A.

We report the results in Table 4. We observe
marginal gains in GPT-4o when using EXT-TAG,
and consistent improvements across all four met-
rics for open-source models: Llama-3-Inst and
Mistral-3-Inst improve EM by 2% and 6%, re-
spectively, and up to 11.9% when the optimal
model is used for tagging EXT-TAGOPT).

We further investigate the impact of tool use
on model outputs and calculate the percentage of
predictions that improve or degrade after structured
tagging is applied (Table 5). Overall, all models
benefit from tool use in less than 50% of cases,
with open-source models gaining the most. Only
16.3% of predictions improve for GPT4o, which is
least affected by tagging, with more than 62% of
predictions remaining the same with and without
the tags, compared to 37% for both open-source
models. In 16-27% of cases, LLMs score lower
when having the tags. Below, we discuss our key
findings regarding structural tagging effects.

LLMs struggle to map natural language to code.
The inferior performance of all DEFAULT mod-
els compared to EXT-TAG suggests that LLMs
still need additional tools to successfully generate
code from natural language when complex reason-

Result Llama-3-Inst Mistral-3-Inst GPT4o

Win ↑ 35.1 45.8 16.3
Same 37.0 37.9 62.2
Loss ↓ 27.9 16.3 21.5

Table 5: Data augmentation effects for EXT-TAGOPT.
All scores represent % of instances. All calculations are
based on F1.

ing is required. Strong results of EXT-TAG, even
with lower quality tags, support our hypothesis
that introducing an intermediate representation be-
tween natural language and code can significantly
enhance model performance. Notably, tagging is
less effective for GPT4o. We hypothesise that this
can be due to the GPT4o’s stronger in-context rea-
soning, making task decomposition less beneficial,
compared to smaller models that generally do not
perform complex tasks as well. The improvements
of EXT-TAGOPT over EXT-TAG show that the effec-
tiveness of the proposed approach is closely tied to
the reliability of structured tags. Initial robustness
experiments confirm this sensitivity, and we further
investigate the impact of tag quality in Section 5.

Internal reasoning does not boost the interpre-
tational abilities of LLMs. Our results demon-
strate that explicitly prompting the models to gen-
erate structured tags before producing the function
calls is not uniformly effective. The observed de-
crease in recall suggests that this approach may
result in some information loss. While LLMs gen-
erate more accurate code, they tend to omit more
arguments, showing that solving the task end-to-
end is difficult. An additional explanation for such
behaviour is the demonstration optimisation strat-
egy we use. Existing ICL optimisation approaches
do not support optimisation for multiple outputs,
leading to suboptimal model performance.

Naïve tool use fails to yield consistent improve-
ments. We show that naïvely leveraging the tool
is inefficient, both in compute and target metrics
and sometimes even counterproductive. This high-
lights the importance of tool detection to determine
if a tool is required on the instance level.

4.2 Tool Detection Effects

We evaluate TAPS on the NLSI test set and
report the results in Table 6. We compare the
scores with lower-boundary baselines, default mod-
els without tools and naïve tool use (EXT-TAG),
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Model Config EM ↑ F1 ↑ Prec. ↑ Rec. ↑
Llama-3-Inst DEFAULT 41.76 78.26 82.96 76.80

EXT-TAG 47.55 82.28 84.89 81.88
TAPS 51.18 83.94 87.20 82.95
TAPS-ORACLE 59.07 88.42 91.60 87.11

EXT-TAGOPT 51.23 84.51 87.23 83.86
TAPS OPT 53.04 85.64 88.67 84.56
TAPS-ORACLEOPT 59.85 89.65 92.82 88.10

Mistral-3-Inst DEFAULT 35.74 69.11 70.64 69.83
EXT-TAG 40.29 76.20 79.53 75.57
TAPS 42.40 76.76 79.74 76.32
TAPS-ORACLE 48.82 81.79 84.29 81.33

EXT-TAGOPT 42.35 78.55 82.63 77.24
TAPS OPT 44.17 79.03 82.66 78.04
TAPS-ORACLEOPT 49.85 83.19 86.19 82.36

GPT4o DEFAULT 56.32 86.99 89.25 86.91
EXT-TAG 55.54 86.49 88.78 85.65
TAPS 58.63 87.86 90.03 87.21
TAPS-ORACLE 65.88 91.46 93.57 90.49

Table 6: Model performance on test data. OPT: best
performing model is used for tagging. EM: exact match.
F1: Slot-wise F1 score. Prec.: precision. Rec.: recall.
All scores are in %. Best performance is in bold, second
best is underlined.

and upper-boundary oracle models optimised for
tool detection. The oracle prediction is compiled by
retrospectively selecting the examples that actively
benefit from tool use and leaving other predictions
unchanged.

Overall, we find that for open-source models,
both naïve tool use and TAPS are superior to base
models without tools by a margin with EM and
F1 gains of up to 10% when an optimal tagger
is employed. Using a tool detector significantly
improves target metrics compared to naïve tool
use, with TAPS and TAPS-ORACLE outperforming
EXT-TAG by 2/8% EM, respectively. The results
for GPT4o are less consistent, however, they illus-
trate the same idea. While EXT-TAG leads to model
score degradation, leveraging a tool detector im-
proves model effectiveness by 2/9% EM. Although
optimal tags significantly outperform lower-quality
ones in the naïve setting, tool detection narrows the
gap to within 1% EM, demonstrating that the ap-
proach is effective even when a lightweight model
is used for all steps of the pipeline. We highlight
our key findings below.

Using a tool detector can maximise tool use ef-
fectiveness. We find that both TAPS and TAPS-
ORACLE outperform all baseline models, demon-
strating that selectively using tools is much more
effective than relying on them at all times. More-
over, our experiments show that tool detection al-
lows us to minimise both time and compute spent
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Figure 6: ∆ F1 scores of TAPS models compared to
baselines per each reasoning type.

on the task by applying the tool 20% fewer times
for open-source models and over 55% fewer times
for GPT4o when using uncertainty, and up to 80%
in the oracle case. This is particularly valuable,
as achieving an optimal balance between latency
and model capabilities is crucial for task assistants
interacting with users in real time.

Using uncertainty for tool detection is possible
but suboptimal While we demonstrate that util-
ising uncertainty for tool detection can be benefi-
cial, we note the suboptimal performance of TAPS
compared to the oracle model. TAPS-ORACLE is
consistently superior to TAPS for all models, with
performance gains of 5.7-7.9% w.r.t. EM scores.
The same trend is observed in terms of resource ef-
ficiency. This indicates that uncertainty may not be
the most effective approach to determine whether
calling a tool would yield higher scores, and alter-
native methods may be explored in future.

4.3 Prediction analysis

Figure 6 demonstrates the difference in F1 scores
of baseline models (Section 2.3) and TAPS (for avg.
F1 scores refer to Appendix E). We observe consis-
tent improvements in scores or on-par performance
when using TAPS on all reasoning types. An ex-
ternal tool for tagging increases the performance
by up to 30% (Llama-3-Inst) on the task, with an
average improvement on each reasoning type by
3-15% depending on the model.

We sample and manually annotate the same 100
examples for each model as in Section 2.3.3 and
compare the percentage of errors. Figure 7 presents
the results of the comparison. The biggest differ-
ence is observed on hallucinations (19-49% less
errors) and semantic substitution errors (4-34% de-
crease), which we specifically targeted with our
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Figure 7: Changes in the distribution of errors in TAPS
compared to baseline models. The scores represent the
percentage of examples that improved or degraded with
TAPS.

approach. However, we also notice slight increases
in some error types for some models, which can be
due to error propagation since we are using GPT4o
as a tagger model. For example, Llama-3-Inst
exhibits more value formatting issues when using
a data augmentation tool, one of the common er-
rors of GPT4o, according to our baseline evaluation
(Figure 3). Additionally, we notice an increase in
missing arguments for Mistral-3-Inst, specifi-
cally when shared contextual information (e.g. lo-
cation) is available. We attribute this to our tagging
approach, which does not allow us to incorporate
the links between instructions, leading to the ex-
clusion of some possible annotations. We discuss
this limitation in more detail in Section 7. Overall,
we show that using TAPS significantly decreases
the number of errors for all models, proving it an
effective solution for tool use personalisation.

5 Tagging Sensitivity Analysis

While our main experiments (Section 4) demon-
strate that structured tagging substantially enhances
the ability of LLMs to incorporate user preferences
in tool calling, they also reveal that the effective-
ness of this approach varies with the quality of the
tags. This raises a question of the robustness of
LLMs to imperfect and noisy tags. To address this,
we conduct a controlled corruption study where
we systematically perturb the tags provided to the
model. Starting from golden tags, manually anno-
tated by one of the authors, we randomly corrupt
n% of them, with n ∈ {0, 10, ..., 100}. Possible
tag corruptions are sampled from error types that
frequently occur in real tagger outputs, including
slot deletion (replicating missing arguments error),

0 10 20 30 40 50 60 70 80 90 100
% of corrupted tags

50

60

70

80

90

100

F1
 S

co
re

GPT4o Llama-3-Inst Mistral-3-Inst

Figure 8: The effects of tag quality on the F1 scores
of GPT4o, Llama-3-Inst, and Mistral-3-Inst. All
scores are in %.

tag boundary shifts, and semantic substitution of
slot and function names. The corrupted tags are
then passed to the EXT-TAG pipeline, and the fi-
nal model predictions are evaluated using the same
setup as in the main experiments. This allows us
to quantify the sensitivity of different models to
varying tag quality and to identify which models
are more robust to noisy annotations.

Figure 8 presents the results of the study with
respect to the F1 scores, other metrics follow the
same trend (see Figure 11). Across all models, the
scores degrade monotonically as the percentage of
corrupted tags increases. This confirms that the
noise in the structured tags directly impacts the
downstream performance of LLMs. However, the
sensitivity to tag quality differs between the mod-
els. GPT4o and Llama-3-Inst remain relatively
robust, with the tag quality degrading by up to
5%. Mistral-3-Inst exhibits a steeper decline,
with F1 scores dropping more than 10% if com-
paring the 100% corruption rate and golden tags.
These results align well with our findings in Sec-
tion 4.1, showing that higher-quality tags (marked
with OPT) yield more drastic improvements com-
pared to suboptimal ones. Relative to the no-tag
baseline (DEFAULT, Table 4), we find that struc-
tured tagging improves models’ scores when tag
quality is sufficiently high, but harms them beyond
a certain level of corruption, showing that overly
noisy tags can reduce downstream effectiveness.

Overall, this analysis shows that the effective-
ness of EXT-TAG directly depends on the quality
of the produced tags. Together with the TAPS re-
sults, these findings demonstrate both the potential
and the limitations of leveraging structured tags.
While they can significantly improve the ability of
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LLMs to produce accurate personalised tool calls,
their effectiveness is bound by upstream tag quality
and model robustness. This suggests two promis-
ing directions for future work: (i) developing more
accurate taggers, and (ii) designing approaches that
explicitly account for and compensate for noisy
intermediate tags. More broadly, these results high-
light the need for better entity understanding in
LLMs, which remains one of the key bottlenecks
for robust personalised tool use.

6 Related Work

Tool-Augmented Language Models Introduc-
tion of tool-augmented LLMs have enabled general
agents to perform a variety of diverse tasks (Parisi
et al., 2022; Patil et al., 2023; Mialon et al., 2023).
A body of work on tool use leverages the innate
abilities of LLMs to produce structured data from
natural language input (Song et al., 2023; Liu et al.,
2023, 2024b; Zhang et al., 2024). For example,
Hsieh et al. (2023) show that tool documentation
alone is sufficient to elicit tool use in LLMs without
demonstrations. Some use task decomposition (Wu
et al., 2024) and a backward reasoning pipeline
(Zhang et al., 2024) to generate appropriate param-
eter values effectively. Other works incorporate
tuning-based approaches (Parisi et al., 2022; Schick
et al., 2023; Patil et al., 2023; Mekala et al., 2024;
Shen et al., 2024), with Shi et al. (2024) iteratively
predicting and filtering tool-usage plans, and Qiao
et al. (2024) leveraging reinforcement learning with
tool execution feedback for consistent tool invoca-
tion. Hao et al. (2023) train tool embeddings, while
Shen et al. (2024) propose a two-stage fine-tuning
technique with join training and separate refine-
ment of specialised modules for each subtask in
tool-use paradigm. Despite their effectiveness, ex-
isting TALMs still face challenges in personalising
interactions and efficiently integrating tool use with
conversational history.

Personalisation Personalisation is an important
aspect of any system interacting with users. Many
works on personalisation for dialogue provide mod-
els with user profiles, describing their preferences
and personality traits through natural language
statements (Li et al., 2016; Zhang et al., 2018; Ma-
jumder et al., 2020) or structured databases (Song
et al. 2020; Aliannejadi et al. 2024, among others).
Cheng et al. (2024) propose to learn user prefer-
ences from dialogue history. Nevertheless, these
works focus on creating a user persona for more

engaging conversations rather than task completion.
Joshi et al. (2017) introduce simple structured user
profiles for a limited number of goal-oriented di-
alogue tasks and explore rule-based systems and
memory networks. To the best of our knowledge,
Moghe et al. (2024) is one of the only approaches
that attempts to personalise goal-oriented dialogue
through explicit and complex user preferences in
natural language. However, the work explores only
simple ICL approaches for the task. Our work at-
tempts to solve the task by leveraging tool use and
an internal tool detection mechanism that provides
more flexibility and robustness in tailoring tool use
according to user preferences.

7 Conclusion and Future Work

In this work, we explore the limitations of LLMs
to perform the personalised tool use task. We find
that all LLMs struggle to effectively incorporate
user preferences, especially when complex reason-
ing is required, suffering from semantic errors, in-
formation loss and hallucinations. To combat this,
we propose TAPS, a tuning-free solution for person-
alised tool use in task assistants. TAPS combines (i)
a structural tagging tool that introduces an interme-
diate representation between natural language and
code and (ii) an internal tool detector to facilitate
the incorporation of user preferences for tool use
in goal-oriented dialogue. We conduct a thorough
analysis of widely used LLMs on the NLSI dataset
and demonstrate that our method consistently out-
performs pre-trained open-source models of the
same size. We show that TAPS enables the models
to more effectively reason and infer tool calls from
user queries and successfully incorporate informa-
tion from personalised user preferences, all while
being fully automatic and not requiring additional
training. Through ablation studies, we show that
each component in TAPS plays an important role
in the solution of the task, significantly minimising
most error types for tested LLMs. We hope our
work will inspire more research on incorporating
extended context in tool use in future.

Limitations

A better structural tagger is required. One of
the limitations of our solution lies in the tagging ap-
proach we employ, which has several shortcomings.
First, as briefly mentioned in Section 4.3, we label
APIs and arguments on the sentence level only and
do not consider the whole user profile. This leads

23527



to the loss of shared contextual information, which
should be included in all relevant API calls but is
tagged as belonging to only one API. Second, we
apply the tool only to the user profile, which might
lead to some information loss, as we do not explic-
itly label the relevant information from user queries,
prompting the model to prioritise user profiles over
queries. Lastly, in our experiments, we use ICL
and prompting, while training a specialised model
for tagging might yield better and more reliable re-
sults. A more sophisticated tagging procedure will
help mitigate those issues, and we hope to continue
working in this direction in future.

LLMs are not robust to changes in input. We
utilise LLMs’ in-context learning abilities to create
a solution for the task. Such an approach is less
computationally expensive, as it does not require
additional training and allows for generalisation to
unseen domains, functions and tasks. However, we
do not address a well-known shortcoming of ICL,
namely its sensitivity to prompt template choice
and demonstration selection (Lu et al., 2022; Chang
and Jia, 2023; Sclar et al., 2024). While we ex-
plore several prompts in our preliminary studies
and utilise demonstration optimisation, we do not
conduct extensive experimentation on the topic as
it is not the primary focus of our work. This means
that the prompts used to evaluate TAPS may not be
optimal for the task. While training a specialised
model for the task would seem like a logical solu-
tion, the dataset size is insufficient for straightfor-
ward fine-tuning and requires a different approach.
For example, LIMA (Zhou et al., 2024) or similar
methods can be used to fine-tune a model on low
data cases.

The need for a better evaluation benchmark.
In our experiments, we use the NLSI dataset, col-
lected by Moghe et al. (2024), as the only dataset,
to our knowledge, that incorporates user prefer-
ences into tool-augmented conversational agents.
However, the dataset has several downsides. First,
the dataset is created automatically from templates
without additional validation, so it contains some
errors (see Section 2.3.3) and is overall not as di-
verse and natural in terms of both language and do-
mains covered. Additionally, evaluation on NLSI is
based on comparing code strings rather than the ac-
tual tool output. This approach can underestimate
model performance, as two different programs can
lead to the same output when executed but will get
different evaluation scores. Therefore, we acknowl-

edge the need for a better evaluation methodology
and benchmark for the task in order to more accu-
rately assess and compare the capabilities of LLMs
with respect to contextualised tool use.

Ethical Considerations

Privacy is a critical concern in natural language
processing, especially when handling personal data
(Horvitz and Mulligan, 2015; Yao et al., 2024; Mi-
randa et al., 2025). Working with user preferences
and extended dialogue history can inadvertently
lead to the potential exposure of sensitive personal
information. Our approach employs in-context
learning, which prevents the model from memoris-
ing private information. This strategy aligns with
the growing emphasis on privacy in LLMs by en-
suring that user data remains protected throughout
the conversation.

We improve and proofread the text of this paper
using Grammarly2 to correct grammatical, spelling,
and style errors and paraphrasing sentences.
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A Experiment Details

A.1 Dataset Statistics
We run all of the experiments of NLSI (Moghe
et al., 2024), which has a train/validation/test splits
of sizes 150/251/2040 instances. We refer you to
the original paper for full details on the data.

A.2 Baseline Evaluation (Section 2.3)
For baseline evaluation, we use the prompt, pro-
vided by Moghe et al. (2024) for all our models
Prompt F.1. We set the number of few-shot demon-
strations to 1 and use default model parameters.

A.3 Main Experimental Settings (Section 4)
Optimiser settings For all experiments in TAPS
we optimise the ICL examples using BootstrapFew-
ShotWithRandomSearch algorithm (Khattab et al.,
2023). We set the following parameters to the opti-
miser:

• max_bootstrapped_demos = 1 for GPT4o
and Llama-3-Inst in the JOINT-TAG setting
else 5

• max_labeled_demos = 5

• num_candidate_programs = 5 (GPT4o) / 10
(other models)

• num_threads = 1

• metric = "exact_match"

Prompt Selection We conduct a simple prompt
selection experiment on the validation set of
NLSI and choose the following prompts for
our main experiments with TAPS. To evalu-
ate all LLMs in DEFAULT setting, we use
Prompt F.2 for Llama-3-Inst and Prompt F.3 for
Mistral-3-Inst and GPT4o. For EXT-TAG we
select Prompt F.4 for Llama-3-Inst and GPT4o
and Prompt F.5 for Mistral-3-Inst. All runs in
JOINT-TAG configuration use Prompt F.6 as the
prompt.

Generation Parameters To select the optimal
generation parameters for Mistral-3-Inst and
Llama-3-Inst models, we run a simple grid search
on the validation set. For all our experiments we
use the default set of generation parameters for
GPT4o and the following for open-source models
(when different parameters for Mistral-3-Inst
and Llama-3-Inst are used, we report them with
a forward-slash):

• num_beams = 5 / 2

• do_sample = True

• temperature = 0.85 / 0.95

• top_k = 50

• top_p = 1.0

Tool Detection Parameters We use Least Con-
fidence as our main tool detection strategy for all
the experiments. We select the threshold for each
model on the validation set. The following thresh-
old values are used: 0.02 (Llama-3-Inst), 0.01
(Mistral-3-Inst), and 0.04 (GPT4o).

GPU-Usage We use one 40GB A100 GPU, set-
ting the batch size of 1. It takes approximately
1.5-5 hours to run one experiment on the whole val-
idation set and 5-13 hours to make a full pass over
the test set depending on the model and generation
parameters.

B Selection of the Tagger Model

To choose the models for the EXT-TAG strategy,
we manually annotate the validation subset of data
and compare automatically generated tags with the
golden standard. To assess the tagger models we
treat the task as a standard token classification prob-
lem and calculate macro-averaged F1, precision,
and recall. We use Prompt F.7 for all models to
generate tags for standing instructions and set all
generation parameters to default values. All mod-
els are assessed in one-shot configuration. We do
not optimise the demonstrations, but use a static
example created manually for all instances. The
results of the evaluation are presented in Table 7.

Model F1 ↑ Prec. ↑ Rec. ↑
CodeLlama-Inst 63.98 63.09 65.89
Llama-2-Chat 63.18 62.75 63.97
Llama-3-Inst 71.54 74.82 69.34
Mistral-3-Inst 76.72 77.04 77.12
GPT4o 87.18 87.00 87.44

Table 7: Tagging performance on the manually anno-
tated validation set. F1: macro-average F1 score. Prec.:
precision. Rec.: recall. The best result is in bold, sec-
ond best is underlined. All scores are in %.

Results Our experiments show, that open-source
LMs are still far behind GPT4o when it comes to
their ability to augment input with tags. While
GPT4o scores exceed 86%, the difference be-
tween the best-performing open-source LLM

23534



(Mistral-3-Inst) and GPT4o reaches 10%. De-
spite being the only model trained specifically to
handle code and structured data, CodeLlama-Inst
yields one of the lowest scores on the task with
F1 of 63%. Despite GPT4o outperforming all open-
source LLMs in the task, its performance is still
does not exceed 90%, leaving room for improve-
ment. We acknowledge this but continue to use
GPT4o as our main external tagger model for EXT-
TAG.

C Uncertainty Estimation

Method Statistic

Least Confidence -0.452
Margin@1 0.145
Margin@2 0.317
Margin@3 0.314
Margin@4 0.295
Margin@5 0.301
Margin@6 0.242
Margin@7 0.263
Margin@8 0.256
Margin@9 0.242
Margin@10 0.236
Sequence Margin 0.281

Table 8: Pearson Correlation Coefficient between F1
scores and model uncertainty for Mistral-3-Inst.
Statistics with p < 0.001 are in italics. The value in
bold indicates the best result. Note, that negative corre-
lation on the least confidence strategy is expected, since
it represents model confidence rather that uncertainty.
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D Error Types Examples

Error Type User Query Standing Instructions Target Prediction

Semantic
Substitution

User: I want to find an apart-
ment in Hayward.

> Request a home with one bed. GetHomes(area="Hayward",
number_of_beds="1")

GetHomes(city="Hayward",
number_of_beds=1)

Missing
Argument

User: I am looking for an
Gynecologist in San Jose.

> Name Anjali Tate, M.D. as my preferred
doctor when requesting a doctor.

GetDoctors(city="San Jose",
doctor_name="Anjali Tate, M.D.",
type="Gynecologist")

GetDoctors(city="San Jose",
doctor_name="Anjali Tate, M.D.")

Hallucination
(new func.)

User: Can you let me know
some attractions to visit?

> If I’m looking to travel, my go-to spot is
Chicago.
> If I’m looking into Travel, I should also
check out Hotels.
> Request Hotels with a two-star rating.

GetTravel(location="CHi-town")
GetHotels(average_rating="2",
location="CHi-town")

GetAttractions(city="Chicago")
GetHotels(rating="2")

Hallucination
(mixed calls)

User: Can you show some at-
tractions to visit?
Agent: Sure. Where should I
search for attractions in?
User: Find me something in
Sydney, NSW please.

> I prefer the Museum category when
requesting Travel.
> Choose a museum if you wish to have a

good experience with children.
> I would like to request Travel for my
preferred category of Park.

GetTravel(location="Sydney, NSW",
category="Museum",
good_for_kids="True")
GetTravel(location="Sydney, NSW",
category="Park")

GetTravel(city="Sydney, NSW",
category="Museum")
GetTravel(city="Sydney, NSW",
category="Park",
good_for_kids=True)

Combined
Calls

User: I’m looking for Music
events.

> If I’m looking for events, I’d like to
check out what’s going on in Portland.
> If I ask for Events, my preferred category
is Blues or basketball .

GetEvents(category="Blues",
city="Portland",
event_type="Music")
GetEvents(category="basketball",
city="Portland",
event_type="Music")

GetEvents(city="Portland",
genre=["Blues", "Basketball"])

Split Call User: I want to find a new
restaurant. What do you sug-
gest to eat in San Francisco?

> Request Restaurants that serve Oriental
cuisine.
> Search for the 8 Immortals Restaurant
when looking for an Oriental restaurant.

GetRestaurants(city="San
Francisco", cuisine="Oriental",
restaurant_name="8 Immortals
Restaurant")

GetRestaurants(city="San
Francisco", cuisine="Oriental")
GetRestaurants(city="San
Francisco", restaurant_name="8
Immortals")

Wrong Value User: Can you help me find
some movies to watch online?

> Request funny Media. GetMedia(genre="funny") GetMedia(genre="Comedy")

Value
Formatting

User: I would like to rent a
car from March 8th in Paris,
France.
Agent: At what time would
you need it? And when is your
return date?
User: I would need it at
12 o’clock in the afternoon till
the 9th of this month .

GetRentalCars(dropoff_date="9th
of this month",
pickup_date="March 8th",
pickup_time="12 o’clock",
...

GetRentalCars(pickup_time="12:00",
pickup_date="2023-03-08",
dropoff_date="2023-03-09",
...

Missing call User: I need to find a General
Practitioner doctor in San Jose.

> Request Access Health as your doctor.
> If I ask for Doctor, my preferred doctor
name is Daisy Manuel-Arguelles, DO .

GetDoctors(city="San Jose",
doctor_name="Access Health",
type="General Practitioner")
GetDoctors(city="San Jose",
doctor_name="Daisy Manuel-
Arguelles, DO", type="General
Practitioner")

GetDoctors(city="San Jose",
type="General Practitioner",
doctor_name="Daisy Manuel-
Arguelles, DO").

Dataset Error User: I’m trying to find things
to do. I’d like something in
New York City. I like Electron-
ica events and I’m looking for a
Concert.
Agent: I found 3 events for you.
One event is Crooked Colours
at Rough Trade NYC.
User: Sure, that works for me.
I’d like to find a room in a hotel
there.

GetEvents(category="Electronica",
city="New York City",
event_name="Crooked Colours",
event_type="Music")

GetEvents(city="New York City",
event_type="Concert",
genre="Electronica")
GetHotels(city="New York City",
location="Rough Trade NYC")

Table 9: Examples of most prominent errors made by Mistral 3. Incorrectly predicted functions, arguments and
values are marked in . Missing arguments and API calls are in blue. Relevant parts of the user query and standing
instructions are highlighted .
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Figure 9: Average F1 scores of TAPS models per each reasoning type.
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Figure 10: Distribution of errors on a sample of TAPS’s predictions.
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Figure 11: The effects of tag quality on the downstream task scores of GPT4o, Llama-3-Inst, and Mistral-3-Inst.
All scores are in %.
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F Prompts

All of the prompts we use follow the same structure: Task Description + API Schema +

Input Description (optionally) + Example(s) . We provide the list of prompts below.

F.1 Baseline Prompt

System prompt template:

You are designing a parser that takes in a user utterance and some standing instructions and outputs a set of API calls.
Every API call consists of "GetX" where X is domain name and uses slot names listed below as arguments. We list the domain name followed by the list of
possible slot names. Some slot names can be categorical or boolean
The values for the arguments can come from the user’s dialogue or standing instructions. If the user requests a slot name and no value is found, use "?". If the
user requests dontcare, use value as "any".
Standing instructions allow you to add preferences or requirements that you’d like to consider when generating the parser.
If standing instructions are applicable across multiple domains, place an API call per situation per domain.
If some of the applicable standing instructions have instructions of similar type, place multiple API calls respecting the standing instructions.
If some slots are applicable across several domains, generate the respective slot names for the respective domains.

Schema:
Banks: recipient_account_name, amount, recipient_account_type
Buses: origin, departure_date, fare_type, transfers, price, group_size, destination, destination_station_name, origin_station_name, departure_time
Events: event_name, city, category, event_location, number_of_tickets, time, address_of_location, date, venue_address, event_type
Flights: origin, inbound_arrival_time, is_redeye, outbound_departure_time, outbound_arrival_time, inbound_departure_time, return_date, airlines, seat-
ing_class, refundable, number_stops, destination_airport, departure_date, fare, destination, passengers, origin_airport
Homes: pets_allowed, visit_date, address, property_name, rent, number_of_baths, area, number_of_beds, furnished, phone_number
Hotels: has_wifi, average_rating, check_out_date, price, pets_welcome, number_of_days, location, check_in_date, phone_number, number_of_rooms,
street_address, hotel_name
HouseStays: rating, phone_number, has_laundry_service, check_out_date, total_price, check_in_date, address, number_of_adults, where_to
Media: title, directed_by, subtitles, genre
Movies: theater_name, movie_name, price, show_date, location, show_time, number_of_tickets, genre, show_type, street_address
Music: song_name, year, album, artist, genre, playback_device
RentalCars: dropoff_date, pickup_time, pickup_city, pickup_date, total_price, car_type, car_name, pickup_location
Restaurants: price_range, restaurant_name, city, has_live_music, serves_alcohol, time, date, phone_number, cuisine, street_address, party_size
Salons: is_unisex, average_rating, city, appointment_date, appointment_time, stylist_name, phone_number, street_address
Dentists: dentist_name, phone_number, offers_cosmetic_services, city, appointment_date, appointment_time, address
Doctors: doctor_name, city, average_rating, appointment_date, appointment_time, type, phone_number, street_address
Travel: good_for_kids, category, attraction_name, location, phone_number, free_entry
Weather: city, temperature, date, precipitation, humidity, wind

Further, following slots have categorical values:
recipient_account_type: checking, savings
fare_type: Economy, Economy extra, Flexible
(Travel) category: Place of Worship, Theme Park, Museum, Historical Landmark, Park, Tourist Attraction, Sports Venue, Shopping Area, Performing Arts
Venue, Nature Preserve
event_type: Music, Sports
seating_class: Economy, Premium Economy, Business, First Class
refundable: True, False
airlines: United Airlines, American Airlines, Delta Airlines, Southwest Airlines, Alaska Airlines, British Airways, Air Canada, Air France
show_type: regular, 3d, imax
playback_device: TV, kitchen speaker, bedroom speaker
(Doctors) type: Gynecologist, ENT Specialist, Ophthalmologist, General Practitioner, Dermatologist
car_type: Compact, Standard, Full-size
price_range: inexpensive, moderate, expensive, very expensive

Further, following slots are boolean:
has_wifi, pets_allowed, subtitles, offers_cosmetic_services, has_laundry_service, is_unisex, good_for_kids, has_live_music, pets_welcome, serves_alcohol,
is_redeye, furnished, free_entry

Example template:

Dialogue:
{{ user_utterance }}

Applicable Standing Instructions:
{{ applicable_instructions | join("\n> ") }}

API Calls:

Target template:

{{ target_api_calls | join("\n") }}

F.2 DEFAULT Prompt V1

System prompt template:
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You are designing a parser that takes in a user utterance and some standing instructions and outputs a set of API calls.
Every API call consists of "GetX" where X is domain name and uses slot names listed below as arguments. We list the domain name followed by the list of
possible slot names. Some slot names can be categorical or boolean
The values for the arguments can come from the user’s dialogue or standing instructions. If the user requests a slot name and no value is found, use "?". If the
user requests dontcare, use value as "any".
Standing instructions allow you to add preferences or requirements that you’d like to consider when generating the parser.
If standing instructions are applicable across multiple domains, place an API call per situation per domain.
If some of the applicable standing instructions have instructions of similar type, place multiple API calls respecting the standing instructions.
If some slots are applicable across several domains, generate the respective slot names for the respective domains.

Schema:
Banks: recipient_account_name, amount, recipient_account_type
Buses: origin, departure_date, fare_type, transfers, price, group_size, destination, destination_station_name, origin_station_name, departure_time
Events: event_name, city, category, event_location, number_of_tickets, time, address_of_location, date, venue_address, event_type
Flights: origin, inbound_arrival_time, is_redeye, outbound_departure_time, outbound_arrival_time, inbound_departure_time, return_date, airlines, seat-
ing_class, refundable, number_stops, destination_airport, departure_date, fare, destination, passengers, origin_airport
Homes: pets_allowed, visit_date, address, property_name, rent, number_of_baths, area, number_of_beds, furnished, phone_number
Hotels: has_wifi, average_rating, check_out_date, price, pets_welcome, number_of_days, location, check_in_date, phone_number, number_of_rooms,
street_address, hotel_name
HouseStays: rating, phone_number, has_laundry_service, check_out_date, total_price, check_in_date, address, number_of_adults, where_to
Media: title, directed_by, subtitles, genre
Movies: theater_name, movie_name, price, show_date, location, show_time, number_of_tickets, genre, show_type, street_address
Music: song_name, year, album, artist, genre, playback_device
RentalCars: dropoff_date, pickup_time, pickup_city, pickup_date, total_price, car_type, car_name, pickup_location
Restaurants: price_range, restaurant_name, city, has_live_music, serves_alcohol, time, date, phone_number, cuisine, street_address, party_size
Salons: is_unisex, average_rating, city, appointment_date, appointment_time, stylist_name, phone_number, street_address
Dentists: dentist_name, phone_number, offers_cosmetic_services, city, appointment_date, appointment_time, address
Doctors: doctor_name, city, average_rating, appointment_date, appointment_time, type, phone_number, street_address
Travel: good_for_kids, category, attraction_name, location, phone_number, free_entry
Weather: city, temperature, date, precipitation, humidity, wind

Further, following slots have categorical values:
recipient_account_type: checking, savings
fare_type: Economy, Economy extra, Flexible
(Travel) category: Place of Worship, Theme Park, Museum, Historical Landmark, Park, Tourist Attraction, Sports Venue, Shopping Area, Performing Arts
Venue, Nature Preserve
event_type: Music, Sports
seating_class: Economy, Premium Economy, Business, First Class
refundable: True, False
airlines: United Airlines, American Airlines, Delta Airlines, Southwest Airlines, Alaska Airlines, British Airways, Air Canada, Air France
show_type: regular, 3d, imax
playback_device: TV, kitchen speaker, bedroom speaker
(Doctors) type: Gynecologist, ENT Specialist, Ophthalmologist, General Practitioner, Dermatologist
car_type: Compact, Standard, Full-size
price_range: inexpensive, moderate, expensive, very expensive

Further, following slots are boolean:
has_wifi, pets_allowed, subtitles, offers_cosmetic_services, has_laundry_service, is_unisex, good_for_kids, has_live_music, pets_welcome, serves_alcohol,
is_redeye, furnished, free_entry

—

{% if model_name == "llama" %}
Follow the following format.
{% else %}
The examples are formatted as follows.
{% endif %}

Dialogue:
<user_utterance>

Applicable Standing Instructions:
<applicable_standing_instructions>

API Calls:
API calls to solve the user task

—

{% if model_name == "llama" %}
You are given several independent examples of the task:
{% endif %}

Example template:

{% if split == "test" and model_name == "llama" %}
Given the examples above, output only the API calls for the following example with no additional text:
{% endif %}

Dialogue:
{{ user_utterance }}

Applicable Standing Instructions:
{{ applicable_instructions | join("\n> ") }}
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API Calls:

Target template:

{{ target_api_calls | join("\n") }}

F.3 DEFAULT Prompt V2
System prompt template:

You are designing a parser that takes in a user utterance (field ‘user_utterance‘) and a user profile with standing instructions (field ‘user_profile‘) and outputs a
set of API calls as an answer.
Every API call consist of "GetX" where X is domain name and uses slot names listed below as arguments. We list the domain name followed by the list of
possible slot names in the ‘api_schema‘ field. Some slot names can be categorical or boolean.
The values for the arguments can come from the user’s dialogue or standing instructions. If the user asks about a slot but no value is found, set its value to "?".
If the user explicitly says they do not care about a particular slot, set its value to "any".
Standing instructions allow you to add preferences or requirements that you’d like to consider when generating the parser.
If standing instructions are applicable across multiple domains, place an API call per situation per domain.
If some of the applicable standing instructions have instructions of similar type, place multiple API calls respecting the standing instructions.
If some slots are applicable across several domains, generate the respective slot names for the respective domains.

The schema template, input description and example formatting are the same as in Section F.3

F.4 EXTERNAL TAG (EXT-TAG) Prompt V1
System prompt template:

You are designing a parser that takes in a user query and some user preferences and outputs a set of API calls. Execution of the API calls helps to answer the
user query.
Every function name in the API call has a structure of "GetX" where X is domain name. Each function uses slot names listed below as arguments. Some slot
names can be categorical or boolean. The values for the arguments can come from the user’s query or user preferences. If the user requests a slot name and no
value is found, use "?". If the user says they don’t care, set slot value to "any".
User preferences allow you to add preferences or requirements that you’d like to consider when generating the parser. If user preferences are applicable
across multiple domains, place an API call per situation per domain. If some of the applicable preferences have instructions of similar type, place
multiple API calls respecting the preferences. If some slots are applicable across several domains, generate the respective slot names for the respective domains.

The user profile would be tagged in the following format:
<a:API_FUNCTION_NAME> text </a> would mean the function that is relevant for the text in brackets
<sl:SLOT_NAME> value </sl> would highlight which function arguments are used in the function and their value.

Output a list of API calls that would answer the user query. There can be several API calls per user query, but not always, so output only the required calls.
Make sure you follow the following output structure: GetX(slot1="value1", slot2="value2"). Use the tags from the user profile, as well as information from
the current dialogue to generate the calls. In cases, where seceral API calls are required, generate each one in a new line. Use only the functions from the
documentation above, and make sure to check that only the slots for the chosen function are used in the API call. Generate only the API calls.

The list of the available function names is presented below, followed by possible slot names.
Some of the possible API calls include functions:
GetBanks: handling all the banking information (recipient_account_name, amount, recipient_account_type)
GetBuses: finding and booking bus tickets and routes (origin, departure_date, fare_type, transfers, price, group_size, destination, departure_time)
GetEvents: finding and booking events (event_name, city, category, number_of_tickets, time, date, venue_address, event_type)
GetFlights: finding and booking flights (origin, inbound_arrival_time, is_redeye, outbound_departure_time, outbound_arrival_time, inbound_departure_time,
return_date, airlines, seating_class, refundable, number_stops, departure_date, fare, destination, passengers)
GetHomes: looking for property (pets_allowed, visit_date, address, property_name, rent, number_of_baths, area, number_of_beds, furnished, phone_number)
GetHotels: booking hotels (has_wifi, average_rating, check_out_date, price, pets_welcome, number_of_days, location, check_in_date, phone_number,
number_of_rooms, street_address, hotel_name)
GetHouseStays: booking temporary accommodation (rating, phone_number, has_laundry_service, check_out_date, total_price, check_in_date, address,
number_of_adults, where_to)
GetMedia: searching for online media (title, directed_by, subtitles, genre)
GetMovies: searching for cinema tickets (theater_name, movie_name, price, show_date, location, show_time, number_of_tickets, genre, show_type,
street_address)
GetMusic: finding songs (song_name, year, album, artist, genre, playback_device)
GetRentalCars: booking rental cars (dropoff_date, pickup_time, pickup_city, pickup_date, total_price, car_type, car_name, pickup_location)
GetRestaurants: finding and booking restaurants (price_range, restaurant_name, city, has_live_music, serves_alcohol, time, date, phone_number, cuisine,
street_address, party_size)
GetSalons: finding hair salons (is_unisex, average_rating, city, appointment_date, appointment_time, stylist_name, phone_number, street_address)
GetDentists: finding dentists (dentist_name, phone_number, offers_cosmetic_services, city, appointment_date, appointment_time, address)
GetDoctors: finding doctors (doctor_name, city, average_rating, appointment_date, appointment_time, type, phone_number, street_address)
GetTravel: finding attractions (good_for_kids, category, attraction_name, location, phone_number, free_entry)
GetWeather: getting weather information (city, temperature, date, precipitation, humidity, wind)

Further, following slots have categorical values:
recipient_account_type: checking, savings
fare_type: Economy, Economy extra, Flexible
(Travel) category: Place of Worship, Theme Park, Museum, Historical Landmark, Park, Tourist Attraction, Sports Venue, Shopping Area, Performing Arts
Venue, Nature Preserve
event_type: Music, Sports
seating_class: Economy, Premium Economy, Business, First Class
refundable: True, False
airlines: United Airlines, American Airlines, Delta Airlines, Southwest Airlines, Alaska Airlines, British Airways, Air Canada, Air France
show_type: regular, 3d, imax
playback_device: TV, kitchen speaker, bedroom speaker
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(Doctors) type: Gynecologist, ENT Specialist, Ophthalmologist, General Practitioner, Dermatologist
car_type: Compact, Standard, Full-size
price_range: inexpensive, moderate, expensive, very expensive

Further, following slots are boolean:
has_wifi, pets_allowed, subtitles, offers_cosmetic_services, has_laundry_service, is_unisex, good_for_kids, has_live_music, pets_welcome, serves_alcohol,
is_redeye, furnished, free_entry

—

{% if model_name == "llama" %}
Follow the following format.
{% else %}
The examples are formatted as follows.
{% endif %}

Dialogue:
<user_utterance>

Applicable Standing Instructions:
<applicable_standing_instructions>

Tagged Standing Instructions:
<tagged applicable standing instructions>

API Calls:
API calls to solve the user task

—

{% if model_name == "llama" %}
You are given several independent examples of the task:
{% endif %}

Example template:

{% if split == "test" and model_name == "llama" %}
Given the examples above, output only the API calls for the following example with no additional text:
{% endif %}

Dialogue:
{{ user_utterance }}

Applicable Standing Instructions:
{{ applicable_instructions | join("\n> ") }}

Tagged Applicable Standing Instructions:
{{ tagged_applicable_instructions | join("\n> ") }}

API Calls:

Target template:

{{ target_api_calls | join("\n") }}

F.5 EXTERNAL TAG (EXT-TAG) Prompt V2

System prompt template:

You are a parser that converts user queries and profile preferences into API calls to fulfill the query. Use the provided tags, dialogue, and schema to generate
precise API calls.

**Task Guidelines:**
1. **API Call Structure:**

Format each call as ‘GetX(slot1="value1", slot2="value2", ...)‘, where ‘X‘ is the domain name, and slots match the chosen function.

2. **Using Tags:**
- ‘<a:API_FUNCTION_NAME>‘ marks relevant functions.
- ‘<sl:SLOT_NAME>‘ specifies slot values.
Example: ‘<a:GET_FLIGHTS> Request <sl:AIRLINES> Alaska Airlines</sl></a>‘ becomes ‘airlines="Alaska Airlines"‘.

3. **Slot Values:**
- Use values from the query or tags.
- Assign ‘"?"‘ if a slot is missing and ‘"any"‘ if the user has no preference.

4. **Output Requirements:**
- Include only required API calls.
- Output each call on a new line.

—
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**Schema:**
Use valid functions and slots as listed:

#### **Functions and Slots**
Each function corresponds to a specific domain and has associated slots. Use only the listed slots for each function.

- **GetBanks**
- Slots: ‘recipient_account_name‘, ‘amount‘, ‘recipient_account_type‘

- **GetBuses**
- Slots: ‘origin‘, ‘departure_date‘, ‘fare_type‘, ‘transfers‘, ‘price‘, ‘group_size‘, ‘destination‘, ‘departure_time‘

- **GetEvents**
- Slots: ‘event_name‘, ‘city‘, ‘category‘, ‘number_of_tickets‘, ‘time‘, ‘date‘, ‘venue_address‘, ‘event_type‘

- **GetFlights**
- Slots: ‘origin‘, ‘inbound_arrival_time‘, ‘is_redeye‘, ‘outbound_departure_time‘, ‘outbound_arrival_time‘, ‘inbound_departure_time‘, ‘return_date‘,

‘airlines‘, ‘seating_class‘, ‘refundable‘, ‘number_stops‘, ‘departure_date‘, ‘fare‘, ‘destination‘, ‘passengers‘

- **GetHomes**
- Slots: ‘pets_allowed‘, ‘visit_date‘, ‘address‘, ‘property_name‘, ‘rent‘, ‘number_of_baths‘, ‘area‘, ‘number_of_beds‘, ‘furnished‘, ‘phone_number‘

- **GetHotels**
- Slots: ‘has_wifi‘, ‘average_rating‘, ‘check_out_date‘, ‘price‘, ‘pets_welcome‘, ‘number_of_days‘, ‘location‘, ‘check_in_date‘, ‘phone_number‘,

‘number_of_rooms‘, ‘street_address‘, ‘hotel_name‘

- **GetHouseStays**
- Slots: ‘rating‘, ‘phone_number‘, ‘has_laundry_service‘, ‘check_out_date‘, ‘total_price‘, ‘check_in_date‘, ‘address‘, ‘number_of_adults‘, ‘where_to‘

- **GetMedia**
- Slots: ‘title‘, ‘directed_by‘, ‘subtitles‘, ‘genre‘

- **GetMovies**
- Slots: ‘theater_name‘, ‘movie_name‘, ‘price‘, ‘show_date‘, ‘location‘, ‘show_time‘, ‘number_of_tickets‘, ‘genre‘, ‘show_type‘, ‘street_address‘

- **GetMusic**
- Slots: ‘song_name‘, ‘year‘, ‘album‘, ‘artist‘, ‘genre‘, ‘playback_device‘

- **GetRentalCars**
- Slots: ‘dropoff_date‘, ‘pickup_time‘, ‘pickup_city‘, ‘pickup_date‘, ‘total_price‘, ‘car_type‘, ‘car_name‘, ‘pickup_location‘

- **GetRestaurants**
- Slots: ‘price_range‘, ‘restaurant_name‘, ‘city‘, ‘has_live_music‘, ‘serves_alcohol‘, ‘time‘, ‘date‘, ‘phone_number‘, ‘cuisine‘, ‘street_address‘, ‘party_size‘

- **GetSalons**
- Slots: ‘is_unisex‘, ‘average_rating‘, ‘city‘, ‘appointment_date‘, ‘appointment_time‘, ‘stylist_name‘, ‘phone_number‘, ‘street_address‘

- **GetDentists**
- Slots: ‘dentist_name‘, ‘phone_number‘, ‘offers_cosmetic_services‘, ‘city‘, ‘appointment_date‘, ‘appointment_time‘, ‘address‘

- **GetDoctors**
- Slots: ‘doctor_name‘, ‘city‘, ‘average_rating‘, ‘appointment_date‘, ‘appointment_time‘, ‘type‘, ‘phone_number‘, ‘street_address‘

- **GetTravel**
- Slots: ‘good_for_kids‘, ‘category‘, ‘attraction_name‘, ‘location‘, ‘phone_number‘, ‘free_entry‘

- **GetWeather**
- Slots: ‘city‘, ‘temperature‘, ‘date‘, ‘precipitation‘, ‘humidity‘, ‘wind‘

—

### **Slot Value Types**

#### **Categorical Slots**
- ‘recipient_account_type‘: ‘checking‘, ‘savings‘
- ‘fare_type‘: ‘Economy‘, ‘Economy extra‘, ‘Flexible‘
- ‘category‘ (Travel): ‘Place of Worship‘, ‘Theme Park‘, ‘Museum‘, ‘Historical Landmark‘, ‘Park‘, ‘Tourist Attraction‘, ‘Sports Venue‘, ‘Shopping Area‘,
‘Performing Arts Venue‘, ‘Nature Preserve‘
- ‘event_type‘: ‘Music‘, ‘Sports‘
- ‘seating_class‘: ‘Economy‘, ‘Premium Economy‘, ‘Business‘, ‘First Class‘
- ‘refundable‘: ‘True‘, ‘False‘
- ‘airlines‘: ‘United Airlines‘, ‘American Airlines‘, ‘Delta Airlines‘, ‘Southwest Airlines‘, ‘Alaska Airlines‘, ‘British Airways‘, ‘Air Canada‘, ‘Air France‘
- ‘show_type‘: ‘regular‘, ‘3d‘, ‘imax‘
- ‘playback_device‘: ‘TV‘, ‘kitchen speaker‘, ‘bedroom speaker‘
- ‘type‘ (Doctors): ‘Gynecologist‘, ‘ENT Specialist‘, ‘Ophthalmologist‘, ‘General Practitioner‘, ‘Dermatologist‘
- ‘car_type‘: ‘Compact‘, ‘Standard‘, ‘Full-size‘
- ‘price_range‘: ‘inexpensive‘, ‘moderate‘, ‘expensive‘, ‘very expensive‘

#### **Boolean Slots**
- ‘has_wifi‘, ‘pets_allowed‘, ‘subtitles‘, ‘offers_cosmetic_services‘, ‘has_laundry_service‘, ‘is_unisex‘, ‘good_for_kids‘, ‘has_live_music‘, ‘pets_welcome‘,
‘serves_alcohol‘, ‘is_redeye‘, ‘furnished‘, ‘free_entry‘

—

Ensure all outputs strictly adhere to the required format and schema. Generate only API calls.

The input description and example templates are the same as in Section F.4

23542



F.6 JOINT-TAG Prompt

System prompt template:

You are designing a parser that takes in a user utterance and some standing instructions and outputs a set of API calls.
Every API call consist of "GetX" where X is domain name and uses slot names listed below as arguments. We list the domain name followed by the list of
possible slot names. Some slot names can be categorical or boolean
The values for the arguments can come from the user’s dialogue or standing instructions. If the user asks about a slot but no value is found, set its value to "?".
If the user explicitly says they do not care about a particular slot, set its value to "any".
Standing instructions allow you to add preferences or requirements that you’d like to consider when generating the parser.
If standing instructions are applicable across multiple domains, place an API call per situation per domain.
If some of the applicable standing instructions have instructions of similar type, place multiple API calls respecting the standing instructions.
If some slots are applicable across several domains, generate the respective slot names for the respective domains.

Think step by step.
First, identify and label API calls and their slots within applicable standing instructions.
Use action tags such as <a:API_NAME> ... </a>, and nested tags denoting specific attributes, like <sl:SLOT_NAME> ... </sl>.
Ensure that all tags are correctly placed, slot and API names are correct, all original sentence tokens are present and are in the correct order, no additional
tokens are added, and slot values include only necessary information, e.g. the value of the slot.
Use those generated labels, as well as information from the dialogue to create the calls.
After that, output a list of API calls that would answer the user query.

Schema:
Banks: recipient_account_name, amount, recipient_account_type
Buses: origin, departure_date, fare_type, transfers, price, group_size, destination, destination_station_name, origin_station_name, departure_time
Events: event_name, city, category, event_location, number_of_tickets, time, address_of_location, date, venue_address, event_type
Flights: origin, inbound_arrival_time, is_redeye, outbound_departure_time, outbound_arrival_time, inbound_departure_time, return_date, airlines, seat-
ing_class, refundable, number_stops, destination_airport, departure_date, fare, destination, passengers, origin_airport
Homes: pets_allowed, visit_date, address, property_name, rent, number_of_baths, area, number_of_beds, furnished, phone_number
Hotels: has_wifi, average_rating, check_out_date, price, pets_welcome, number_of_days, location, check_in_date, phone_number, number_of_rooms,
street_address, hotel_name
HouseStays: rating, phone_number, has_laundry_service, check_out_date, total_price, check_in_date, address, number_of_adults, where_to
Media: title, directed_by, subtitles, genre
Movies: theater_name, movie_name, price, show_date, location, show_time, number_of_tickets, genre, show_type, street_address
Music: song_name, year, album, artist, genre, playback_device
RentalCars: dropoff_date, pickup_time, pickup_city, pickup_date, total_price, car_type, car_name, pickup_location
Restaurants: price_range, restaurant_name, city, has_live_music, serves_alcohol, time, date, phone_number, cuisine, street_address, party_size
Salons: is_unisex, average_rating, city, appointment_date, appointment_time, stylist_name, phone_number, street_address
Dentists: dentist_name, phone_number, offers_cosmetic_services, city, appointment_date, appointment_time, address
Doctors: doctor_name, city, average_rating, appointment_date, appointment_time, type, phone_number, street_address
Travel: good_for_kids, category, attraction_name, location, phone_number, free_entry
Weather: city, temperature, date, precipitation, humidity, wind

Further, following slots have categorical values:
recipient_account_type: checking, savings
fare_type: Economy, Economy extra, Flexible
(Travel) category: Place of Worship, Theme Park, Museum, Historical Landmark, Park, Tourist Attraction, Sports Venue, Shopping Area, Performing Arts
Venue, Nature Preserve
event_type: Music, Sports
seating_class: Economy, Premium Economy, Business, First Class
refundable: True, False
airlines: United Airlines, American Airlines, Delta Airlines, Southwest Airlines, Alaska Airlines, British Airways, Air Canada, Air France
show_type: regular, 3d, imax
playback_device: TV, kitchen speaker, bedroom speaker
(Doctors) type: Gynecologist, ENT Specialist, Ophthalmologist, General Practitioner, Dermatologist
car_type: Compact, Standard, Full-size
price_range: inexpensive, moderate, expensive, very expensive

Further, following slots are boolean:
has_wifi, pets_allowed, subtitles, offers_cosmetic_services, has_laundry_service, is_unisex, good_for_kids, has_live_music, pets_welcome, serves_alcohol,
is_redeye, furnished, free_entry

—

{% if model_name == "llama" %}
Follow the following format.
{% else %}
The examples are formatted as follows.
{% endif %}

Dialogue:
<user_utterance>

Applicable Standing Instructions:
<applicable_standing_instructions>

Tagged Standing Instructions:
Tagged standing instructions

API Calls:
API calls to solve the user task

—

{% if model_name == "llama" %}
You are given several independent examples of the task:
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{% endif %}

Example template:

{% if split == "test" and model_name == "llama" %}
Given the examples above, output only the API calls for the following example with no additional text:
{% endif %}

Dialogue:
{{ user_utterance }}

Applicable Standing Instructions:
{{ applicable_instructions | join("\n> ") }}

Tagged Applicable Standing Instructions:

Target template:

{{ tagged_applicable_instructions | join("\n> ") }}

API Calls:
{{ target_api_calls | join("\n") }}

F.7 Tagger Prompt
System prompt template:

Create a sentence tagging model capable of identifying and labeling actions and their associated details within sentences. Given a sentence, the model should
appropriately tag actions and their attributes within the sentence.
The output should include all of the tokens from the original sentence, as well as action tags such as [IN:ACTION ] and nested tags denoting specific
attributes, like [SL:ATTRIBUTE value].
Ensure the model can effectively handle a variety of sentences and accurately mark actions and their related details.

Every action name has the format of "GET_X", where X denotes the domain name.
Every action has a list of associated attributes. Only those attributes can be present inside the action tag.

The list of the available function names is presented below, followed by possible slot names.
Some of the possible API calls include functions:
GetBanks: handling all the banking information (recipient_account_name, amount, recipient_account_type)
GetBuses: finding and booking bus tickets and routes (origin, departure_date, fare_type, transfers, price, group_size, destination, departure_time)
GetEvents: finding and booking events (event_name, city, category, number_of_tickets, time, date, venue_address, event_type)
GetFlights: finding and booking flights (origin, inbound_arrival_time, is_redeye, outbound_departure_time, outbound_arrival_time, inbound_departure_time,
return_date, airlines, seating_class, refundable, number_stops, departure_date, fare, destination, passengers)
GetHomes: looking for property (pets_allowed, visit_date, address, property_name, rent, number_of_baths, area, number_of_beds, furnished, phone_number)
GetHotels: booking hotels (has_wifi, average_rating, check_out_date, price, pets_welcome, number_of_days, location, check_in_date, phone_number,
number_of_rooms, street_address, hotel_name)
GetHouseStays: booking temporary accommodation (rating, phone_number, has_laundry_service, check_out_date, total_price, check_in_date, address,
number_of_adults, where_to)
GetMedia: searching for online media (title, directed_by, subtitles, genre)
GetMovies: searching for cinema tickets (theater_name, movie_name, price, show_date, location, show_time, number_of_tickets, genre, show_type,
street_address)
GetMusic: finding songs (song_name, year, album, artist, genre, playback_device)
GetRentalCars: booking rental cars (dropoff_date, pickup_time, pickup_city, pickup_date, total_price, car_type, car_name, pickup_location)
GetRestaurants: finding and booking restaurants (price_range, restaurant_name, city, has_live_music, serves_alcohol, time, date, phone_number, cuisine,
street_address, party_size)
GetSalons: finding hair salons (is_unisex, average_rating, city, appointment_date, appointment_time, stylist_name, phone_number, street_address)
GetDentists: finding dentists (dentist_name, phone_number, offers_cosmetic_services, city, appointment_date, appointment_time, address)
GetDoctors: finding doctors (doctor_name, city, average_rating, appointment_date, appointment_time, type, phone_number, street_address)
GetTravel: finding attractions (good_for_kids, category, attraction_name, location, phone_number, free_entry)
GetWeather: getting weather information (city, temperature, date, precipitation, humidity, wind)

Check that the output fits all of the criteria above, and all of the tags are correctly placed (for example, [SL: ] tags must be inside the [IN: ] tags)
Pay special attention to the attribute names and function names, check that none of the attribute names are mixed up (for example, some functions have similar
attributes: city/location, make sure you are using the correct name)
Check that all of the tokens from the original untagged sentence are present and are in the correct order.
Check that the parser did not add any other tokens, except for the special ones.
Make sure that the attribute values inlcude only the necessary information (for example, ‘[SL:EVENT_TYPE event type is Music]’ is incorrect and should be
‘event type is [SL:EVENT_TYPE Music]’).

Example template:

{{ instruction }}

Target template:

{{ tagged_instruction }}
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