In Benchmarks We Trust ... Or Not?

Ine Gevers!, Victor De Marez!, Jens Van Nooten', Jens Lemmens!,
Andriy Kosar!, Ehsan Lotfi!, Nikolay Banar!, Pieter Fivez !,
Luna De Bruyne!, Walter Daelemans!,

!CLiPS, University of Antwerp, ’TEXTUA,

Correspondence: ine.gevers @uantwerpen.be

Abstract

Standardized benchmarks are central to eval-
uating and comparing model performance in
Natural Language Processing (NLP). However,
Large Language Models (LLMs) have exposed
shortcomings in existing benchmarks, and so
far there is no clear solution. In this paper,
we survey a wide scope of benchmarking is-
sues, and provide an overview of solutions as
they are suggested in the literature. We ob-
serve that these solutions often tackle a lim-
ited number of issues, neglecting other facets.
Therefore, we propose concrete checklists to
cover all aspects of benchmarking issues, both
for benchmark creation and usage. We illus-
trate the use of our checklists by applying them
to three popular NLP benchmarks (i.e., Super-
GLUE, WinoGrande, and ARC-AGI). Addi-
tionally, we discuss the potential advantages of
adding minimal-sized test-suites to benchmark-
ing, which would ensure downstream applica-
bility on real-world use cases.

1 Introduction

There is a rich history of benchmarking in Natu-
ral Language Processing (NLP): the field has seen
an evolution from specific single-task and single-
domain to more general multi-task benchmarks,
following the advent of more powerful general-
purpose Al models (Ruder, 2021). These bench-
marks have been used as an attempt to objectively
assess the performance of methods, and to track
and direct progress in the field (e.g., the yearly Al
Index Report, Maslej et al., 2025). In its broad
sense, a benchmark is a dataset (or an ensem-
ble of datasets) associated with one or multiple
metrics, and a way to aggregate system perfor-
mances (Ruder, 2021). The performance on such
a benchmark is considered to be representative
of the model’s abilities on a task, and is used by
the research community as a framework to com-
pare methods (Raji et al., 2021). Prominent stan-
dardized benchmarks in NLP are used to promote

the increasing capabilities of newly released mod-
els: technical reports introducing new Large Lan-
guage Models (LLMs) often refer to their perfor-
mance on a collection of standardized benchmarks
(e.g., Achiam et al., 2023; Yang et al., 2024, etc.).
However, recent models are outpacing the bench-
mark creation and benchmarks are quickly satu-
rated, but this does not necessarily mean the model
has grasped the relevant skill or knowledge (Kiela
et al., 2021). Additionally, since benchmark scores
have become a goal on their own, research integrity
could be compromised in an attempt to optimize
these scores. For instance, the LLaMA 4 team
submitted 27 private variants of the model (Singh
et al., 2025) to Chatbot Arena (Chiang et al., 2024),
which artificially boosted the benchmark scores
and obscured the distinction between the publicly
released version and their best performer on this
benchmark.! Koch and Peterson (2024) argue that
the rigid consolidation of benchmarking as the sole
evaluator of progress also disincentivizes explo-
ration beyond scaling model size.

So far, there is no clear consensus on how to
address the problems with benchmarking: for in-
stance, the HuggingFace Open LLM Leaderboard
introduced a way to evaluate methods across a
range of tasks and metrics (Myrzakhan et al.,
2024), but it eventually became outdated and is
now archived.”> Meanwhile, research is ongoing to
improve existing benchmarks (e.g., by adversarial
sampling, or semantic deduplication) or creating
new ones (e.g., ARC-AGI, Chollet et al., 2024).

In this paper, we focus on benchmarking is-
sues from the perspective of benchmark integrity
(benchmark creation) and benchmarking practices
(evaluating a method on a benchmark). While we
address issues that are generally relevant regardless

1ht’cps://x.com/lmarena_ai/status/
1909397817434816562

2At the time of writing: https://huggingface.co/
spaces/open-11m-1leaderboard/open_1l1lm_leaderboard

23662

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 23662—-23676
November 4-9, 2025 ©2025 Association for Computational Linguistics


mailto:email@domain
https://x.com/lmarena_ai/status/1909397817434816562
https://x.com/lmarena_ai/status/1909397817434816562
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard

of the model type that is being evaluated, we zoom
in on benchmarks currently used to evaluate LLMs
because these models reveal inconsistencies and
weaknesses in standardized benchmarks that were
created earlier. Since benchmarks vary in format
and modality, we focus here on text-based bench-
marks: text as input, and text as output. These
benchmarks can come in many shapes, such as
classification, summarization, generation, and so
on. In the scope of our paper, we consider static
benchmarks that have an a priori gold label associ-
ated with each input text.

Existing position and survey papers on NLP
benchmarking have provided important insights.
For example, Bowman and Dahl (2021) propose
core criteria for Natural Language Understanding
(NLU) benchmark design. Raji et al. (2021) focus
on construct validity and inappropriate commu-
nity use of benchmarks given two main bench-
marks, ImageNet and (Super)GLUE. MclIntosh
et al. (2024) address functionality and integrity of
23 benchmarks in the context of generative LLMs,
while Laskar et al. (2024) examine the robustness
of LLM evaluation. Banerjee et al. (2024) analyze
contamination and gaming in evaluation frame-
works. Finally, Reuel-Lamparth et al. (2024) pro-
pose an assessment framework that covers a wide
range of Al benchmarks and provide a checklist
for minimum quality assurance.

This survey paper adds to this effort by (1) sur-
veying discrete benchmarking issues both in cre-
ation and usage without any a priori benchmark se-
lection, (2) surveying solutions that are suggested
in the literature and evaluating whether these solu-
tions are general enough for (most of) the issues we
identified, and (3) combining these insights into a
concrete checklist of mitigation strategies, and ex-
ploring the added value of integrating downstream
test-suites as an additional test to ensure model
generalizability.

2 Survey of benchmarking flaws

In this section, we provide a survey of various prob-
lems with benchmarking that have been noted in
prior literature over time. We structure them ac-
cording to four types of experiment validity they
undermine (Wohlin et al., 2012): (1) internal valid-
ity, whether results are caused by the variable(s) of
interest rather than by external confounds; (2) ex-
ternal validity, whether results are generalizable to
other domains, or real-world settings; (3) statistical

validity, whether the proper methods are applied
to evaluate the model outputs on the benchmark,
so that the reported metrics support the claim; (4)
construct validity, whether the task and evaluation
metrics capture the phenomenon they intend to
measure.

2.1 Internal validity

Benchmarks are... only as good as their anno-
tations Since benchmark datasets are designed
to compare the performance of models on one or
more specific tasks, it is crucial that the provided
annotations are of high quality. If this is not the
case, this comparison is not only invalid, but this
also has implications for the performance of the
models if they are fine-tuned on this benchmark.
Moreover, Vendrow et al. (2024) show that label
errors cause evaluation inconsistencies, by hiding
unreliable model behavior.

In manually annotated data, one of the main
causes of low annotation quality is annotator dis-
agreement, which can occur in spite of (or because
of) annotator guidelines and an extensive training
procedure (Parmar et al., 2023). A second possible
cause is annotator bias, which is the result of de-
mographic and personal factors (Al Kuwatly et al.,
2020).

Alternatively, automatic labeling through dis-
tant supervision may provide high-quality labels
in some tasks, such as Native Language Identi-
fication. In this setup, labels are inferred from
metadata associated with the input’s author (i.e.,
their declared native language). If the gold label is
not straightforward, however, labels obtained via
distant supervision can be problematic. In sarcasm
detection, for example, labels provided by the au-
thors (e.g., ‘#sarcasm’) can be mined, although
this may lead to inconsistent examples of sarcasm
(Loakman et al., 2023). In addition, there is no
way to estimate the recall of such methods, which
could lead to unrepresentative sampling from the
population (Ghosh et al., 2020). As an alternative,
it has been proposed to use LLMs as automatic
annotators, but as argued by Felkner et al. (2024),
these models are biased themselves.

Benchmarks are... gameable Dataset artifacts
are superficial patterns in the data that can be ex-
ploited by the model to get the correct answer
based on irrelevant correlations (Gardner et al.,
2021), which is not necessarily intended by the re-
searcher. The presence of such superficial patterns
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especially becomes problematic when the evalua-
tion metrics of the benchmark encourages short-
cuts. In a classic example, Mao and Lee (2019)
show that in many paraphrasing datasets, repeating
the input text inflated the score. Also in Natu-
ral Language Inference (NLI) tasks, models could
already partially solve the task without looking
at the premise at all, instead relying on lexical
patterns or sentence lengths (Gururangan et al.,
2018). Newer models still apply ‘shortcut learning’
in NLI, in which they for instance exploit lexical
overlap (Yuan et al., 2024; Sun et al., 2024). In
a multiple-choice question answering setup, the
position of the correct answer among the possible
options can also be exploited. By shuffling this or-
der, Pezeshkpour and Hruschka (2024) observe an
85% performance drop. Similarly, Alzahrani et al.
(2024) can move models up or down 8 ranks on the
MMLU dataset with various small perturbations.
Recently, reasoning and explainability bench-
marks were introduced to increase the transparency
of LLM behavior, but they are still gameable. For
example, Hsia et al. (2024) describe various meth-
ods to manipulate specific evaluation metrics such
as ERASER and EVAL-X scores. Meanwhile,
Mondorf and Plank (2024b) discuss how using
accuracy as a metric to measure reasoning perfor-
mance can obscure how LLMs rely on surface-
level patterns and correlations in the training data,
rather than on sophisticated reasoning abilities.

Benchmarks are... trained upon LLM bench-
mark evaluation is increasingly compromised by
data contamination, where models are exposed to
benchmark data during training (Xu et al., 2024).
This leakage encompasses various forms, from en-
tire datasets to metadata about them (Xu et al.,
2024; Sainz et al., 2023b; Palavalli et al., 2024).
This phenomenon is widespread, affecting popular
benchmarks (such as HellaSwag and TriviaQA)
within common training corpora (such as C4 and
The Pile), both in open and closed source models
(Sainz et al., 2023b, 2024; Singh et al., 2024a).
Detecting and mitigating contamination, which
can occur during pre-training, fine-tuning, or user
feedback updates (Sainz et al., 2023b; Xu et al.,
2024; Balloccu et al., 2024), is challenging due
to dataset scale and model opacity (Sainz et al.,
2023b, 2024). Methods include string/embedding
matching for open data (Xu et al., 2024; Ravaut
et al., 2024), while closed models often require
probing distributions and logits, or analyzing mem-

orization (Sainz et al., 2023b; Xu et al., 2024; Sainz
et al., 2023a). The growing recognition of this is-
sue is reflected in dedicated workshops and surveys
(Sainz et al., 2024; Ravaut et al., 2024; Cheng et al.,
2025).

The consequences of contamination are severe:
inflated scores, unfair comparisons, flawed scien-
tific conclusions, potential performance degrada-
tion, and practical risks such as commercial, pri-
vacy, or copyright (Xu et al., 2024; Zhou et al.,
2023; Sainz et al., 2023b; Cheng et al., 2025;
Ravaut et al., 2024). Therefore, it is crucial to
mitigate contamination through better data cura-
tion, e.g., through private/dynamic benchmarks,
encryption, or licensing (Xu et al., 2024; Jacovi
et al., 2023); refactoring existing benchmarks and
benchmark-free evaluation, like LLM-as-judge
(Xu et al., 2024; Cheng et al., 2025); and procedu-
ral safeguards such as transparency and community
registries (Jacovi et al., 2023; Balloccu et al., 2024;
Sainz et al., 2023b).

2.2 External validity

Benchmarks are... Anglocentric The linguis-
tic scope of current evaluations is notably limited.
Most benchmarks focus predominantly on English
or a small set of high-resource languages, overlook-
ing the vast global linguistic landscape (MclIntosh
et al., 2024). The few existing benchmarks for low-
resource languages — such as the Uhura benchmark
for evaluating question answering in six African
languages (Bayes et al., 2024), or LingOly for as-
sessing linguistic reasoning in 90 low-resource lan-
guages (Bean et al., 2024) — have demonstrated
significant performance declines when LLMs are
applied to under-resourced languages. Therefore,
it is crucial to evaluate models on a much wider
and diverse range of languages.

Early efforts to expand language coverage in
benchmarks primarily relied on machine transla-
tion of existing benchmarks (Lai et al., 2023; Thell-
mann et al., 2024). Although this approach is fast
and cost-effective, translation quality can nega-
tively affect the validity of evaluation results (En-
gldnder et al., 2024; Plaza et al., 2024; Singh et al.,
2024b). The NLP community recognizes this issue
by reducing the machine-translated content (Singh
et al., 2024b) and developing human-curated evalu-
ation resources (Enevoldsen et al., 2025). However,
even human translation might leave undesirable ar-
tifacts of the source language in the translated texts
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(‘translationese’), which is detrimental to model
performance (Barth and Rehm, 2025) and might
obscure evaluation results. Besides the issue of
translationese, translating data may leave cultural
traces from the source text, posing particular chal-
lenges in tasks involving subjectivity or cultural
nuance, such as in emotion detection (De Bruyne,
2023) and topic detection (Kosar et al., 2024).

This cultural bias in benchmarks is also problem-
atic, as many evaluations implicitly embed specific
cultural norms and assume homogeneity in lan-
guage use and worldview, which does not reflect
reality. Singh et al. (2024b) reveal that perfor-
mance on widely used MMLU is largely tied to
the knowledge of Western-centric ideas, with 28%
of the questions involving culturally specific in-
formation. In addition, among questions testing
geographic knowledge, a striking 84.9% focus on
North America or Europe. Research utilizing the
BLEnD benchmark (Myung et al., 2024) highlights
stark performance disparities when models process
culturally diverse inputs. Additionally, studies in-
volving AraDiCE (Mousi et al., 2025) and work
by Wang et al. (2024) expose how dialectal vari-
ation and cultural context are frequently ignored
or improperly handled, leading to inconsistent or
inappropriate model evaluation.

Benchmarks are... corrupted The quality of the
input texts is as important as the quality of the anno-
tations, but this is not always guaranteed. Bowman
and Dahl (2021) highlight that some tasks, such as
NLI, occur infrequently in a natural setting (such
as in social media data or product reviews). In
such cases, research opts for crowd-sourcing data
or generating synthetic data using LLLMs. However,
these approaches can cause multiple issues. For
instance, crowd-sourced data is prone to contain
duplicate or repetitive entries (Bowman and Dahl,
2021). Additionally, even though LLM-generated
synthetic data can be an attractive alternative, this
data is often biased and insufficiently representa-
tive for more complex tasks (Maheshwari et al.,
2024).

Besides repetitiveness, another problem that
benchmarks face is that they can contain harmful
texts and data in violation of privacy and copyright
laws (Rogers et al., 2021; Longjohn et al., 2024).
Longjohn et al. (2024) posit that extensive quality
reviews, sharing metadata and creating repositories
for benchmarks can mitigate these emerging issues
through updates or deprecation.

Benchmarks are... focused on the same domains
Existing benchmarks are heavily skewed towards
academic or general-purpose tasks. Specialized
domains such as finance, legal, medical, biology,
or arts receive limited attention. The existence of
domain-specific models, such as BloombergGPT
(Wu et al., 2023), FinLLlama (Konstantinidis et al.,
2024), LawLLM (Shu et al., 2024), and their su-
perior performance compared to general-purpose
models underscores the inadequacy of generic
benchmarks for capturing specialized, task-specific
expertise. Moreover, the lack of model generaliza-
tion across domains is illustrated by performance
on benchmarks like LexEval for the legal domain
(Li et al., 2024), FinBen for finance (Xie et al.,
2024) or a range of medical benchmarks (Pal and
Sankarasubbu, 2024).

2.3 Statistical validity

Benchmarks are... evaluated too inconsistently
Current evaluations of LLLMs face significant in-
consistencies and unreliable findings due to the
complexity and variability across different bench-
mark evaluation setups. For instance, Mizrahi et al.
(2024) show that LLMs are sensitive to prompt
design, exposing a significant performance differ-
ence across benchmarks when the instruction tem-
plate is paraphrased. Further, Laskar et al. (2024)
describe how multiple sources of variance exist
within the evaluation pipeline, including differ-
ences in prompt design and the configuration of de-
coding parameters, which can substantially impact
reported performance. According to their criteria,
only 20.7% of 212 surveyed papers sufficiently
control for this variance to arrive at a fair model
comparison.

Benchmarks are... reported without signifi-
cance testing Recent surveys find that in most ap-
plications of Al benchmarks, including NLP ones,
statistical significance testing is omitted when pre-
senting their results (Reuel-Lamparth et al., 2024).
This undermines the validity, utility and trustwor-
thiness of these results (Biderman et al., 2024), as
it remains crucial to distinguish random noise from
genuine performance differences between models.
For example, recent work by Zhang et al. (2024)
demonstrates that the absence of statistical signifi-
cance testing can obscure benchmark contamina-
tion effects in LLMs, leading to potentially mis-
leading conclusions about model performance.
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2.4 Construct validity

Benchmarks are... not representative Reliable
LLM evaluation is challenged by the representa-
tiveness problem: a growing disconnect between
benchmark performance and real-world capabili-
ties (Church, 2020; Nezhurina et al., 2025). This
gap stems from poor construct validity, where
benchmarks are flawed proxies for general abil-
ities, creating an illusion of generality (Raji et al.,
2021). For instance, models frequently demon-
strate high performance on standardized test-style
questions yet struggle when faced with complex
planning or multi-step reasoning challenges, a lim-
itation highlighted by specialized benchmarks like
PlanBench (Valmeekam et al., 2022), GPQA (Rein
et al., 2023), and HLE (Phan et al., 2025).

This validity issue is compounded by an inher-
ent evaluation bias stemming from the tension
between ensuring reproducibility (favoring eas-
ily quantifiable, repeatable metrics) and achieving
functionality (accurately assessing intended capa-
bilities and real-world alignment) (Mclntosh et al.,
2024). The strong emphasis on reproducibility of-
ten leads to an over-reliance on convenient formats
like multiple-choice question answering (MCQA).
This approach reframes generative tasks as classi-
fication problems, simplifying evaluation (as seen
in LegalBench, Guha et al., 2023) but significantly
compromising validity, as MCQA is not a neutral
setting (Balepur et al., 2024) and remains a poor
proxy for real-world performance even when de-
biased (Cho et al., 2025; Gu et al., 2024).

Relying on these flawed, easily quantifiable
proxies fosters an overfixation on leaderboard rank-
ings, incentivizing ‘benchmark gaming’: optimiz-
ing specific metrics rather than cultivating genuine
understanding or robust capabilities (Burden, 2024;
Mclntosh et al., 2024; Singh et al., 2025), a phe-
nomenon consistent with Goodhart’s Law (Burden,
2024). This results in models that appear strong on
paper but are brittle in practice, failing unexpect-
edly when faced with minor variations unseen in
the benchmarks (Nezhurina et al., 2025; Lyu et al.,
2024; Mondorf and Plank, 2024a), as highlighted
in Section 2.1.

Ultimately, benchmark progress becomes mis-
aligned with crucial practical goals such as usabil-
ity, knowledge application, skill integration, and
robustness (Pietruszka et al., 2024). Therefore,
evaluation methodologies must evolve beyond con-
venient yet misleading proxies. While approaches

like Chatbot Arena offer alternatives (Chiang et al.,
2024), more robust solutions involve behavioral
testing, adversarial evaluations, and the develop-
ment of new benchmarks explicitly designed for
validity, robustness, and real-world applicability
(Raji et al., 2021; Pietruszka et al., 2024; Burden,
2024).

3 Mitigation of benchmarking issues

Research has proposed various solutions to allevi-
ate the specific benchmarking issues surveyed in
Section 2. In this section, we provide an overview
of such suggestions keeping in mind all the issues
we identified above. Table 1 provides an overview
of the proposed solutions, and which issues they
(do not) solve.

3.1 Pre-creation

Since some flaws in benchmarks stem from issues
during their creation, suggestions have been made
to improve relevant aspects before evaluating mod-
els on them. Specifically, research suggests to im-
prove the quality and coverage of the data, and
enrich the metadata.

For instance, dynamically creating bench-
marks by continuously adding instances that are
informed by model developments and model per-
formances would (temporarily) alleviate the memo-
rization issue: DynaBench (Kiela et al., 2021) and
GEM (Gehrmann et al., 2021) are examples. How-
ever, the instances that are added in this process are
prone to be cherry-picked based on specific failures
of a model at that time, and might not be represen-
tative anymore of the task at hand (Bowman and
Dahl, 2021).

Furthermore, existing benchmarks can be aug-
mented with refactored data. Here, the focus
is on consistency, by for instance including mul-
tiple formulations of the same instance to distin-
guish between genuine understanding and memo-
rization. These instances can also be created by
automatically generating perturbed versions of test
instances (e.g., changing names, numbers, sentence
order, logical structure slightly), where the pertur-
bations are not related to the core task (e.g., the
Alice in Wonderland problem in Nezhurina et al.,
2025). However, it might be difficult to ensure that
these perturbations only affect superficial features
without changing the underlying task logic or the
correct answer.

Additionally, benchmarks could be filtered to
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avoid easy, contaminated, and too similar examples
(Gupta et al., 2025).

Besides adapting the input texts, it is argued that
benchmarks should be released with more trans-
parent and rich metadata. One aspect of this is the
inclusion of cultural bias annotations, such as in
the work of Singh et al. (2024b), where questions
from MMLU were annotated based on whether
cultural, geographical or dialect knowledge was
needed to correctly answer the question. Another
aspect is the preservation of individual annota-
tor responses instead of collapsing them into a
single aggregated label. This aligns with the per-
spectivism paradigm, which emphasizes the impor-
tance of considering diverse annotator perspectives
in NLP tasks (Cabitza et al., 2023).

Finally, more fine-grained or nuanced forms
of annotation are a possible approach as well.
Sachdeva et al. (2022), for instance, use Rasch
Measurement Theory (Rasch, 1960) to position so-
cial media messages on a hate speech spectrum,
rather than providing an unnuanced binary label.

3.2 Post-creation

Benchmarking practices after the release of the
benchmark can also be improved. A big factor is
transparency and effectiveness of the evaluation
metrics. On the one hand, it is suggested to av-
erage the score of a model across various bench-
marks to ensure the generalizability (e.g., BIG-
bench (Ghazal et al., 2013), and HuggingFace’s
Open LLM Leaderboard). On the other hand, there
is more attention to evaluate models more broadly
on a benchmark by including a variety of eval-
uation metrics, such as in HELM (Liang et al.,
2023).

To facilitate open and reproducible evaluations,
platforms such as OLMES (Gu et al., 2024) and
Language Model Evaluation Harness (Gao et al.,
2024) provide open evaluation standards.

Alternatively, there are arguments to keep the
test set of benchmarks secret, and use private
leaderboards to which the solutions are uploaded
privately, and the final score is published (Rajore
et al., 2024). While this would protect the test
data from contamination, others argue that it would
be better to encrypt the test data and release it
together with the key to decrypt it, which would
also protect it from crawlers (Jacovi et al., 2023).
However, this is not a fool-proof system, and for
instance exemplary instances that are provided in
academic publications are still included in the pre-

training data of LLMs (Gevers et al., 2025).

Chiang et al. (2024) argue that standardized NLP
benchmarks fail to provide a diverse and nuanced
evaluation of the expanding capabilities of LLMs,
and therefore suggest to evaluate models using hu-
man preferences, proposing the Chatbot Arena.
While, as can be seen from Table 1, this solution
addresses most of the issues we identified in Sec-
tion 2, this evaluation setup does not allow to mea-
sure a model’s performance on a specific task, and
leaves the door open for evaluation biases based
on sycophancy and an overfitting to arena-specific
dynamics over general model quality (Singh et al.,
2025). Moreover, Singh et al. (2025) show that
Chatbot Arena, which uses a normalized version of
the Bradley-Terry model (Bradley and Terry, 1952),
violates its assumption of unbiased sampling and
full interconnection of the comparison network
by providing preferential access to selected LLM
providers and silently deprecating some models.

In addition, mechanistic interpretability (MI)
can help investigate the internal mechanisms that
could explain model behaviour on existing bench-
marks (Bereska and Gavves, 2024; Lindsey et al.,
2025). Findings from MI can validate whether a
model possesses a claimed capability (construct va-
lidity) or merely mimics it. However, the method-
ology is hard to standardize and generalize across
benchmarks.

4 Discussion

We see that many of the solutions provided in the
literature are created in a vacuum, and address
at best a selection of the problems we identified
(see Table 1). Additionally, we note that there is
more focus on some of the issues we describe than
others. For example, few solutions tackle language
imbalance or domain coverage.

We argue it is important to zoom out, and sug-
gest to merge different proposed solutions so the
effect is more robust against various pitfalls in
benchmarking. Therefore, based on our literature
review and some shortcomings it exposed, we es-
tablish two concrete checklists that could be used
when (a) creating a benchmark; or (b) evaluating
a method on an existing benchmark, which we
present in Table 2. We demonstrate the applicabil-
ity of our checklist by evaluating three widely used
benchmarks (i.e., SuperGLUE, WinoGrande, and
ARC-AGI) in Table 3. We note that a substantial
number of our checklist items remain unmet across
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Table 1: Effectiveness of proposed solutions against benchmark problems (v': solves, X: doesn’t
solve, ~: partially/temporarily solves), split into the following categories: | Annotation Quality (AQ) ,
Gameable (GA) , Data Contamination (DaC) , Language/Cultural Imbalance (LCI), Text Quality (TQ)

Domain Coverage (DoC , Evaluation Inconsistency (EI) , Representativeness (REP) , .
Solution AQ GA DaC LCI TQ DoC EI REP
Pre-creation
Dynamic benchmarks ~ ~ v ~ ~ ~ X A
Augment with refactored / perturbed data X v ~ X ~ X X ~
Filtering benchmarks v v v X v X X ~
Cultural bias annotations X ~ X v X X X X
Non-aggregated datasets v X X ~ X X X X
Fine-grained annotation scales v X X X X X X X
Post-creation
Averaging scores X X X ~ X ~ X A
Multi-metrics X ~ X X X X ~ v
Open eval standards X X X X X X v X
Private leaderboards (secret test set) X X v X X X v X
Encrypt + license (CC BY-ND) X X ~ X X X X X
Human preference evaluation v v v ~ v ~ X X
Mechanistic interpretability X v ~ X X X X ~

these benchmarks. For instance, in all three, there
are no detailed annotation metadata, instance-level
metadata, encryption or no-derivatives clauses for
the test-set (although WinoGrande and ARC-AGI
keep (part of) the test-set hidden), or allow for free-
form inference. However, ARC-AGI meets more
requirements than SuperGLUE and WinoGrande,
since it is language-agnostic. Since our checklist
is based on findings from previous literature, this
highlights the weaknesses in current benchmarks
that could be exploited by LLMs.

Alternatively, we must consider including less
centralized and standardized strategies to evalu-
ate LLM capabilities besides benchmarking, to
ensure fair model evaluation and model general-
izability. Specifically, we suggest to complement
standardized benchmarks with a framework to con-
cretely measure the model’s downstream perfor-
mance. Following the criterion validity, which
posits that a good measure should also predict
other concrete behavioral outcomes regarding the
specific task/skill at hand, good performance on
a benchmark should correlate with robust down-
stream performance (Bowman and Dahl, 2021).
Therefore, as a future research direction, we sug-
gest to create minimal-sized test-suites for real-life
use cases to complement NLP benchmarking. We
argue that model evaluations would be more robust
by developing and using such test-suites, which
should remain small enough to permit a rigorous
qualitative evaluation. For example, in machine
translation, small-sized test-suites including ex-

treme edge cases are used to ensure broad, and
unbiased applicability (e.g., Haddow et al., 2024).
This could inspire NLP research to develop similar
small datasets, in which the model is presented
with the challenging cases that are relevant for real-
life applications.® In opinion mining, for example,
research could focus on Dutch COVID-19 vacci-
nation skepticism (Lemmens et al., 2021), or on
reputation analysis of governmental organizations
(Boon et al., 2024). For future research, we pro-
pose to apply unsupervised sampling techniques
to ensure the test-suite includes representative in-
stances as well as informative outliers, for example
by filtering for infrequent cases, gathering exem-
plar inputs from domain experts, and using recent
case studies to ensure societal relevance and avoid
data contamination. The addition of such frame-
work to the usual model evaluation on standardized
benchmarks would address all of the benchmarking
issues mentioned earlier, and ensure the model per-
formance is generalizable to real-world use cases.

8This differs from adversarial examples, which are de-
signed to expose specific model weaknesses, and may not
reflect genuine use-case demands (Bowman and Dahl, 2021).
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Table 2: Checklist for constructing and evaluating benchmarks with the corresponding problems they
solve: Annotation Quality , Gameable , Data Contamination , Domain Coverage , Evaluation Inconsistency ,

Language/Cultural Imbalance , Representativeness , Text Quality .

Checklist for constructing benchmarks

0

0

O

Provide a clear task definition with a taxonomy of intentions and assumptions of the required capabilities to solve the
benchmark instances, rather than just the surface task type.

Solves: Representativeness

Clearly state the language, geographic, demographic, culture, or domain-specific limitations of the benchmark.
Balance mix of domains and genres.

Solves: Language/Cultural Imbalance , Domain Coverage , Representativeness

Motivate the source of the annotations: crowdsourcing, expert annotators or synthetic. Provide annotations of all
annotators (not only average), annotator guidebook and annotator metadata / demographics.

Solves: Annotation Quality , Language/Cultural Imbalance

Include detailed metadata, such as data sources (URLSs, surrounding paragraphs), geographic and temporal

information.
Solves: Data Contamination , Text Quality , Language/Cultural Imbalance

Perform extensive quality control of the texts. Pay attention to crowd-sourced texts, and (near-)duplicates.
Solves: Text Quality , Gameable
Include authentic data in high- and low-resource languages to guarantee cross-lingual performance. Alternatively,

involve professional translators and account for cultural diversity (Barth and Rehm, 2025).
Solves: Language/Cultural Imbalance

Avoid using data that might have been memorized. For example, use tools like infini-gram’ for web-scraped content.
Solves: Data Contamination

Add instances where surface features or irrelevant numerical details are systematically varied.

Solves: Gameable

Integrate evaluations in existing framework (e.g., OLMES, LM evaluation harness), or motivate the choice of
evaluation metrics and open-source the evaluation (prompt, hyperparameters, evaluation script).

Solves: Gameable , Evaluation Inconsistency

Encrypt your benchmark and release the encrypted version with a no derivatives clause (Jacovi et al., 2023).
Solves: Data Contamination
Motivate the proposed inference method (e.g., probability, classification), but at least include free-form generation.

Solves: Evaluation Inconsistency , Representativeness

Provide relevant (open-sourced) baseline methods (which could reveal artifacts) and human performance.
Solves: Gameable , Representativeness

CheckKlist for evaluating methods on benchmarks

O

O

Open-source the evaluation code. If available, include results using a standard prompt from the accompanying paper.
Solves: Gameable , Evaluation Inconsistency

Indicate if you trained your model on this benchmark and report scores without any training on the benchmark itself.
Solves: Data Contamination
Report the model version. Report score of at least one open-data LLM.

Solves: Evaluation Inconsistency

Use an appropriate interpretability technique to verify the information used for the task, such as SHAP (Mosca et al.,
2022) or more recent mechanistic methods (Bereska and Gavves, 2024).

Solves: Gameable

Report a variety of evaluation metrics (cf. HELM).

Solves: Evaluation Inconsistency , Gameable

Report at least one statistical significance test between model, and baseline results and/or human performance
(Reuel-Lamparth et al., 2024).

Solves: Evaluation Inconsistency , Gameable

Report whether the benchmark was used in the development phase.
Solves: Data Contamination

Release the raw model output (Laskar et al., 2024).
Solves: Gameable , Evaluation Inconsistency
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Table 3: Evaluation of three popular NLP benchmarks using our checklist for benchmark creation (v is applied, X:

is not applied, ~: irrelevant (e.g., not natural language)).

Benchmark

SuperGLUE

WinoGrande ARC-AGI

Provide task definition
State limitations, mix of domains and genres

Motivate source of annotations, provide detailed
annotation metadata

Include metadata of texts
Quality control of texts

Authentic data in high- and low-resource languages,
or professional translations

Avoid memorized data
Systematically adapt surface features

Integrate evaluation in existing framework, or
motivate and open-source evaluation metrics

Encrypt and shared with no-derivatives clause
Motivate inference method, at least include free-form

Include open-source baselines and human
performance

v
v

X

2

N XX SN A X X A X X NS
N X X N XX X N X X NN
N

N R YR NEN

5 Conclusion

Benchmarks are ubiquitous in the NLP community.
It is the go-to method to evaluate model capabili-
ties, and compare systems to each other. However,
especially with the rise of powerful LLMs, weak-
nesses in benchmarking practices are revealed,
questioning the validity of existing benchmarks
in their creation, dissemination, and usage. How-
ever, as of now there is no one-fits-all solution to
fix benchmarking.

In this study, we survey benchmarking issues
that are identified in prior literature, grouped ac-
cording to experimental validity types. Then, we
survey proposed solutions in the literature for these
issues. However, we find that it is important not
to overestimate the usability of single solutions,
since they are often created with only one or a few
issues in mind, neglecting other pitfalls. There-
fore, we combine specific recommendations from
the literature in concrete checklists, which can be
used to improve benchmarking practices. Last,
we suggest to include downstream minimal-size
test-suites to ensure the model’s benchmark perfor-
mance is generalizable to real-world use cases as a
future research direction.

Limitations

This study is subject to a few limitations. First
of all, this paper attempts to provide a compre-
hensive overview of discrete issues within NLP
benchmarks and their proposed solutions, but it is
inherently challenging to compile an exhaustive

list. There are likely other issues present in NLP
benchmarking, and potentially additional solutions
suggested in the literature, that have not been cap-
tured within the scope of this work. However, the
issues and solutions we include are representative
of the overall problem we set out to address.

Second, to the best of our knowledge, there
is little research focusing on the potential inter-
actions between the different suggested solutions
for benchmarking issues. For example, does ad-
dressing one issue inadvertently exacerbate oth-
ers? These interdependencies should be further
researched.

Third, our proposed checklist functions as a
guideline for benchmarking practices. We do not
claim this is a final product, and it should be up-
dated with new insights from the community. Ad-
ditionally, it might not be universally applicable
across all benchmarking scenarios, so we encour-
age benchmark practitioners to adapt and tailor it
to their specific contexts.

Another limitation of this study is that only the
text modality was considered, even though bench-
marks for other modalities, such as vision, are af-
fected by similar issues, as reported in Li et al.
(2025). Nonetheless, the issues raised and check-
lists provided in this study are still relevant to non-
textual benchmarks.
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