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Abstract

Dialectal data are characterized by linguistic
variation that appears small to humans but has a
significant impact on the performance of mod-
els. This dialect gap has been related to various
factors (e.g., data size, economic and social
factors) whose impact, however, turns out to
be inconsistent. In this work, we investigate
factors impacting the model performance more
directly: we correlate Tokenization Parity (TP)
and Information Parity (IP), as measures of rep-
resentational biases in pre-trained multilingual
models, with the downstream performance. We
compare state-of-the-art decoder-only LLMs
with encoder-based models across three tasks:
dialect classification, topic classification, and
extractive question answering, controlling for
varying scripts (Latin vs. non-Latin) and re-
source availability (high vs. low). Our analysis
reveals that TP is a better predictor of the perfor-
mance on tasks reliant on syntactic and morpho-
logical cues (e.g., extractive QA), while IP bet-
ter predicts performance in semantic tasks (e.g.,
topic classification). Complementary analyses,
including tokenizer behavior, vocabulary cov-
erage, and qualitative insights, reveal that the
language support claims of LLMs often might
mask deeper mismatches at the script or token
level1.

1 Introduction

Large Language Models (LLMs) pre-trained on
massive text data in many languages have become
the preferred solution for various Natural Language
Processing (NLP) tasks. The use of this technol-
ogy for processing dialects and regional varieties
remains limited. Small variations in pronuncia-
tion and writing (Zampieri et al., 2018; Scherrer
et al., 2023; Habash et al., 2024), which humans
can easily ignore, lead to significant performance
drops known as the dialect gap (Kantharuban et al.,

1Code at https://github.com/vanikanjirangat/
Tokenizer_Fairness_Dialect

2023). Including this variation is hard, although
important for more human-like interactions with
LLMs (Amadeus et al., 2024). It is especially im-
portant for a wide linguistic coverage, as many
languages are not standardized or have multiple
standards (Samardžić and Ljubešić, 2021).

In previous studies, dialect variances have been
related to economic and social factors (Kan-
tharuban et al., 2023), but the effects were incon-
sistent across different settings. Looking for more
consistent factors directly related to how LLMs
work, we turn to the representational biases in mul-
tilingual LLMs.

We study two aspects where the biases can be
quantified with recently proposed measures. First,
the tokenization bias has been shown to impact
not only the performance, but also the costs of de-
ploying LLMs across languages (Ahia et al., 2023).
Recently, this bias was quantified as Tokenization
Parity (TP) (Petrov et al., 2024). Second, Informa-
tion Parity (IP) (Tsvetkov and Kipnis, 2024) mea-
sures how well an LLM compresses or represents
the same content across languages. In both cases,
the measures show a difference between a given
language and English as a reference language.

To address the dialect gap, we correlate these
measures to downstream performance on three di-
alect NLP tasks, each targeting a different level of
representation: Dialect Identification (DI), which
mostly relies on surface-level clues, Topic Clas-
sification (TC) as a primarily semantic task, and
Extractive Question Answering (EQA) as a task
that relies on both kinds of features. In all three
cases, we work with multiple data sets represent-
ing different economic and cultural settings. This
allows us to control for additional factors that are
known to play an important role in creating biases.
In particular, we control for the script (Latin vs.
non-Latin) and resource level (high vs. low) (van
Esch et al., 2022). On the model side, we control
for the general type of pre-trained LLMs, distin-
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guishing between encoder-only (BERT-based) and
decoder-only (E.g., GPT) multilingual models.

The Key Findings are:

1. Encoder-based models consistently outper-
form decoder-only LLMs2 across the evalu-
ated dialectal tasks.

2. TP is more sensitive to the type of the script,
while IP reflects biases influenced by both
script and resource availability. Additionally,
both metrics show model-dependent variation,
highlighting how architectural and training
differences contribute to representational dis-
parities.

3. Information Parity (IP) shows more substan-
tial alignment with tasks requiring semantic
understanding and complex reasoning, while
Tokenization Parity (TP) is more predictive for
tasks that rely on morphological and syntac-
tic features, especially span-based extractive
tasks. These correlations are further modu-
lated by language resource availability and
script type.

2 Dialect Tasks, Data and Models

Our selection of dialect NLP tasks, data and mod-
els was guided by the goal of covering as diverse
settings as possible while keeping the computation
feasible.

2.1 Tasks
Dialect Identification (DI) This task consists of
assigning a dialect or region label to each input
sentence or utterance. This task comes in two
versions: monolabel (each utterance can belong
to only one dialect) and multilabel (some utter-
ances can belong to multiple dialects), with the
latter being more realistic but harder to perform
and evaluate. We used the datasets from several
VarDial shared tasks: Nuanced Arabic Dialect
Identification (NADI-2023), Swiss German dialect
identification (GDI), Indo-Aryan Language Iden-
tification (ILI), and multi-label DSL-ML datasets
(Abdul-Mageed et al., 2023; Samardzic et al., 2016;
Zampieri et al., 2018; Chifu et al., 2024).

Topic Classification (TC) This task is similar
to the monolabel DI task in that each snippet of
text is assigned a single topic label. The difference
is that predicting the label requires neutralizing

2All models are referred to as LLMs and are distinguished
as encoder-only or decoder-only where relevant

surface-level differences between dialects. This
task is included in the DialectBench benchmark
(Faisal et al., 2024) as the SIB-200 dataset (Ade-
lani et al., 2024) representing 200 languages. The
topic classes include: {science/technology travel,
politics, sports, health, entertainment, geography}.
We conducted the fine-tuning experiments on 29
languages belonging to different scripts, along
with the availability of language resources: eight
Latin-high, nine Latin-low, five non-Latin-high,
and seven non-Latin-low.

Extractive Question Answering (EQA) This
task combines in some way the features of the previ-
ous two, as it requires identifying the relevant spans
(surface features) but relying on deeper semantic
representation (understanding the question-answer
relationships). We experimented on 24 dialectal
variants - eleven Latin-high, two Latin-low, nine
non-Latin-High, and two non-Latin-low, from the
dataset SDQA (Faisal et al., 2021) also provided
via the DialectBench.

The general statistics and further details of
datasets are given in Appendix A. The class distri-
butions for DI and TC tasks are shown in Figures
7, 8 in Appendix A.

3 The Bias Metrics

3.1 Models & Tokenizers

Encoder type We used the multilingual mBERT
for the encoder variant in all the tasks. Specifi-
cally, in the case of the DI task, we performed addi-
tional comparisons between mBERT and language-
specific variants such as MARBERT (Arabic), In-
dicBERT(Indic), German-BERT3 (Swiss-German),
SpanBERTa (Spanish), and CamemBERT (French).
We use the respective models from HuggingFace4.

Decoder type Among the multilingual decoder-
type models, we selected Phi-3.5-mini, Llama
3.2-3B, Mistral-7B, Falcon-7B, Gemma-7B, and
SILMA-9B models. SILMA-9B represents an
Arabic-specific LLM, while the other models dis-
cussed are English-centric or generalized multi-
lingual LLMs, claiming support for a broad spec-
trum of languages. For the downstream task per-
formance evaluation, we considered Phi-3.5 and
Llama-3.2 by supervised fine-tuning (SFT) experi-
ments to compare with the encoder variants.

3We also did experiments with Swiss-BERT, which gave
similar performance as German-BERT

4https://huggingface.co/
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Figure 1: Tokenization Parity (TP) across languages resulting from the tokenizers used in encoder-type models.

Tokenizer & Languages: Language and tok-
enization are deeply intertwined, shaping LLMs’
multilingual capabilities. Most current models use
subword tokenization strategies such as BPE, Sen-
tencePiece, or byte-level methods. Newer mod-
els like LLaMA and Phi adopt the OpenAI tikto-
ken tokenizer5, which operates at the byte level
using UTF-8 encoding. This approach is language-
agnostic, breaking input into bytes or fragments
when unknown tokens are encountered. In con-
trast, SentencePiece typically defaults to character-
level segmentation. Non-Latin scripts (e.g., Arabic,
Hindi, Bengali) involve multi-byte characters in
UTF-8, making them more prone to token frag-
mentation under byte-level fallback. This behavior
impacts the vocabulary coverage and can hinder
effective representation of non-Latin text. Details
on tokenizer configurations and vocabulary sizes
are provided in Table 3, Appendix B. The fairness
or, inversely, the biases of pre-trained multilingual
models can be measured considering either the sur-
face level or deeper semantic features.

Tokenization Parity Following Petrov et al.
(2024), we use TP as a metric to analyze the to-
kenization fairness. The metric systematically as-
sesses how well the tokenizers treat parallel sen-
tences across different languages. Parity occurs
when a tokenizer exhibits similar tokenized lengths
for the same sentence in different languages. Con-
sider a sentence sA in language A and its transla-
tion sB to language B. Then, a tokenizer t achieves
parity for A with respect to B at sA and sB if

5https://github.com/openai/tiktoken

|t(sA)|/|t(sB)| ≈ 1, where t(sA) is the tokeniza-
tion of the sentence sA and |t(sA)| represents its
length. The premium for A relative to B is the ratio
|t(sA)|/|t(sB)| (Petrov et al., 2024). A value close
to 1 indicates fewer splits into subwords, which
indicates that the tokenizer vocabulary covers the
language well. When the value is greater than 1,
it indicates that the language tokenizer requires
more tokens to represent the same content. This
may indicate a suboptimal representation of the
language by the LLM, leading to inefficient repre-
sentation and potentially poorer downstream task
performance. At the same time, these values are
language-dependent, and hence, the number of to-
kens required to represent the same sentence in
different languages can affect TP values.

Information Parity Following Tsvetkov and
Kipnis (2024), we adopt Information Parity (IP) as
another metric for evaluating multilingual, specif-
ically dialectal fairness in large language mod-
els (LLMs). IP draws on information-theoretic
principles and quantifies the LLM’s efficiency in
compressing text in a given language relative to
a reference language. For a text in language L,
IP is defined as the ratio between the negative
log-likelihood of the text in English and the neg-
ative log-likelihood of the same text in language
L. In this context, English serves as a language-
agnostic reference compressor. IP expresses the
total amount of information or uncertainty in a
sequence perceived by the LLM relative to the ref-
erence language. Unlike similar metrics such as
perplexity, IP is less sensitive to variations in tok-
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Figure 2: Tokenization Parity (TP) across languages resulting from the tokenizers used in decoder-type models.

enization across languages and models.

4 Experiments

Our first goal is to evaluate the LLMs’ performance
on the dialectal downstream tasks, controlling for
various factors, namely scripts (Latin vs. non-
Latin) and resource levels (High vs. Low). The
latter categorization can be slightly biased as some-
times the distinction between high, medium, and
low resources can be fine-lined. The categoriza-
tion is reported in Table 4 of Appendix C. We then
quantitatively analyze the model’s script and repre-
sentation biases, measuring the correlation between
the observed performance on one side and the two
bias metrics — tokenization parity (TP) and infor-
mation parity (IP) — on the other. We complement
these analyses with a vocabulary analysis and a
manual inspection of the model tokenizers’ output.

4.1 Model Fine-Tuning Methods and
Parameters

We performed supervised fine-tuning (SFT) of the
decoder-only LLMs - Phi-3.5 and Llama 3.2 mod-
els and compared them with encoder-only mod-
els, mainly mBERT, on the datasets described in
Section 2. We decided to select fewer representa-
tive models to economize computing time. On the
other hand, the parity score does not require a lot
of computation, so we decided to keep multiple
models to have a better overview. For decoder-only
LLMs’ fine-tuning, we used the parameterization
techniques (PEFT) (Ding et al., 2023) with LoRA
(Low-Rank Adaptation) (Hu et al., 2021) and bit
quantizations to cope with memory issues and ef-

ficiency. Four-bit quantizations with LoRA R=16
or 8 and alpha =8, drop-out = 0.1, batch_sizes =
1, 2 or 4 with gradient accumulation = 8, learning
rate lr= 2e-4 or 5e-5 and lr scheduler, mostly co-
sine else linear were used. Parameter optimizations
were done using the hyperparameter optimization
framework, Optuna6. Further details of general
experimental settings can be found in Appendix E.
The prompts for instruction tuning each task are
reported in Appendix D.

For the encoder-only models, we used full-
finetuning (FFT), with 3 epochs of training,
AdamW optimizer with learning rate of 2e-5, batch
size of 8 or 16, and weight decay of 0.01.

In the multi-label setup of the DI task, we cre-
ated a representative train-test sample dataset for
the French dataset. This reduced the size of this au-
tomatically curated dataset (details in Appendix A)
allowing us to avoid unnecessary computing costs.
We used a custom trainer function to compute the
multi-label loss using Binary Cross-Entropy with
Logits (BCELoss with Logits).

4.2 Bias Metrics Measurements

We measure Tokenization Parity (TP) and Infor-
mation Parity (IP) across six multilingual mod-
els: Phi-Mini-3.5, Gemma-7B, LLaMA-3.2 (3B),
Mistral-7B, SILMA-9B, and Falcon-7B. Although
SILMA is Arabic-focused, it builds on the multi-
lingual Gemma architecture. The initial evaluation
is conducted on 54 languages and dialectal vari-
ants from the FLORES-200 dataset—a parallel cor-

6https://optuna.org/
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Figure 3: Information Parity (IP) across languages resulting from decoder-type models.

pus of 2,000 human-translated Wikipedia sentences
across 200 languages (Costa-jussà et al., 2022). A
subset of these score is then used for the correlation
analysis on the dialect NLP tasks.

5 Results

Table 1 shows the F1-scores on the DI task. The
encoder-type models outperform the heavily pre-
trained decoder-type models across all datasets in
both mono-label (ML) and multi-label (MuL) se-
tups. Language-specific BERT models score bet-
ter than mBERT in all cases except for the Swiss-
German.7.

Figure 4 shows the results for the TC and EQA
tasks. Here we report F1-score averages for the
script and resource level groups, the detailed tabu-
lar results per dialectal variety are presented in Ta-
bles 6 and 7 in Appendix F. On these tasks too, the
encoder-type model, mBERT performs much bet-
ter than the fine-tuned decoder multilingual LLMs.
Regarding the controlled categories, it can be noted
that the resource level affected the performance
more than the script (the skewness of the poly-
gons to the right), especially in decoder-type mod-
els. The differences between the model-types are
smaller on the EQA task, as well as the impact
of the resource level (except for Phi-3.5). Even
though the impact of the script is smaller than that
of the resource level, a bias towards Latin scripts is

7For curiosity, we tested also SILMA, the best performing
Arabic decoder-type LLM on the NADI dataset. Although
being an Arabic-specific model, it lags behind the mBERT
model by almost 6 points and the Arabic-specific BERT model
by about 28 points

present, especially on the EQA task.

5.1 The distribution of the bias metrics values
across languages

Figures 1 and 2 show the distribution of the TP
score on the sample of 54 FLORES languages
sorted (and colored) according to the controlled cat-
egories (resource level and script type). A compari-
son of these two graphs shows that encoder-type to-
kenizers result in a more stable TP than the tokeniz-
ers of the decoder-type models. However, a clear
divide emerges in both model types: Latin-script
languages maintain relatively stable TP and closer
to 1 across all models, whereas non-Latin lan-
guages show substantial variability—particularly
in lower-resource settings. Among decoder-type
models, Gemma and SILMA demonstrate more
consistent TP across language groups, while others
show language-specific disparities.

When the TP values deviate more from 1, it
shows larger disparities. For instance, with the
mBERT tokenizer, the TP in German (Latin-High)
is 1.26, while mBERT in Kannada (non-Latin-
Low)is 2.19. This means the tokenizer produces
26% more tokens for German than for English,
which is a good tokenizer premium, indicating
that German is fairly close to English in efficiency,
since it uses Latin script and shares vocabulary
with English. In contrast, with Kannada, the tok-
enizer produces 119% more tokens than English
for the same content, splitting the text into smaller
fragments.

Figure 3 illustrates IP performance (this score ap-
plies only to decoder-type models). High-resource
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Language (Type) Decoder-only Encoder-only

Phi-3.5 Llama 3.2 mBERT Language-Specific

Arabic (ML) 0.54 0.26 0.62 0.84 (MARBERT)
Swiss-German (ML) 0.49 0.46 0.59 0.60 (SwissBERT)
Indo-Aryan (ML) 0.74 0.32 0.88 0.90 (IndicTransformers)
French (MuL) 0.61 0.35 0.70 0.75 (CamemBERT)
Spanish (MuL) 0.40 0.79 0.83 0.85 (spanBERTa)

Table 1: Performance (F1-scores) on dialect identification task across models. ML = Mono-label version of the
task, MuL = Multi-label version of the task.

Figure 4: Average performance (F1-score) of models per category on TC (left) and EQA (right) tasks.

Latin-script languages generally exhibit higher IP,
while non-Latin and low-resource languages dis-
play wider variation. Unlike TP, IP appears to be
more dependent on resource levels.

5.2 Correlation analysis of TP & IP metrics
with the downstream tasks

To examine whether trends in Tokenization Par-
ity (TP) and Information Parity (IP) across lan-
guages correlate with model performance on dialec-
tal downstream tasks, we compute Pearson correla-
tion coefficients between downstream task scores
and the TP/IP metrics, using fine-tuned versions of
Phi-3.5-Mini, LLaMA-3.2, and mBERT. Note that
the direction of the correlation score is important
for a meaningful interpretation of the results.

In the case of TP, scores closer to 1 are con-
sidered better, while TP > 1 indicates that the
tokenizer uses more tokens to encode the same
content compared to English (more fragmentation).
Intuitively, we would expect a negative correlation
between the value of TP and the downstream per-
formance. High text fragmentation compared to
the reference means that the input sequences are

longer, which increases the complexity of the at-
tention mechanism and makes modeling harder,
which can impact the performance. In contrast, the
expected correlation between IP and downstream
performance is intuitively strongly positive, since
a higher IP indicates greater representational effi-
ciency, which should have a positive impact on the
performance.

Figure 5 visualizes these correlations as
heatmaps, with detailed tabular values provided in
Appendix F, Table 8. To make the trends easier to
follow, color codes show the expected correlations:
blue for the expected, red for the opposite.

Dialect Identification (DI) Contrary to the ex-
pected direction, we see a positive correlation be-
tween TP and DI performance in the two models
that perform better (mBERT and Phi-3.5 in the map
Figure 5a, cf. Table 1), while the expected negative
correlation is observed only in Llama-3.2, whose
performance is low. On the other hand, higher IP,
reflecting more efficient information compression,
is correlated with worse performance on dialect
classification in Phi-3.5 (map Figure 5b). This out-
come is also contrary to what we expected. The
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fact that the correlation is positive in Llama-3.2
only confirms this observation because the low per-
formance of Llama-3.2 indicates that the task was
not learned, and the model might be performing
some other classification. Note also that the corre-
lations are stronger in models that perform the task
better.

While we expected that higher tokenization dis-
parity would lead to a performance drop, another
picture appeared: it turns out that more fragmented
text (compared to the reference), might, in fact,
help models make surface-level distinctions if the
task is learned at all. This could be attributed to
the fact that dialects differ mostly at the surface
level (spelling, morphology, and token patterns).
If diacritics or other surface-level phenomena end
up encoded as separate tokens due to higher text
fragmentation, they might be exploited by models
as useful dialect features even if the meaning of
these units is not well captured in their vector rep-
resentation. In other words, models do not need to
“understand” the meaning of the small fragments to
grasp their dialect specificity. In contrast, higher IP
scores (expressing more equal compression) can be
indicative of deeper level (semantic) similarity be-
tween the texts written in different dialects, making
their differentiation harder even if the meaning is
better captured. This would explain the surprising
negative correlation between the IP score and the
performance on the DI task.

Topic Classification (TC) Comparing the two
maps in Figure 5, we can see that IP is more
strongly correlated with downstream performance
than TP on this task, which applies more to the
better model (Phi-3.5) than to the one with worse
performance (Llama-3.2). This suggests that im-
proved information compression across languages
enhances performance on the TC task, but TP also
shows a moderate correlation, indicating that tok-
enization may still impact the performance.

Extractive Question Answering (EQA) It is es-
pecially interesting to see in Figure 5a that the cor-
relation between TP and the performance on this
task is strong both in mBERT and Phi-3.5. This sug-
gests that variation in tokenization can significantly
impact the model’s ability to extract the correct
span. There is also a moderate correlation with IP
(the map Figure 5b), indicating that more consis-
tent information representation across dialects may
help the model extract relevant answers more ef-
fectively. In contrast, Llama-3.2 shows a moderate

correlation with TP, but the correlation with IP is
negligible. These findings suggest that tokeniza-
tion disparities play a more significant role than
general information preservation in extractive QA
tasks, where accurate token-level span prediction
is crucial.

Taken together, our results suggest that higher
TP (more tokens per word for some languages) usu-
ally hurts the performance in both surface-level and
semantically rich tasks as long as semantic repre-
sentations are needed for the task. Higher IP scores
(more similar compression), on the other hand, are
associated with better downstream performance
in both cases. The stronger association between
the TP scores and the surface-level tasks, on one
hand, and between the IP scores and the seman-
tically rich tasks, on the other, is in line with the
previous results reported by Tsvetkov and Kipnis
(2024), where TP was better correlated with extrac-
tive or text similarity tasks (e.g., PAWSX, XQuAD).
At the same time, IP correlated better with tasks
requiring semantic consistency (e.g., reasoning),
corresponding to our TC setting. The results on
the DI task suggest an inverse relation between the
TP and IP scores and the downstream task, which
has not been reported in previous studies. In this
case, higher TP is associated with better perfor-
mance, while higher IP with worse downstream
performance. As discussed above, the explanation
for these effects comes from the fact that the task
of distinguishing between dialect does not require
deep semantic representation of surface-level fea-
tures, while deeper semantic similarity (potentially
captured by a high IP score) can even hurt the per-
formance making the dialects harder to distinguish.

5.3 A closer look at the Llama tokenizer
As the Llama-3.2 model performance was behind
all other models on all tasks, we take a closer look
into its tokenizer and how it deals with non-Latin
scripts. For this, we output the tokenization of a
given input text as shown in the Arabic example in
Figure 6. It can be observed that Llama-3.2 outputs
misaligned tokens, which turned out to be charac-
ters misinterpreted as Latin-1, which is induced
by the byte-level fallbacks. For instance, the to-
ken Ø³ has the following Unicode description:
[’LATIN CAPITAL LETTER O WITH STROKE,’
’SUPERSCRIPT THREE’]. The characters may
break into smaller byte-level components if not di-
rectly present in the tokenizer vocabulary. These
byte sequences may be aligned to Latin-character
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(a) Correlations to TP across tasks and models (b) Correlations to IP cross tasks and models

Figure 5: Correlation heatmaps showing Tokenization and Information Parity across dialectal tasks for different
models; blue for the expected, red for the opposite of the expected.

English reference:
The find also grants insight into the evolution of
feathers in birds
Arabic:
§mn� �¯�tKA� �§SA¾ �\r­ �lY �WwC ��r§L
�¨ ��WywC
Llama3_Tokenizer_Output: ['ÙĬ', 'Ùh̋ÙĨ',
'ØŃ', 'ĠØ§ÙH̋', 'Ø§Ùĥ', 'ØªØ´', 'Ø§Ù ‘g',
'ĠØ£ÙĬØ¶Ø§', 'Ùı̆', 'ĠÙĨØ¸', 'Ø±Ø©',
'ĠØ¹ÙH̋Ùı̄', 'ĠØª', 'Ø·ÙĪØ±', 'ĠØ§ÙH̋',
'Ø±ÙĬ', 'Ø´', 'ĠÙ ‘gÙĬ', 'ĠØ§ÙH̋Ø·',
'ÙĬ', 'ÙĪØ±']

Figure 6: Example of Llama-3.2 tokenizer output.

tokens due to a high bias toward Latin script in pre-
training data. During decoding, the tokenizer may
reassemble these tokens into the correct Unicode
characters that match the non-Latin script. How-
ever, this can degrade the performance of non-Latin
language tasks, as the model may not be able to
capture the semantics and produce longer token
sequences. Also, this script raises questions about
how well the model captures the semantic meaning
and linguistic nuances.

The same behavior was also noted in the non-
Latin script language Hindi. For instance, rAvn
was tokenized as [’à¤°’, ’à¤¾à¤µà¤¨’], where the
Hindi character r corresponds to the UTF-8 bytes
[E0 A4 B0] 8. This sequence is interpreted as [à
¤ °] in Latin-1, which is then represented as the

8https://www.utf8-chartable.de/
unicode-utf8-table.pl?start=2304&number=128

token à¤° . Similar observations were made in all
non-Latin scripts experimented with, where Latin
characters were recognized. It should be noted,
though (from Appendix B) that both Phi-3 and
Llama-3 tokenizers are based on TikToken. This
means that the tokenization behavior also largely
depends on the tokenizer’s knowledge of the pre-
trained language.

As additional analyses, we examined the corre-
lation between missing character proportions and
downstream performance and investigated the lan-
guage support specifications of the LLMs. Our
findings suggest that these relationships remain
highly model- and task-dependent. Detailed results
and discussions are provided in Appendix G.

6 Related Work

The fairness and biases of LLM tokenizations have
been analyzed using parallel language corpora by
(Petrov et al., 2024; Ahia et al., 2023; Rust et al.,
2021). Language-specific investigations (Toraman
et al., 2023), temporal evaluations (Spathis and
Kawsar, 2024), and adversarial impacts (Wang
et al., 2024) and tokenizer comparisons (Kanjiran-
gat et al., 2023; Batsuren et al., 2024) are other
directions. The general conclusion pinpointed the
importance of tokenization - tokenization matters.
Following the limitations of tokenizers and other
multilingual biases, another research dimension
proposes alternative tokenization approaches (Hof-
mann et al., 2022) and even tokenless models (Bar-
rault et al., 2024; Pagnoni et al., 2024). Extending
the understanding and analysis of representational
biases in multilingual LLMs, some potential works
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on metrics related to information theory perspec-
tives (Tsvetkov and Kipnis, 2024) and (Land and
Bartolo, 2024). The primary line of existing re-
search in dialectal tasks focus on performance im-
provements across various datasets using LLMs
(Scherrer et al., 2024; Alam et al., 2024; Frei and
Schneider, 2023), with a recent focus on multi-
label DI (Bernier-Colborne et al., 2023; Keleg and
Magdy, 2023; Chifu et al., 2024; Kanjirangat et al.,
2024). The primary research focused on assessing
GPT-based models’ multilingual capabilities, high-
lighting their limitations, with a few exceptions.
GPT capability in Arabic was evaluated in (Khon-
daker et al., 2023), unveiling the shortcomings of
dialectal Arabic and the supremacy of encoder mod-
els. In (Lai et al., 2023; Bang et al., 2023), Chat-
GPT was evaluated in diverse languages, show-
ing the predominance of high-resource languages.
Recently, a comprehensive dialectal benchmark
dataset was introduced, DialectBench (Faisal et al.,
2021), which encompasses various dialectal tasks
covering a wide range of dialectal varieties. While
there has been notable research in dialectal tasks
and multilingual NLP individually, efforts to bridge
the two remain limited. Existing work has largely
focused on performance comparisons, with less at-
tention to understanding the underlying causes of
degraded performance.

7 Conclusion

In this paper, we go beyond traditional
performance-based evaluations of dialectal
downstream tasks to examine multilingual fairness
and potential biases arising from disparities in
tokenization and representation. We show that
Tokenization Parity (TP) and Information Parity
(IP) correlate with downstream task performance
in a consistent, although sometimes surprising,
way. Our results reveal consistent disparities in
TP between Latin and non-Latin scripts, while
IP variations are influenced by both script and
resource availability. TP is more strongly associ-
ated with tasks involving syntactic, morphological,
and span-based features, whereas IP aligns more
closely with tasks requiring semantic understand-
ing and reasoning. The role of token-level disparity
is especially interesting in surface-level tasks
such as dialect identification, which can help
models make distinctions between dialects. As a
future direction, we emphasize the importance of
developing language-aware, adaptive tokenizers

that can mitigate pre-training biases and flexibly
operate across multiple levels of granularity.

8 Limitations

There is significant scope for further enhancing
the LLMs examined in this work. The tokeniza-
tion analysis can be improved by leveraging more
extensive and diverse corpora, enabling more pro-
found insights into tokenization strategies and
their implications. While the primary focus here
was to analyze the relationship between tokeniza-
tion, language-specific factors, and their impact
on language-dependent tasks, future work could
explore additional use cases by identifying and in-
corporating relevant tasks. In this study, we concen-
trated on the dialectal tasks: first, as a challenging
language-dependent task, it offers a robust testbed
for examining tokenization impacts; and second,
this aspect has largely been overlooked in prior
research, where the emphasis has predominantly
been on performance metrics. Expanding this
investigation to include other complex language-
dependent tasks could further elucidate the role of
tokenization in multilingual LLM performance.
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Figure 7: Class distributions of dialect classification
task (Appendix A)

A Dataset Details

Table 2 shows the general statistics of DI task
datasets. In the DI task, NADI-2023 has 18 dialects
from Arabic-speaking regions such as Iraq, Oman,
Saudi Arabia, Palestine, Bahrain, Egypt, Jordan,
Libya, Sudan, UAE, Algeria, Kuwait, Tunisia,
Lebanon, Morocco, Yemen, Syria, and Qatar. In
GDI, we had four dialects: Zurich, Luzern, Basel,
and Bern. For ILI, it was Hindi, Braj Bhasha,
Awadhi, Bhojpuri, and Magahi. In multi-label set-
tings, we used the datasets from the Multi-label
classification of similar languages (DSL-ML) 2024
shared task, focusing on manually labeled Span-
ish and automatically labeled French data. For
French, data was from the FreCDo dataset, includ-
ing French (FR-FR), Swiss (FR-CH), Canadian
(FR-CA), and Belgian (FR-BE) with {’FR-BE’:
120653, ’FR-CH’: 115664, ’FR-FR’: 83127, ’FR-
CA’: 19041, ’FR-BE, FR-FR’: 1052, ’FR-BE, FR-
CH’: 603, ’FR-CH, FR-FR’: 162, ’FR-BE, FR-CH,
FR-FR’: 61} as multi-label samples. For Spanish,
the two varieties were Argentinian and peninsular
Spanish, with 1131 multi-label samples.

Under the multi-lingual setup, we created a rep-
resentative train-test sample dataset for the French
dataset due to the massive size of the automatically
curated dataset. We selected 5000 mono-label sam-
ples from each class and all the multi-label samples
comprising the train set. 1000 mono-label samples
with all multi-label samples were selected for the
test set. This constitutes 21878 (20000 (mono)+

Figure 8: Class distributions topic classification task
(Appendix A)

1878 (multi)) train and 4120 (4000+120) test sam-
ples.

The class distributions of the DI and TC tasks
are shown in Figures 7 and 8.

B Tokenizer details

The details of the tokenizers and pre-trained vocab-
ulary sizes used by the evaluated models are shown
in Table 3.

C Script & resource Categorizations

The details of the languages under different scripts
and resource categories are shown in Table 4.

D Prompt details

This section presents the instruction-tuning
prompts used for the experiments in decoder-only
LLMs. Figures 9, 10, and 11 represent the prompts
for DI, TC, and EQA tasks, respectively.

E Experimental settings details

We evaluated the experiments on HPC clusters with
a100 and v100 GPUs. The runtime varied between
approximately. 4 hours - 1.5 days for decoder mod-
els and 1-2 hours for encoder models. All experi-
mental models were accessed from the Hugging-
Face library.

F Result details

In this section, we present the detailed tabular re-
sults for the TC and EQA tasks per dialectal variety.
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GDI ILI NADI DSL-ML-FR DSL-ML-ES
Train 14647 68453 18000 340363 3467
Test 4752 9032 1800 17090 989
No. of labels 4 5 18 4 2

Table 2: Dataset statistics (Appendix A)

Models Tokenizer Model_Vocab_Sizes
Phi3 tiktoken (Abdin et al., 2024) 9 32011
Gemma SentencePiece tokenizer(Kudo, 2018; Team et al.,

2024)
256000

Llama3 tiktoken (Dubey et al., 2024) 128256
Bloom Byte-level BPE (Wang et al., 2020) 250680
Mistral tekken- Modified tiktoken (Jiang et al., 2024) 32000
NLLB SentencePiece tokenizer tailored 256204
BERT-based WordPiece (Song et al., 2021; Devlin, 2018) 30522
MARBERT WordPiece 100000
mBERT WordPiece 119547
IndicBERT WordPiece 200000
SpanBERTa WordPiece 50265
CamemBERT WordPiece 32005

Table 3: Tokenizers and vocabulary Sizes of LLMs (Appendix B)

TRAINING_CLASSIFIER_PROMPT = """[INST]What is the dialect of the given input
sentence.
Sentence:{sentence}
Class:{label}[/INST]"""
INFERENCE_CLASSIFIER_PROMPT = """[INST] Classify the dialect of the sentence.
Choose from one of the following options:{allowed_labels}.
Sentence:
{sentence}
[/INST]
Class:"""

Figure 9: Instruction-tuning prompt for dialect classification task (Appendix D)

Table 6 and 7 present the results on TC and EQA
tasks, respectively. Table 8 presents the detailed
correlation values of TP and IP over different down-
stream tasks across Phi-3.5, Llama-3.2 and mBERT
models.

G Vocabulary analysis details

G.1 Language support details

Table 9 presents the language support details of
the decoder-only LLMs. The information is based
on the support claims of each model from their re-
spective HuggingFace pages. When a model claims
"support", it may often refer to some representation
of the language in its training data and the ability to
generate or understand basic text in that language
under ideal tokenization conditions. It may not
guarantee robust handling of the language’s words,
characters, or scripts.

G.2 Missing character proportions

In this experiment, we compute the percentage of
missing characters—those not represented as stan-
dalone tokens—in the vocabulary of each LLM.
This analysis is limited to high-resource languages
such as English, German, Spanish, French, Arabic,
and Hindi across various LLMs. We aim to investi-
gate potential correlations between character-level
coverage and performance on dialectal downstream
tasks. Although character-level analysis may ini-
tially seem counterintuitive given that most LLMs
employ subword tokenizers, it sometimes becomes
relevant due to their reliance on byte-level fallback
mechanisms. Our qualitative analysis reveals that
this fallback can sometimes negatively impact non-
Latin scripts.

The Unicode ranges of the main character set
used and the special characters are given in Ta-
ble 5. As shown in Figure 12, all LLMs exhibit
nearly complete character coverage for English,
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Category Languages (Flores Code)

Latin-High Spanish (spa_Latn), German (deu_Latn), French (fra_Latn)
Latin-Middle Dutch (nld_Latn), Italian (ita_Latn), Romanian (ron_Latn), Turkish (tur_Latn), Portuguese (por_Latn)
Latin-Low Ayacucho Quechua (quy_Latn), Haitian Creole (hat_Latn), Basque (eus_Latn), Hungarian (hun_Latn),

Catalan (cat_Latn), Danish (dan_Latn), Estonian (est_Latn), Indonesian (ind_Latn), Standard Latvian
(lvs_Latn), Standard Malay (zsm_Latn), Finnish (fin_Latn), Swahili (swh_Latn), Norwegian Bokmål
(nob_Latn), Croatian (hrv_Latn), Czech (ces_Latn), Ligurian (lij_Latn)

Non-Latin-High Standard Arabic (arb_Arab), Russian (rus_Cyrl), Chinese (Simplified) (zho_Hans), Hindi (hin_Deva)
Non-Latin-Middle Urdu (urd_Arab), Korean (kor_Hang), Vietnamese (vie_Latn), Japanese (jpn_Jpan)
Non-Latin-Low North Azerbaijani (azj_Latn), Thai (tha_Thai), Marathi (mar_Deva), Odia (ory_Orya), Gujarati

(guj_Gujr), Nepali (npi_Deva), Burmese (mya_Mymr), Assamese (asm_Beng), Central Kurdish
(ckb_Arab), Tamil (tam_Taml), Malayalam (mal_Mlym), Bulgarian (bul_Cyrl), Eastern Panjabi
(pan_Guru), Ukrainian (ukr_Cyrl), Bengali (ben_Beng), Kannada (kan_Knda), Greek (ell_Grek),
Northern Sotho (nso_Latn), Serbian (srp_Cyrl), Telugu (tel_Telu), Hebrew (heb_Hebr), Georgian
(kat_Geor)

Table 4: Language categories and corresponding languages with FLORES codes: Appendix C

TRAINING_CLASSIFIER_PROMPT = """[INST]What is the topic of the following text?
\nSentence:{sentence}\nClass:{label}[/INST]"""
INFERENCE_CLASSIFIER_PROMPT = """[INST] Classify the topic of the following
sentence.
Choose from one of the following options:{allowed_labels}.
Sentence:
{sentence}
[/INST]
Class:"""

Figure 10: Instruction-tuning prompt for topic classification task (Appendix D)

TRAINING_CLASSIFIER_PROMPT = """[INST]Extract the answer of the question from the
given context
\nQuestion:{sentence}\nContext:{context}\nAnswer:{label}[/INST]"""
INFERENCE_CLASSIFIER_PROMPT = """[INST] Answer the question based on
given context. Output from the given context only as in extractive QA.
Question:
{sentence}
Context:{context}
[/INST]
Answer: """

Figure 11: Instruction-tuning prompt for EQA task (Appendix D)

Figure 12: Missing proportions of language characters
in decoder-only tokenizer vocabulary (Appendix G.2)

with a missing proportion of 0.0 (lower is better).
In contrast, the missing proportion for non-Latin
languages is considerably higher than for Latin
languages across most multilingual decoder-based
models (e.g., LLaMA, Phi, Mixtral), with the ex-
ception of the Gemma model. Among language-
specific decoder models, the missing proportion is
notably lower—for instance, SILMA reports only
23% missing characters in Arabic.

For encoder-only models (see Figure 13),
language-specific encoders tend to achieve better
character coverage in their respective languages.
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Language Unicode ranges & special char-
acters

Hindi (0x0900, 0x097F + 1)
Arabic (0x0600, 0x06FF + 1)
English (0x41, 0x5B) and (0x61, 0x7B)
Spanish [’á’, ’é’, ’í’, ’ó’, ’ú’, ’ü’, ’ñ’,

’Á’, ’É’, ’Í’, ’Ó’, ’Ú’, ’Ü’, ’Ñ’]
French [’à’, ’â’, ’ä’, ’ç’, ’é’, ’è’, ’ê’, ’ë’,

’î’,’ï’, ’ô’, ’ö’, ’ù’, ’û’,
’ü’,’À’, ’Â’, ’Ä’, ’Ç’, ’É’, ’È’, ’Ê’,
’Ë’, ’Î’, ’Ï’, ’Ô’, ’Ö’, ’Ù’,
’Û’, ’Ü’]

Swiss-
German

[’ä’, ’ö’, ’ü’, ’Ä’, ’Ö’, ’Ü’, ’ß’]

Table 5: Character Unicode ranges and special char-
acters for different languages - all special characters
are contained in the Latin-1 supplement Unicode block
0x0080-0x00FF. (Appendix G.2)

Figure 13: Missing proportions of language characters
in encoder-only tokenizer vocabulary (Appendix G.2)

Figure 14: Correlation of missing character proportions
to dialectal tasks

Notably, mBERT maintains reasonable coverage
over non-Latin scripts. However, MARBERT ex-
hibits a substantial proportion of missing Arabic
characters at the token level. This is likely due
to its frequency-based subword tokenizer, where
individual characters are often absorbed into larger
subword units.

While such missing character coverage does
not necessarily impair performance in language-
specific models—owing to their strong modeling
of linguistic structure across granularities—it can
pose challenges for broader multilingual LLMs.
Ensuring at least character-level granularity in
these models may help mitigate issues arising from
multibyte representations of non-Latin scripts.

We used the three models for correlation analy-
sis - mBERT, Phi-3.5, and Llama-3.2. From Figure
14, it can be observed that negative correlations
dominate, especially for Phi-3.5 and Llama-3.2.
All models show high negative correlations with
EQA task, indicating that higher character coverage
(fewer missing characters) improves performance.
In TC, both decoder-only LLMs show positive cor-
relations.
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Category Language LLaMA-3.2 Phi-3.5 mBERT

Latin-High

Dutch (nld_Latn) 0.1096 0.4178 0.894
English (eng_Latn) 0.0494 0.3210 0.897
French (fra_Latn) 0.1436 0.4274 0.910
German (deu_Latn) 0.1187 0.3692 0.862
Italian (ita_Latn) 0.1137 0.3309 0.872
Portuguese (por_Latn) 0.0823 0.3523 0.868
Spanish (spa_Latn) 0.1313 0.3813 0.821
Romanian (ron_Latn) 0.0791 0.3762 0.857

Latin-Low

Catalan (cat_Latn) 0.1010 0.3502 0.858
Croatian (hrv_Latn) 0.0972 0.4823 0.858
Estonian (est_Latn) 0.1686 0.4508 0.766
Finnish (fin_Latn) 0.1241 0.3067 0.809
Haitian Creole (hat_Latn) 0.0700 0.1946 0.61
Hungarian (hun_Latn) 0.1206 0.3671 0.861
Indonesian (ind_Latn) 0.0937 0.3666 0.847
Norwegian Bokmål (nob_Latn) 0.1024 0.3592 0.862
Basque (eus_Latn) 0.0630 0.2946 0.82

Non-Latin-High

Arabic (arb_Arab) 0.1491 0.5194 0.811
Hebrew (heb_Hebr) 0.1507 0.3685 0.83
Hindi (hin_Deva) 0.0888 0.4972 0.742
Japanese (jpn_Jpan) 0.0704 0.4043 0.888
Russian (rus_Cyrl) 0.1565 0.3897 0.827

Non-Latin-Low

Bengali (ben_Beng) 0.0288 0.2192 0.773
Gujarati (guj_Gujr) 0.0000 0.0824 0.597
Kannada (kan_Knda) 0.0287 0.0952 0.78
Malayalam (mal_Mlym) 0.0089 0.0938 0.66
Marathi (mar_Deva) 0.1011 0.3732 0.744
Nepali (npi_Deva) 0.0503 0.3610 0.762
Orya (ory_Orya) 0.0281 0.1056 0.461

Table 6: Macro F1 scores for languages under different resource-script categories in the topic classification task.
(Appendix F )
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Category Language Code Llama3 Phi-3.5 mBERT

Latin-High

english-kenya 0.431337 0.540717 0.725
english-nzl 0.462533 0.596464 0.767
english-irl 0.462224 0.600408 0.755
english-ind_n 0.443038 0.573698 0.746
english-phl 0.455140 0.588592 0.764
english-nga 0.452876 0.566533 0.736
english-aus 0.458323 0.593847 0.757
english-ind_s 0.431355 0.543300 0.719
english-usa 0.479512 0.608536 0.772
english-gbr 0.471987 0.596156 0.764
english-zaf 0.464280 0.594952 0.766

Latin-Low
swahili-kenya 0.443695 0.350143 0.724
swahili-tanzania 0.410629 0.320931 0.635

Non-Latin-High

arabic-sau 0.361613 0.457623 0.778
arabic-mar 0.361082 0.445782 0.767
arabic-jor 0.360686 0.45141 0.773
arabic-tun 0.358351 0.448329 0.767
arabic-bhr 0.359525 0.456000 0.775
arabic-dza 0.357209 0.455835 0.778
arabic-egy 0.345871 0.441766 0.765
korean-korn 0.432525 0.481986 0.10
korean-kors 0.414520 0.500209 0.092

Non-Latin-Low
bengali-ind 0.325579 0.176780 0.686
bengali-dhaka 0.349494 0.192330 0.673

Table 7: F1 and EM scores by language code and category for EQA task -Appendix F

Task Model / Category Tokenization Parity Information Parity

Dialect Classification (DI)
Phi-3.5 0.638 -0.413

Llama-3.2 -0.380 0.268

mBERT 0.4836 —

Topic Classification (TC)

Phi-3.5 -0.683 0.812

Latin-High 0.873 0.765

Latin-Low -0.785 0.165

Non-Latin-High 0.202 -0.862

Non-Latin-Low 0.876 0.634

Llama-3.2 -0.716 0.687

Latin-High 0.974 0.671

Latin-Low 0.077 0.328

Non-Latin-High -0.547 0.209

Non-Latin-Low -0.805 0.623

mBERT -0.605 —

Latin-High -0.242 —

Latin-Low -0.706 —

Non-Latin-High -0.826 —

Non-Latin-Low -0.828 —

Dialectal Extractive QA (EQA)
Phi-3.5 -0.834 0.618

Llama-3.2 -0.528 0.097

mBERT -0.938 —

Table 8: Correlation values (overall and per category) between model tokenization/information parity and dialectal
task performance-Appendix F
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English Arabic German Spanish French Hindi
Encoder-

only
BERT-base ✓ ✗ ✗ ✗ ✗ ✗
BERT-base-uncased ✓ ✗ ✗ ✗ ✗ ✗
mBERT ✓ ✓ ✗ ✓ ✓ ✓
MARBERT-V2 ✗ ✓ ✗ ✗ ✗ ✗
Indic-Transformers ✓ ✗ ✗ ✗ ✗ ✓
Swiss-BERT ✗ ✗ ✓ ✗ ✓ ✗
SpanBERTa ✗ ✗ ✗ ✓ ✗ ✗
CamemBERT ✗ ✗ ✗ ✗ ✓ ✗

Decoder-
only

Mixtral-8x7B-Instruct-v0.1 ✓ ✗ ✗ ✓ ✓ ✗
Mistral-7B-Instruct-v0.2 ✓ ✗ ✗ ✗ ✗ ✗
Falcon-7B ✓ ✗ ✗ ✗ ✗ ✗
phi3-mini ✓ ✓ ✗ ✓ ✓ ✗
phi3-MOE ✓ ✓ ✗ ✓ ✓ ✗
Gemma-7B ✓ ✓ ✗ ✓ ✓ ✓
Llama3.2-3B ✓ ✗ ✗ ✓ ✓ ✓
SILMA-9B ✓ ✓ ✗ ✗ ✗ ✗

Table 9: Language support details of LLMs (Appendix G.1)
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