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Abstract

Plain Language Summarization (PLS) aims to
distill complex documents into accessible sum-
maries for non-expert audiences. In this pa-
per, we conduct a thorough survey of PLS
literature, and identify that the current stan-
dard practice for readability evaluation is to use
traditional readability metrics, such as Flesch-
Kincaid Grade Level (FKGL). However, de-
spite proven utility in other fields, these met-
rics have not been compared to human read-
ability judgments in PLS. We evaluate 8 read-
ability metrics and show that most correlate
poorly with human judgments, including the
most popular metric, FKGL. We then show
that Language Models (LMs) are better judges
of readability, with the best-performing model
achieving a Pearson correlation of 0.56 with
human judgments. Extending our analysis to
PLS datasets, which contain summaries aimed
at non-expert audiences, we find that LMs bet-
ter capture deeper measures of readability, such
as required background knowledge, and lead to
different conclusions than the traditional met-
rics. Based on these findings, we offer recom-
mendations for best practices in the evaluation
of plain language summaries. We release our
analysis code and survey data.

§ JHU-CLSP/eval-the-eval-readability

1 Introduction

In the field of Natural Language Processing (NLP),
plain language summarization (PLS) distills com-
plex documents, such as scientific articles, into ac-
cessible summaries for non-expert audiences while
preserving essential meaning (Chandrasekaran
et al., 2020). The COVID-19 pandemic highlighted
the critical need to make scientific knowledge ac-
cessible to the general public (Wang et al., 2020).
By enhancing public engagement with research,

∗Equal advising.

PLS can help bridge the gap between expert knowl-
edge and general understanding.

Although human evaluation remains the gold
standard for assessing summary quality and read-
ability, the high cost and slow turnaround (Liu et al.,
2022) have led many researchers to rely on auto-
matic evaluation metrics for evaluating PLS sum-
maries (Goldsack et al., 2022; Guo et al., 2021). Al-
though these metrics have been validated in fields
such as education and law (Thorndike, 1936; Han
et al., 2024), their effectiveness in reflecting read-
ability in the context of PLS remains unproven.

Are automated readability metrics appropriate
evaluators for the task of PLS? We explore whether
the definition of readability as implemented by au-
tomated measures matches the definition used by
the PLS research community. Additionally, given
that Language Models (LMs) can reason over com-
plex language tasks (Brown et al., 2020; Wei et al.,
2022; Yang et al., 2024), we explore whether LMs
can judge the readability of a summary. Given
these motivations, we ask the following research
questions (RQs).

RQ1 What is the current standard of evalua-
tion in PLS literature? We review PLS literature
by collecting relevant papers published in *ACL
venues from 2013 to 2025 and note the readability
evaluation method used in the study. We find that
the majority of papers focus on a small number
of traditional readability metrics, such as Flesch-
Kincaid grade Level (FKGL) (Flesch, 1952). This
finding motivates our analysis of the suitability of
traditional readability metrics for PLS evaluation.

RQ2 How well do traditional readability met-
rics correlate with human readability judg-
ments? Since the PLS research community em-
ploys these traditional metrics (RQ1), we assess
their suitability by measuring their correlation with
human readability judgments. A low correlation
would suggest that a metric is inadequate for eval-
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uating PLS readability, and would necessitate the
PLS research community identify and move to bet-
ter metrics. To the best of our knowledge, this
work is the first to compare traditional readability
metrics to human readability judgments for PLS.

RQ3 How well do LM-based evaluators corre-
late with human readability judgments? Tra-
ditional readability metrics primarily use lexical
features, such as the number of syllables in a word,
to measure readability. In contrast, LMs may cap-
ture more complex attributes of readability than
traditional metrics, such as the inclusion of neces-
sary context and explanation of key concepts. The
findings of this research question have important
implications for both the best practices in evalu-
ation of PLS and the broader NLP community’s
understanding of LM capabilities.

RQ4 What do LM-based evaluators reveal
about the readability of popular summarization
datasets? Researchers often rely on traditional
readability metrics when assessing summaries in
new methods or datasets. However, if these met-
rics correlate poorly with human judgments, the
resulting conclusions may be flawed. Similarly,
existing datasets, which often arise from data of
convenience, may be poorly suited to PLS research.
This RQ explores what LM-based evaluators re-
veal about the readability of popular summariza-
tion datasets and how LM-based conclusions differ
from those based on traditional readability metrics.

We answer these questions through the follow-
ing contributions. First, we survey PLS papers
published in *ACL venues and find that the most
popular metric for readability evaluation is Flesch-
Kincaid Grade Level (FKGL) (Flesch, 1952). Mo-
tivated by these findings, we then compare 8 tradi-
tional readability metrics to human judgments. We
show that 6 of the 8 metrics have a poor correla-
tion (less than 0.3 Pearson correlation) with human
judgments, including FKGL, indicating that these
metrics are poor measures of readability for PLS.
Additionally, we compare the judgments of 5 LMs
to human judgments and show that LMs outper-
form the traditional metrics. We demonstrate that
LMs have promising potential as evaluators by rea-
soning over more complex attributes of readability.
We use LM evaluators to re-evaluate 10 summariza-
tion datasets and show that some summarization
datasets intended for PLS achieve similar readabil-
ity scores to those aimed at expert audiences, call-
ing into question the utility of these data. Finally,

based on a thorough analysis of current readabil-
ity evaluation practices, we offer recommendations
for best practices in PLS evaluation and identify
opportunities for future work.

2 Related Works

Summarization evaluation. PLS research often
introduces either datasets (Goldsack et al., 2022;
Crossley et al., 2021; Liu et al., 2024; Manor and
Li, 2019), methods (Guo et al., 2022; August et al.,
2022; Luo et al., 2022; Ji et al., 2024; Flores et al.,
2023), or both (Guo et al., 2021; Zaman et al.,
2020; Chandrasekaran et al., 2020). The majority
of prior work use a combination of readability met-
rics, such as Flesch Reading Ease (Flesch, 1943)
or the Gunning-Fog Index (Gunning, 1952) to vali-
date the readability of their dataset or generations.
Readability metrics are typically reported in con-
junction with more general summarization metrics,
such as ROUGE (Lin, 2004) or BertScore (Zhang*
et al., 2020). General summarization evaluation is
a well-studied area, with ongoing work analyzing
both the efficacy of summarization metrics (Fabbri
et al., 2020; Khashabi et al., 2022; Goyal et al.,
2022) and designing metrics that better align with
human judgments (Liu et al., 2023c, 2022). Guo
et al. (2023) analyzed how perturbations in plain
language summaries affect results of general sum-
marization metrics. In this work, we focus on read-
ability metrics, rather than general summarization
metrics, with the goal of understanding how well
readability metrics measure readability for PLS.

Readability Metrics. While readability met-
rics are well studied in fields such as educa-
tion (Thorndike, 1936; DuBay, 2004; Sibeko and
van Zaanen, 2022) and linguistics (Carla Pires and
Vigário, 2017), there is little work studying how
well these metrics perform for the task of PLS.
Most traditional metrics were not designed specifi-
cally for PLS, or even for evaluation in Computer
Science. The most common origin of traditional
metrics is the need to assess the readability of K-
12 school texts (Dale and Chall, 1948; Coleman
and Liau, 1975). Linsear Write was introduced in
the book, Gobbledygook has gotta go, published
by the US Department of the Interior for the pur-
poses of measuring the complexity of government
communications (O’hayre, 1966). As readability
metrics rely primarily on lexical features (Rush,
1985), prior work has offered criticism of read-
ability metrics, showing that they can be easily
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manipulated to provide better scores with changes
that do not substantially improve the readability of
summaries (Tanprasert and Kauchak, 2021). Other
work has looked at which linguistic attributes are
correlated with readability metrics (Štajner et al.,
2012). To the best of our knowledge, our work is
the first to measure the correlation of readability
metrics with human readability judgments.

LMs as Evaluators. Recent advances in LMs
have shown that they are capable of reasoning over
complex language (Brown et al., 2020; Wei et al.,
2022; Yang et al., 2024). LMs have been shown
to be effective evaluators in other natural language
tasks (Li et al., 2025; Zhang et al., 2024; Nedelchev
et al., 2020; Liu et al., 2023a), including related
summarization tasks (Song et al., 2024). Given this
success in prior work, we hypothesize that LMs
are capable of evaluating the readability of plain
language summaries. In particular, we hypothesize
that LMs can reason over more complex attributes
of readability, such as the background required or
whether technical concepts are explained.

3 Experimental Setup

3.1 Current PLS evaluation standards RQ1

We aim to conduct a thorough literature survey of
the standard practices in readability evaluation for
PLS. We collect papers1 from the ACL Anthol-
ogy2 that mention one of the following key phrases:
“plain language summarization,” “readable sum-
maries,” or “lay summarization.” We exclude pa-
pers published for a shared task from annotation
and assume the participants use the metrics desig-
nated by the shared task organizers. Our goal is to
understand the decisions made by researchers, and
including shared task papers in this survey would
over-represent the decisions made by the task orga-
nizers. We report the evaluation methods used by
the shared tasks and the number of participants to
represent the impact of the evaluation choices. We
identify 55 papers that match our criteria. We an-
notate the papers for relevance to PLS, the type of
publication (Main conference, Findings, or Work-
shop), and which readability evaluation metrics are
used. We exclude papers from the survey not rel-
evant to PLS, resulting in 18 relevant papers from
the years 2013 to 2025. The most common reasons
for relevance exclusion include using “readable” in

1On May 7th, 2025
2https://aclanthology.org/

a different word sense (e.g. “human readable” vs
“machine readable”) or just citing a PLS paper. We
report the number of papers that use each metric.

3.2 Comparing traditional readability metrics
to human judgments RQ2

Human Annotated Data. To measure the cor-
relation between readability metrics with human
judgments, we use the dataset collected by Au-
gust et al. (2024). This dataset contains 60 sum-
maries of 10 scientific papers in a variety of do-
mains. Each paper has both expert written and
machine written summaries (generated using GPT-
3.) The summaries are annotated on a scale of 1
to 5 for the annotator’s reading ease of the article.
1 indicates a very poor reading ease, while 5 indi-
cates a very high reading ease. For each summary,
we take the average of the annotators’ scores to cal-
culate the correlations with readability evaluations
as described below. August et al. (2024) originally
collected this dataset to better understand human
preferences in scientific summarization. In this pa-
per, we extend their work by applying their findings
to summarization evaluation metrics. To the best of
our knowledge, this is the only available dataset of
human judgments for PLS. Appendix A contains
additional dataset details.

Traditional readability metrics. We consider
“traditional” readability metrics to be those most
commonly used in PLS literature. These met-
rics are well-established, and have been used
in past work as judges of readability (Chan-
drasekaran et al., 2020). This term excludes LM-
based evaluations, discussed in § 3.3. We con-
sider 8 readability metrics: Flesh-Kincaid Grade
Level (FKGL) (Flesch, 1952), Flesch Reading
Ease (FRE) (Flesch, 1943), Dale Chall Readabil-
ity Score (DCRS) (Dale and Chall, 1948), Auto-
mated Readability Index (ARI) (Smith and Senter,
1967), Coleman Liau Index (CLI) (Coleman and
Liau, 1975), Gunning Fog Index (GFI) (Isnaeni,
2017), Spache (Spache, 1953) and Linsear Write
(LW) (O’hayre, 1966). All of the metrics, except
for DCRS and Spache, use lexical features such
as number of syllables or length of sentences to
measure readability. DCRS and Spache use word
familiarity to measure readability, assuming that
more common words are easier to read (Dale and
Chall, 1948; O’hayre, 1966).3

3We use the py-readability-metrics package to calculate
the readability scores.
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Quantifying alignment between traditional met-
rics and humans. We report the Pearson and
Kendall-Tau correlation of each metric listed above
with the human judgments collected by August
et al. (2024). Except for LW and FRE, all met-
rics provide a lower score for higher readability,
while the human judgments provide a higher score
for higher readability. To calculate correlations,
we multiply the scores by −1 (except for LW and
FRE), so that text rated as more readable by tra-
ditional metrics will be positively correlated with
human judgments.

3.3 LMs as evaluators of readability RQ3

We experiment with the following 5 LMs as evalu-
ators of readability: Mistral 7B (Jiang et al., 2023),
Mixtral 7B (Jiang et al., 2024), Gemma 7B (Team,
2024), Llama 3.1 8B, and Llama 3.3 70B (Dubey
et al., 2024). We experiment with 3 prompts and
report the prompts in appendix B. We report the
Pearson and Kendall-Tau correlations of the scores
provided by each LM with the human judgments.

3.4 Analysis of summarization datasets RQ4

To test the ability of our results to generalize to
datasets outside of the one collected by August
et al. (2024), we include datasets with intended
audiences more specific than “general” - experts
and kids. We expect expert-targeted datasets to
be given low readability scores and kid-targeted
datasets to have high readability scores.

Expert targeted datasets. We include 3 expert-
targeted datasets: arXiv, PubMed (Cohan et al.,
2018) and SciTLDR (Cachola et al., 2020). arXiv
and PubMed are collections of abstracts in the Com-
puter Science and Biomedical domains, respec-
tively (Cohan et al., 2018). SciTLDR is a collection
of short, expert-targeted, one sentence summaries
of Computer Science papers. We expect our meth-
ods to provide low readability scores. Additionally,
the comparison of SciTLDR to arXiv and PubMed
allows us to test if the scores are length dependent.

Kid-targeted dataset. The Science Journal for
Kids (SJK) dataset is a collection of summaries of
scientific papers in a variety of domains, intended
for kids (Stefanou et al., 2024). Given that this
dataset is targeted to kids, we expect it would re-
ceive high readability scores.

General audience datasets. In addition to the
datasets listed above, we evaluate 6 popular

Dataset Audience Domain # Docs # Tokens
arXiv Experts CS 6440 163

PubMed Experts Medicine 6658 205
SciTLDR Experts CS 618 19

SJK Kids Varied 284 142
CDSR General Healthcare 284 221
PLOS General Biomed 1376 195
eLife General Biomed 241 383

Eureka Journalists Varied 1010 662
CELLS General Biomed 6311 162

SciNews General Varied 4188 615

Table 1: Comparison of the datasets analyzed in this paper.
The first 4 are datasets in with a specific target audience. The
following 6 datasets are commonly used in PLS literature. We
report the number of documents (# Docs) in the test set as well
as the average number of tokens (# Tokens).

datasets intended for PLS: CDSR (Guo et al.,
2021), PLOS (Goldsack et al., 2022), eLife (Gold-
sack et al., 2022), Eureka (Zaman et al., 2020),
CELLS (Guo et al., 2022), and SciNews (Liu et al.,
2024). These datasets are intended for a general au-
dience. CDSR, PLOS, and CELLS are written by
journal editors or experts. eLife Sciences gives pa-
per authors the option to write “eLife digests,” with
the goal of “cutting jargon and putting research in
context.” 4 The Eureka dataset was collected from
EurekaAlert, which hosts press releases about re-
search for scientific journalists. Finally, SciNews
is a collection of scientific news reports, written by
science reporters.

Table 1 contains a comparison of the summariza-
tion datasets analyzed in this paper. We use the
test split of each dataset for our analysis and we
report the intended audience, domain, number of
documents in the test set, and average number of
white-space delineated tokens. In total, we analyze
10 popular scientific summarization datasets.

4 Results

4.1 Current PLS evaluation standards RQ1

We found 18 ACL Anthology papers on the task of
PLS and 3 shared tasks, representing 81 additional
papers. Figure 1 shows the literature survey results,
excluding metrics used by a single paper. FKGL
is the most popular metric, followed by CLI and
DCRS. LM-based evaluations are uncommon (4
of the 18 papers). The shared task BioLaySumm
used FKGL and DCRS for both years, adding CLI
in 2024. BioLaySumm 2025 is ongoing at the
time of writing; the organizers plan to use FKGL,
DCRS, and CLI. Our survey shows that PLS is an
increasingly popular topic of study, as the number

4https://elifesciences.org/digests
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Figure 1: Evaluation metrics used by papers published in the
ACL Anthology. We report the count of papers using each
method out of a total of 18 papers. We additionally report the
evaluation strategies used by PLS shared tasks and the number
of participants.

of participants in shared tasks increased from 8 in
2020 to 53 in 2024, emphasizing the importance of
PLS evaluation. Less popular metrics include GFI,
ARI, lexical proxies (e.g., number of sentences in a
document), and FRE. In § 4.2, we place the highest
importance on the results of the most commonly
used evaluation metrics: FKGL, CLI, and DCRS.

4.2 Comparing traditional readability metrics
to human judgments RQ2

In Table 2a, we report the Pearson and Kendall-
Tau correlation of 8 traditional readability metrics
with human judgments. We find that 6 of the 8
metrics have less than 0.3 Pearson correlation with
human judgments. DCRS and CLI have the highest
correlation, achieving 0.2 Pearson points higher
correlation than the most popular metric, FKGL
(§ 4.1). FKGL receives only 0.16 Pearson and
0.08 Kendall-Tau correlation, indicating little to no
correlation with human judgment.

Table 3 shows an example summary and read-
ability scores, along with its human judgment. The
human annotators gave the example summary an
average rating of 4.05/5; they found the text fairly
readable. However, the majority of traditional
metrics give the summary poor readability scores:
college level or higher. This is likely because
the text includes domain-specific vocabulary, such
as “acute respiratory distress syndrome (ARDS),”
which is penalized by traditional metrics. Tradi-
tional readability metrics do not account for ele-

Metric Pearson Kendall Tau
FKGL 0.16 0.08
CLI 0.36 0.20
DCRS 0.37 0.24
GFI 0.21 0.11
ARI 0.10 0.02
FRE 0.29 0.15
Spache 0.13 0.04
LW -0.06 -0.03

(a) Traditional metric scores correlation with human judgment.

Model Pearson Kendall Tau
Mistral 7B 0.52 0.44
Mixtral 7B 0.54 0.41
Gemma 7B 0.54 0.43
Llama 3.1 8B 0.45 0.34
Llama 3.3 70B 0.56 0.35

(b) LM scores correlation with human judgment.

Table 2: We report the Pearson and Kendall-Tau correlation
of each metric with human judgment. Tab.2a contains the
correlation of traditional readability metrics with human judg-
ment. DCRS and CLI have the highest correlation with human
judgment. Notably, the most popular metric, FKGL, as shown
in §4.1, has low correlation with human judgment. Tab.2b
contains the correlation of LM models as evaluators with hu-
man judgment. All 5 models achieve higher correlation than
all of the traditional metrics.

On a scale of  1 to 5, what is the reading ease of the following text? 
1 indicates the text requires expert background knowledge and 5 indicates the
text is readable to the general population. \n Assume the reader is an adult. Do
not use Flesch-Kincaid or other readability formulas. Use your own judgment to
rate the text. \n\n Format the output as follows: \n
Score: <score> \n Reason: <reasoning> \n\n  Text: {SUMMARY}

Figure 2: The best performing prompt of the 3 we tested. We
report the results of this prompt in Table 2b and the results of
the remaining prompts in Appendix B.

ments of the summary that make it more readable,
such as defining ARDS as “a very serious lung dis-
ease” and explaining the scientists’ motivation to
“test a new method of lung damage diagnosis.”

4.3 LMs as evaluators of readability RQ3

Traditional readability metrics rely on lexical prox-
ies and do not measure other elements of a sum-
mary that could make it more readable, such as
definitions of technical terms, explanations of im-
portant concepts, or descriptions of impact and mo-
tivation. LMs have been shown to perform well on
many language understanding tasks (Brown et al.,
2020; Srivastava et al., 2023), indicating that they
have some understanding of language. We hypoth-
esize that this knowledge will translate well to the
task of PLS, and the LMs will be able to reason
about more complex features of a summary that
impact the readability.

We experiment with 3 prompts. We report best
performing prompt in Figure 2 and its results in Ta-
ble 2b; the other prompts and their results are in Ap-
pendix B. All of the LMs outperform the traditional
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Scientists create a device which can detect the onset of acute respiratory distress syndrome (ARDS), a very serious lung

disease, by measuring chemicals in patients’ exhaled breath The researchers wanted to test a new method of lung damage

diagnosis by analyzing patient breath samples. In particular, the researchers were looking for better ways to detect acute

respiratory distress syndrome (ARDS), a form of lung injury that causes inflammation and severe damage. [...] a much

larger group of test subjects is necessary to further validate their method. This new method of breath analysis could be

a noninvasive, cost effective way to diagnose and track ARDS, and could potentially be modified to screen for other

serious conditions as well.

(a) Excerpt of an example summary. This summary is written by an expert and is labeled as a low complexity summary.

Metric Score S-12 US Grade Level
FKGL ↓ 13.9 12 College

CLI ↓ 12.7 12 College
DCRS ↓ 11.3 8.9 College graduate

GFI ↓ 18.6 12 Above college graduate
ARI ↓ 16.7 13 College graduate
FRE ↑ 50.2 50 12th grade

Spache ↓ 8.7 12 9th grade
LW ↑ 19.5 60 College graduate

(b) Scores given be each metric for the example summary. ↓ indicates a lower score
is more readable while ↑ indicates a higher score is more readable. We provide
“S-12”, the score each metric would assign US grade 12, to help contextualize the
scores. We additionally translate each score to the US grade level.

Model Score
Mistral 7B 4
Mixtral 7B 4.5
Gemma 7B 4

Llama 3.1 8B 4
Llama 3.3 70B 4

(c) Scores given be each model for the ex-
ample summary The scores are on a scale
of 1-5, with 5 being the most readable.

Table 3: 3b contains an example summary from August et al. (2024)’s dataset. 3b contains each metric’s score for the example
summary. 3c contains each model’s readability scoring for the example summary. On average, the human annotators rated this
summary a 4.05/5, indicating they found the summary fairly readable. All the LM evaluators rate the summary a 4 or 4.5 out of
5, agreeing with the human annotators. In contrast, 6 out of 8 of the traditional metrics rate the summary at a college reading
level or higher, which is considered low readability.

metrics in correlation with human judgments. The
best performing model, Llama 3.3 70B, outper-
forms the best traditional metric, DCRS, by nearly
0.2 Pearson points. We conduct significance testing
and report the p-values comparing the LM results
to the traditional metrics in Appendix C.

Performance in this task is not solely a factor of
model size, as we see that smaller models perform
similarly to the larger models. The difference in
performance between the LMs is small, indicating
that most generally well-performing models can be
good judges of readability.

Table 3 contains an example summary and its
associated scores from each LM. The human an-
notators rated the example summary a 4.05 out
of 5 on reading ease. All models gave the sum-
mary a rating of 4 or 4.5 out of 5. The reasoning
provided by Llama 3.3 70B states that the “con-
cepts discussed, such as analyzing breath samples
and identifying chemical compounds, are also ex-
plained in a way that is easy to understand.” The
model notes that the summary “may require some
effort and attention,” contributing to the model’s
reasoning for assigning the summary a 4/5 rather
than a 5/5. This output indicates that the model
is using its language reasoning abilities to rate the
summary on attributes deeper than lexical features.

Dataset Mean Median Var
arXiv 1.31 1 0.23

PubMed 1.99 2 0.19
SciTLDR 1.86 2 0.32

SKJ 4.40 4 0.24
CDSR 3.49 4 0.52
PLOS 2.06 2 0.26
eLife 3.18 3 0.65

Eureka 3.21 3 0.67
CELLS 2.23 2 0.50

SciNews 3.37 4 0.64

Table 4: Readability scores on a scale of 1 to 5, as judged
by Llama-3.3-70B, 5 being the most readable. We report the
mean, median, and variance of each score.

4.4 Analysis of summarization datasets RQ4

We analyze scientific summarization datasets using
the LM evaluators. We use Llama 3.3 70B, the
best performing model from § 4.2. In Figure 3,
we include histograms of the readability scores for
all 10 tested datasets, to visualize the distributions.
In Table 4, we report the mean, median, and vari-
ance of the readability scores for each dataset.

We’ve shown that most LM judgments of read-
ability correlate higher with human judgments than
traditional metrics. In order to further validate our
findings, we begin our analysis with 4 datasets with
specific target audiences - experts or kids.

Expert-targeted datasets. We experiment with
3 datasets intended for expert readers: arXiv,
PubMed, and SciTLDR. ArXiv, PubMed, and Sc-
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Figure 3: Histogram of LM readability scores and the mean scores (µ) for each dataset, as judged by Llama 3.3 70B. As we
can see from the results, PLOS and CELLS are judged to be similarly readable to the expert targets datasets (arXiv, PubMed, and
SciTLDR). The most readable PLS datasets are CDSR and SciNews.

iTLDR receive low readability scores, averaging
less than 2/5. This matches our expectations since
summaries intended for an expert audience typi-
cally have low readability for non-experts. We also
note that SciTLDR receives similarly low readabil-
ity scores, despite containing significantly shorter
summaries than the arXiv and PubMed datasets.
This shows that the LM evaluator is not simply
favoring shorter summaries as more readable.

Kid-targeted dataset. SJK receives high read-
ability scores, with an average readability of 4.40.
The results of the expert and kid targeted datasets
match our expectations of readability scores, and
serve to support the analysis of the remaining 6
general-audience datasets below.

General audience datasets. We analyze 6 popu-
lar PLS datasets: CDSR, PLOS, eLife, Eureka,
CELLS, and SciNews. PLOS and CELLS re-
ceive mean readability scores of 2.06 and 2.23,
respectively. These scores are similar to the expert-
targeted datasets described above, indicating that
these two datasets may not be well-suited for PLS.
SciNews and CDSR receive the highest readability
scores, with average scores of 3.49 and 3.37, re-
spectively, indicating that they are the well suited
for the task of PLS.

Keyword analysis. To understand the LM’s rea-
soning for assigning scores, we use the YAKE! al-
gorithm to extract keywords from the reasoning
provided by the LM evaluator for why each sum-
mary was provided with a specific score (Campos
et al., 2020). Figure 4a contains the keywords strat-
ified by score and Figure 4b contains the keywords
stratified by dataset. When stratified by score, the
model mentions issues such as requiring “expert
background knowledge” and “using specialized
terms” for summaries with readability scores of
1 or 2. For summaries with scores of 4 or 5, the

Score Keywords

1 expert background knowledge, text also assumes, text requires
expert, background knowledge, highly technical, text assumes

2 using technical terms, text discusses complex, strong background
knowledge, require specialized knowledge, using specialized terms

3
understandable for a general, adults with some medical, making it a
challenging, readable with some basic, understandable for the
general, audience than just medical, vocabulary of the text

4
explanation for the non-expert, context in a clear, explanations for
the non-expert, terms for a non-expert, understandable for some
readers

5
concepts in an accessible, language that is easy, text to be
accessible, easy for a general, concepts that are easy, text uses
simple language

(a) Keywords stratified by score.

]

Expert-Targeted Datasets

arXiv
familiar with the specific, expertise in this area, research in a
specialized, suggests that a significant, likely for an academic 

PubMed
knowledge about the disease, background or some familiarity,
structure of a scientific,  professionals with a strong

SciTLDR
context for these terms, specific to these fields, audience with
some technical, networks and the concept, fields such as artificial

Kid-Targeted Dataset

SJK
easy for most adults, straightforward and the concepts, easy for
an adult, readers with a basic, concepts in a clear

General Audience Datasets

CDSR
text assumes some basic, assumes some basic knowledge, basic
knowledge of medical, general adult audience, medical

PLOS
using technical terms, require specialized knowledge, strong
background knowledge, discusses complex concepts

eLife
explanation of the concepts, understand for a general, explanation
of these concepts, understanding of the concepts, without such a
background

Eureka
context for a non-expert, unfamiliar to some adult, non-expert with
some basic, context of the research, terms are not overly

CELLS
audience with no science, topic is a specialized, foundation in
these fields, readers with some scientific

SciNews
understandable by those without, understand all the details,
includes a few specialized, make it more readable, understanding
of these fields

(b) Keywords stratified by dataset.

Figure 4: Keywords mentioned in the reasoning of the LM
evaluator for why a summary was given a certain readability
score. Figure 4a contains the keywords stratified by score and
Figure 4b contains keywords stratified by dataset.

model references how the summaries include “ex-
planations for the non-expert” and explains “con-
cepts in an accessible” manner. When stratified by
dataset, for datasets with generally low readabil-
ity scores, such the model mentions issues such as
requiring “specialized knowledge” or that the text
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is “likely for an academic.” The model also men-
tions the domain specific knowledge required such
as Pubmed’s focus on “disease[s].” For datasets
with generally high readability scores, such as SJK
and SciNews, the model mentions how the sum-
maries are “easy for most adults” and how the text
is “understandable by those without” background
knowledge. This keyword analysis indicates LMs
are attributing their judgements to deeper attributes
that contribute to readability compared to tradi-
tional metrics.

LM evaluators vs. traditional metrics. Finally,
we compare the results of the analysis using tradi-
tional metrics to LM evaluators of readability. In
this analysis, we focus on Llama 3.3 70B, the best
performing LM, and FKGL, the most popular read-
ability metric. Table 5 compares the average LM
readability and FKGL score for each dataset, and
how each metric would rank the datasets. All but 1
dataset changed their ranking depending on the met-
ric used. arXiv has the largest delta, ranking 10th
in readability according to the LM evaluator and
2nd according to FKGL. FKGL ranking arXiv as
the 2nd most readable is particularly concerning, as
this dataset is a collection of scientific abstracts, in-
tended for an expert audience. To measure disagree-
ment, we convert each metric into binary scores of
“high readability” and “low readability.” For FKGL,
we consider any summary given a score of under
12 points to have high readability. FKGL consid-
ers any text above 12 to be college reading level.
For the LM evaluator, we consider any summary
given a score of 3 or higher to have high readability.
By converting the scores to binary labels, we cal-
culate the Cohen’s Kappa score (McHugh, 2012)
for agreement as 0.17, indicating the two metrics
have fair but not substantial agreement. We pro-
vide examples of this disagreement in Table 6. This
analysis shows how the evaluation metrics we use
can greatly influence the conclusions we draw.

5 Discussion

We found PLS an increasingly popular area of
study, but researchers primarily rely on a handful
of traditional metrics for evaluation. However, we
found that traditional metrics are imperfect mea-
sures of readability and LM evaluators can draw
significantly different, and more accurate, conclu-
sions about PLS datasets than when using FKGL,
the most common metric.

LM Eval FKGL
Dataset S R S R ∆R

arXiv 1.31 10 11.53 2 +8
PubMed 1.99 8 14.14 5 +3

SciTLDR 1.86 9 15.66 10 −1
SKJ 4.40 1 8.41 1 0

CDSR 3.49 2 14.08 4 −2
PLOS 2.06 7 15.44 9 −2
eLife 3.18 5 11.87 3 +2

Eureka 3.21 4 14.87 6 −2
CELLS 2.23 6 15.35 8 −2

SciNews 3.37 3 14.98 7 −4

Table 5: The mean score (S) and rank (R) for each dataset,
as judged by an LM evaluator and FKGL. ∆R represents the
change in rank from the LM evaluator to the FKGL scores.

5.1 Why traditional readability metrics are
insufficient measures of readability

We consider 2 explanations for the poor correlation
of readability metrics with human judgments: defi-
nitional inconsistency or measurement error. Defi-
nitional inconsistency means that the definition of
“readable,” as measured by the metrics, differs from
the definition of “readable,” as considered by hu-
man judges. Measurement error means that, even
if we have the correct definition, we are not mea-
suring readability properly. We argue that there is
evidence for both problems.

On definitional inconsistency, the majority of
readability metrics originated in the education do-
main. Traditional readability metrics typically de-
fine a “readable” text as one with an appropriate
text complexity for the number of years of ed-
ucation (i.e., a text has a US 9th grade reading
level) (Gunning, 1952; Coleman and Liau, 1975;
Flesch, 1952). In contrast, the field of PLS typically
defines a “readable” text as one that gives a non-
expert, adult reader an overall understanding of
the source article. These different definitions have
different implications for the resulting text. If opti-
mizing for education-appropriate text complexity,
we can measure the complexity of the vocabulary
or sentences. However, using the PLS definition
of readability, we should measure features such as
whether the text includes explanations of techni-
cal terms or how much background is required to
understand the concepts.

Traditional readability metrics also suffer from
measurement error. Even if we assume a consistent
definition, traditional metrics do not properly mea-
sure readability. They measure lexical properties,
such as number of syllables in a word, which penal-
izes summaries for using clearly defined technical
terms. Traditional metrics also do not measure
deeper features that contribute to readability, such
as how much background is required to understand
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Wind power is an important source of renewable energy,
but some people are concerned that conventional wind
turbines are too loud and too hazardous for birds and
bats. We wanted to create a new kind of wind energy
harvesting machine based on the jiggling motion of cot-
tonwood tree leaves in the wind, which would be quieter
and safer for wildlife. After building and testing artificial
cottonwood leaves that moved and created electricity in
the wind, we found that they didn’t produce enough en-
ergy to feasibly use for electricity production. We also
tried building a cattail-like device to generate electricity
when it swayed in the wind, [...]

(a) FKGL = 16.47 (College-graduate), LM score = 4/5.

Introduction. Accumulation of glycochenodeoxycholic acid
(GCDC) in serum has a clinical significance as an inductor of
pathological hepatocyte apoptosis, which impairs liver function.
Inhibition of GCDC accumulation can be used as a marker in
therapy. This study was aimed to quantify the serum level of
GCDC in obstructive jaundice patients. Methodology. GCDC
acid level in the serum was quantified using high performance
liquid chromatography (HPLC) technique according to Muraca
and Ghoos modified method. It was performed before and after
decompression at day 7 and day 14. The sample was extracted
with solid phase extraction (SPE) technique on SPE column.
The results were analyzed using SPSS V 16.0 (P < 0.05) [...]

(b) FKGL = 10.0 (10th grade), LM score = 1/5.

Table 6: Examples of disagreement between FKGL and the LM evaluator. 6a contains an example from the SJK dataset that the
LM rated high readability and FKGL rated low readability. 6b contains a summary from the Pubmed dataset that the LM rated
low readability while FKGL rated high readability.

the text. In § 4.3, we show that LMs are better able
to reason over these more complex attributes.

Table 6 shows examples in which the LM evalu-
ator and FKGL disagree on the readability. FKGL
rates a summary from the SJK dataset as having a
graduate-college reading level, while the LM rates
it as highly readable (Table 6a). Although the sum-
mary explains the concepts well, long words such
as “harvesting” and “electricity” likely cause FKGL
to rate the summary as less readable. Table 6b has
a Pubmed example, which the LM rates as having
low readability, while FKGL assigns the summary
a 10th grade reading level. This example contains
many short words, such as “GCDC” and “SPE”,
which are favored by FKGL. Although short, these
technical words that are not well defined. For exam-
ple, the “GCDC” is defined as “glycochenodeoxy-
cholic acid,” but is not otherwise explained. In
general, we notice that FKGL favors acronyms,
which are often present in technical text.

5.2 Recommendations and Future Directions
We find that many traditional readability metrics
have poor correlation with human judgments and
that LMs provide better judgments. However, LM-
evaluators are an imperfect solution since they are
subject to bias and a lack of interpretability (Liu
et al., 2023b; Wang et al., 2023; Shen et al., 2023;
Stureborg et al., 2024). Therefore, we recom-
mend a multi-faceted evaluation of PLS that uses a
combination of traditional readability metrics and
LM evaluators. Specifically, we recommend using
DCRS and CLI, which have the highest correlation
with human judgments. We recommend discon-
tinuing use of FKGL for PLS, the current most
popular metric, due to low correlation with human
judgment. We recommend using LMs as additional
metrics, especially for more qualitative evaluations,

such as the keyword analysis conducted in § 4.3.
These types of analyses give a more holistic view
of the benefits and downsides of datasets and meth-
ods. Finally, we recommend that PLS research use
datasets with higher readability scores (§ 4.3), such
as CDSR and SciNews. We recommend that PLOS
and CELLS be considered general scientific sum-
marization datasets and not plain language datasets.
This recommendation is particularly impactful as
PLOS has been used in every year the shared task
BioLaySumm has occurred (Goldsack et al., 2024,
2023).

Future work should focus on constructing met-
rics that better align with human judgments of read-
ability in both definition and measurement (§ 5.1).
We show that LMs are promising and worthy of
future work that can decrease bias and improve in-
terpretability. Dataset collection should focus on
collecting highly readable summaries and consider
deeper attributes of readable summaries, such as
explanations of technical concepts.

Limitations

The conclusions of this paper are limited to the task
of plain language summarization, and are not in-
tended to apply to other applications of readability
metrics, such as judging the age-level appropri-
ateness of educational material. Additionally, our
human judgments and experiments focused on the
summarization of scientific articles, and may not
generalize to PLS in other domains, such as law
or clinical notes. Finally, our experiments are lim-
ited to the English language, and our findings may
not apply to other languages. We leave the explo-
ration of readability evaluation in other domains
and languages to future work.
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Ethical Considerations

This paper involves the use of LMs for genera-
tion and evaluation. LMs have been shown to gen-
erate factually incorrect information and are sub-
ject to bias (Venkit et al., 2024; Stureborg et al.,
2024). Additionally, the use of language models
contributes to the environmental footprint of our
field (Schwartz et al., 2020). However, this paper
focuses on the evaluation of plain language summa-
rization, which has the potential to make scientific
knowledge more accessible to the general popula-
tion. Therefore, we believe that the benefits of this
work outweigh the potential harms.
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Appendix
A Human annotated dataset details

We use the human annotated data collected by Au-
gust et al. (2024). The dataset includes 60 sum-
maries over 10 papers, 6 summaries per paper. Of
the 6 summaries, 2 are written by experts and 4
are machine written by GPT3. The 10 papers were
sampled from the top 10% of papers from r/science,
a subreddit dedicated to public discussions of scien-
tific papers. These papers were chosen as a proxy
for scientific topics the general public is most in-
terested in. The dataset was annotated by 593 Me-
chanical Turk workers in total across the three tasks
in the original study. Table 7 contains the distribu-
tions of scores assigned by the human annotators.

Score 5 4 3 2 1
% 37 29 17 10 7

Table 7: Percentage of scores assigned in human annotated
dataset for reading ease.

In order to measure inter-annotator agreement,
we bin the scores into a binary “high-readability”
and “low readability.” Summaries given scores of 3
or higher are considered highly readable while sum-
maries assigned scores less than 3 are considered
to have low readability. We use Cohen’s Kappa to
calculate an inter-annotator agreement of 0.6. This
is a moderate agreement for a somewhat subjective
task, indicating that there is some general notion of
readability. We also note that this is significantly
higher than the agreement between traditional met-
rics and LMs (0.17 as shown in § 4.4).

B LM readability evaluation prompts

We experiment with 3 prompts, shown in Table 10.
The Simple Prompt simply asks the LM to rate the
text for reading ease on a scale of 1 to 5. The Amer-
ican Society for Cell Biology (ASCB) provides
guidelines for best practices in scientific commu-
nication.5 In the ASCB Prompt, we provide these
guidelines to the LM as guidance for rating the read-
ability. Finally, the Own Reasoning Prompt is sim-
ilar to the Simple Prompt, but with the additional
instruction for the LM to use it’s own judgment
to rate the text, rather than traditional readability
formulas, such as FKGL.

We report the Pearson and Kendall-Tau correla-
tion of each prompt with human judgment in Ta-
ble 8. The Own Reasoning Prompt performs the
best when averaged across all models. We found

5ASCB Best Practices in Science Communication

Model Simple ASCB Own
Mistral 7B 0.46 0.54 0.52
Mixtral 7B 0.46 0.47 0.54

Gemma 1.1 7B 0.55 0.33 0.54
Llama 3.1 8B 0.54 0.56 0.45

Llama 3.3 70B 0.59 0.58 0.56
Mean Corr. 0.52 0.50 0.52

(a) Pearson Correlation.

Model Simple ASCB Own
Mistral 7B 0.32 0.40 0.44
Mixtral 7B 0.36 0.41 0.41

Gemma 1.1 7B 0.42 0.24 0.43
Llama 3.1 8B 0.38 0.35 0.34

Llama 3.3 70B 0.36 0.38 0.35
Mean Corr. 0.37 0.36 0.39

(b) Kendall-Tau Correlation.

Table 8: Pearson and Kendall-Tau Correlation with human
judgment for each prompt listed in Table 10. Own Reasoning
prompt performs the best averaged across all models.

that the models tended to over-rely on the guid-
ance provided in the ASCB Prompt, providing lower
scores if the conditions are not met. For the Simple
Prompt, the models would occasionally try to cal-
culate FKGL or another readability metric, rather
than using its own reasoning. This is likely be-
cause FKGL is strongly associated with readability
in the models’ training data. We found that the Own
Reasoning Prompt struck the right balance be-
tween providing enough instructions that the model
is able to understand the task without providing
too much information for the model to over-rely
on. However, it is notable that the ASCB Prompt,
the worst performing prompt, still achieves higher
correlation with human judgment than FKGL, the
most popular traditional metric.

C Statistical Significance

We use the William’s test to calculate statistical sig-
nificance of the difference in performance between
each LM evaluator and traditional metric (Graham
and Baldwin, 2014). We report the p-values in
Table 9. The difference in Pearson correlation be-
tween Llama 3.3 70B, the best performing model,
the traditional metrics is statistically significant, ex-
cept for DCRS and CLI. The Pearson correlation
difference between the LM evaluators and FKGL,
the most popular metric, is statistically significant,
except Llama 3.1 8B. The Kendall-Tau values
show that the Mistral, Mixtral, and Gemma models
are statistically significant over most of the tradi-
tional metrics. This supports our suggestions from
§ 5.2, in which we recommend using a combination
of the best performing traditional metrics (DCRS
and CLI) with LM evaluators, while discontinuing
the use of FKGL.
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LW Spache FRE ARI GFI DCRS CLI FKGL
Mistral 7B 6.51E-04 0.02 0.05 0.01 0.05 0.19 0.18 0.02
Mixtral 7B 6.90E-04 0.01 0.03 0.01 0.04 0.16 0.15 0.02
Gemma 7B 9.65E-04 0.02 0.03 0.01 0.04 0.17 0.15 0.02
Llama 3.1 8B 2.00E-03 0.04 0.14 0.03 0.10 0.34 0.31 0.06
Llama 3.1 70B 3.66E-04 0.01 0.02 0.01 0.03 0.14 0.13 0.02

(a) Pearson correlation p-values.

LW Spache FRE ARI GFI DCRS CLI FKGL
Mistral 7B 0.01 0.01 0.03 0.01 0.04 0.13 0.10 0.03
Mixtral 7B 0.01 0.02 0.05 0.02 0.06 0.19 0.14 0.04
Gemma 7B 0.01 0.02 0.03 0.02 0.05 0.16 0.10 0.03
Llama 3.1 8B 0.02 0.05 0.12 0.05 0.12 0.31 0.25 0.09
Llama 3.1 70B 0.03 0.06 0.09 0.05 0.12 0.30 0.24 0.09

(b) Kendall-Tau p-values.

Table 9: William’s test p-values comparing the difference in performance between each LM and each traditional metric. Values
that are statistically significant (p-value < 0.05), are highlighted in green.

Simple Prompt
On a scale of 1 to 5, what is the reading ease of the following text? 1 indicates the text requires expert background
knowledge and 5 indicates the text is readable to the general population. Assume the reader is an adult. \n \n
Format the output as follows: \n
Score: <score> \n
Reason: <reasoning> \n
Text: {SUMMARY}

ASCB Guidelines Prompt
On a scale of 1 to 5, what is the reading ease of the following text? 1 indicates the text requires expert background
knowledge and 5 indicates the text is readable to the general population. Characteristics of a highly readable text
include: \n
- Know your audience, and focus and organize your information for that particular audience. \n
- Focus on the big picture. What larger problem is your work a part of? What major ideas or issues does your work
address? How will your work help global understanding of some issue? \n
- Avoid jargon. If you must use a technical term, make sure to explain it, but simplify the language. \n
- Try to use metaphors or analogies to everyday experiences that people can relate to. \n
- Underscore the importance of public support for exploratory research and scientific information, and the role of
this information in providing the context for effective policy making. \n \n
Assume the reader is an adult. Do not use Flesch-Kincaid or other readability formulas. Use your own judgment to
rate the text. \n \n
Format the output as follows: \n
Score: <score> \n
Reason: <reasoning> \n \n
Text: {SUMMARY}

Own Reasoning Prompt
On a scale of 1 to 5, what is the reading ease of the following text? 1 indicates the text requires expert background
knowledge and 5 indicates the text is readable to the general population. \n
Assume the reader is an adult. Do not use Flesch-Kincaid or other readability formulas. Use your own judgment to
rate the text. \n \n
Format the output as follows: \n
Score: <score> \n
Reason: <reasoning> \n \n
Text: {SUMMARY}

Table 10: Prompts we tested. Own Reasoning is the best performing prompt, as reported in Table 8.
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