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Abstract

We present SWAN, a causal Transformer ar-
chitecture in the decoder-only style that gen-
eralizes robustly to sequence lengths substan-
tially longer than those seen during training.
SWAN interleaves layers without positional en-
codings (NoPE) and sliding-window attention
layers equipped with rotary positional encod-
ings (SWA-RoOPE), and applies a dynamic scal-
ing mechanism for attention scores during in-
ference. Experiments demonstrate that SWAN
achieves strong length extrapolation without
requiring additional long-context training. In
addition, SWAN is more computationally effi-
cient than the standard Transformer architec-
ture, resulting in lower training cost and higher
inference throughput. We further demonstrate
that existing pre-trained decoder-only models
can be adapted to the SWAN architecture with
minimal continued training, enabling extended
contexts. Overall, our work presents an effec-
tive approach for scaling language models to
longer contexts in a robust and efficient manner.

1 Introduction

Large Language Models based on standard decoder-
only transformer architectures (Brown et al., 2020;
Grattafiori et al., 2024; Yang et al., 2025a) struggle
with context lengths beyond their training distri-
bution. Current approaches to extending context
length fall into two categories: specialized train-
ing on increasingly longer sequences (Grattafiori
et al., 2024; Yang et al., 2025a; Peng et al., 2023b;
Chen et al., 2023) or complex inference time mod-
ifications (An et al., 2024). These approaches in-
cur either increased computation cost or increased
implementation complexity. We propose SWAN,
a decoder-only transformer that natively handles
sequences substantially longer than seen during
training without requiring additional long-context-
specific training. By strategically interleaving
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global attention layers without positional encod-
ings and local, sliding-window attention layers with
rotary position encodings, combined with a dy-
namic attention scaling mechanism, SWAN main-
tains comparable performance to standard trans-
formers on established benchmarks while robustly
extrapolating to sequences far beyond the training
distribution, providing a more scalable and efficient
solution to the long-context challenge.

A central challenge in extending transformer
context lengths is the handling of positional infor-
mation. Transformers rely on positional encodings
to track token order, but these encodings often be-
come unreliable when models process sequences
longer than those seen during training. Among the
various positional encoding schemes, Rotary Posi-
tional Encodings (RoPE) (Su et al., 2023) have
been widely adopted in modern language mod-
els due to effectiveness in capturing relative po-
sitions. However, RoPE-based models exhibit sig-
nificant performance degradation when applied to
sequences exceeding their training length. This
degradation occurs because inter-token distances
advance to ranges where the relative rotation angle
is outside the trained distribution (Liu et al., 2024).

To address this limitation, we explore two com-
plementary approaches with distinct strengths and
limitations. Sliding window attention with RoPE
(SWA-ROPE) restricts every token’s attention to a
fixed-size window of neighboring tokens. Because
the distance between attended tokens is bounded,
SWA-ROPE layers never operate at rotation angles
outside their training range, making them inher-
ently robust to arbitrary sequence lengths. How-
ever, this locality constraint limits their ability to
capture long-range dependencies. Conversely, lay-
ers without positional encoding (NoPE) (Haviv
et al., 2022; Kazemnejad et al., 2023) allow un-
restricted attention across the entire context while
omitting explicit positional information. Notably,
autoregressive NoPE models can develop implicit
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positional awareness through the causal attention
mask, achieving comparable perplexity to models
with explicit positional embeddings (Haviv et al.,
2022). Despite this capability, pure NoPE models
also exhibit poor robustness beyond their training
length (Kazemnejad et al., 2023; Wang et al., 2024),
with performance degrading rapidly due to the brit-
tleness of the learned positional mechanism.

Our key insight is that these approaches can com-
plement each other through strategic integration.
SWAN interleaves global attention layers with-
out positional encodings (NoPE) and local sliding-
window attention layers with rotary positional en-
codings (SWA-RoPE). This hybrid design creates a
synergistic effect: SWA-RoPE layers provide local
positional structure, while NoPE layers integrate
information across arbitrary distances. When in-
terleaved, the NoPE layers develop more robust
representations than they would in isolation, en-
abling the entire model to generalize beyond its
training sequence length. Unlike standard RoPE-
based transformers which experience catastrophic
performance collapse outside their training context,
SWAN maintains robust performance on extended
sequences with only a straightforward rescaling of
attention scores during inference.

In Section 2.1, we provide evidence that fail-
ures in the implicit position prediction mechanism
of NoPE models contribute to their performance
degradation on longer sequences, and demonstrate
how the interleaved SWA-ROPE layers stabilize
this mechanism. Additionally, we show that exist-
ing transformer models can be efficiently adapted
to the SWAN architecture through continued pre-
training (CPT), offering a practical, cost-effective
path to upgrading deployed models.

Our contributions are as follows:

1. A novel approach (SWAN) that combines
SWA-ROPE and NoPE layers to enable effi-
cient length extrapolation without additional
training, enhanced by a logarithmic attention
scaling mechanism for inference.

2. Mechanistic analysis explaining why this ar-
chitecture produces robust length extrapola-
tion, with evidence that NoPE layers develop
more stable positional encodings when paired
with SWA-ROoPE layers.

3. Empirical results showing that SWAN main-
tains robust performance on sequences far ex-
ceeding its training length, while achieving

comparable results to standard transformers
on established LLM benchmarks.

4. A practical method for adapting existing mod-
els to the SWAN architecture through con-
tinued pre-training (CPT), providing a cost-
effective upgrade path for deployed models.

2 The SWAN architecture

SWAN combines a novel hybrid attention architec-
ture with dynamic attention scaling to address the
challenge of length extrapolation. The hybrid ar-
chitecture interleaves two types of attention mech-
anisms: global attention layers without positional
encodings (NoPE) and local sliding-window atten-
tion layers with rotary positional encodings (SWA-
RoPE). This hybrid design leverages the comple-
mentary strengths of both approaches to achieve
robust length extrapolation capabilities, without
specialized long-context training.

As detailed in our ablation studies (Appendix A),
we explored multiple configurations for interleav-
ing these layer types. Our experiments revealed
that beginning with a global NoPE layer followed
by three consecutive sliding-window layers, repeat-
ing this pattern throughout the network, demon-
strated superior performance on long-context tasks.
This configuration achieves exceptional NIAH
scores at context lengths 16 times longer than the
training length, and maintains robust performance
even at 32 times the training length when combined
with appropriate attention scaling (subsection 2.2).
We adopt this interleaving pattern for all experi-
ments presented in the main paper.

The global NoPE layers permit unrestricted at-
tention across the entire context, enabling the
model to capture long-range dependencies. Mean-
while, the local SWA-ROPE layers operate with a
fixed window size of 512 tokens, providing con-
sistent positional information within a bounded
context. This architecture creates a complementary
system where SWA-ROPE layers enforce local po-
sitional structure while NoPE layers integrate infor-
mation across arbitrary distances. The key insight
is that when these mechanisms are interleaved, the
NoPE layers develop more robust position-aware
representations than they would in isolation, en-
abling the entire model to generalize effectively
beyond training sequence lengths.

Figure 1 demonstrates this capability by com-
paring four models trained on sequences of up to
1024 tokens: a standard GPT model with RoPE,
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Figure 1: Mean negative log likelihood by token posi-
tion. RoPE and NoPE models deteriorate beyond train-
ing sequence length (1024). SWA model doesn’t experi-
ence such catastrophic failure due to its limited context.
SWAN model behaves like a SWA model without the
limitation of SWA model due to its global NoPE layers.

one with no positional encodings (NoPE), one with
only sliding window attention (SWA) and one using
our architecture (SWAN). We evaluate the model’s
predictions on 1280 validation sequences of length
4096. The plot shows the negative log likelihood
at each sequence position averaged over all val-
idation sequences, with lower values indicating
better performance. Both RoPE and NoPE experi-
ence significant performance degradation beyond
their training length, with negative log likelihood
increasing sharply beyond 1024 tokens. In con-
trast, both SWAN and SWA maintain consistent
predictive quality throughout the entire 4096-token
range, demonstrating their robust length extrapo-
lation capabilities. Notably, SWAN maintains this
performance while retaining the ability to capture
long-range dependencies that the purely local SWA
approach cannot (see Appendix A).

2.1 Stabilizing Implicit Position Encodings for
Robust Length Extrapolation

A key question in our investigation is understanding
why the NoPE layers within our SWAN architec-
ture demonstrate substantially more robust length
extrapolation capabilities compared to identical lay-
ers within a model built purely of NoPE layers.
Despite the absence of explicit positional en-
coding, prior work has demonstrated that trained
NoPE models implicitly learn to predict token po-
sitions after processing through a few layers (Chi
et al., 2023). This implicit position embedding
emerges from the autoregressive nature of decoder-
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Figure 2: Predictions of token indices by 8 different
probes. Each probe is trained with tokens from one
model and different context regions (demarcated by
dashed lines). Probes on NoPE models (blue) extrap-
olate correctly up until the maximum NoPE training
length (solid line). Probes on SWAN (red) are not pre-
dictive of token indices.

only models, where tokens later in the sequence
have access to more context than earlier tokens,
creating distinct distributions at different positions.
These distributional differences enable NoPE mod-
els to infer positional information and incorporate
it into their predictions (Chi et al., 2023).

However, standard NoPE models exhibit poor ro-
bustness to sequences exceeding the training length,
with performance degrading rapidly beyond the
training boundary. In our SWAN architecture, the
interleaved SWA-ROPE layers appear to relieve
NoPE layers from developing the brittle position
encodings typically seen in pure NoPE implementa-
tions, resulting in more robust processing of longer
sequences.

To test these hypotheses, we conducted exper-
iments with both pure NoPE and SWAN models
trained on sequences of 1024 tokens and evaluate
them on sequences of 2048 tokens. We employed
two complementary analysis techniques: (1) po-
sition prediction probes to quantitatively measure
positional information in model representations,
and (2) attention pattern visualization to examine
how attention mechanisms behave when processing
sequences beyond training length.

2.1.1 Position Prediction Probes

To provide evidence for our hypothesis, we trained
probes that predict token positions from token em-
beddings. We evaluated these probes on held-out
tokens from positions both within and beyond the
models’ training range. Figure 2 shows predictions
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Figure 3: Each panel shows attention averaged over all heads and validation records (left) and cross sections for
sequence lengths of 512, 1024 (training range limit), and 1536 (extrapolation regime). The attention patterns of
leading 256 tokens differ significantly: NoPE shows inconsistent patterns when extrapolating beyond training range,
while SWAN maintains consistent decay patterns for sequences both within and beyond the training range.

from eight different probes, each trained with to-
kens sampled from ranges demarcated by dashed
lines. Each of the four subplots shows results from
two probes - one trained on NoPE model embed-
dings (blue) and one on SWAN model embeddings
(red) - with each probe trained on tokens from dif-
ferent context regions demarcated by dashed lines.
For pure NoPE models (blue points), the probe
predictions extrapolate well up to the boundary
of the model’s training range (solid black line).
However, probes cease to be predictive beyond this
boundary. Probes trained in different sub-regions
all fail at the same location, consistent with the
position prediction mechanism failing beyond the
training range. In contrast, position probes trained
on SWAN’s NoPE layers (red points) show little po-
sitional information across all sequence positions.
These layers do not develop the brittle position en-
coding seen in pure NoPE models. This supports
our hypothesis that the interleaved SWA-RoPE lay-
ers free the NoPE layers from tracking absolute
positions, allowing them to focus on integrating
information across arbitrary distances while SWA-
ROPE layers handle local positional structure.

2.1.2 Attention Pattern Analysis

To further investigate this phenomenon we exam-
ine the average attention values at different token
positions for different sequence lengths. We av-
erage the probability scores (attention scores post
soft-max) over all heads and over a set of validation
batches. We randomize the token order in order
to remove the effect of the correlation structure
present in natural language.

Figure 3a shows the average attention maps of
the 6th layer in the NoPE model. For sequences

longer than the training length (green), the model
places roughly equal attention on all 256 tokens
preceding the target. In contrast, for sequences
within training range (orange and blue),it prefer-
entially attends to the tokens closest to the target
token. A model that properly extrapolates to longer
sequences should maintain similar attention pat-
terns for tokens close to the target token, regardless
of sequence length. In contrast, Figure 3b shows
the average attention maps of the 20th layer (6th
NoPE layer) in our SWAN model. Unlike the pure
NoPE model, SWAN’s attention maps exhibit con-
sistent patterns across sequences both within and
beyond the training length.

These analyses support our hypothesis that in-
terleaving SWA-ROPE layers fundamentally alters
how NoPE layers process positional information.
The use of positional embeddings in the SWA-
RoPE layers appears to stabilize the representations
in the NoPE layers, making them more robust to
sequence length extrapolation. This suggests that
SWAN’s superior length extrapolation capability
stems from the emergent properties of the inter-
leaved architecture.

2.2 Dynamic Attention Scaling for Extended
Context Processing

While our architecture demonstrates inherent se-
quence length extrapolation, we find that fur-
ther performance improvements can be achieved
through proper scaling of attention logits during
inference. This scaling is particularly important
for the global NoPE layers, which must effectively
integrate information across arbitrary distances as
sequence length increases.

Prior work has shown that RoPE-based models
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Figure 4: Held-out perplexity, with (green) and without (blue) logarithmic scaling. Without scaling, we see that
perplexity scores degrade on longer contexts, whereas with scaling the performance is more stable.

improve their performance on extended context
lengths when the temperature of the attention logits
is properly adjusted (Peng et al., 2023b). The SWA-
ROPE layers in our SWAN architecture inherently
handle longer sequences due to their local attention
window. However, we hypothesize that the global
attention NoPE layers may still require scaling to
maintain performance at extended lengths.

For this analysis, we sampled 200 documents
from the model’s training distribution (each with at
least 32K tokens) to maintain a consistent semantic
distribution while extending context length beyond
the original 1K tokens used during training. We
partitioned each 32K-token context into 128-token
windows and estimated a single optimal scaling
factor per window by minimizing its perplexity
over all 200 documents. We find that a logarithmic
scaling function log, (a + n) provides an excellent
fit to the empirically determined optimal scaling
factors, unlike YaRN scaling (Peng et al., 2023b)
which fits poorly for NoPE layers, particularly in
early positions (see Appendix D for more details).

To validate our empirically determined scaling
function, we compute perplexity on held-out docu-
ments from the PG19 dataset, using the same proce-
dure described above. Figure 4 plots the perplexity
at each location within the 32K token context, with
and without our scaling function applied. Without
scaling (blue), we observe a clear degradation in
model performance on longer contexts. In contrast,

our scaling (green points) allows the model to main-
tain better performance as measured by a lower
and more stable perplexity value for the entire con-
text length up to contexts 32 times longer than the
training length (1K tokens). This improved per-
formance with scaling is further validated by our
NIAH evaluation results in Table 5 in Appendix A,
where we demonstrate that scaling improves NIAH
scores from 0.171 to 0.957 at 8K context length
and from 0.005 to 0.907 at 16K context length.

3 Results

In the previous section, we introduced the SWAN
architecture and motivated its robust length ex-
trapolation via mechanistic analysis and empiri-
cal experiments. Here, we evaluate the effective-
ness of the SWAN approach compared to standard
RoPE-based transformer LLMs. Our goal is to
demonstrate that SWAN models can maintain sim-
ilar performance on standard LLLM benchmarks
while achieving substantially improved length ex-
trapolation capabilities.

We trained both RoPE and SWAN models with
1B parameters from scratch using 1T tokens at 8K
sequence length with a token batch size of 6M. The
SWAN model followed 1:3 global:local ratio, with
sliding window attention layers using a 512-token
window size. We evaluated both models on stan-
dard LLM benchmarks using the LM Evaluation
Harness Library (Gao et al., 2024). As shown in
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Dataset ‘ ARC-E ARC-C H

W RACE PIQA SIQA OBQA | Avg

RoPE 65.36
SWAN 69.40

38.23 5835 5793
41.04 59.76 59.75

35.02
35.69

73.12
73.99

3291
33.73

35.20
37.80

49.5
514

Table 1: Results for 1B models trained on 1T tokens. The models were evaluated on ARC-Easy, ARC-Challenge,
Hellaswag, Winogrande, RACE, PIQA, Social IQA, and Openbook QA. The SWAN model shows comparable or

better performance across all benchmarks.

Model | MTL | 4K 8K

16K 32K 64K 128K 256k

RoPE 8K 70.6 53.5
Swan 8K 68.1

NA NA NA NA NA
524 458 369 30.6

244 149

Table 2: Comparing long-context performance of SWAN with standard RoPE-based models on the Ruler benchmark
(both models are 1B parameters). MTL=Maximum training length. The SWAN model maintains measurable
performance even at 32x its training length, while the RoPE model fails completely beyond its training length.

Table 1, the SWAN model performs comparably or
better than the RoPE model across all benchmarks,
achieving an average 51.4% vs. 49.5%.

The primary advantage of SWAN becomes evi-
dent when evaluating its performance on sequences
significantly longer than those seen during training.
Table 2 shows the results for both models on the
Ruler benchmark (Hsieh et al., 2024) across various
context lengths. While both models get similar per-
formance for sequence lengths within their training
distribution (< 8K), their behaviors diverge dra-
matically beyond this point. The standard RoPE
based model fails completely when presented with
sequences exceeding its training length, showing
catastrophic degradation. In contrast, SWAN ex-
hibits a much more graceful degradation pattern
even at sequences substantially longer than the
training length.

3.1 Efficient Adaptation of Pre-trained
Models to SWAN Architecture

While training models from scratch demonstrates
that the SWAN approach achieves comparable
results to RoPE-based transformers on standard
benchmarks while offering superior length extrapo-
lation, adapting existing pre-trained models would
significantly enhance the practical utility of our
approach.

Prior research has established that most of the
knowledge in transformer models is encoded in
the feed-forward layers, with attention mecha-
nisms primarily serving to route information (Geva
et al., 2021). Since SWAN primarily modifies
the attention computation while preserving feed-
forward layers, we hypothesize that existing pre-

Benchmark RoPE SWAN
Math

GSMS8k 87.7 87.7
MATHS500 70.4 68.4
Code

MBPP 76.2 75.7
MBPP+ 66.1 65.3
HumanEval 74.4 75.0
HumanEval+ 68.3 68.3
General

MT-Bench 7.35 7.43
MMLU (gen.) 68.0 65.4
IFEval (P) 63.0 62.7
IFEval (I) 72.7 72.2
Tool Use / Long Context

BFCL v2 Live 68.7 68.9
RULER (128k) NA 77.8
Avg. (excl. MT, RULER) | 71.55  70.95

Table 3: Comparison of RoPE vs. SWAN when adapt-
ing a pre-trained model. SWAN maintains comparable
performance while attaining long-context capabilities.

trained models can be efficiently converted to the
SWAN architecture without losing their accumu-
lated knowledge. This adaptation capability would
make our approach immediately applicable to the
large ecosystem of existing transformer models,
offering a cost-effective path to enhanced length
extrapolation without full retraining.

We start with an 8B parameter RoPE transformer
model that was pre-trained for 15T tokens context
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Model | MTL | 4K 8K 16K 32K 64K 128K 256k 512k 1M 2M
Llama3.1-8B 128K | 955 938 916 874 847 770 - - - -
Llama4 Scout | 256K | 96.6 92.6 922 833 725 67.1 649 576 513 -
Qwen2.5-7B 32K | 967 951 937 894 823 551 - - - -
Qwen2.5-7B-1M | 256K | 96.8 953 93.0 91.1 904 844 753 646 - -
SWAN-8B 32K | 938 90.8 88.1 844 805 778 732 673 635 60.1

Table 4: Comparing Long-context performance of SWAN with other models. MTL=Maximum training length.
ROoPE based models degrade fast with increased sequence length whereas SWAN exhibits a more graceful dropoff.

Both Qwen models in this table are instruct versions.

length of 8K tokens (Su et al., 2024). We converted
this model to the SWAN architecture by initializing
all weights from the pre-trained RoPE transformer
model and modifying the attention layers to imple-
ment our 1:3 global-local pattern as established in
Section 2. This process involved removing posi-
tional encodings from global attention layers, con-
figuring sliding-window attention with a window
size of 512 tokens in local layers. Following initial-
ization, we performed continued pre-training (CPT)
for an additional 315B tokens (approximately 2%
of the original pre-training compute) at an extended
context length of 32K tokens. The process utilized
the same data distribution as the original model,
with sequence lengths extended to 32K through
concatenation of shorter examples. For the final
15B tokens, we applied Fill-in-Middle augmenta-
tion (Bavarian et al., 2022) to further enhance the
model’s contextual understanding. During infer-
ence, the adapted models apply the logarithmic
attention scaling described in subsection 2.2.!

Post-training for the RoPE model was conducted
in two stages, with the first stage focusing on math
and code followed by a general SFT in the second
stage. Post-training for SWAN followed similar
procedure, but with the sequence length extended
to 32K through concatenation of shorter examples.
To enhance long-context capabilities, SFT data was
augmented with a variety of tasks designed to ex-
ercise the model’s ability to reason over extended
contexts. These included questions referring to pre-
vious turns in concatenated examples and synthetic
tasks such as filling in the middle, recalling por-
tions of context based on keywords, tracing linked
lists, executing basic SQL queries on made-up table
data, and multi-hop reasoning (Chen et al., 2024b)
tasks modified to 32K sequence length.

'We used a = 8192 for the logarithmic scaling function,
which was the empirically determined optimal value for mod-
els trained at 32K sequence length.

Table 3 compares our adapted SWAN-8B model
with the original ROPE-8B model across standard
LLM benchmarks. The results demonstrate that
the SWAN adaptation maintains comparable per-
formance across a diverse set of tasks, including
mathematical reasoning (GSM8k, MATHS500), cod-
ing (MBPP, HumanEval), and general language
understanding (MMLU, IFEval, MT-Bench). Re-
markably, we observe only a minimal decrease
in average performance, from 71.55% to 70.95%,
confirming our hypothesis that substantial archi-
tectural modifications to the attention mechanism
can be implemented with only a brief adaptation
phase while preserving the model’s fundamental
capabilities.

The primary advantage of converting to SWAN
is the substantial improvement in length extrapola-
tion. In Table 4, we compare our adapted SWAN-
8B model against state-of-the-art models of sim-
ilar size on the RULER benchmark (Hsieh et al.,
2024) across various context lengths. Despite be-
ing trained with a maximum context length of only
32K, our SWAN-8B model demonstrates remark-
able length extrapolation capabilities. At 64K to-
kens (2x the training length), it achieves a RULER
score of 80.5; at 128K tokens (4x the training
length), it maintains a score of 77.8, and even at
256K tokens (8x the training length), it achieves a
score of 73.2.

This robust extrapolation capability is particu-
larly notable compared to the performance dropoff
patterns observed in other models. For example,
the Qwen2.5-7B-Instruct (128K) model, which was
also trained with a maximum context length of 32K,
shows a large drop from 82.3 at 64K tokens to
55.1 at 128K tokens. In contrast, SWAN model ex-
hibits a much more gradual degradation, maintain-
ing 77.8 at 128K sequence length. Even when com-
pared to models specifically trained on longer con-
texts, such as Llama3.1-8B (trained up to 128K),
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Llama4 Scout (trained up to 256K) and Qwen?2.5-
7B-Instruct (1M) (trained up to 256K), SWAN re-
mains competitive. The SWAN model’s score of
77.8 at 128K tokens is comparable to Llama3.1-
8B’s 77.0, despite Llama3.1-8B being explicitly
trained at this context length and our model be-
ing trained on contexts only one-fourth as long.
SWAN’s extrapolation capabilities are particularly
impressive at extreme lengths, outperforming both
Qwen2.5-7B-Instruct (1M) and Llama4 Scout at
512K tokens and beyond, despite both models hav-
ing seen sequences & times longer during training.
Even at 2M sequence length (64 times training
length), SWAN achieves a RULER score of 60.1.

These results demonstrate that SWAN enables ef-
ficient adaptation of existing pre-trained models to
handle significantly longer contexts than their orig-
inal training length, without sacrificing their per-
formance on standard benchmarks. This provides
a practical, compute-efficient path for upgrading
deployed models to handle longer contexts without
the need for full retraining.

4 Related Work

Extending LLM context length to hundreds of thou-
sands of tokens presents challenges across archi-
tecture, computation, and data quality (Lv et al.,
2024; Gao et al., 2025; Liu et al., 2025). Our work
addresses the architectural aspect through design
choices enabling length extrapolation.

Several approaches extend context purely at in-
ference time. For RoPE-based models, these in-
clude NTK-aware scaling (bloc97, 2023b,a) and
Positional Interpolation (PI) (Chen et al., 2023),
though these can degrade performance or require
careful tuning (An et al., 2024). Recent methods
modify attention mechanisms directly: ReRoPE
(Su, 2023), SelfExtend (Jin et al., 2024), and Dual
Chunk Attention (An et al., 2024). Others leverage
attention patterns through windowing approaches
like StreaminglLLM (Xiao et al., 2024) and LM-
Infinite (Han et al., 2024). SWAN differs by
addressing fundamental architectural limitations
through hybrid design rather than post-hoc modifi-
cations.

Training-based approaches include PI (Chen
et al., 2023) and YaRN (Peng et al., 2023b), which
work best after continued pre-training. While effec-
tive, CPT on longer sequences (Xiong et al., 2023)
becomes prohibitively expensive for large mod-
els. Parameter-efficient methods like LongLoRA

(Chen et al., 2024a) help but still require addi-
tional training. State-of-the-art models like Llama
3 (Grattafiori et al., 2024; Meta Al, 2024a,b) and
Qwen2.5 (Yang et al., 2025a) achieve long-context
capabilities through extensive pre-training with var-
ied sequence lengths. In contrast, SWAN achieves
length extrapolation without long-context specific
training and can adapt existing models with mini-
mal continued pre-training.

The quadratic complexity of self-attention poses
efficiency bottlenecks for long contexts (Kwon
et al., 2023; Fu, 2024; Liu et al., 2025). Sparse at-
tention mechanisms in Longformer (Beltagy et al.,
2020) and BigBird (Zaheer et al., 2021) address this
by limiting attention patterns. Alternative architec-
tures like Mamba (Gu and Dao, 2024) and RWKV
(Peng et al., 2023a) achieve near-linear complexity
but require training from scratch. SWAN’s hybrid
design improves efficiency: SWA-RoPE layers use
efficient local attention, while global NoPE layers
can benefit from techniques like Multi-head Latent
Attention (DeepSeek-Al et al., 2024). Additional
KV cache optimizations (Zhang et al., 2023; Xiao
et al., 2024; Zhang et al., 2024; Hooper et al., 2024;
Liu et al., 2025) can complement our approach.

The Gemma family of models (GoogleDeep-
Mind, 2024, 2025) also employs a combination
of sliding window and global attention, but re-
tains RoPE across all layers, in contrast to SWAN’s
strategic omission of positional encodings in global
layers. A concurrent work (Yang et al., 2025b)
explores similar layer interleaving, but lacks our
dynamic attention scaling mechanism and the ac-
companying mechanistic analysis. SWAN also dis-
tinguishes itself in its ability to efficiently adapt
existing pre-trained decoder-only models through
minimal continued training, a feature not addressed
in these works. Llama 4 (MetaAl, 2024), another
line of concurrent work, also explores a hybrid
approach using chunked attention in RoPE layers
interleaved with global NoPE layers. However, de-
spite training on 8x longer sequences (256K vs.
SWAN’s 32K), the LLama4 Scout model demon-
strates weaker extrapolation on long-context bench-
marks (Table 4).

5 Conclusion

We introduced SWAN, a comprehensive approach
that achieves robust length extrapolation without
specialized long-context training. By combining
a hybrid architecture that interleaves NoPE and
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SWA-ROPE layers with dynamic attention scaling,
our method maintains consistent performance on
sequences substantially longer than those seen dur-
ing training. Our mechanistic analysis revealed
this hybrid architecture creates a synergistic effect
where SWA-ROPE layers provide stable positional
grounding that relieves NoPE layers from devel-
oping brittle positional representations. We also
demonstrated that existing pre-trained models can
be efficiently adapted to the SWAN architecture
through continued pre-training, offering a practical,
cost-effective path for upgrading deployed mod-
els to handle significantly longer contexts without
performance degradation on standard benchmarks.
This approach shifts away from training directly on
increasingly longer sequences, providing a more
computationally efficient path toward long-context
language modeling.

6 Limitations

SWAN’s performance depends on sliding window
size selection and global:local layer ratio. While a
window size of 512 tokens and 1:3 ratio were used
in our experiments, a comprehensive search could
lead to a more optimal configuration in terms of
KV-cache savings during inference. Our logarith-
mic attention scaling mechanism requires empiri-
cal tuning based on the specific model architecture,
size, pre-training distribution, and sequence length.
Developing theoretical foundations for determining
optimal scaling factors would enhance the general-
izability of our approach. Our evaluation focused
primarily on the RULER benchmark and standard
LLM benchmarks, with future work potentially ex-
ploring additional long-context tasks.

The conversion of existing pre-trained mod-
els to the SWAN architecture requires continued
pre-training to preserve the model’s accumulated
knowledge, which requires careful choice of learn-
ing rate. While we found that 2% of the original
pre-training compute was sufficient in our experi-
ments, we neither claim that this is the minimum
required nor the optimal amount of CPT, and it may
vary for different model scales or architectural vari-
ants. Despite these limitations, SWAN represents a
practical and efficient approach to extending LLM
context lengths without specialized long-context
training, offering a viable path for deploying mod-
els with robust length extrapolation capabilities.

7 Potential Risks

Extending context length capabilities in language
models may amplify existing concerns about large
language models, including potential misuse for
generating misleading content that appears more
coherent or authoritative due to incorporating larger
contexts. Additionally, longer context models
have increased computational requirements, which
could exacerbate environmental impacts during in-
ference. We believe these risks are not unique to
our approach and are outweighed by the benefits of
more capable and efficient long-context models for
legitimate applications.
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A Ablations

To investigate the impact of different hybrid atten-
tion configurations on length extrapolation capabil-
ities, we conducted an ablation study using models
with 0.5B parameters. Each model consisted of 24
transformer decoder layers, with 16 attention heads
per layer, 1024 hidden units, and a feedforward
dimension of 4096. We trained these models on a
350B token dataset using the AdamW optimizer,
with a global batch size of 4096. We employed a
cosine decay learning rate schedule that peaked at
3e~3 after 2000 warmup steps. All sliding window
attention layers used a window size of 512 tokens
with RoPE. For hybrid attention models we main-
tained a consistent 3:1 ratio between local (sliding
window) and global attention layers and used atten-
tion scaling during inference (though we include a
control without attention scaling). Below is a brief
description of each of the models:

local only - Implements sliding window atten-
tion across all layers.

global only (RoPE) - Standard transformer lan-
guage model utilizing global attention with RoPE
across all layers.

global only (NoPE) - Implements global atten-
tion with NoPE across all layers.

global only (NoPE + scale) - Implements
global attention with NoPE across all layers, with
SWAN’s attention scaling applied during inference.

global_start - Begins with a global NoPE layer
followed by three consecutive sliding window lay-
ers, repeating this pattern throughout. For infer-
ence, we additionally evaluate a version without
attention scaling to establish a baseline.

local_start - Begins with three sliding window
layers followed by a global NoPE layer, repeating
this pattern throughout.

all_global_first - Concentrates all six global
NoPE layers in the first positions, followed by slid-
ing window layers.

all_local_first - Places all sliding window layers
first, followed by six global NoPE layers.

Table 5 shows results for the NIAH task from the
RULER benchmark (Hsieh et al., 2024).2 Among
the baseline non-hybrid attention models, the lo-
cal only model struggles to maintain high NIAH
scores beyond its local window size (512), despite
being trained on sequences of length 1k. However,
unlike the global only attention baselines (RoPE

2For simplicity we only evaluate the single NIAH task.

and NoPE), which completely fail beyond the train-
ing distribution, the local only model demonstrates
a modest capacity for length extrapolation. In con-
trast, all hybrid attention variants show substantial
improvements in generalizing beyond the training
length.

When comparing the hybrid variants we find
that interspersing global and local attention layers
yields superior performance compared to group-
ing them together, as evidenced by the relatively
poor performance of both all_global_first and
all_local_first configurations. In particular, our
best-performing model (global_start achieves ex-
ceptional NIAH scores (> 0.9) at context lengths
of 16k — 16 times the context length seen during
training. It can also maintain robust performance
(NIAH score > (.7) even at 32k tokens, represent-
ing a 32-fold length extrapolation.

The critical role of attention scaling is demon-
strated by our control experiment with global_start
(no scale). While both scaled and unscaled vari-
ants maintain strong performance up to 2k tokens,
their behaviors diverge dramatically at longer con-
texts. The unscaled version shows rapid perfor-
mance degradation beyond 4k tokens, dropping
from 0.820 to 0.171 at 8k tokens and essentially
failing (0.005) at 16k tokens. In contrast, the scaled
version maintains exceptional performance at 8k
tokens (0.957) and continues to achieve strong re-
sults at 16k tokens (0.907), and even maintains
moderately good results at 32k tokens. This stark
difference in length generalization — 4-fold extrap-
olation without scaling versus 32-fold with scaling
— establishes attention scaling as a crucial mech-
anism for effective inference beyond the training
length distribution. The graceful performance de-
cline of the scaled model, compared to the abrupt
deterioration of its unscaled counterpart, suggests
that attention scaling helps maintain the model’s
ability to capture long-range dependencies even at
extreme sequence lengths. However, scaling alone
is insufficient for extrapolation, as evidenced by the
global only (NoPE + scale) which fails to gener-
alize beyond its maximum training length, despite
using the same scaling mechanism.

B Architecture & Training

Table 6 shows model configuration for SWAN-1B
and SWAN-8B models. Both RoPE-1B and SWAN-
1B are trained from scratch with a batch size of 6M
tokens (at 8k sequence length) with peak LR of
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Model 512 1k 2k 4k 8k 16k 32k
local only 1.000 0.601 0.285 0.127 0.057 0.022 0.010
global only (RoPE) 1.000 0.985 0.000 0.000 0.000 0.000 0.000
global only (NoPE) 1.000 1.000 0.000 0.000 0.000 0.000 0.000
global only (NoPE + scale) 1.000 1.000 0.136 0.000 0.000 0.000 0.000
global_start (no scale) 1.000 1.000 0.983 0.820 0.171 0.005 0.003
global_start 1.000 1.000 0.999 0.998 0.957 0.907 0.702
local_start 1.000 1.000 0.999 0.895 0.808 0.725 0.530
all_global_first 1.000 0.599 0.316 0.113 0.044 0.017 0.010
all_local_first 1.000 1.000 0.993 0.564 0.183 0.057 0.027

Table 5: NIAH scores across different context lengths for various SWAN configurations.

3e-3 for 1T tokens. We performed CPT for SWAN-
8B with 32k sequence length and 6M token batch
size at constant LR of le-5 for 300B tokens and
ramped down to a LR of 5e-8 over another 15B
tokens. Post-training for SWAN-8B model was
performed in two stages. The first stage focused
on a math and code blend with constant LR of
Se-6 followed by a second stage of general SFT
at a constant LR of le-6. CPT was performed
using Megatron-LM (Shoeybi et al., 2020) where
as post-training used NeMo (Harper et al.) and
NeMo-Aligner (Shen et al., 2024). Megatron-LM
is distributed under Apache 2.0 and MIT licenses,
where as NeMo and NeMo Aligner are covered by
Apache 2.0 license. Training used NVIDIA H100
80GB GPUs, with CPT consuming ~ 18k GPU
hours and post-training consuming ~ 19k GPU
hours.

SWAN-1B SWAN-8B

Niayers 24 32
dmodel 1536 4096
Theads 16 32
dhead 96 128
RoPE base 1,000,000 1,000,000
Normalization RMSNorm RMSNorm
global:local 1:3 1:3
SWA size 512 512

Table 6: Architecture details for SWAN-1B and SWAN-
8B models.

C Data

For details about the pre-training data, please re-
fer to Section 2.2 of NVIDIA et al. (2025) and
Su et al. (2024). Math and code focussed stage-
1 SFT consisted of ~ 670k sequences, with
each sequence upto 32k tokens. A more general
instruction-following stage-2 consisted of ~ 200k
sequences, with each sequence upto 32k tokens.
In both stages, longer sequences were obtained
by concatenating (prompt, response) pairs and
were of the form [(prompt-1, response-1),
(prompt-2, response-2), ..., (prompt-N,
response-N)].

D Optimal Scaling Factors for NoPE
Layers

Figure 5 shows the empirically determined optimal
scaling factors (black dots) across different posi-
tions in the 32K context for the global_start model
from our ablation study (trained on 1K sequence
length). We find that a logarithmic scaling function
log, (a+n) (green line) provides an excellent fit to
the empirical data. This function captures two key
properties we observe — a natural growth rate that
matches the data’s progression, and a base scaling
factor that never falls below 1.0, which is important
for maintaining model stability at early positions.
Interestingly, while prior work found that the YaRN
scaling function (Peng et al., 2023b) works well
for RoPE-based models, we observe that it (dashed
pink line) fits poorly for the NoPE layers in our
SWAN architecture, particularly in early positions
where it significantly under-estimates the required
scaling.
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Figure 5: Estimates of optimal scaling factors (black) for the global_start ablation model (1K training length)
comparing the fit of our logarithmic scaling function vs. YaRN scaling. We find that YaRN scaling doesn’t work as
well for NoPE layers.

E Additional RULER Results

Figure 6 shows RULER scores split by task type
(single needles, multi-needles, Variable Tracking
(VT), Aggregation and Question-Answering (QA))
for SWAN-8B model upto 2M sequence length.
SWAN model shows near-perfect recall for single
needle tasks. Figure 7 shows passkey retrieval task
performance of SWAN-8B model.
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Figure 6: RULER scores split by task type for SWAN-8B model. VT:Variable Tracking, QA: question-Answering.
SWAN-8B model shows near-perfect recall for single needle tasks upto sequence length of 2M (64 times of training
sequence length).
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Figure 7: Passkey retrieval performance: SWAN-8b achieves near-perfect "needle" recall upto 2M tokens of

"haystack", demonstrating strong long-context generalization despite being trained only on sequences up to 32K
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