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Abstract

Recent research in vision-language models
(VLMs) has centered around the possibility of
equipping them with implicit long-form chain-
of-thought reasoning—akin to the success ob-
served in language models—via distillation and
reinforcement learning. But what about the
non-reasoning models already trained and de-
ployed across the internet? Should we simply
abandon them, or is there hope for a search
mechanism that can elicit hidden knowledge
and induce long reasoning traces—without any
additional training or supervision? In this paper,
we explore this possibility using a Monte Carlo
Tree Search (MCTS)-inspired algorithm, which
injects subquestion–subanswer pairs into the
model’s output stream. We show that framing
reasoning as a search process—where subques-
tions act as latent decisions within a broader
inference trajectory—helps the model “con-
nect the dots” between fragmented knowledge
and produce extended reasoning traces in non-
reasoning models. We evaluate our method
across three benchmarks and observe consistent
improvements. Notably, our approach yields
a 2% overall improvement on MMMU-PRO,
including a significant 9% gain in Liberal Arts.

1 Introduction

Recent state-of-the-art large language models
(LLMs) have demonstrated remarkable capabili-
ties in complex reasoning tasks (Chen et al., 2024b;
DeepSeek-AI et al., 2025; OpenAI et al., 2024). A
key driver of this progress has been the emergence
of long chain-of-thought (CoT) reasoning through
post-training with techniques such as reinforcement
learning and distillation (DeepSeek-AI et al., 2025;
Lu et al., 2025; Muennighoff et al., 2025). Inspired
by this success, much of the recent focus in vision-
language modeling has shifted toward mirroring
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Figure 1: Socratic-MCTS Overview. In Socratic-
MCTS, actions are defined as subquestions, and each
node state consists of a subquestion–subanswer pair.
During search, rollouts are performed by precondition-
ing the model on the accumulated reasoning trajectory in
a compositional manner. To structure this trajectory and
enable faster rollouts, we use transition phrases (e.g.,
“First, I need to consider...”) and conclude with a wrap-
up phrase (e.g., “Summarizing, we have:”), which cue
the model to complete the reasoning and produce a final
answer. We estimate value through internal agreement
and incorporate early-exit and selective search mecha-
nisms to adaptively reduce computational overhead—all
without external supervision.

these advances, attempting to induce reasoning ca-
pabilities primarily through reinforcement learning
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Problem (P)  What is the position of the blue car in the image? 
A: parked on the sidewalk 
B: driving on the road  
C: parked on the grass 
D: parked on the road

CoT: 
To determine the position of the blue car in the image, let's analyze the scene: 
* The image shows a busy urban street with several vehicles. 
* The blue car is located on the right side of the image. 
* It is positioned on what appears to be a paved surface, which is consistent with a road. 
* The car is not on the grass or the sidewalk, as those areas are clearly distinguishable in the image. 
* The car is stationary, suggesting it is parked. 
Given these observations, the blue car is parked on the road. 
Answer: D [Wrong]

Socratic MCTS: 
First, I need to consider ... what is shown to me in the image? The image provides several key pieces of 
data, constraints, and unknowns.  There are a few yellow taxis driving past a building with reflective glass 
windows - a clock tower to the right of the building - a busy street with vehicles and pedestrians - a cityscape 
with various buildings in the background - some pedestrians walking on the sidewalk 
  

Next, let me look at ... based on the image, what specific visual cues can i identify to determine the 
position of the blue car relative to the road and sidewalk? There are a few specific visual cues that can be 
used to determine the position of the blue car relative to the road and sidewalk: - the car is located on the 
right side of the street, near the clock tower - the car is driving in the same direction as the yellow taxis - the 
car is closer to the building with reflective glass windows than to the clock tower - the car is located on the 
road, not on the sidewalk - the car is driving on the right side of the road, following the flow of traffic - the car 
is driving in the same direction as the yellow taxis - the car is located in front of the clock tower. 
  

Summarizing the above and answering the original problem, we have:  Final Answer: B) [Correct]

(a) Socratic-MCTS on a logical reasoning question.

CoT: 
To determine which month has the lowest average precipitation in London, we need to examine the 
heights of the bars in the bar chart. Each bar represents the average precipitation for a specific month. 

Identify the shortest bar: The shortest bar corresponds to the month with the lowest average precipitation. 
Compare the heights: By visually comparing the heights of the bars, we can see that the bar for February 
is the shortest. 

Therefore, the month with the lowest average precipitation in London is February. 
Answer: B [Wrong]

Socratic MCTS: 
Let me think ... how can I describe the image in a few sentences? The image is a bar chart displaying the 
average precipitation in London, England, across different months. Each bar represents a month and 
indicates the amount of precipitation in millimeters. January has the highest precipitation, while July has the 
lowest. The colors of the bars vary to help distinguish between the months.  How do my previous thoughts 
connect to the original problem? Let me go back and solve it step-by-step: What is the question asking? 
The question asks which month has the lowest average precipitation in London. What information does the 
image provide? The image provides a bar chart with the average precipitation for each month in London. 
How can I use the information in the image to answer the question? By examining the bar chart, I can 
identify the month with the lowest average precipitation. What is the answer to the question? The month 
with the lowest average precipitation in London is July.  

Final Answer: A) [Correct]

Problem (P) Which month has the lowest average 
precipitation in London?  

A: July,  

B: February,  

C: November,  

D: nan

(b) Socratic-MCTS on a chart question.

Figure 2: Qualitative comparison on MMStar. We show Socratic-MCTS responses on two multimodal questions
from the benchmark, comparing qualitatively against the CoT prompting baseline. Socratic-MCTS allows the model
to uncover relevant knowledge, verify intermediate steps, and synthesize final answers coherently.

and distillation (Du et al., 2025; Liao et al., 2025).

But what about the many existing non-reasoning
VLMs already trained and publicly available? As
of this writing, the vast majority of open-weight
VLMs fall into this category (Chen et al., 2024a;
Liao et al., 2025; Bai et al., 2025). Should we
simply abandon them, or is there hope for mecha-
nisms that can repurpose these models—eliciting
structured reasoning without additional training
or supervision? While at first glance this may
seem unfeasible, these models have been trained
on vast internet-scale data and may possess latent
knowledge and reasoning potential that conven-
tional prompting fails to activate. Can we unlock
reasoning in non-reasoning VLMs by eliciting hid-
den, belated knowledge inaccessible through stan-
dard "step-by-step" CoT prompting?

In this work, we propose Socratic-MCTS, a
test-time algorithm that frames reasoning in non-
reasoning models as a structured search prob-
lem—requiring no fine-tuning, no supervision, and
no architectural modifications. At its core, Socratic-
MCTS introduces a simple but powerful abstrac-
tion: the subquestion–subanswer pair. By framing
reasoning as a search process where subquestions
represent latent decisions within a broader infer-
ence trajectory, we enable models to “connect the
dots” between fragmented pieces of knowledge.
By searching over semantically meaningful chunks,
rather than individual lines, Socratic-MCTS strikes
a middle ground between free-form generation and
conventional tree search—producing coherent long

reasoning traces that progressively move toward
the final solution. Our key insight is that longer
CoT could emerge at test-time from the deliberate
exploration of which subquestions to ask, and in
what order—injecting structure into the model’s
output stream to guide it toward correct answers.
Socratic-MCTS formalizes this process through
an MCTS-inspired framework that estimates and
incorporates early-exit mechanisms to adaptively
reduce computational overhead —all without rely-
ing on external supervision. We evaluate Socratic-
MCTS across three benchmarks and find that it con-
sistently improves performance, notably achieving
a significant 9% gain in Liberal Arts categories on
the MMMU-PRO benchmark.

2 Preliminaries

Consider a model M that, when given a ques-
tion q := {I, q̂}, where I is an image and q̂ is
a text prompt of a multiple-choice question, gen-
erates both an intermediate reasoning trajectory
T and a final solution a. Formally, given an in-
put question q ∈ Q, the model M produces a
pair (T, a) := M(q), where T ∈ T denotes the
chain of reasoning (or “thoughts”), and a ∈ A
denotes the final answer to q. Each reasoning tra-
jectory T consists of a set of core units of rea-
soning, denoted T := {u1, u2, . . . , uτ}. Each uτ

represents an individual reasoning step. In most
settings, uτ corresponds to a sentence or logical
operation—e.g., a mathematical step—and is often
delineated in model outputs via sentence colons.
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In our framework, each atomic reasoning unit is
represented as uτ := {sτ , asτ}, where sτ is a sub-
question and asτ is the corresponding answer. To
facilitate segmentation between reasoning units, we
append transition phrases—natural language cues
such as “First, let me think . . . ” at the beginning
of each thought ui. These structure the trajectory
allowing coherent composition.
Monte Carlo Tree Search Monte Carlo Tree
Search (MCTS) is a sample-based tree-search al-
gorithm that has proved effective on complex rea-
soning tasks. In our case, MCTS operates on a
rooted, directed tree whose nodes correspond to
partial reasoning trajectories. We represent a node
at depth τ as nτ :=

〈
q, Tτ , N, W, Q

〉
where

(i) q is the original query, (ii) Tτ = {u1, . . . , uτ}
is the sequence of core reasoning units generated
so far (with u0 := ∅ for the root), (iii) N ∈ N
is the visit count, (iv) W ∈ R is the cumulative
reward returned by completed roll-outs that passed
through the node, and (v) Q := W/N is its em-
pirical value estimate. An edge from nτ to nτ+1

is defined by an action. MCTS operates in four
iterative phases: selection, expansion, simulation,
and backpropagation. These are repeated until a
predefined computational budget is reached. We
refer the reader to Browne et al. (2012) for details.

3 Socratic MCTS

We adapt MCTS to a Socratic setting in which
actions are subquestions and each node state is
the pair uτ := {sτ , asτ} comprising the current
subquestion and its answer. This is inspired by
the Socratic method of reasoning, as the model
explicitly and progressively decomposes the prob-
lem by asking and answering intermediate ques-
tions. Thus, unlike previous MCTS approaches
that implicitly sample tokens or steps as actions,
we explicitly define subquestions as structured dy-
namic actions, aligning MCTS with the Socratic
method (Farnsworth, 2021). We emphasize that our
algorithm operates at test time and does not rely
on supervision. Instead, it leverages compositional
rollouts and internal agreement to guide the search.

3.1 Explicit Subquestions as Actions

Previous work on applying MCTS to LLMs typ-
ically leaves the action space implicit—the next
token or thought sampled from the model (Guan
et al., 2025; Luo et al., 2024). Instead, we de-
fine an action at depth τ as a self-contained sub-

question sτ+1 that (i) relates to the original query
q and (ii) decomposes the task into a tractable
sub-problem. This explicit representation allows
searching over semantically meaningful pieces
of knowledge while preserving goal-directedness.
Specifically, we obtain a finite number of sub-
questions kq:

{
sτ+1, . . . , sτ+kq

}
∼ Ms

(
· |

q, Tτ , psub
)
, where Ms is the subquestion policy

and the prompt psub instructs the model to ask
rather than answer. Each sampled subquestion
defines an edge from nτ to a new child nτ+1. The
corresponding answer is obtained from an answer
policy: asτ+1 ∼ Ma

(
· | I, sτ+1

)
, which an-

swers the subquestion in isolation. Empirically,
we found this decoupling crucial in multimodal
models, preventing propagating errors or contam-
inating the answer. The new node’s state is then
uτ+1 := {sτ+1, asτ+1}. We make the transition
from uτ to uτ+1 natural by appending a transition
phrase such as "Next, let me ..." drawn from a list.

For simplicity, we set Ms = Ma = M in our
experiments, and set temp = 0.6, deferring the
exploration of heterogeneous or multi-agent poli-
cies within the Socratic MCTS framework to future
work. Notably, any agent—including a different
model or a human—could be placed in either role.

3.2 Navigating the Reasoning Tree

Guided Selection via UCT. Starting at the root
n0, we repeatedly choose the child that maximises

UCT(nτ+1) = Q + c
√

lnNparent

Nτ+1
, until a leaf

is reached. The constant c > 0 controls the explo-
ration–exploitation balance. Following common
practice (Kocsis and Szepesvári, 2006), we set the
exploration constant c = 1.4.
Expanding with Socratic Questions. If the cur-
rent leaf node is non-terminal and not fully ex-
panded, we generate up to kq new sub-questions
and their answers as described above, initializing
each child with N = W = 0. A node is considered
fully expanded when all of its sampled subques-
tions have been explored (i.e., all available actions
have been taken). A node is considered terminal
if one of two conditions holds: (1) the model fails
to generate an answer for a proposed action (e.g.,
empty answer), or (2) the generation degenerates
(e.g., repetitive outputs). In all experiments, kq = 6
for the first tree level and kq = 3 for the rest.
Compositional Rollouts for Self-consistency. We
perform rollouts to estimate a node’s value by com-
posing transition phrases, subquestions, and their

24149



answers along the reasoning path. Concretely, we
precondition the model on the current partial trajec-
tory Tτ+1. We additionally concatenate a wrap-up
transition phrase (e.g., “Summarizing, we have:”)
that cues the model to complete the reasoning and
produce a final answer. Formally, we generate K
completions by preconditioning the model on Tτ+1

followed by K distinct wrap-up transition phrases:
a(1), . . . , a(K) ∼ M

(
· | q, Tτ+1,wrap(k)

)
,

where wrap(k) denotes the k-th natural language
wrap-up phrase. Notably, this procedure enables
efficient rollouts—requiring only a few newly gen-
erated tokens—as the model is preconditioned to
produce a final response. We also observe that
diverse wrap-up phrases yield variability in the re-
sponse, which is necessary for computing internal
agreement. We set K = 8 in all our experiments.
Internal Agreement for Value Estimation. We

rely on the model’s internal consistency as a proxy
reward signal. Specifically, each of the sampled
answer a(k) is parsed using a lightweight heuristic
that extracts a canonical choice (e.g., a multiple-
choice label), and penalizes overly verbose genera-
tions. Formally, let the set of unique extracted an-
swers from all rollouts be A := {â(1), . . . , â(K)},
and let w(k) := score(a(k)) ∈ [0, 1] be a normal-
ized confidence weight assigned by the heuristic.
For example, if a(k) is degenerate—i.e., it reaches
the maximum generation length without producing
a valid answer—then its weight w(k) = 0. We com-
pute the value estimate via weighted majority vot-
ing: V := argmaxa∈A

∑K
k=1 1

[
â(k) = a

]
· w(k).

That is, we select the answer that accumulates the
highest total confidence across the K rollouts.

Special Direct-Exit Nodes. While we encour-
age the algorithm to explore deeper chains of rea-
soning when beneficial, we also want to allow it
to finalize an answer early if further composition
fails to improve the value estimate. To support
this, we allow each node to optionally include a di-
rect exit node. This is a special terminal node that
includes the terminal answer a in the reasoning
trajectory—obtained from compositional rollouts
at that node as explained above. To mitigate an
unintended bias introduced by this special node,
we omit the exploration term when computing the
UCT score on them.
Selective Search Based on Model Confidence.
We observe that for certain problems, the model
exhibits high confidence in its initial direct an-
swer obtained through vanilla sampling. To handle

Method MMMU-Pro MMStar
Liberal Arts STEM+B Overall Overall

GPT-4o (051324) - - 0.540 0.647
Claude 3.5-Sonnet - - 0.550 0.651
Gemini-1.5-Pro - - 0.494 0.591
LLaVA-OneVision-72B - - 0.380 0.658
Qwen2-VL-72B - - 0.492 0.683
InternVL2-Llama3-76B - - 0.419 0.674

InternVL2.5-78B
+ Direct 0.538 0.507 0.517 0.692
+ CoT 0.544 0.479 0.506 0.689
+ Least-to-Most 0.296 0.276 0.280 0.486
+ Socratic MCTS (Ours) 0.628 0.492 0.537 0.711

Table 1: Performance across different reasoning bench-
marks. Socratic MCTS consistently outperforms direct,
CoT and LtM baselines across all benchmarks. We eval-
uate InternVL-78B Direct, CoT, LtM. Others results are
for reference taken from their respective reports. As
such, entries not reported by the authors appear as -.

these cases efficiently, we first estimate the model’s
confidence in its initial answer and introduce a
hyperparameter-controlled early-exit threshold that
skips the tree-search algorithm altogether when ex-
ceeded (we used 0.9). We explore two approaches
for confidence estimation: taking the maximum
answer token probability and performing majority
voting through sampling. Empirically, we did not
observe a major difference between them. Future
work might explore other adaptive schemes.

4 Experiments

Setup. We evaluate InternVL-78B (Chen et al.,
2024d) using default hyperparams, and compare
it against non-reasoning SoTA models GPT-4o
(240513) and Claude 3.5-Sonnet, with results
from (Chen et al., 2024d). We benchmark three
baselines: (1) Direct Answer, (2) CoT prompting,
using specific prompts from (Yue et al., 2024b)
and greedy decoding. We further implemented a
multimodal version of Least-To-Most (LtM). For
LtM, we recursively decompose the original ques-
tion up to a depth of 3 and solve the resulting sub-
questions in a bottom-up fashion. We evaluate on
MMMU-PRO (Yue et al., 2024b), a more challeng-
ing variant of MMMU (Yue et al., 2024a), under
a 10-option multiple-choice format. We also as-
sess performance on MMStar (Chen et al., 2024c)
(1,500 visually grounded, leakage-controlled sam-
ples) and MathVista (Lu et al., 2023) (English-only,
multiple-choice subset of test-mini) for visual
math reasoning. We report single runs with 40
iterations for MMMU-PRO and 20 for others.
Main Results. Socratic-MCTS consistently out-
performs all baselines (Tab 1 and 2) , with strong
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Method MathVista (mini-eng)

+ Direct 0.740
+ CoT 0.763
+ Least-to-Most 0.471
+ Socratic MCTS (Ours) 0.782

Table 2: Performance on MathVista mini further filtered
to include only multiple-choice questions in English.

gains in tasks requiring less symbolic reasoning.
In MMMU-Pro, it notably improves accuracy by
9% in Liberal Arts. We define Liberal Arts as Art,
Art Theory, Design, Economics, Geography, His-
tory, Literature, Music, Psychology, and Sociology,
and all remaining subjects as STEM+B. Surpris-
ingly, across all benchmarks, we find that in VLMs,
decomposition via prompting —as in LtM— un-
derperforms both direct and CoT, underscoring the
limitations of prompting and the fundamental dif-
ferences between non-reasoning VLMs and LLMs.

5 Additional Results

Additional Model. In the supplementary material,
Table 3, we show the experimental results of using
Socratic-MCTS on an additional model, Llama-3.2-
90B-vision. As with InternVL-78B, we observe
consistent notable gains of 2% on MMMU-Pro
and 1.5% on MMStar.
Comparison with Self-Consistency (majority
voting). In Table 4 supplementary material,
we also report InternVL-2.5-78B accuracy on
MMMU-PRO using (i) sampling-based CoT + self-
consistency with different numbers of generations
and (ii) our Socratic MCTS. Socratic MCTS outper-
forms CoT + self-consistency in all the experiments
highlighting the strength of our search-based de-
composition. We emphasize a majority-vote layer
could just as easily be placed on top of Socratic
MCTS. We leave this promising extension of So-
cratic MCTS for future work.

6 Related Work

Prior work has explored question decomposition
for LLMs as a direct prompting method (Rad-
hakrishnan et al., 2023; Zhou et al., 2022; Khot
et al., 2022; Jung et al., 2022; Liao et al., 2024a,b),
mainly in text-only domains. In contrast, we in-
tegrate decomposition into a tree search process,
allowing models to explore and compose subques-
tions dynamically, with a focus on vision. Re-
cent adaptations of MCTS to VLMs (Yao et al.,
2024; Wu et al., 2025; Wang et al., 2025; Xie

et al., 2024) either use MCTS as part of a train-
ing loop or in a small dataset to generate high-
level reasoning templates. Closer to our setting,
Hao et al. (2023) use MCTS and frame subques-
tions as actions in math tasks. Our work differs
in both domain and methodology: we target non-
reasoning VLMs, introduce preconditioning in roll-
outs and early-exit mechanisms, and operate in
the multimodal domain—producing long reasoning
traces that require grounded visual understanding.
Concurrently, with our work (Zhang et al., 2025)
proposes an MCTS-style test-time algorithm and
define a “step” as a sub-question plus its answer.
While both approaches employ an MCTS-style test-
time algorithm, several key differences remain in
terms of generation strategy, reward and efficiency
and scope of the task.

7 Conclusions

We introduce Socratic-MCTS, a test-time algo-
rithm that frames reasoning as structured search
over subquestion–subanswer pairs. Evaluations
across multiple benchmarks show consistent per-
formance gains, particularly on non-symbolic
tasks—validating that fragmented knowledge can
be elicited to produce long reasoning traces in “non-
reasoning” VLMs, without additional training.

8 Limitations

While our approach demonstrates promising im-
provements, it comes with several limitations. First,
non-autoregressive reasoning is inherently less
GPU-efficient, making structured search methods
like MCTS slower in practice. Without significant
advances in compute efficiency, such structured ap-
proaches may remain less practical than simpler
methods like majority voting with brute-force scal-
ing. Second, although internal agreement serves as
a useful value signal in the absence of supervision,
we observed that frozen VLMs tend to be over-
confident in their outputs—often ignoring chain-of-
thought cues, regardless of how they are precondi-
tioned. Encouraging faithfulness of the CoT and
output diversity in such models remains an open re-
search challenge. Finally, due to the computational
cost of search, we did not explore hyperparameter
tuning and multi-agent settings. These choices may
offer further performance gains and warrant future
investigation.
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A Supplementary Material

This appendix provides additional materials to support and illustrate the main findings of the paper. It is
organized as follows:

• Section B presents additional qualitative examples illustrating how Socratic-MCTS generates struc-
tured reasoning traces across various tasks and benchmarks. These cases complement the main
results and provide further insight into the interpretability of the method.

• Section C discusses notable failure cases where the model struggles, highlighting limitations of the
current approach.

• Section D provides the full text prompts used for subquestion generation and evaluation.

• Section E provides additional experimental results.

B Qualitative Results

Problem (P):  What color scheme does this represent? 

A) Double-Complementary Color Scheme ….. 

C) Analogous Color Scheme  

D) Monochromatic Color Scheme ….. 

I) Triadic Color Scheme J) Compound Color Scheme

Socratic MCTS: 
Let me think ... what is the primary color scheme depicted in the image, and how do the colors relate 
to each other in terms of their positions on the color wheel? The primary color scheme in the image is 
blue and green. On the color wheel, blue and green are adjacent colors, which means they are next to 
each other. This type of color scheme is often referred to as analogous, as the colors are closely related 
and create a harmonious visual effect. The blue is on one side of the green, indicating that they are 
neighboring colors. 

Wait, let me check if I made any mistakes above and answer the original problem: The primary color 
scheme in the image is blue and green. On the color wheel, blue and green are adjacent colors, which 
means they are next to each other. This type of color scheme is often referred to as analogous, as the 
colors are closely related and create a harmonious visual effect. The blue is on one side of the green, 
indicating that they are neighboring colors. 

Summarizing the above and answering the original question we have:  

Final Answer: C) [Correct]

Direct Answer: 
(B) Complementary Color Scheme 
Answer: B [Wrong]

(a) Socratic-MCTS on a multimodal color theory question.

Socratic MCTS: 
Let me think ... what data, constraints, and unknowns are provided to me in the image? The input is a 
segment of a musical notation system called Western music notation, which consists of a staff that holds 
different musical elements. The staff is divided into five lines and four spaces, each line and space 
representing a particular pitch depending on the clef sign present at the beginning of the staff. […]The 
note on the second line from the bottom is an eighth note, which has a value of half a beat in common 
time. It is also flattened, as indicated by the flat symbol (♭) next to it. The note on the fourth line from the 
bottom is a whole note, which has a value of four beats in common time. Based on the clef sign and the 
position of the notes on the staff, the eighth note on the second line from the bottom is a flattened B (B♭), 
while the whole note on the fourth line from the bottom is a D. In conclusion, the two notes in the image 
are B♭ and D, and the interval between them is a major third. 
Um, let me summarize my thoughts and answer the original problem, we have: The staff is divided 
into five lines and four spaces, each line and space representing a particular pitch depending on the clef 
sign present at the beginning of the staff.. The note on the second line from the bottom is an eighth note, 
which has a value of half a beat in common time. It is also flattened, as indicated by the flat symbol (♭) next 
to it. The note on the fourth line from the bottom is a whole note, which has a value of four beats in 
common time. […] To answer the question, we need to determine the interval between the two notes. An 
interval is the distance between two pitches, and it is measured in terms of the number of scale degrees 
between them. In this case, the interval between B♭ and D is a major third, which consists of four half-steps 
or two whole-steps. 
  

Answer: D [Correct]

Problem (P): Choose the name for the following interval    
A) minor 3rd  B) perfect 4th C) minor 2nd  
D) major 3rd   
E) diminished 5th , ….. 
I) major 6th J) augmented 3rd

Direct Answer: 
The interval shown in the image is a minor 3rd. 
Answer: A [Wrong]

(b) Socratic-MCTS on a music question.

Figure 3: Qualitative comparison on MMMU-PRO. We show Socratic-MCTS responses on two multimodal
questions from the benchmark, comparing qualitatively against the best-performing baseline (direct prompting).
Subquestion–subanswer composition allows the model to uncover relevant knowledge, verify intermediate steps,
and synthesize final answers coherently.
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C Failure cases

Problem (P):  Which piece of clothing has a stripe on it? 

A: Shirt,  

B: Sock,  

C: Pant,  

D: Shoe

Socratic MCTS: 
First, I need to consider ... what type of sports attire is the mascot wearing, and how does it relate to 
the context of the image?  
* 1. The mascot is wearing a soccer jersey, which relates to the context of the image because there are 
also players wearing soccer jerseys. The mascot's attire is appropriate for the context of the image. 

Summarizing the above and answering the original problem, we have:  

Answer: A) [Wrong]

(a) Socratic-MCTS failure case on MMStar.

Problem (P):  The  image below shows the average cost per 
unit falling as production levels increase  Among the benefits 
of economies of scale are: 

A) Improve output ratio  
B) improve efficiency 
C) boost profitability  
D) may lead to price reductions

Socratic MCTS: 
Let me think ... what is the economic principle depicted in the graph, where the average cost per unit 
decreases as output increases? The economic principle depicted is Economies of Scale. This occurs when 
a company increases its production levels, leading to a reduction in average cost per unit due to factors such 
as increased efficiency, bulk purchasing of materials, and spreading fixed costs over a larger number of units 
  
Wait, what if I start solving the original problem from scratch? We have: Among the benefits of 
economies of scale are: A) Improve output ratio B) improve efficiency C) boost profitability D) may lead to 
price reductions Now, let's evaluate each option: A) Improve output ratio: Economies of scale do not directly 
improve the output ratio. The output ratio typically refers to the relationship between inputs and outputs, 
and while economies of scale can lead to more efficient use of inputs, it is not a direct benefit. B) Improve 
efficiency: Economies of scale often lead to improved efficiency as larger production volumes can result in 
better utilization of resources, reduced waste, and more streamlined processes. C) Boost profitability: As the 
average cost per unit decreases, profitability can increase if the selling price remains constant or if the price 
reduction is less than the cost savings. D) May lead to price reductions: With lower average costs, companies 
may choose to reduce prices to gain market share or to pass on the cost savings to consumers. Given the 
options, the most direct benefits of economies of scale are improving efficiency (B) and boosting profitability 
(C). However, since the question asks for benefits "among" the given options, and considering the context of 
the graph showing decreasing average costs, the most relevant benefits are: 
B) Improve efficiency C) Boost profitability 

Answer: B) [Wrong]

(b) Socratic-MCTS failure case on MMMU-Pro

Figure 4: Failure cases of Socratic-MCTS We show failure cases of Socratic-MCTS on MMStar and MMMU-Pro.

D Full text prompts and phrases used
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starting_out_phrases = [
"Let me think ...",
"First, I need to consider ...",

]

Figure 5: starting_out_phrases: phrases used to begin the reasoning trajectory.

transition_phrases = [
"Next, let me look at ...",
"Moving on, I wonder ... ",
"That leads me to the next point ...",
"Expanding on that ...",
"So what does this mean for ...",
"Now, I need to think about ... "

]

Figure 6: transition_phrases: phrases used to signal intermediate reasoning steps.

wrap_up_phrases = [
"Summarizing the above and answering the original problem, we have:",
"Wait, let me check if I made any mistakes above and answer the original problem:",
"Okay, wrapping up any remaining calculations and answering the original problem, we have:",
"Now, solving the original problem, we have:",
"Um, let me summarize my thoughts and answer the original problem, we have:",
"How do my previous thoughts connect to the original problem? Let me go back and solve it:",
"Next, let me evaluate the above information recognizing that some of it may be incorrect:",
"So, let me summarize the above information and directly answer the original problem:",
"Wait, what if I start solving the original problem from scratch? We have:",
"Wait, what if I start solving step-by-step the original problem from scratch? We have:",
"Let's verify step-by-step the above information and answer the original problem:",

]

Figure 7: wrap_up_phrases: phrases used to conclude and produce the final answer.
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---
** Problem: $#$problem$#$
---
** Intermediate Reasoning: $#$partialreasoning$#$
---
Context: You have been provided with:
* An image
* A problem related to that image
* Some intermediate reasoning steps that outline partial progress or initial thinking.
Your Goal:
- Formulate a single follow-up question that moves the reasoning process closer to solving the

original problem.↪→
Guidelines:
- Use the Socratic method by focusing on the next logical step in the problem-solving process.
Your question might:
- Clarify the core issue
- Challenge hidden assumptions
- Identify missing information or data
- Refine or expand upon a hypothesis
- Break the problem down into more manageable parts
- Probe deeper into the analysis or experimentation
- Prompt reevaluation or checking for errors
- Encourage synthesis to form a conclusion
- Spark reflection or consideration of next steps
Constraints:
- Ensure the question is directly relevant to the problem.
- Ensure the question is directly relevant to the intermediate reasoning steps.
- Ensure the question is asked in first-person perspective.
- Make the question open-ended enough to encourage deeper thinking, but specific enough to be

actionable.↪→
- If necessary use domain-specific terminology and aim to retrive domain-specific knowledge.
- Avoid simply restating the information already provided or present in the intermediate

reasoning steps; instead, aim to advance the user's understanding or resolution of the
problem.

↪→
↪→

Your response should be of the following format: 'Question: $Q' (without quotes) where Q is
your proposed follow up question. - do not write anything other than 'Question: $Q'
(without quotes) where Q is your proposed question."

↪→
↪→

Assistant: Question:

Figure 8: Text prompt used to generate follow up subquestions.
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---
** Problem: $#$problem$#$
---
Context: You have been provided with:
* An image
* A multiple choice question problem related to that image
Your Goal:
- Formulate a single follow-up question that moves the reasoning process closer to solving the

original problem.↪→
Guidelines:
- Use the Socratic method by focusing on the next logical step in the problem-solving process.
Your question might:
- Clarify the core issue
- Challenge hidden assumptions
- Clarify or ask to describe parts of the image that are relevant to solve the problem
- Identify missing information or data
- Refine or expand upon a hypothesis
- Break the problem down into more manageable parts
- Probe deeper into the analysis or experimentation
- Prompt reevaluation or checking for errors
- Encourage synthesis to form a conclusion
- Spark reflection or consideration of next steps
Constraints:
- Ensure the question is directly relevant to the problem.
- Ensure the quesiton is asked in first-person perspective.
- Ensure the question is directly relevant to the intermediate reasoning steps.
- Ensure the question is asked in first-person perspective.
- Make the question open-ended enough to encourage deeper thinking, but specific enough to be

actionable.↪→
- If necessary use domain-specific terminology and aim to retrive domain-specific knowledge.
- Avoid simply restating the information already provided or present in the intermediate

reasoning steps; instead, aim to advance the user's understanding or resolution of the
problem.

↪→
↪→
Your response should be of the following format: 'Question: $Q' (without quotes) where Q is

your proposed follow up question. - do not write anything other than 'Question: $Q'
(without quotes) where Q is your proposed question."

↪→
↪→
Assistant: Question:

Figure 9: Zero-Shot text prompt used to generate initial subquestions.
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$#$problem$#$
Answer with the option letter from the given choices directly. The last line of your response

should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one
of options.

↪→
↪→

Figure 10: Text prompt from (Yue et al., 2024a) used to evaluate Direct.

$#$problem$#$
Answer the preceding multiple choice question. The last line of your response should be of the

following format: 'Answer: $LETTER' (without quotes) where LETTER is one of options. Think
step by step before answering.

↪→
↪→

Figure 11: Text prompt from (Yue et al., 2024a) used to evaluate zero-shot CoT.
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E Additional Results

Additional Model. Search-based methods are computationally expensive. Therefore, we concentrated on
one of the best open-source non-reasoning VLM available at the time of this writing ( i.e. InternVL-78B).
That said, in table 3, we show the experimental results of using Socratic-MCTS on an additional model,
Llama-3.2-90B-vision. For this experiment, we use the MMMU-PRO 4-options setting and randomly
select a subset of 1000 problems from MMstar.As with InternVL-78B, we observe consistent notable
gains of 2% on MMMU-Pro and 1.5% on MMStar.

Llama-3.2-90B Overall Acc (MMMU-PRO, 4 opts) Overall Acc (MMstar, 1000)
+ CoT 0.584 0.594
+ Socratic-MCTS 0.603 0.608

Table 3: Performance comparison of Llama-3.2-90B with different reasoning methods.

Comparison with CoT+Self-Consistency (majority voting) Table 4 reports InternVL-2.5-78B accuracy
on MMMU-PRO using (i) sampling-based CoT + self-consistency (majority vote, t=0.6) with different
numbers of generations and (ii) our Socratic MCTS. We also added Direct greedy decoding (the best
single generation baseline) for reference. Socratic MCTS outperforms CoT + self-consistency in all the
experiments highlighting the strength of our search-based decomposition. We emphasize a majority-vote
layer could just as easily be placed on top of Socratic MCTS (i.e. running Socratic MCTS multiple times
for the same problem and selecting the most common answer). We leave this promising extension of
Socratic MCTS for future work.

# Generations Method Accuracy
1 Direct (greedy) 0.517
8 CoT + Self-Consistency 0.509

16 CoT + Self-Consistency 0.517
32 CoT + Self-Consistency 0.522
1 Socratic MCTS (ours) 0.537

Table 4: Comparison across different methods and numbers of generations.
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