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Abstract

This paper examines two aspects of the isolated
sign language recognition (ISLR) task. First, al-
though a certain number of datasets is available,
the data for individual sign languages is lim-
ited. It poses the challenge of cross-language
ISLR model training, including transfer learn-
ing. Second, similar signs can have different
semantic meanings. It leads to ambiguity in
dataset labeling and raises the question of the
best policy for annotating such signs. To ad-
dress these issues, this study presents Logos,
a novel Russian Sign Language (RSL) dataset,
the most extensive available ISLR dataset by
the number of signers, one of the most ex-
tensive datasets in size and vocabulary, and
the largest RSL dataset. It is shown that a
model, pre-trained on the Logos dataset can
be used as a universal encoder for other lan-
guage SLR tasks, including few-shot learning.
We explore cross-language transfer learning
approaches and find that joint training using
multiple classification heads benefits accuracy
for the target low-resource datasets the most.
The key feature of the Logos dataset is explic-
itly annotated visually similar sign groups. We
show that explicitly labeling visually similar
signs improves trained model quality as a visual
encoder for downstream tasks. Based on the
proposed contributions, we outperform current
state-of-the-art results for the WLASL dataset
and get competitive results for the AUTSL
dataset, with a single stream model processing
solely RGB video. The source code, dataset,
and pre-trained models are publicly available.

1 Introduction

Sign languages (SL) are visual-spatial signals for
communication among deaf communities. Al-
though national sign languages are mostly asso-
ciated with national spoken languages, they are
distinct languages with their own grammar and vo-
cabulary. Primarily, signs are expressed by hand

(a) Летать (to fly)

(b) Крыло (wing)

(c) Овца (sheep)

(d) Разгневанный (angry)

Figure 1: Sample frames from Russian Sign Language
dataset Logos: (a,b) and (c,d) are visually similar signs
(VSSigns).

shape and motion (manual components of sign),
but also with a great aid of motion of mouth, head,
eyes, and the body (non-manual components). The
term “gloss” is used to refer to the word that sig-
nifies the sign. Generally, this word represents the
sign’s meaning. Still, one sign can be translated by
several words and vice versa, so glosses should be
considered just as word labels for signs.

The problem of computer sign language recogni-
tion and translation has a practical application with
significant social impact because it can help deaf
and hearing people communicate. On the other
hand, it is a challenging scientific problem located
at the junction of computer vision and natural lan-
guage processing areas.

The presented work deals with the isolated sign
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language recognition (ISLR) problem, i.e., the clas-
sification of videos that contain only one sign each.
The ISLR task has not only independent signifi-
cance but is also important for building a more prac-
tical continuous sign language translation (CSLT)
solution (Chen et al., 2022; Wei and Chen, 2023;
Zuo et al., 2024).

A significant obstacle to building SLR solutions
is a shortage of training data (Gokul et al., 2022;
Papadimitriou and Potamianos, 2023). While a
number of annotated SL datasets exist, they repre-
sent different sign languages (Table 1), and dataset
corpora for many individual languages are insuffi-
cient. It highlights the task of using cross-lingual
data. Some researchers utilize cross-lingual train-
ing either by combining two or more rather small
datasets or using a multilingual dataset. The pre-
sented study examines the ability of a model trained
on an extensive SL dataset of one language to serve
as an encoder for SL tasks for other sign languages,
and compares different approaches to it.

This paper presents an extensive Russian Sign
Language (RSL) dataset, Logos, one of the largest
existing sign language datasets in terms of volume
and vocabulary size and the largest in terms of the
number of signers. We show that a model pre-
trained on the Logos dataset can be successfully
transferred to another language SLR tasks, includ-
ing few-shot learning. The dataset size is critical,
and the effect degrades if a smaller dataset is used
for pre-train. Next, we compare transfer learning
methods and find that simultaneous training with
the large dataset using multiple classification heads
for different languages benefits the target language
SLR models the most, compared to other transfer
learning methods.

Another problem with SLR is that signs with
similar handshapes and motions can have vari-
ous semantic meanings. Such signs can be either
strictly indistinguishable (the cases of polysemy or
homonymy) or only distinguishable by their con-
stituent non-manual features (Zuo et al., 2023; Hu
et al., 2021b), see Figure 1. In the latter case, such
signs can be viewed as minimal pairs for SL. The
difference between the individual signers’ manners
blurs the boundary between non-manual features
and makes such signs practically indistinguishable
out of context. For this reason, while some re-
searchers consider such signs to be separate, others
consider them to be the same (Ebling et al., 2015).
This paper calls such hardly distinguishable signs
“visually similar signs” (VSSigns). This concept

includes both polysemy and minimal pair cases.
While they differ from a linguistic perspective, it
makes sense to combine them for machine learning
purposes.

Different SL datasets have VSSigns annotated
with either different or similar labels. To the best of
our knowledge, no studies have examined the im-
pact of the VSSigns annotation approach on result-
ing SLR models. We explore its effect in this work
using the Logos dataset, which has both ungrouped
gloss and grouped VSSign annotations. We find
that VSSigns grouping benefits the SLR model.

The key contributions of this work are:

• We present Logos, a new publicly available
Russian Sign Language ISLR dataset. It is
the most extensive available ISLR dataset by
the number of signers and one of the largest
datasets while also the largest RSL dataset in
size and vocabulary. The dataset’s key feature
is an explicit annotation of visually similar
sign (VSSign) groups.

• Using the Logos dataset, we show that explic-
itly grouping VSSign labels benefits trained
model quality as a video encoder for down-
stream tasks like transfer learning to other sign
languages.

• We show that a model, pre-trained on the pro-
posed Logos dataset can be transferred to an-
other language SLR tasks, including few-shot
learning. We compare transfer learning meth-
ods and demonstrate that the method of cross-
lingual multi-dataset co-training with multi-
ple language-specific classification heads im-
proves SL models for low-resource datasets
the most, compared to the conventional “pre-
train and finetune” method.

• Based on the described contributions, we ob-
tain recognition accuracy for the American
Sign Language dataset WLASL, superior to
state-of-the-art (SOTA), with a single stream
model processing solely RGB video.

The research was conducted in cooperation with
the “All-Russian Society of the Deaf” (VOG). VOG
experts and professional sign language interpreters
participated at every stage of the Logos dataset
creation. We also engaged deaf consultants in de-
veloping training strategies to apply considerations
to specific solutions. Additionally, some of our
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researchers completed formal courses on RSL to
enhance their knowledge in this domain.

The source code, dataset, and pre-trained models
are publicly available1.

2 Related Works

2.1 Isolated Sign Language Recognition

In recent years, a group of approaches for ISLR
tasks rely on using RGB input data. Then, either
2D convolutional neural network (CNN) is applied
to extract individual frames’ features, followed
by LSTM for the temporal component processing
(Koller et al., 2019), or the spatial and temporal
components are simultaneously processed using
3D CNN (Papadimitriou and Potamianos, 2023;
Zuo et al., 2023; Albanie et al., 2020; Huang et al.,
2018; Li et al., 2020; Joze and Koller, 2018). After
the proliferation of transformers, transformer-based
image and video processing architectures were ap-
plied (Kapitanov et al., 2023; Kvanchiani et al.,
2024). In addition to the RGB input, a depth map
can be used (Jiang et al., 2021; Zuo et al., 2023).

Another group of approaches utilizes pose (skele-
ton) keypoints and face landmarks generated by
available frameworks (Hrúz et al., 2022; Jiang et al.,
2021; Miah et al., 2023; Papadimitriou and Potami-
anos, 2023; Ryumin et al., 2023). The skeleton
keypoints can be represented as a sequence of
heatmaps and processed similarly to video data
(Zuo et al., 2023). A series of methods build a
graph based on physical skeleton connections and
explore Graph Convolutional Networks (GCNs)
(Hu et al., 2021a, 2023; Patra et al., 2024; Zhao
et al., 2023; Jiang et al., 2021).

Most current SOTA SLR models are multi-
stream and multi-modal and combine more than
one of the methods listed above (Hrúz et al., 2022;
Zuo et al., 2023; Jiang et al., 2021; Miah et al.,
2023; Papadimitriou and Potamianos, 2023; Ryu-
min et al., 2023).

Nevertheless, we focus our research on purely
frontal RGB video, as this setup is most relevant for
practical applications. Many possible real-world
scenarios, such as educational tools for RSL and
ASL learning, video conferencing, and public kiosk
systems in environements like metro stations or air-
ports, typically involve users facing a single RGB
camera.

1https://github.com/ai-forever/logos

2.2 ISLR Datasets

The ISLR datasets differ in several aspects: lan-
guage, collection method, size, vocabulary size,
number of signers (see Table 1). The most common
method of dataset collection is recording invited
signers in laboratory conditions. However, this ap-
proach generally results in insufficient scene and
signer variety, requiring the authors to record each
video individually. Web scrapping of SL videos is
rather effective and results in more diverse datasets.
However, its serious problem is the absence of con-
sent from the video owner and person represented
in the video on the usage of the video as a part of the
dataset. Albanie et al. (2020; 2021) prepared the
British SL datasets using BBC TV programs with
SL translation. The datasets are large but have lim-
ited scene variety and number of signers, and they
mostly only have automatic annotation. Collecting
video from SL experts using a web crowdsourcing
platform has no problem with signers’ consent and
provides much more diverse footage. We have used
this approach for our work.

Vocabulary size is critical for building a
production-quality SLR model. We suppose that
practically useful models must recognize over
1,000 glosses. Therefore, a massive number of
video samples is needed to simultaneously satisfy
both the requirements of a large number of glosses
and of samples per gloss. Number of diverse sign-
ers is also important. As seen from Table 1, only a
few datasets meet these requirements.

2.3 The VSSigns Problem

Some SL signs with different semantic meanings
either can be considered as strictly indistinguish-
able (the cases of polysemy or homonymy) or can
have similar handshapes and motions, but can only
be distinguished by their constituent non-manual
features (Zuo et al., 2023; Hu et al., 2021b), see
Figure 1. The latter can be viewed as minimal pairs
for SL. The border between polysemy and mini-
mal pair signs can be blurred due to the individual
signers’ manners, making even signs with different
non-manual features practically indistinguishable
out of context. For this reason, while some re-
searchers consider such signs to be separate, others
consider them to be the same (Ebling et al., 2015).
On the contrary, even the same sign can have dis-
tinct manual features depending on the context, i.e.,
a question vs. a statement (Mukushev et al., 2020).
It results in ambiguity in the annotation of such
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Dataset Method Language Samples Signers Glosses VSSigns

DEVISIGN-L (Wang et al., 2016) lab Chinese (CSL) 24,000 8 2,000 –
SLR500 (Huang et al., 2018) lab Chinese (CSL) 125,000 50 500 –
MS-ASL (Joze and Koller, 2018) web American (ASL) 25,513 222 1,000 grouped
SMILE (Ebling et al., 2018) lab Swiss German 9,000 30 100 –
BosphorusSign22k (Özdemir et al., 2020) lab Turkish (TİD) 22,542 6 744 grouped
AUTSL (Sincan and Keles, 2020) lab Turkish (TİD) 38,336 43 226 –
WLASL (Li et al., 2020) web American (ASL) 21,083 119 2,000 –
BSLDict (Momeni et al., 2020) lab British (BSL) 14,210 28 9,283 addressed
K-RSL (Imashev et al., 2020) lab Kazakh-Russian 28,250 10 600 addressed
BSL-1K (Albanie et al., 2020) TV British (BSL) 273,0001 40 1,064 –
INCLUDE (Sridhar et al., 2020) lab Indian (ISL) 4,292 7 263 –
NMFs-CSL (Hu et al., 2021b) lab Chinese (CSL) 32,010 10 1,067 addressed
BOBSL (Albanie et al., 2021) TV British (BSL) 452,0001 39 2,281 –
GSL isol. (Adaloglou et al., 2021) lab Greek (GSL) 40,785 7 310 grouped
LSFB-ISOL (Fink et al., 2021) lab Fra/Bel 47,600 100 395 –
CISLR (Joshi et al., 2022) web Indian (ISL) 7,000 71 4,765 –
LSA64 (Ronchetti et al., 2023) lab Argentinian 3,200 10 64 –
ASL Citizen (Desai et al., 2024) crowd American (ASL) 83,399 52 2,731 –
Slovo (Kapitanov et al., 2023) crowd Russian (RSL) 20,000 194 1,000 –
FDMSE-ISL (Patra et al., 2024) lab Indian (ISL) 40,033 20 2,000 –
MM-WLAuslan (Shen et al., 2024b) lab Australian(Auslan) 282,0002 76 3,215 –

Logos (Ours) crowd Russian (RSL) 200,000 381 2,8633 both

Table 1: Summary of existing ISLR datasets. Method – the collection method: laboratory, web scrapping, TV
programs, crowdsourcing. VSSigns column shows if visually similar signs (VSSigns) were considered by the dataset
authors: grouped – VSSigns groups have common labels; addressed – the authors adopt VSSigns presence in the
dataset and propose some methods to tackle them at training time; "–" – VSSigns presence is not discussed.
1 These datasets mostly have automatic annotations of isolated glosses.
2 Actually, the dataset contain 70730 samples recorderd from four views each.
3 This number of glosses is grouped into 2,004 VSSign labels.

signs. This paper calls such hardly distinguishable
signs “visually similar signs” (VSSigns). Formally,
we define them as signs that have different mean-
ings but have the same manual component. The
VSSign concept includes both polysemy and mini-
mal pair cases. While they differ from a linguistic
perspective, it makes sense to combine them for
machine learning purposes.

There is no standard approach to annotating
VSSigns: they can be annotated with either dif-
ferent or similar labels. In this paper, we call
it ungrouped gloss and grouped VSSign annota-
tions. The datasets collected for the most com-
mon words of spoken language (Sincan and Ke-
les, 2020; Kapitanov et al., 2023), typical continu-
ous phrases (Albanie et al., 2020, 2021; Adaloglou
et al., 2021), or based on an SL dictionary (Patra
et al., 2024) primarily have different (ungrouped)
labels for similar signs. For instance, according to
(Zuo et al., 2023), among 2,000 classes of widely
used WLASL dataset (Li et al., 2020), 334 classes
form groups of VSSigns. Additional efforts are
needed to merge similar VSSigns and assign unique
grouped VSSign labels to them.

Among the reviewed datasets, three papers state
that VSSigns were grouped. Three papers con-
firm the presence of ungrouped VSSigns in the
presented datasets and propose some techniques
to distinguish them (Table 1). To improve VS-
Signs classification, Hu et al. (2021b) deform a
feature map, stretching more informative areas to
emphasize non-manual features. Zuo et al. (2023)
propose label smoothing depending on their seman-
tic difference and a common latent space for gloss
embeddings and vision features to maximize the
separability of confusing signs. Other works do not
mention any steps to handle VSSigns in the pro-
posed datasets. To our knowledge, no research has
examined the impact of VSSigns on the quality of
the resulting encoder for downstream tasks. Such a
study is one of the topics of this work, using trans-
fer learning to another language as a downstream
task example.

2.4 Multi-Dataset Training

Although researchers complain about insufficient
SLR training data (Gokul et al., 2022; Papadim-
itriou and Potamianos, 2023), the topic of cross-
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language dataset sharing is poorly exploited. Gokul
et al. (2022) implemented a multilingual SLR
model for 11 sign languages by simply translat-
ing the labels of all the languages into English. The
authors themselves admit that their model of com-
bining different languages is primitive and does
not make progress for some datasets. Tornay et
al. (2020) train a unified hand movement model
using 3 different sign language resources. Then,
they optimize the classifier using the target sign
language data. However, their cross-lingual model
falls short of the monolingual reference. Yin et al.
(2022) propose the MLSLT translation network as
a single model for multilingual translation. Their
work is limited to their rather small datasets and
doesn’t address leveraging large SL datasets to im-
prove the model quality. SignCLIP (Jiang et al.,
2024) utilizes a multilingual sign language dictio-
nary, SpreadTheSign.com, for training. It contains
mainly a single sample per concept per language,
and the SignCLIP authors translate all concepts into
English, similar to (Gokul et al., 2022), so knowl-
edge transfer between different sign languages is
not investigated. Hu et al. (2022) introduced an
additional shared module that learns knowledge
from two languages. It improved accuracy for Chi-
nese CSL-Daily (Zhou et al., 2021) and German
Phoenix-14 (Koller et al., 2015) datasets. Wei et
al. (2023) also benefit from the joint using the
same datasets by creating a gloss translation map
based on the visual similarity of signs, rather than
their meanings. Authors train the model for the
German language using both datasets and replace
gloss labels in Chinese videos with German labels
using this map, treating Chinese signs as German.
As shown below, this mapping method does not
give optimal results (see Section 5.3). However,
as far as we know, the ability of a model trained
on an extensive SL dataset to serve as an encoder
for SL tasks for other sign languages has not been
explored enough. Such a study, along with the
comparison of different approaches to it, is another
subject of our work.

3 Logos Dataset

3.1 Dataset Characteristics
The Logos dataset contains 199,668 videos
recorded by 381 signers (deaf individuals, pro-
fessional interpreters, sign language teachers, and
CODA/SODA2). The total duration of the dataset

2Child of Deaf Adult, Sibling of Deaf Adult/Deaf person

video is 221.4 hours, with 104.7 hours representing
the demonstration of signs themselves and the rest
being fragments before and after the sign demon-
stration. The dataset contains signs for 2,863 of
the most commonly used lemmas in the Russian
general vocabulary, combined into 2,004 grouped
VSSign classes with 35 to 737 samples per class.

The Logos dataset includes the Slovo public
dataset (Kapitanov et al., 2023) with the renewed
annotations, amended with VSSign classes.

More details on the dataset’s characteristics are
provided in Appendix A.1.

3.2 Gloss Selection
The Logos vocabulary selection is based on the
frequency list of the Russian language corpus3. We
have (1) selected the top 3,000 lemmas, except
for prepositions, conjunctions, particles, and inter-
jections, (2) removed lemmas that present in the
Slovo dataset, and (3) selected glosses as lemmas
for which sample video present on the SpreadThe-
Sign4 sign language dictionary website. We added
1,863 new glosses, bringing the total in the Logos
dataset to 2,863 glosses.

3.3 Data Collection
The Logos data collection pipeline includes signer
selection, video collection, video validation, and
sign time interval annotation stages that coincide
with the ones of the Slovo(Kapitanov et al., 2023)
pipeline. See Appendix A.2 for details.

3.4 VSSigns Grouping
We grouped visually similar signs based solely on
their manual components through two stages.

First, we trained a baseline model on the dataset
with ungrouped glosses and processed 2,863 sign
template videos with the model. Using confidence
of prediction classes for the template videos, we
identified the 10 most similar templates for each
one. Deaf experts compared each template video
with its 10 counterparts and marked pairs that dif-
fer only in non-manual components. Sign pairs
matched by the majority of 5 experts were anno-
tated as VSSigns.

Next, we applied three rounds of additional veri-
fication. In each round, the model was trained on
the currently grouped labels. Based on the clas-
sification results, we identified the most confus-
ing class pairs and visually inspected misclassified

3http://dict.ruslang.ru/freq.php
4https://spreadthesign.com/ru.ru/search/
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samples. If VSSign candidates were found, we
consulted deaf experts and grouped the labels addi-
tionally.

3.5 Train-test Split

We aim to maintain an 80/20 ratio for the train and
test data split applied to both the number of signers
and the number of samples for each sign. Given
that the number of signs recorded by different sign-
ers differs, the dataset split confirming all these
requirements hardly has a strict resolution. We ap-
plied a dynamic programming algorithm to find the
best approximation. See Appendix A.3.

4 Experiments setup

4.1 Datasets

In addition to the proposed large-scale Logos
dataset, we selected two widely used ISLR bench-
marks as target datasets for transfer learning: the
Turkish Sign Language (TİD) dataset AUTSL (Sin-
can and Keles, 2020) and the American Sign Lan-
guage (ASL) dataset WLASL (Li et al., 2020). The
WLASL dataset offers a large vocabulary but is
relatively small in size, comprising an average of
approximately 10 samples per class. The AUTSL
dataset provides more samples but includes a more
limited vocabulary and fewer signers. We also in-
clude MM-WLAuslan (Shen et al., 2024b), one of
the most extensive publicly available ISLR datasets,
as an additional pre-training baseline to compare
against Logos. Key characteristics of these datasets
are summarized in Table 1.

4.2 Sign Language Recognition Pipeline

Our experimental setup is based on (Kvanchiani
et al., 2024). The authors explore various train-
ing aspects to propose the optimal ISLR pipeline.
They use MViTv2-S (Li et al., 2022) as a back-
bone, a fully connected (FC) layer for classifica-
tion, a cross-entropy classification loss with label
smoothing, and sign timeline boundary regression
as an auxiliary task. The backbone was initialized
with Kinetics-400 pre-train. The pipeline processes
32× 224× 224 frame chains, randomly sampled
from the input video with a step of 2 frames. We
implement an auxiliary boundary regression task
as follows. The sign’s ground truth boundary times-
tamps are rescaled relative to the sampled clip: the
clip length is set as 1, the clip start is set as 0 for
the sign start point, and the clip end is set as 0
for the sign endpoint. Alongside the classification

heads, we add an extra FC layer with two output
channels for the sign start and end regression. Its
output and scaled ground truth values are mapped
to (−1, 1) using the formula y = 2σ(x)−1, where
σ(x) is the sigmoid function, to diminish the influ-
ence of sign boundaries that are outside the clip.
We use mean squared error loss to train this regres-
sion head. The total loss function is calculated as
a weighted sum of the classification and regres-
sion losses: L = Lcls + 2.5Lregr. We evaluate
the model using a top-1 instance-based accuracy
metric: the ratio of the correctly classified samples
to the total samples number.

4.3 Multi-dataset Co-training Method

Different national sign language datasets have their
own label spaces with no common taxonomy. As a
result, they cannot be directly combined for joint
training.

In our pipeline (Figure 2), we mark each sample
with its language tag. During training, we form
batches containing a mix of sign languages. Af-
ter processing the mixed batch by the common vi-
sual encoder, we apply the language-specific gate,
which splits the batch into language-specific sub-
batches using the language tag and processes each
sub-batch by the language-specific classification
head. Loss functions from each classification head
were weighted proportionally to the number of ap-
propriate language samples in the mixed batch.

At the training stage, we use CutMix (Yun et al.,
2019) and Mixup (Zhang, 2017) inter-sample regu-
larization strategies. They can not be applied to the
mixed batch because labels of different languages
cannot be mixed. We use the same language-
specific gate to split the mixed batch into language-
specific sub-batches before applying these augmen-
tations and then merge the resulting samples back
into one batch.

5 Experiment Results and Ablation Study

5.1 Transfer learning experiments

The presented extensive Logos dataset was used
as a pre-train for transfer learning tasks. We used
relatively small AUTSL and WLASL datasets as
modeling examples of low-resource datasets for
transfer learning. These datasets were also selected
because benchmark results are available for com-
parison. Additionally, we created reduced versions
of each dataset, limited to 10, 3, and 1 sample per
class, for more challenging low-data experiments.
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Figure 2: Multi-dataset co-training pipeline. Samples from different languages are processed as a united batch.
Before the inter-sample augmentations and the language-specific classification heads, the language-specific gates
split the batch into language-specific sub-batches.

Method Top-1 accuracy

Logos AUTSL WLASL

Separate training (baseline) 97.90 96.58 60.88

Transfer learning from Logos dataset:
Encoder is frozen – 97.25 62.44
Encoder is being trained – 97.73 65.57

Multi-dataset co-training with Logos dataset:
Logos + AUTSL 97.92 97.83 –
Logos + WLASL 97.93 – 65.74
Logos + AUTSL + WLASL 97.92 97.81 66.82

Table 2: Baseline, transfer learning, and multi-dataset
co-training with the Logos dataset. Transfer learning
and Multi-dataset co-training experiments use the en-
coder, initialized from the Logos pre-train.

Method Top-1 accuracy

AUTSL WLASL

Full dataset (baseline) 97.25 62.44

10-shot (10 samples per class) 90.16 61.12
3-shot (3 samples per class) 83.99 54.10
one-shot (1 sample per class) 82.44 37.07

Table 3: Few-shot and one-shot transfer learning with
frozen Logos pre-trained encoder.

First, we trained the separate baseline models
on the Logos, AUTSL, and WLASL datasets using
the same setup (Section 4). Then, we examined
the applicability of the Logos pre-trained model for
transfer learning to smaller AUTSL and WLASL
datasets. With the model backbone initialized
from the Logos pre-train, we evaluated two transfer
learning strategies: (a) training all model weights
and (b) freezing the pre-trained encoder and train-
ing only the classification head. The Logos pre-
train substantially improves the model accuracy

compared to training from scratch (Table 2).
Next, we explored the potential of a Logos pre-

trained encoder for few-shot learning on other sign
languages. We limited train sets of AUTSL and
WLASL datasets to the randomly selected 10, 3,
and 1 samples per class. Then, we applied transfer
learning with a frozen encoder to these truncated
datasets. The test part of the datasets was left intact.
Although truncated datasets produce worse models,
training even on 1 sample per class still keeps the
models working, at least for the AUTSL dataset,
which has a smaller vocabulary (Table 3).

These experiments demonstrate the possibility of
transfer learning from the extensive Logos dataset
to other sign languages with only a limited amount
of training data.

5.2 Cross-lingual Multi-dataset Co-training

We investigated the described multi-dataset co-
training method using the pairs Logos and AUTSL,
Logos and WLASL, and all three datasets com-
bined. The encoder and the Logos classifier were
initialized from the Logos baseline model for all
experiments.

A single model, produced by a multi-dataset co-
training, far surpasses the accuracy of the mod-
els, separately trained on low-resource datasets
from scratch, and also surpasses individual models
trained using conventional transfer learning (Ta-
ble 2). Moreover, results for the WLASL dataset
are far above existing SOTA metrics5, see Ta-
ble 4. As for the AUTSL dataset, note that all
leading models use ensembling, pose recognition,
and depth maps (or some of the above). In contrast,

5according to https://paperswithcode.com/ and other
papers referring to the datasets in question
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Model Top-1 accuracy

AUTSL WLASL

BSL-1K (Albanie et al., 2020) – 46.9
SignBERT (Hu et al., 2021a) – 54.7
SAM-SLR (Jiang et al., 2021) 98.5 58.7
One Model is Not Enough1 96.4 –
ZBEST (Zhao et al., 2023) – 54.6
SignBERT+ (Hu et al., 2023) – 55.6
NLA-SLR (Zuo et al., 2023) – 61.3
SL-GDN (Miah et al., 2023) 96.5 –
ST-GCN2 96.7 –
Audio-visual ... (Ryumin et al., 2023) 98.6 –
HWGAT (Patra et al., 2024) 95.8 48.5
StepNet (Shen et al., 2024a) – 61.2
Uni-Sign (Li et al., 2025) – 63.5

MViTv2 (our baseline) 96.58 60.88
Multi-dataset with MM-WLAuslan 97.43 64.59
Multi-dataset with Logos (ours) 97.81 66.82

Table 4: Our results compared with SOTA results for
the AUTSL and WLASL datasets.
1 (Hrúz et al., 2022)
2 (Papadimitriou and Potamianos, 2023)

our model uses a single stream that takes only RGB
input.

5.3 The Encoder Generalization Ability
Check

We examined the hypothesis that an encoder pre-
trained on the Logos dataset does not produce uni-
versal sign features but can only recognize the signs
of the pre-train language. When applied to another
language, the model maps these signs to the most
similar target language signs, as in the approach
of (Wei and Chen, 2023). To emulate this hypoth-
esis, we processed the WLASL train set with the
Logos pre-trained model and built the map by as-
sociating the assigned Logos labels with the most
frequent WLASL ground truth labels. Then, we
applied the same model to the WLASL test set and
substituted the resulting Logos labels with WLASL
labels using the map instead of training a target
language classification head. We repeated the same
experiment with the AUTSL dataset.

The results in Table 5 show that although this
label mapping method works, it is significantly
inferior to the trained classifier for the Logos pre-
trained encoder. It confirms that the Logos pre-
trained encoder produces universal sign embed-
dings that can encode new, unseen signs from an-
other language.

Method Top-1 accuracy

AUTSL WLASL

Transfer learning 97.25 62.44
Map labels to target language 65.78 23.63

Table 5: Transfer learning with frozen encoder com-
pared to label mapping from Logos to other language
datasets.

Pre-train
dataset

Top-1 accuracy

AUTSL AUTSL, WLASL WLASL,
3-shot 3-shot

Logos 97.25 83.99 62.44 54.10
AUTSL – – 28.46 18.76
WLASL 93.16 67.90 – –
MM-WLAuslan 93.64 69.79 45.21 33.01

Table 6: The importance of the pre-train dataset for
cross-language transfer learning. Results for both whole
and truncated versions of the AUTSL and WLASL
datasets using pre-training on the Logos, WLASL,
AUTSL, and MM-WLAuslan datasets.

5.4 The Importance of the Pre-train Dataset

Table 6 demonstrates that extensive dataset size is
critical for training a powerful encoder for cross-
language transfer learning. We repeated transfer
learning experiments using pre-train on smaller
AUTSL and WLASL datasets. One can see that the
resulting accuracy degrades substantially compared
to Logos pre-train.

We also compared the impact of the Logos
dataset and the large-scale MM-WLAuslan dataset
on multi-dataset co-training and transfer learning
(Tables 4,6). The results obtained with Logos are
substantially better than those with MM-WLAuslan
for both tasks.

5.5 The Effect of VSSigns Grouping

We investigated the contribution of our approach
with grouping labels of visually similar signs in
obtaining a high-quality encoder. We trained the
classifier on the Logos dataset, using unique pairs
of ungrouped and grouped labels as classes. It
formed 2,863 ungrouped gloss classes instead of
2,004 grouped VSSign classes in the baseline Lo-
gos annotation. Each ungrouped label has a unique
associated grouped label, so the model, trained on
the ungrouped labels, can be evaluated on grouped
labels.

Table 7 shows the accuracy for models trained on
2,004 VSSign and 2,863 ungrouped classes. Quite
predictably, the last model yields lower accuracy,
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VSSigns Top-1 accuracy

train test Whole non-VSSigns VSSigns

Yes Yes 97.90 97.49 98.33
No Yes 97.44 97.10 97.79
No No 87.02 97.10 76.51

Table 7: Comparison of training using grouped VSSigns
annotation (baseline) and annotation without grouping.

Logos
pre-train

on VSSigns

Top-1 accuracy

AUTSL AUTSL, WLASL WLASL,
3-shot 3-shot

Yes 97.25 83.99 62.44 54.10
No 96.79 82.38 60.74 51.60

Table 8: The effect of VSSigns grouping on transfer
learning. Results for WLASL and AUTSL (whole and
truncated to 3 samples per class) trained from Logos
pre-train on grouped VSSigns annotation (baseline) and
annotation without grouping.

primarily due to confusion of VSSigns. However,
it is essential that it achieves lower accuracy on
grouped VSSigns classes (the classes on which the
1st model was trained). Notably, the degradation is
observed even for signs that are not VSSigns whose
labels do not differ in all cases.. Furthermore, Ta-
ble 8 shows that VSSigns grouping results in more
effective transfer learning to other sign languages.

6 Conclusion

The paper examines two aspects of the isolated sign
language recognition (ISLR) task: cross-language
SL model training, including transfer learning, and
approaches to handling visually similar signs (VS-
Signs). To explore these issues, this work presents
Logos, a new publicly available Russian Sign Lan-
guage dataset, the most extensive ISLR dataset by
the number of signers and one of the largest avail-
able datasets while also the largest RSL dataset
in size and vocabulary. It is shown that a model,
pre-trained on the Logos dataset can be used as a
universal encoder for other language SLR tasks,
including few-shot learning. The cross-language
transfer learning methods are evaluated, and it is
demonstrated that the method of multi-dataset co-
training with multiple language-specific classifica-
tion heads improves SL models for low-resource
datasets the most, compared to the conventional
“pre-train and finetune” method. The key feature of
the Logos dataset is the explicit annotation of visu-
ally similar sign groups. With its use, we show that

explicitly grouping VSSign labels benefits trained
model quality as a video encoder for downstream
tasks, such as transfer learning to other sign lan-
guages. Based on the proposed contributions, we
outperform current state-of-the-art results for the
WLASL dataset and get competitive results for the
AUTSL dataset, with a single stream model pro-
cessing solely RGB video.

Limitations

This work is limited by using the MViT baseline ar-
chitecture and focusing on cross-language transfer
learning in ISLR as the downstream task. To gener-
alize the conclusions, further research is needed in-
volving diverse model architectures, low-resource
target datasets, and a broader range of downstream
tasks, including continuous sign language recog-
nition. We consider this a promising direction for
future work.

The Logos dataset reflects the demographics of
the participants involved in its collection, result-
ing in an unbalanced distribution in terms of age
and gender. Additionally, the dataset focuses exclu-
sively on RSL, which limits its direct applicability
to more diverse settings. Nonetheless, our find-
ings suggest it can still be effectively leveraged in
broader sign language recognition tasks.

Ethical Statement

Legal and ethical aspects were reviewed and ap-
proved by our institution’s legal team. All crowd-
workers provided informed consent, authorizing
the processing and publication of the collected
data. Informed consent was provided via a tex-
tual form on the crowdsourcing platform. Since
all participants were fluent in written Russian, no
interpreter translation was required. To save con-
tributors’ privacy, we use anonymized user hash
IDs. We do not restrict the participation of signers
under 18, provided parental consent was obtained
during registration, in compliance with the Civil
Code of the Russian Federation. Participation was
voluntary. Compensation for completed tasks was
aligned with the average salary of a sign language
interpreter, proportionate to the time invested. We
have verified that the Slovo dataset, incorporated
into Logos, adheres to these ethical standards. The
dataset is made available exclusively for research
purposes. Nonetheless, we acknowledge the po-
tential misuse, such as identifying individuals or
enabling large-scale surveillance.
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A Logos Dataset

This appendix contains more detailed characteris-
tics of the Logos dataset and additional technical
details for some production steps.

A.1 Dataset Characteristics

Videos have a resolution of at least 720 pixels on
the minimum side at a 30 FPS frame rate. About
62% of videos are in FullHD format. Distributions
of some dataset characteristics are represented in
Figure 3. Among the 381 dataset signers, 41% are
30-40 years old, and 88% are female. We do not
limit crowdsourcers by age and gender, and such
an uneven distribution reflects the demographics
of signers who wish to participate in the project.
The participants include deaf individuals, profes-
sional interpreters, sign language teachers, and
CODA/SODA. Since the data collection was con-
ducted via a crowdsourcing platform, we do not
have distribution statistics for these groups. How-
ever, all participants passed an RSL proficiency
test before contributing. The dataset is divided into
80.7% in the train and 19.3% in the test sets.

A.2 Data Collection

Logos data collection pipeline follows the
Slovo(Kapitanov et al., 2023) pipeline in signer
selection, video collection, video validation, and
sign time interval annotation stages. The dataset
was collected on the crowdsourcing platforms ABC
Elementary and Yandex Toloka.

Signers Selection All project signers confirmed
their Russian Sign Language (RSL) proficiency
by passing an exam on the crowdsourcing plat-
form ABC Elementary6 or Yandex Toloka7. The
exam involved watching a video demonstrating an
RSL sign and selecting the correct translation into
Russian. Successful completion required correctly
answering at least 17 out of 20 questions.

Video Collection. Signers watched a video of a
correctly performed sign (video template) taken
from SpreadTheSign8 and then recorded a video
replicating that sign. Before starting the tasks, sign-
ers reviewed the rules for video recording: 1) the
gesture must match the example sign; 2) hands
must remain within the frame; 3) only one person
may appear in the video; 4) video does not shake;
5) video without processing; 6) video must have
a short side of at least 720 pixels. Signers could
record videos using a smartphone or webcam or
upload pre-recorded videos from memory, watch
the video, and overwrite the sign.

6https://elementary.activebc.ru/
7https://platform.toloka.ai/
8https://spreadthesign.com/ru.ru/search/
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Figure 3: Dataset characteristics and distribution analysis. a) Sign length distribution. b) Distance distribution. The
distance (in meters) is approximately estimated based on the length between the left and right shoulders of the
signer obtained using MediaPipe (Lugaresi et al., 2019). c) Signers’ devices. d) Devices resolution. e) Number
of videos per signer. f) Brightness distribution. The sample brightness is the mean pixel brightness of grayscaled
video frames. g) Signers’ gender; h) Signers’ age. The age is determined by the MiVOLO model (Kuprashevich
and Tolstykh, 2023).

Video Validation. At least three validators (SL
experts: teachers, professional interpreters) who
have successfully completed the validation training
and exam will review the video to ensure compli-
ance with the video recording rules. Honeypots
(predefined videos with known answers to the cus-
tomer) were deliberately added to the validation
project to identify and eliminate unscrupulous val-
idators.

Time Interval Annotation. Time interval anno-
tations were necessary to identify the start and the
end of the sign dynamics and to exclude unrelated
signers’ movements. Each video was pre-processed
to a frame rate of 30 fps, enabling the linkage of
time intervals to frame numbers. All annotators
have completed training and exams on time inter-
val annotation. Honeypots were incorporated into
the main tasks to identify and exclude dishonest
annotators. Three annotators annotated each video,
and the results were aggregated by open-source
AggMe framework9.

A.3 Train-test Split

Given that the number of signs recorded by differ-
ent signers differs, we applied a dynamic program-
ming algorithm to find the approximate solution
that has non-intersecting signers in train and test
subsets and simultaneously provides approximately

9https://github.com/ai-forever/aggme

20/80 test/train split ratio both for signers and for
each sign samples.

The main idea is that we always select strictly
20% signers and form the test set by the samples
they demonstrated. We start with randomly se-
lected 20% signers. Then, in a cycle, we find a
sign with a test/train balance the most different
from the target 20/80 ratio and try to swap a signer
from the test set and a signer not in a test set to
reduce the worst disbalance, starting from the test
set signers who recorded the largest number of the
scoped sign samples. So, we iteratively minimize
the maximum deviation from the target test/train
sign samples split ratio, keeping the test/train split
ratio for signers always equal to the required value.
See Algorithm 1 for more details.

B Sign Language Recognition Pipeline

This appendix provides additional details of the
training pipeline used in the work.

B.1 Data Pre-processing

We randomly sample a 32-frame chain from a video
with a step of 2 frames. If a sign on a video is longer
than 63 frames, the sample is randomly selected
within the sign duration. If extra frames are present
on the video before and/or after the sign, we extend
the range for sample selection up to 5 frames before
and after the sign boundaries. For signs shorter than
63 frames, the sample is selected from the sign start
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Algorithm 1 Balanced train-test split
#Notation:
{G} : all gloss labels
{S} : all signers
{T} ⊂ {S} : test set signers
Ng : samples number of gloss g
Ng,s : samples number of g from signer s
Rg,s = Ng,s/Ng

#Initialization:
p← 0.2 ▷ target test ratio
{T} ← random p from {S} ▷ test set signers
#Optimization:
repeat
∀g : Dg ←

∑
s∈T Rg,s ▷ test gloss ratios

dwst ← maxg |Dg − p| ▷ worst deviation
gwst ← argmaxg|Dg − p| ▷ worst gloss
#Build sorted list of
#test signer candidates for replacement:
if Dgwst > p then

U ← sorteddesc T by Rgwst,s∈T
else

U ← sortedasc T by Rgwst,s∈T
end if
for s′ in U do

#Try to replace s′
#with signer not in test set:
for s′′ in S \ T do
∀g : D′

g ← Dg −Rg,s′ +Rg,s′′

d′wst ← maxg
∣∣D′

g − p
∣∣

if d′wst < dwst then
#replace the s′ signer in {T}
{T} ← {T} ∪ {s′′} \ {s′}
break to outer Repeat

end if
end for

end for
until converge
{test video samples}← {video: signer ∈ T}
Output: {test video samples}

and padded at the end by the last frame.
At the training stage Speed Up&Slow Down and

Random Add&Random Drop frame sampling aug-
mentations from Kvanchiani et al. pipeline (2024)
are applied. With probability p = 0.25, video is
accelerated twice or slowed twice with the same
p. With p = 0.5 we randomly drop 10% of frames.
With p = 0.25 we truncate a sampled frame chain
by 30% and stretch it to the original size by random
repeat of remaining frames.

Sampled frames are resized to 300 pix over the

longest side and randomly cropped to 224 × 224
with square padding if needed. Frames are aug-
mented with ColorJitter, RandomNoise, Sharpness,
Flip, RandomErasing, and ImageCompression im-
age augmentations. Augmentation parameters are
set the same for every frame in a video sample.

Also we use CutMix (Yun et al., 2019) and
Mixup (Zhang, 2017) inter-sample regularization
strategies.

B.2 Training Schedule
Training on the Logos dataset was performed on
4 Tesla H100s with 80GB RAM using batch size
16 per GPU for 50 epochs, which took about 40
hours.

For the first 5 epochs, the learning rate linearly
increases from 8e-6 to 4.8e-3. Then, a cosine sched-
uler is used for epochs 6 to 40, reducing LR to 8e-5.
Then, LR remains constant.

We use the AdamW optimizer with weight de-
cay=0.05.

When datasets other than Logos are used, or in
case of multi-dataset training, to maintain compara-
ble training conditions, including training time, we
scale training epochs number and LR schedule to
keep the same number of iterations. For instance,
for training on a 50% subset of Logos, we train for
100 epochs, with cosine LR annealing from epoch
11 to epoch 80.

For tasks of transfer learning with a frozen en-
coder, we use a faster training schedule with re-
duced maximum LR: 15 total epochs with linear
LR warm-up from 8e-6 to 8e-4 for 5 times shorter
period, 3.5 times shorter cosine annealing from
8e-4 to 8e-5, total training iteration number – 30%
of initial training duration. The specified number
of epochs is calculated for the target dataset as
described above.
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