
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 24354–24385
November 4-9, 2025 ©2025 Association for Computational Linguistics

Hallucination Detection in LLMs Using Spectral Features of Attention
Maps

Jakub Binkowski1, Denis Janiak1, Albert Sawczyn1

Bogdan Gabrys2, Tomasz Kajdanowicz1

1Wroclaw University of Science and Technology, 2University of Technology Sydney,
Correspondence: jakub.binkowski@pwr.edu.pl

Abstract

Large Language Models (LLMs) have demon-
strated remarkable performance across various
tasks but remain prone to hallucinations. De-
tecting hallucinations is essential for safety-
critical applications, and recent methods lever-
age attention map properties to this end, though
their effectiveness remains limited. In this
work, we investigate the spectral features of
attention maps by interpreting them as adja-
cency matrices of graph structures. We propose
the LapEigvals method, which utilizes the top-
k eigenvalues of the Laplacian matrix derived
from the attention maps as an input to halluci-
nation detection probes. Empirical evaluations
demonstrate that our approach achieves state-
of-the-art hallucination detection performance
among attention-based methods. Extensive ab-
lation studies further highlight the robustness
and generalization of LapEigvals, paving the
way for future advancements in the hallucina-
tion detection domain.

1 Introduction

The recent surge of interest in Large Language
Models (LLMs), driven by their impressive perfor-
mance across various tasks, has led to significant
advancements in their training, fine-tuning, and ap-
plication to real-world problems. Despite progress,
many challenges remain unresolved, particularly
in safety-critical applications with a high cost of
errors. A significant issue is that LLMs are prone
to hallucinations, i.e. generating "content that is
nonsensical or unfaithful to the provided source
content" (Farquhar et al., 2024; Huang et al., 2023).
Since eliminating hallucinations is impossible (Lee,
2023; Xu et al., 2024), there is a pressing need for
methods to detect when a model produces hallu-
cinations. In addition, examining the internal be-
havior of LLMs in the context of hallucinations
may yield important insights into their characteris-
tics and support further advancements in the field.

Recent studies have shown that hallucinations can
be detected using internal states of the model, e.g.,
hidden states (Chen et al., 2024) or attention maps
(Chuang et al., 2024a), and that LLMs can inter-
nally "know when they do not know" (Azaria and
Mitchell, 2023; Orgad et al., 2025). We show that
spectral features of attention maps coincide with
hallucinations and, building on this observation,
propose a novel method for their detection.

As highlighted by (Barbero et al., 2024), atten-
tion maps can be viewed as weighted adjacency
matrices of graphs. Building on this perspective,
we performed statistical analysis and demonstrated
that the eigenvalues of a Laplacian matrix derived
from attention maps serve as good predictors of hal-
lucinations. We propose the LapEigvals method,
which utilizes the top-k eigenvalues of the Lapla-
cian as input features of a probing model to de-
tect hallucinations. We share full implementa-
tion in a public repository: https://github.com/
graphml-lab-pwr/lapeigvals.

We summarize our contributions as follows:

(1) We perform statistical analysis of the Lapla-
cian matrix derived from attention maps and
show that it could serve as a better predictor
of hallucinations compared to the previous
method relying on the log-determinant of the
maps.

(2) Building on that analysis and advancements
in the graph-processing domain, we propose
leveraging the top-k eigenvalues of the Lapla-
cian matrix as features for hallucination de-
tection probes and empirically show that it
achieves state-of-the-art performance among
attention-based approaches.

(3) Through extensive ablation studies, we
demonstrate properties, robustness and gener-
alization of LapEigvals and suggest promis-
ing directions for further development.
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2 Motivation

Considering the attention matrix as an adjacency
matrix representing a set of Markov chains, each
corresponding to one layer of an LLM (Wu et al.,
2024) (see Figure 2), we can leverage its spec-
tral properties, as was done in many successful
graph-based methods (Mohar, 1997; von Luxburg,
2007; Bruna et al., 2013; Topping et al., 2022). In
particular, it was shown that the graph Laplacian
might help to describe several graph properties, like
the presence of bottlenecks (Topping et al., 2022;
Black et al., 2023). We hypothesize that halluci-
nations may arise from disruptions in information
flow, such as bottlenecks, which could be detected
through the graph Laplacian.

To assess whether our hypothesis holds, we
computed graph spectral features and verified if
they provide a stronger coincidence with halluci-
nations than the previous attention-based method
- AttentionScore (Sriramanan et al., 2024). We
prompted an LLM with questions from the Trivi-
aQA dataset (Joshi et al., 2017) and extracted at-
tention maps, differentiating by layers and heads.
We then computed the spectral features, i.e., the 10
largest eigenvalues of the Laplacian matrix from
each head and layer. Further, we conducted a
two-sided Mann-Whitney U test (Mann and Whit-
ney, 1947) to compare whether Laplacian eigen-
values and the values of AttentionScore are dif-
ferent between hallucinated and non-hallucinated
examples. Figure 1 shows p-values for all layers
and heads, indicating that AttentionScore often
results in higher p-values compared to Laplacian
eigenvalues. Overall, we studied 7 datasets and 5
LLMs and found similar results (see Appendix A).
Based on these findings, we propose leveraging
top-k Laplacian eigenvalues as features for a hallu-
cination probe.

3 Method

In our method, we train a hallucination probe using
only attention maps, which we extracted during
LLM inference, as illustrated in Figure 2. The at-
tention map is a matrix containing attention scores
for all tokens processed during inference, while the
hallucination probe is a logistic regression model
that uses features derived from attention maps as
input. This work’s core contribution is using the
top-k eigenvalues of the Laplacian matrix as input
features, which we detail below.

Denote A(l,h) ∈ RT×T as the attention map

matrix for layer l ∈ {1 . . . L} and attention head
h ∈ {1 . . . H}, where T is the total number of
tokens generated by an LLM (including input to-
kens), L the number of layers (transformer blocks),
and H the number of attention heads. The atten-
tion matrix is row-stochastic, meaning each row
sums to 1 (

∑T
j=0A

(l,h)
:,j = 1). It is also lower

triangular (a(l,h)ij = 0 for all j > i) and non-

negative (a(l,h)ij ≥ 0 for all i, j). We can view
A(l,h) as a weighted adjacency matrix of a directed
graph, where each node represents processed to-
ken, and each directed edge from token i to token
j is weighted by the attention score, as depicted in
Figure 2.

Then, we define the Laplacian of a layer l and
attention head h as:

L(l,h) = D(l,h) −A(l,h), (1)

where D(l,h) is a diagonal degree matrix. Since
the attention map defines a directed graph, we dis-
tinguish between the in-degree and out-degree ma-
trices. The in-degree is computed as the sum of
attention scores from preceding tokens, and due to
the softmax normalization, it is uniformly 1. There-
fore, we define D(l,h) as the out-degree matrix,
which quantifies the total attention a token receives
from tokens that follow it. To ensure these values
remain independent of the sequence length, we nor-
malize them by the number of subsequent tokens
(i.e., the number of outgoing edges).

d
(l,h)
ii =

∑
u a

(l,h)
ui

T − i
, (2)

where i, u ∈ {0, . . . , (T − 1)} denote token in-
dices. The Laplacian defined this way is bounded,
i.e., L(l,h)

ij ∈ [−1, 1] (see Appendix B for proofs).
Intuitively, the resulting Laplacian for each pro-
cessed token represents the average attention score
to previous tokens reduced by the attention score
to itself. As eigenvalues of the Laplacian can sum-
marize information flow in a graph (von Luxburg,
2007; Topping et al., 2022), we take eigenvalues of
L(l,h), which are diagonal entries due to the lower
triangularity of the Laplacian matrix, and sort them:

z̃(l,h) = sort
(
diag

(
L(l,h)

))
(3)

Recently, (Zhu et al., 2024) found features from the
entire token sequence, rather than a single token,
improving hallucination detection. Similarly, (Kim
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Figure 1: Visualization of p-values from the two-sided Mann-Whitney U test for all layers and heads of
Llama-3.1-8B across two feature types: AttentionScore and the k=10 Laplacian eigenvalues. These features
were derived from attention maps collected when the LLM answered questions from the TriviaQA dataset. Higher
p-values indicate no significant difference in feature values between hallucinated and non-hallucinated examples. For
AttentionScore, 80% of heads have p < 0.05, while for Laplacian eigenvalues, this percentage is 91%. Therefore,
Laplacian eigenvalues may be better predictors of hallucinations, as feature values across more heads exhibit
statistically significant differences between hallucinated and non-hallucinated examples.

Figure 2: The autoregressive inference process in an
LLM is depicted as a graph for a single attention head h
(as introduced by (Vaswani, 2017)) and three generated
tokens (x̂1, x̂2, x̂3). Here, h(l)

i represents the hidden
state at layer l for the input token i, while a(l,h)i,j denotes
the scalar attention score between tokens i and j at
layer l and attention head h. Arrows direction refers to
information flow during inference.

et al., 2024) demonstrated that information from all
layers, instead of a single one in isolation, yields
better results on this task. Motivated by these find-
ings, our method uses features from all tokens and

all layers as input to the probe. Therefore, we take
the top-k largest values from each head and layer
and concatenate them into a single feature vector z,
where k is a hyperparameter of our method:

z =
∥∥∥

∀l∈L,∀h∈H

[
z̃
(l,h)
T , z̃

(l,h)
T−1, . . . , z̃

(l,h)
T−k

]
(4)

Since LLMs contain dozens of layers and heads,
the probe input vector z ∈ RL·H·k can still be
high-dimensional. Thus, we project it to a lower
dimensionality using PCA (Jolliffe and Cadima,
2016). We call our approach LapEigvals.

4 Experimental setup

The overview of the methodology used in this work
is presented in Figure 3. Next, we describe each
step of the pipeline in detail.

4.1 Dataset construction

We use annotated QA datasets to construct the hal-
lucination detection datasets and label incorrect
LLM answers as hallucinations. To assess the cor-
rectness of generated answers, we followed prior
work (Orgad et al., 2025) and adopted the llm-as-
judge approach (Zheng et al., 2023), with the ex-
ception of one dataset where exact match evalu-
ation against ground-truth answers was possible.
For llm-as-judge, we prompted a large LLM to
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Figure 3: Overview of the methodology used in this work. Solid lines indicate the test-time pipeline, while dashed
lines represent additional pipeline steps for generating labels for training the hallucination probe (logistic regression).
The primary contribution of this work is leveraging the top-k eigenvalues of the Laplacian as features for the
hallucination probe, highlighted with a bold box on the diagram.

classify each response as either hallucination, non-
hallucination, or rejected, where rejected indicates
that it was unclear whether the answer was correct,
e.g., the model refused to answer due to insufficient
knowledge. Based on the manual qualitative inspec-
tion of several LLMs, we employed gpt-4o-mini
(OpenAI et al., 2024) as the judge model since
it provides the best trade-off between accuracy
and cost. To confirm the reliability of the labels,
we additionally verified agreement with the larger
model, gpt-4.1, on Llama-3.1-8B and found that
the agreement between models falls within the ac-
ceptable range widely adopted in the literature (see
Appendix F).

For experiments, we selected 7 QA datasets
previously utilized in the context of hallucina-
tion detection (Chen et al., 2024; Kossen et al.,
2024; Chuang et al., 2024b; Mitra et al., 2024).
Specifically, we used the validation set of NQ-
Open (Kwiatkowski et al., 2019), comprising 3,610
question-answer pairs, and the validation set of
TriviaQA (Joshi et al., 2017), containing 7,983
pairs. To evaluate our method on longer inputs, we
employed the development set of CoQA (Reddy
et al., 2019) and the rc.nocontext portion of the
SQuADv2 (Rajpurkar et al., 2018) datasets, with
5,928 and 9,960 examples, respectively. Addition-
ally, we incorporated the QA part of the HaluE-
valQA (Li et al., 2023) dataset, containing 10,000
examples, and the generation part of the Truth-
fulQA (Lin et al., 2022) benchmark with 817 exam-
ples. Finally, we used test split of GSM8k dataset
(Cobbe et al., 2021) with 1,319 grade school math
problems, evaluated by exact match against labels.
For TriviaQA, CoQA, and SQuADv2, we followed
the same preprocessing procedure as (Chen et al.,
2024).

We generate answers using 5 open-source LLMs:

Llama-3.1-8B1 and Llama-3.2-3B2 (Grattafiori
et al., 2024), Phi-3.53 (Abdin et al., 2024),
Mistral-Nemo4 (Mistral AI Team and NVIDIA,
2024), Mistral-Small-24B5 (Mistral AI Team,
2025). We use two softmax temperatures for each
LLM when decoding (temp ∈ {0.1, 1.0}) and one
prompt (for all datasets we used a prompt in List-
ing 3, except for GSM8K in Listing 5). Overall,
we evaluated hallucination detection probes on 10
LLM configurations and 7 QA datasets. We present
the frequency of classes for answers from each con-
figuration in Figure 9 (Appendix E).

4.2 Hallucination Probe

As a hallucination probe, we take a logistic re-
gression model, using the implementation from
scikit-learn (Pedregosa et al., 2011) with all pa-
rameters default, except for max_iter=2000 and
class_weight=′′balanced′′. For top-k eigenval-
ues, we tested 5 values of k ∈ {5, 10, 20, 50, 100}6

and selected the result with the highest efficacy. All
eigenvalues are projected with PCA onto 512 di-
mensions, except in per-layer experiments where
there may be fewer than 512 features. In these
cases, we apply PCA projection to match the input
feature dimensionality, i.e., decorrelating them. As
an evaluation metric, we use AUROC on the test
split (additional results presenting Precision and
Recall are reported in Appendix G.1).

1hf.co/meta-llama/Llama-3.1-8B-Instruct
2hf.co/meta-llama/Llama-3.2-3B-Instruct
3hf.co/microsoft/Phi-3.5-mini-instruct
4hf.co/mistralai/Mistral-Nemo-Instruct-2407
5hf.co/mistralai/Mistral-Small-24B-Instruct-2501
6For datasets with examples having less than 100 tokens,

we stop at k=50
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4.3 Baselines

Our method is a supervised approach for detect-
ing hallucinations using only attention maps. For
a fair comparison, we adapt the unsupervised
AttentionScore (Sriramanan et al., 2024) by using
log-determinants of each head’s attention scores
as features instead of summing them, and we also
include the original AttentionScore, computed as
the sum of log-determinants over heads, for ref-
erence. To evaluate the effectiveness of our pro-
posed Laplacian eigenvalues, we compare them to
the eigenvalues of raw attention maps, denoted as
AttnEigvals. Extended results for each approach
on a per-layer basis are provided in Appendix G.2,
while Appendix G.4 presents a comparison with
a method based on hidden states. Implementation
and hardware details are provided in Appendix C.

5 Results

Table 1 presents the results of our method com-
pared to the baselines. LapEigvals achieved the
best performance among all tested methods on
6 out of 7 datasets. Moreover, our method con-
sistently performs well across all 5 LLM archi-
tectures ranging from 3 up to 24 billion parame-
ters. TruthfulQA was the only exception where
LapEigvals was the second-best approach, yet
it might stem from the small size of the dataset
or severe class imbalance (depicted in Figure 9).
In contrast, using eigenvalues of vanilla attention
maps in AttnEigvals leads to worse performance,
which suggests that transformation to Laplacian
is the crucial step to uncover latent features of
an LLM corresponding to hallucinations. In Ap-
pendix G, we show that LapEigvals consistently
demonstrates a smaller generalization gap, i.e.,
the difference between training and test perfor-
mance is smaller for our method. While the
AttentionScore method performed poorly, it is
fully unsupervised and should not be directly com-
pared to other approaches. However, its super-
vised counterpart – AttnLogDet – remains infe-
rior to methods based on spectral features, namely
AttnEigvals and LapEigvals. In Table 6 in Ap-
pendix G.2, we present extended results, including
per-layer and all-layers breakdowns, two tempera-
tures used during answers generation, and a com-
parison between training and test AUROC. More-
over, compared to probes based on hidden states,
our method performs best in most of the tested
settings, as shown in Appendix G.4.

6 Ablation studies

To better understand the behavior of our method un-
der different conditions, we conduct a comprehen-
sive ablation study. This analysis provides valuable
insights into the factors driving the LapEigvals
performance and highlights the robustness of our
approach across various scenarios. In order to en-
sure reliable results, we perform all studies on the
TriviaQA dataset, which has a moderate input size
and number of examples.

6.1 How does the number of eigenvalues
influence performance?

First, we verify how the number of eigenvalues
influences the performance of the hallucination
probe and present results for Mistral-Small-24B
in Figure 4 (results for all models are showcased
in Figure 10 in Appendix H). Generally, using
more eigenvalues improves performance, but there
is less variation in performance among different
values of k for LapEigvals compared to the base-
line. Moreover, LapEigvals achieves significantly
better performance with smaller input sizes, as
AttnEigvals with the largest k=100 fails to sur-
pass LapEigvals’s performance at k=5. These re-
sults confirm that spectral features derived from the
Laplacian carry a robust signal indicating the pres-
ence of hallucinations and highlight the strength of
our method.
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Figure 4: Probe performance across different top-k
eigenvalues: k ∈ {5, 10, 25, 50, 100} for TriviaQA
dataset with temp=1.0 and Mistral-Small-24B LLM.

6.2 Does using all layers at once improve
performance?

Second, we demonstrate that using all layers of an
LLM instead of a single one improves performance.
In Figure 5, we compare per-layer to all-layer effi-
cacy for Mistral-Small-24B (results for all mod-
els are showcased in Figure 11 in Appendix H). For
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Table 1: Test AUROC for LapEigvals and several baseline methods. AUROC values were obtained in a single
run of logistic regression training on features from a dataset generated with temp=1.0. We mark results for
AttentionScore in gray as it is an unsupervised approach, not directly comparable to the others. In bold, we
highlight the best performance individually for each dataset and LLM. See Appendix G for extended results.

LLM Feature Test AUROC (↑)

CoQA GSM8K HaluevalQA NQOpen SQuADv2 TriviaQA TruthfulQA

Llama3.1-8B AttentionScore 0.493 0.720 0.589 0.556 0.538 0.532 0.541
Llama3.1-8B AttnLogDet 0.769 0.826 0.827 0.793 0.748 0.842 0.814
Llama3.1-8B AttnEigvals 0.782 0.838 0.819 0.790 0.768 0.843 0.833
Llama3.1-8B LapEigvals 0.830 0.872 0.874 0.827 0.791 0.889 0.829

Llama3.2-3B AttentionScore 0.509 0.717 0.588 0.546 0.530 0.515 0.581
Llama3.2-3B AttnLogDet 0.700 0.851 0.801 0.690 0.734 0.789 0.795
Llama3.2-3B AttnEigvals 0.724 0.768 0.819 0.694 0.749 0.804 0.723
Llama3.2-3B LapEigvals 0.812 0.870 0.828 0.693 0.757 0.832 0.787

Phi3.5 AttentionScore 0.520 0.666 0.541 0.594 0.504 0.540 0.554
Phi3.5 AttnLogDet 0.745 0.842 0.818 0.815 0.769 0.848 0.755
Phi3.5 AttnEigvals 0.771 0.794 0.829 0.798 0.782 0.850 0.802
Phi3.5 LapEigvals 0.821 0.885 0.836 0.826 0.795 0.872 0.777

Mistral-Nemo AttentionScore 0.493 0.630 0.531 0.529 0.510 0.532 0.494
Mistral-Nemo AttnLogDet 0.728 0.856 0.798 0.769 0.772 0.812 0.852
Mistral-Nemo AttnEigvals 0.778 0.842 0.781 0.761 0.758 0.821 0.802
Mistral-Nemo LapEigvals 0.835 0.890 0.833 0.795 0.812 0.865 0.828

Mistral-Small-24B AttentionScore 0.516 0.576 0.504 0.462 0.455 0.463 0.451
Mistral-Small-24B AttnLogDet 0.766 0.853 0.842 0.747 0.753 0.833 0.735
Mistral-Small-24B AttnEigvals 0.805 0.856 0.848 0.751 0.760 0.844 0.765
Mistral-Small-24B LapEigvals 0.861 0.925 0.882 0.791 0.820 0.876 0.748

the per-layer approach, better performance is gen-
erally achieved with deeper LLM layers. Notably,
peak performance varies across LLMs, requiring
an additional search for each new LLM. In con-
trast, the all-layer probes consistently outperform
the best per-layer probes across all LLMs. This
finding suggests that information indicating hallu-
cinations is spread across many layers of LLM, and
considering them in isolation limits detection accu-
racy. Further, Table 6 in Appendix G summarises
outcomes for the two variants on all datasets and
LLM configurations examined in this work.
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Figure 5: Analysis of model performance across dif-
ferent layers for Mistral-Small-24B and TriviaQA
dataset with temp=1.0 and k=100 top eigenvalues (re-
sults for models operating on all layers provided for
reference).

6.3 Does sampling temperature influence
results?

Here, we compare LapEigvals to the baselines on
hallucination datasets, where each dataset contains
answers generated at a specific decoding tempera-
ture. Higher temperatures typically produce more
hallucinated examples (Lee, 2023; Renze, 2024),
leading to dataset imbalance. Thus, to mitigate
the effect of data imbalance, we sample a subset
of 1,000 hallucinated and 1,000 non-hallucinated
examples 10 times for each temperature and train
hallucination probes. Interestingly, in Figure 6,
we observe that all models improve their perfor-
mance at higher temperatures, but LapEigvals con-
sistently achieves the best accuracy on all consid-
ered temperature values. The correlation of efficacy
with temperature may be attributed to differences in
the characteristics of hallucinations at higher tem-
peratures compared to lower ones (Renze, 2024).
Also, hallucination detection might be facilitated at
higher temperatures due to underlying properties
of softmax function (Veličković et al., 2024), and
further exploration of this direction is left for future
work.

6.4 How does LapEigvals generalizes?

To check whether our method generalizes across
datasets, we trained the hallucination probe on fea-
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Figure 6: Test AUROC for different sampling temp
values during answer decoding on the TriviaQA
dataset, using k=100 eigenvalues for LapEigvals and
AttnEigvals with the Llama-3.1-8B LLM. Error bars
indicate the standard deviation over 10 balanced sam-
ples containing N = 1000 examples per class.

tures from the training split of one QA dataset and
evaluated it on the features from the test split of
a different QA dataset. Due to space limitations,
we present results for selected datasets and provide
extended results and absolute efficacy values in
Appendix I. Figure 7 showcases the percent drop
in Test AUROC when using a different training
dataset compared to training and testing on the
same QA dataset. We can observe that LapEigvals
provides a performance drop comparable to other
baselines, and in several cases, it generalizes best.
Interestingly, all methods exhibit poor generaliza-
tion on TruthfulQA and GSM8K. We hypothesize
that the weak performance on TruthfulQA arises
from its limited size and class imbalance, whereas
the difficulty on GSM8K likely reflects its distinct
domain, which has been shown to hinder hallucina-
tion detection (Orgad et al., 2025). Additionally, in
Appendix I, we show that LapEigvals achieves the
highest test performance in all scenarios (except
for TruthfulQA).

6.5 How does performance vary across
prompts?

Lastly, to assess the stability of our method across
different prompts used for answer generation, we
compared the results of the hallucination probes
trained on features regarding four distinct prompts,
the content of which is included in Appendix M. As
shown in Table 2, LapEigvals consistently outper-
forms all baselines across all four prompts. While
we can observe variations in performance across

prompts, LapEigvals demonstrates the lowest stan-
dard deviation (0.05) compared to AttnLogDet
(0.016) and AttnEigvals (0.07), indicating its
greater robustness.

Table 2: Test AUROC across four different prompts for
answers on the TriviaQA dataset using Llama-3.1-8B
with temp=1.0 and k=50 (some prompts have led to
fewer than 100 tokens). Prompt p3 was the main one
used to compare our method to baselines, as presented
in Tables 1.

Feature Test AUROC (↑)

p1 p2 p3 p4

AttnLogDet 0.847 0.855 0.842 0.860
AttnEigvals 0.840 0.870 0.842 0.875
LapEigvals 0.882 0.890 0.888 0.895

7 Related Work

Hallucinations in LLMs were proved to be in-
evitable (Xu et al., 2024), and to detect them,
one can leverage either black-box or white-box
approaches. The former approach uses only the
outputs from an LLM, while the latter uses hidden
states, attention maps, or logits corresponding to
generated tokens.

Black-box approaches focus on the text gener-
ated by LLMs. For instance, (Li et al., 2024) ver-
ified the truthfulness of factual statements using
external knowledge sources, though this approach
relies on the availability of additional resources. Al-
ternatively, SelfCheckGPT (Manakul et al., 2023)
generates multiple responses to the same prompt
and evaluates their consistency, with low consis-
tency indicating potential hallucination.

White-box methods have emerged as a promis-
ing approach for detecting hallucinations (Farquhar
et al., 2024; Azaria and Mitchell, 2023; Arteaga
et al., 2024; Orgad et al., 2025). These methods are
universal across all LLMs and do not require ad-
ditional domain adaptation compared to black-box
ones (Farquhar et al., 2024). They draw inspira-
tion from seminal works on analyzing the internal
states of simple neural networks (Alain and Bengio,
2016), which introduced linear classifier probes –
models operating on the internal states of neural
networks. Linear probes have been widely applied
to the internal states of LLMs, notably for detecting
hallucinations.

One of the first such probes was SAPLMA
(Azaria and Mitchell, 2023), which demonstrated
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Figure 7: Generalization across datasets measured as a percent performance drop in Test AUROC (less is better)
when trained on one dataset and tested on the other. Training datasets are indicated in the plot titles, while test
datasets are shown on the x-axis. Results computed on Llama-3.1-8B with k=100 top eigenvalues and temp=1.0.
Results for all datasets are presented in Appendix I.

that one could predict the correctness of generated
text straight from LLM’s hidden states. Further, the
INSIDE method (Chen et al., 2024) tackled hallu-
cination detection by sampling multiple responses
from an LLM and evaluating consistency between
their hidden states using a normalized sum of the
eigenvalues from their covariance matrix. Also,
(Farquhar et al., 2024) proposed a complementary
probabilistic approach, employing entropy to quan-
tify the model’s intrinsic uncertainty. Their method
involves generating multiple responses, clustering
them by semantic similarity, and calculating Se-
mantic Entropy using an appropriate estimator. To
address concerns regarding the validity of LLM
probes, (Marks and Tegmark, 2024) introduced
a high-quality QA dataset with simple true/false
answers and causally demonstrated that the truth-
fulness of such statements is linearly represented in
LLMs, which supports the use of probes for short
texts.

Self-consistency methods (Liang et al., 2024),
like INSIDE or Semantic Entropy, require multi-
ple runs of an LLM for each input example, which
substantially lowers their applicability. Motivated
by this limitation, (Kossen et al., 2024) proposed
to use Semantic Entropy Probe, which is a small
model trained to predict expensive Semantic En-
tropy (Farquhar et al., 2024) from LLM’s hidden
states. Notably, (Orgad et al., 2025) explored how
LLMs encode information about truthfulness and
hallucinations. First, they revealed that truthful-
ness is concentrated in specific tokens. Second,
they found that probing classifiers on LLM repre-
sentations do not generalize well across datasets,
especially across datasets requiring different skills,
which we confirmed in Section 6.4. Lastly, they
showed that the probes could select the correct
answer from multiple generated answers with rea-

sonable accuracy, meaning LLMs make mistakes
at the decoding stage, besides knowing the correct
answer.

Recent studies have started to explore halluci-
nation detection exclusively from attention maps.
(Chuang et al., 2024a) introduced the lookback ra-
tio, which measures how much attention LLMs al-
locate to relevant input parts when answering ques-
tions based on the provided context. The work most
closely related to ours is (Sriramanan et al., 2024),
which introduces the AttentionScore method. Al-
though the process is unsupervised and compu-
tationally efficient, the authors note that its per-
formance can depend highly on the specific layer
from which the score is extracted. Compared to
AttentionScore, our method is fully supervised
and grounded in graph theory, as we interpret infer-
ence in LLM as a graph. While AttentionScore
aggregates only the attention diagonal to compute
its log-determinant, we instead derive features from
the graph Laplacian, which captures all attention
scores (see Eq. (1) and (2)). Additionally, we
utilize all layers for detecting hallucination rather
than a single one, demonstrating effectiveness of
this approach. We also demonstrate that it performs
poorly on the datasets we evaluated. Nonetheless,
we drew inspiration from their approach, particu-
larly using the lower triangular structure of matri-
ces when constructing features for the hallucination
probe.

8 Conclusions

In this work, we demonstrated that the spectral
features of LLMs’ attention maps, specifically the
eigenvalues of the Laplacian matrix, carry a signal
capable of detecting hallucinations. Specifically,
we proposed the LapEigvals method, which em-
ploys the top-k eigenvalues of the Laplacian as
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input to the hallucination detection probe. Through
extensive evaluations, we empirically showed that
our method consistently achieves state-of-the-art
performance among all tested approaches. Further-
more, multiple ablation studies demonstrated that
our method remains stable across varying numbers
of eigenvalues, diverse prompts, and generation
temperatures while offering reasonable generaliza-
tion.

In addition, we hypothesize that self-supervised
learning (Balestriero et al., 2023) could yield a
more robust and generalizable approach while un-
covering non-trivial intrinsic features of attention
maps. Notably, results such as those in Section 6.3
suggest intriguing connections to recent advance-
ments in LLM research (Veličković et al., 2024;
Barbero et al., 2024), highlighting promising direc-
tions for future investigation.

Limitations

Supervised method In our approach, one must pro-
vide labelled hallucinated and non-hallucinated ex-
amples to train the hallucination probe. While this
can be handled by the llm-as-judge, it might in-
troduce some noise or pose a risk of overfitting.
Limited generalization across LLM architectures
The method is incompatible with LLMs having dif-
ferent head and layer configurations. Developing
architecture-agnostic hallucination probes is left
for future work. Minimum length requirement
Computing top-k Laplacian eigenvalues demands
attention maps of at least k tokens (e.g., k=100
require 100 tokens). Open LLMs Our method re-
quires access to the internal states of LLM thus it
cannot be applied to closed LLMs. Risks Please
note that the proposed method was tested on se-
lected LLMs and English data, so applying it to
untested domains and tasks carries a considerable
risk without additional validation.
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A Details of motivational study

We present a detailed description of the procedure
used to obtain the results presented in Section 2,
along with additional results for other datasets and
LLMs.

Our goal was to test whether AttentionScore
and eigenvalues of Laplacian matrix (used by our
LapEigvals) differ significantly when examples
are split into hallucinated and non-hallucinated
groups. To this end, we used 7 datasets (Sec-
tion 4.1) and ran inference with 5 LLMs (Sec-
tion 4.1) using temp=0.1. From the extracted at-
tention maps, we computed AttentionScore (Srira-
manan et al., 2024), defined as the log-determinant
of the attention matrices. Unlike the original work,
we did not aggregate scores across heads, but in-
stead analyzed them at the single-head level. For
LapEigvals, we constructed the Laplacian as de-
fined in Section 3, extracted the 10 largest eigenval-
ues per head, and applied the same single-head anal-
ysis as for AttnEigvals. Finally, we performed the
Mann–Whitney U test (Mann and Whitney, 1947)
using the SciPy implementation (Virtanen et al.,
2020) and collected the resulting p-values

Table 3 presents the percentage of heads hav-
ing a statistically significant difference in feature
values between hallucinated and non-hallucinated
examples, as indicated by p < 0.05 from the Mann-
Whitney U test. These results show that the Lapla-
cian eigenvalues better distinguish between the
two classes for almost all considered LLMs and
datasets.

B Bounds of the Laplacian

In the following section, we prove that the Lapla-
cian defined in 3 is bounded and has at least one
zero eigenvalue. We denote eigenvalues as λi,
and provide derivation for a single layer and head,
which holds also after stacking them together into
a single graph (set of per-layer graphs). For clarity,
we omit the superscript (l, h) indicating layer and
head.

Lemma 1. The Laplacian eigenvalues are
bounded: −1 ≤ λi ≤ 1.

Proof. Due to the lower-triangular structure of the
Laplacian, its eigenvalues lie on the diagonal and
are given by:

λi = Lii = dii − aii

Table 3: Percentage of heads having a statistically sig-
nificant difference in feature values between halluci-
nated and non-hallucinated examples, as indicated by
p < 0.05 from the Mann-Whitney U test. Results were
obtained for AttentionScore and the 10 largest Lapla-
cian eigenvalues on 6 datasets and 5 LLMs.

LLM Dataset % of p < 0.05

AttnScore Laplacian eigvals

Llama3.1-8B CoQA 40 87
Llama3.1-8B GSM8K 83 70
Llama3.1-8B HaluevalQA 91 93
Llama3.1-8B NQOpen 78 83
Llama3.1-8B SQuADv2 70 81
Llama3.1-8B TriviaQA 80 91
Llama3.1-8B TruthfulQA 40 60

Llama3.2-3B CoQA 50 79
Llama3.2-3B GSM8K 74 67
Llama3.2-3B HaluevalQA 91 93
Llama3.2-3B NQOpen 81 84
Llama3.2-3B SQuADv2 69 74
Llama3.2-3B TriviaQA 81 87
Llama3.2-3B TruthfulQA 40 62

Phi3.5 CoQA 45 81
Phi3.5 GSM8K 67 69
Phi3.5 HaluevalQA 80 86
Phi3.5 NQOpen 73 80
Phi3.5 SQuADv2 81 82
Phi3.5 TriviaQA 86 92
Phi3.5 TruthfulQA 41 53

Mistral-Nemo CoQA 35 78
Mistral-Nemo GSM8K 90 71
Mistral-Nemo HaluevalQA 78 82
Mistral-Nemo NQOpen 64 57
Mistral-Nemo SQuADv2 54 56
Mistral-Nemo TriviaQA 71 74
Mistral-Nemo TruthfulQA 40 50

Mistral-Small-24B CoQA 28 78
Mistral-Small-34B GSM8K 75 72
Mistral-Small-24B HaluevalQA 68 70
Mistral-Small-24B NQOpen 45 51
Mistral-Small-24B SQuADv2 75 82
Mistral-Small-24B TriviaQA 65 70
Mistral-Small-24B TruthfulQA 43 52

The out-degree is defined as:

dii =

∑
u aui

T − i
,

Since 0 ≤ aui ≤ 1, the sum in the numerator
is upper bounded by T − i, therefore dii ≤ 1,
and consequently λi = Lii ≤ 1, which concludes
upper-bound part of the proof.

Recall that eigenvalues lie on the main diagonal
of the Laplacian, hence λi =

∑
u auj
T−i − aii. To

find the lower bound of λi, we need to minimize
X =

∑
u auj
T−i and maximize Y = aii. First, we note

that X’s denominator is always positive T − i > 0,
since i ∈ {0 . . . (T − 1)} (as defined by Eq. (2)).
For the numerator, we recall that 0 ≤ aui ≤ 1;
therefore, the sum has its minimum at 0, hence
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X ≥ 0. Second, to maximize Y = aii, we can
take maximum of 0 ≤ aii ≤ 1 which is 1. Finally,
X − Y = −1, consequently Lii ≥ −1, which
concludes the lower-bound part of the proof.

Lemma 2. For every Lii, there exists at least one
zero-eigenvalue, and it corresponds to the last to-
ken T , i.e., λT = 0.

Proof. Recall that eigenvalues lie on the main di-
agonal of the Laplacian, hence λi =

∑
u auj
T−i − aii.

Consider last token, wherein the sum in the nu-
merator reduces to

∑
u auj = aTT , denomina-

tor becomes T − i = T − (T − 1) = 1, thus
λT = aTT

1 − aTT = 0.

C Implementation details

In our experiments, we used HuggingFace Trans-
formers (Wolf et al., 2020), PyTorch (Ansel et al.,
2024), and scikit-learn (Pedregosa et al., 2011).
We utilized Pandas (team, 2020) and Seaborn
(Waskom, 2021) for visualizations and analysis.
To version data, we employed DVC (Kuprieiev
et al., 2025). The Cursor IDE was employed to
assist with code development. We performed LLM
inference and acquired attention maps using a sin-
gle Nvidia A40 with 40GB VRAM, except for
Mistral-Small-24B for which we used Nvidia
H100 with 96GB VRAM. Training the hallucina-
tion probe was done using the CPU only. To com-
pute labels using the llm-as-judge approach, we
leveraged gpt-4o-mini model available through
OpenAI API. Detailed hyperparameter settings and
code to reproduce the experiments are available
in the public Github repository: https://github.
com/graphml-lab-pwr/lapeigvals.

D Details of QA datasets

We used 7 open and publicly available ques-
tion answering datasets: NQ-Open (Kwiatkowski
et al., 2019) (CC-BY-SA-3.0 license), SQuADv2
(Rajpurkar et al., 2018) (CC-BY-SA-4.0 license),
TruthfulQA (Apache-2.0 license) (Lin et al., 2022),
HaluEvalQA (MIT license) (Li et al., 2023), CoQA
(Reddy et al., 2019) (domain-dependent licensing,
detailed on https://stanfordnlp.github.io/
coqa/), TriviaQA (Apache 2.0 license), GSM8K
(Cobbe et al., 2021)(MIT license). Research pur-
poses fall into the intended use of these datasets.
To preprocess and filter TriviaQA, CoQA, and
SQuADv2 we utilized open-source code of (Chen

et al., 2024)7, which also borrows from (Far-
quhar et al., 2024)8. In Figure 8, we provide
histogram plots of the number of tokens for
question and answer of each dataset computed
with meta-llama/Llama-3.1-8B-Instruct tok-
enizer.

E Hallucination dataset sizes

Figure 9 shows the number of examples per la-
bel, determined using exact match for GSM8K and
the llm-as-judge heuristic for the other datasets. It
is worth noting that different generation configu-
rations result in different splits, as LLMs might
produce different answers. All examples classified
as Rejected were discarded from the hallucina-
tion probe training and evaluation. We observe
that most datasets are imbalanced, typically un-
derrepresenting non-hallucinated examples, with
the exception of TriviaQA and GSM8K. We split
each dataset into 80% training examples and 20%
test examples. Splits were stratified according to
hallucination labels.

F LLM-as-Judge agreement

To ensure the high quality of labels generated using
the llm-as-judge approach, we complemented man-
ual evaluation of random examples with a second
judge LLM and measured agreement between the
models. We assume that higher agreement among
LLMs indicates better label quality. The reduced
performance of LapEigvals on TriviaQA may be
attributed to the lower agreement, as well as the
dataset’s size and class imbalance discussed earlier.

Table 4: Agreement between LLM judges labeling hal-
lucinations (gpt-4o-mini, gpt-4.1), measured with
Cohen’s Kappa.

Dataset Cohen’s Kappa
CoQA 0.876
HaluevalQA 0.946
NQOpen 0.883
SquadV2 0.854
TriviaQA 0.939
TruthfulQA 0.714

7https://github.com/alibaba/eigenscore (MIT li-
cense)

8https://github.com/lorenzkuhn/semantic_
uncertainty (MIT license)
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Figure 8: Token count histograms for the datasets used in our experiments. Token counts were computed separately
for each example’s question (left) and gold answer (right) using the meta-llama/Llama-3.1-8B-Instruct
tokenizer. In cases with multiple answers, they were flattened into one.
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G Extended results

G.1 Precision and Recall analysis

To provide insights relevant for potential practical
usage, we analyze the Precision and Recall of our
method. While it has not yet been fully evaluated
in production settings, this analysis illustrates the
trade-offs between these metrics and informs how
the method might behave in real-world applica-
tions. Metrics were computed using the default
threshold of 0.5, as reported in Table 5. Although
trade-off patterns vary across datasets, they are con-
sistent across all evaluated LLMs. Specifically, we
observe higher recall on CoQA, GSM8K, and Trivi-
aQA, whereas HaluEvalQA, NQ-Open, SQuADv2,
and TruthfulQA exhibit higher precision. These
insights can guide threshold adjustments to bal-
ance precision and recall for different production
scenarios.

G.2 Extended method comparison

In Tables 6 and 7, we present the extended results
corresponding to those summarized in Table 1 in
the main part of this paper. The extended results
cover probes trained with both all-layers and per-
layer variants across all models, as well as lower
temperature (temp ∈ {0.1, 1.0}). In almost all
cases, the all-layers variant outperforms the per-
layer variant, suggesting that hallucination-related
information is distributed across multiple layers.
Additionally, we observe a smaller generalization
gap (measured as the difference between test and
training performance) for the LapEigvals method,
indicating more robust features present in the Lapla-
cian eigenvalues. Finally, as demonstrated in Sec-
tion 6, increasing the temperature during answer
generation improves probe performance, which
is also evident in Table 6, where probes trained
on answers generated with temp=1.0 consistently
outperform those trained on data generated with
temp=0.1.

G.3 Best found hyperparameters

We present the hyperparameter values correspond-
ing to the results in Table 1 and Table 6. Table 8
shows the optimal hyperparameter k for select-
ing the top-k eigenvalues from either the attention
maps in AttnEigvals or the Laplacian matrix in
LapEigvals. While fewer eigenvalues were suffi-
cient for optimal performance in some cases, the
best results were generally achieved with the high-
est tested value, k=100.

Table 9 reports the layer indices that yielded
the highest performance for the per-layer models.
Performance typically peaked in layers above the
10th, especially for Llama-3.1-8B, where atten-
tion maps from the final layers more often led to
better hallucination detection. Interestingly, the
first layer’s attention maps also produced strong
performance in a few cases. Overall, no clear pat-
tern emerges regarding the optimal layer, and as
noted in prior work, selecting the best layer in the
per-layer setup often requires a search.

G.4 Comparison with hidden-states-based
baselines

We take an approach considered in the previ-
ous works (Azaria and Mitchell, 2023; Orgad
et al., 2025) and aligned to our evaluation pro-
tocol. Specifically, we trained a logistic regres-
sion classifier on PCA-projected hidden states to
predict whether the model is hallucinating or not.
To this end, we select the last token of the an-
swer. While we also tested the last token of the
prompt, we observed significantly lower perfor-
mance, which aligns with results presented by (Or-
gad et al., 2025). We considered hidden states
either from all layers or a single layer correspond-
ing to the selected token. In the all-layer scenario,
we use the concatenation of hidden states of all
layers, and in the per-layer scenario, we use the
hidden states of each layer separately and select the
best-performing layer.

In Table 10, we show the obtained results. The
all-layer version is consistently worse than our
LapEigvals, which further confirms the strength of
the proposed method. Our work is one of the first
to detect hallucinations solely using attention maps,
providing an important insight into the behavior of
LLMs, and it motivates further theoretical research
on information flow patterns inside these models.

H Extended results of ablations

In the following section, we extend the ablation
results presented in Section 6.1 and Section 6.2.
Figure 10 compares the top k eigenvalues across
all five LLMs. In Figure 11 we present a layer-wise
performance comparison for each model.

I Extended results of generalization study

We present the complete results of the generaliza-
tion ablation discussed in Section 6.4 of the main
paper. Table 11 reports the absolute Test AUROC
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Table 5: Precision and Recall values for the LapEigvals method, complementary to AUROC presented in Table 1.
Values are presented as Precision / Recall for each dataset and model combination.

LLM CoQA GSM8K HaluEvalQA NQOpen SQuADv2 TriviaQA TruthfulQA

Llama3.1-8B 0.583 / 0.710 0.644 / 0.729 0.895 / 0.785 0.859 / 0.740 0.896 / 0.720 0.719 / 0.812 0.872 / 0.781
Llama3.2-3B 0.679 / 0.728 0.718 / 0.699 0.912 / 0.788 0.894 / 0.662 0.924 / 0.720 0.787 / 0.729 0.910 / 0.746
Phi3.5 0.560 / 0.703 0.600 / 0.739 0.899 / 0.768 0.910 / 0.785 0.906 / 0.731 0.787 / 0.785 0.829 / 0.798
Mistral-Nemo 0.646 / 0.714 0.594 / 0.809 0.873 / 0.760 0.875 / 0.751 0.920 / 0.756 0.707 / 0.769 0.892 / 0.825
Mistral-Small-24B 0.610 / 0.779 0.561 / 0.852 0.811 / 0.801 0.700 / 0.750 0.784 / 0.789 0.575 / 0.787 0.679 / 0.655

values for each method and test dataset. Except
for TruthfulQA, LapEigvals achieves the highest
performance across all configurations. Notably,
some methods perform close to random, whereas
LapEigvals consistently outperforms this baseline.
Regarding relative performance drop (Figure 12),
LapEigvals remains competitive, exhibiting the
lowest drop in nearly half of the scenarios. These
results indicate that our method is robust but war-
rants further investigation across more datasets, par-
ticularly with a deeper analysis of TruthfulQA.

J Influence of dataset size

One of the limitations of LapEigvals is that it is a
supervised method and thus requires labelled hallu-
cination data. To check whether it requires a large
volume of data, we conducted an additional study
in which we trained LapEigvals on only a strat-
ified fraction of the available examples for each
hallucination dataset (using a dataset created from
Llama-3.1-8B outputs) and evaluated on the full
test split. The AUROC scores are presented in
Table 12. As shown, LapEigvals maintains reason-
able performance even when trained on as few as
a few hundred examples. Additionally, we empha-
sise that labelling can be efficiently automated and
scaled using the llm-as-judge paradigm.

K Reliability of spectral features

Our method relies on ordered spectral features,
which may exhibit sensitivity to perturbations
and limited robustness. In our setup, both atten-
tion weights and extracted features were stored
as bfloat16 type, which has lower precision
than float32. The reduced precision acts as a
form of regularization–minor fluctuations are often
rounded off, making the method more robust to
small perturbations that might otherwise affect the
eigenvalue ordering.

To further investigate perturbation-sensitivity,
we conducted a controlled analysis on one model
by adding Gaussian noise to randomly selected in-

put feature dimensions before the eigenvalue sort-
ing step. We varied both the noise standard de-
viation and the fraction of perturbed dimensions
(ranging from 0.5 to 1.0). Perturbations were ap-
plied consistently to both the training and test sets.
In Table 13 we report the mean and standard de-
viation of performance across 5 runs on hallucina-
tion data generated by Llama-3.1-8B on the Triv-
iaQA dataset with temp=1.0, along with percent-
age change relative to the unperturbed baseline (0.0
indicates no perturbation applied). We observe that
small perturbations have a negligible impact on per-
formance and further confirm the robustness of our
method.

L Cost and time analysis

Providing precise cost and time measurements is
nontrivial due to the multi-stage nature of our
method, as it involves external services (e.g., Ope-
nAI API for labelling), and the runtime and cost
can vary depending on the hardware and platform
used. Nonetheless, we present an overview of the
costs and complexity as follows.

1. Inference with LLM (preparing hallucination
dataset) - does not introduce additional cost
beyond regular LLM inference; however, it
may limit certain optimizations (e.g. FlashAt-
tention (Dao et al., 2022)) since the full atten-
tion matrix needs to be materialized in mem-
ory.

2. Automated labeling with llm-as-judge using
OpenAI API - we estimate labeling costs us-
ing the tiktoken library and OpenAI API
pricing ($0.60 per 1M output tokens). How-
ever, these estimates exclude caching effects
and could be reduced using the Batch API; Ta-
ble 14 reports total and per-item hallucination
labelling costs across all datasets (including
5 LLMs and 2 temperature settings). Esti-
mation for GSM8K dataset is not present as
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the outputs for this dataset are evaluated by
exact-match.

3. Computing spectral features - since we exploit
the fact that eigenvalues of the Laplacian lie
on the diagonal, the complexity is dominated
by the computation of the out-degree matrix,
which in turn is dominated by the computation
of the mean over rows of the attention matrix.
Thus, it is O(n2) time, where n is the number
of tokens. Then, we have to sort eigenval-
ues, which takes O(n log n) time. The overall
complexity multiplies by the number of layers
and heads of a particular LLM. Practically, in
our implementation, we fused feature compu-
tation with LLM inference, since we observed
a memory bottleneck compared to using raw
attention matrices stored on disk.

M QA prompts

Following, we describe all prompts for QA used to
obtain the results presented in this work:

• prompt p1 – medium-length one-shot prompt
with single example of QA task (Listing 1),

• prompt p2 – medium-length zero-shot prompt
without examples (Listing 2),

• prompt p3 – long few-shot prompt; the main
prompt used in this work; modification of
prompt used by (Kossen et al., 2024) (List-
ing 3),

• prompt p4 – short-length zero-shot prompt
without examples (Listing 4),

• prompt gsm8k – short prompt used for
GSM8K dataset with output-format instruc-
tion.

N LLM-as-Judge prompt

During hallucinations dataset construction we lever-
aged llm-as-judge approach to label answers gen-
erated by the LLMs. To this end, we utilized
gpt-4o-mini with prompt in Listing 6, which is
an adapted version of the prompt used by (Orgad
et al., 2025).
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Table 8: Values of k hyperparameter, denoting how many highest eigenvalues are taken from the Laplacian matrix,
corresponding to the best results in Table 1 and Table 6.

LLM Temp Feature all-layers per-layer top-k eigenvalues

CoQA GSM8K HaluevalQA NQOpen SQuADv2 TriviaQA TruthfulQA

Llama3.1-8B 0.1 AttnEigvals ✓ 50 100 100 25 100 100 10
Llama3.1-8B 0.1 AttnEigvals ✓ 100 100 100 100 100 50 100
Llama3.1-8B 0.1 LapEigvals ✓ 50 50 100 10 100 100 100
Llama3.1-8B 0.1 LapEigvals ✓ 10 100 100 100 100 100 100

Llama3.1-8B 1.0 AttnEigvals ✓ 100 100 100 100 100 100 100
Llama3.1-8B 1.0 AttnEigvals ✓ 100 100 100 100 100 100 100
Llama3.1-8B 1.0 LapEigvals ✓ 100 50 100 100 100 100 100
Llama3.1-8B 1.0 LapEigvals ✓ 100 100 25 100 100 100 100

Llama3.2-3B 0.1 AttnEigvals ✓ 100 100 100 100 100 100 10
Llama3.2-3B 0.1 AttnEigvals ✓ 100 100 25 100 100 100 100
Llama3.2-3B 0.1 LapEigvals ✓ 100 25 100 100 100 50 5
Llama3.2-3B 0.1 LapEigvals ✓ 25 100 100 100 100 100 100

Llama3.2-3B 1.0 AttnEigvals ✓ 100 100 100 100 100 100 50
Llama3.2-3B 1.0 AttnEigvals ✓ 100 50 100 100 100 100 100
Llama3.2-3B 1.0 LapEigvals ✓ 100 50 100 10 100 100 25
Llama3.2-3B 1.0 LapEigvals ✓ 25 100 100 100 100 100 100

Phi3.5 0.1 AttnEigvals ✓ 100 100 100 100 100 100 100
Phi3.5 0.1 AttnEigvals ✓ 100 25 10 10 25 100 50
Phi3.5 0.1 LapEigvals ✓ 100 10 100 100 100 100 100
Phi3.5 0.1 LapEigvals ✓ 10 100 50 100 100 100 100

Phi3.5 1.0 AttnEigvals ✓ 100 100 100 100 100 100 100
Phi3.5 1.0 AttnEigvals ✓ 100 100 100 10 100 100 50
Phi3.5 1.0 LapEigvals ✓ 100 25 100 100 100 100 50
Phi3.5 1.0 LapEigvals ✓ 10 25 100 100 100 100 100

Mistral-Nemo 0.1 AttnEigvals ✓ 100 50 100 100 100 100 100
Mistral-Nemo 0.1 AttnEigvals ✓ 100 50 100 100 100 100 100
Mistral-Nemo 0.1 LapEigvals ✓ 100 25 100 100 100 100 10
Mistral-Nemo 0.1 LapEigvals ✓ 10 100 25 100 50 100 100

Mistral-Nemo 1.0 AttnEigvals ✓ 100 100 100 100 100 100 100
Mistral-Nemo 1.0 AttnEigvals ✓ 100 100 100 100 100 50 100
Mistral-Nemo 1.0 LapEigvals ✓ 100 100 100 50 100 100 100
Mistral-Nemo 1.0 LapEigvals ✓ 10 100 50 100 100 100 100

Mistral-Small-24B 0.1 AttnEigvals ✓ 100 100 100 10 100 50 25
Mistral-Small-24B 0.1 AttnEigvals ✓ 100 100 100 100 100 100 25
Mistral-Small-24B 0.1 LapEigvals ✓ 100 50 100 50 100 100 10
Mistral-Small-24B 0.1 LapEigvals ✓ 25 100 100 100 100 10 100

Mistral-Small-24B 1.0 AttnEigvals ✓ 100 100 100 100 100 100 100
Mistral-Small-24B 1.0 AttnEigvals ✓ 100 100 100 100 100 100 100
Mistral-Small-24B 1.0 LapEigvals ✓ 100 100 100 100 50 100 50
Mistral-Small-24B 1.0 LapEigvals ✓ 10 100 50 10 10 100 50
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Table 9: Values of a layer index (numbered from 0) corresponding to the best results for per-layer models in Table 6.

LLM temp Feature Layer index

CoQA GSM8K HaluevalQA NQOpen SQuADv2 TriviaQA TruthfulQA

Llama3.1-8B 0.1 AttentionScore 13 28 10 0 0 0 28
Llama3.1-8B 0.1 AttnLogDet 7 31 13 16 11 29 21
Llama3.1-8B 0.1 AttnEigvals 22 31 31 26 31 31 7
Llama3.1-8B 0.1 LapEigvals 15 25 14 20 29 31 20

Llama3.1-8B 1.0 AttentionScore 29 3 10 0 0 0 23
Llama3.1-8B 1.0 AttnLogDet 17 16 11 13 29 29 30
Llama3.1-8B 1.0 AttnEigvals 22 28 31 31 31 31 31
Llama3.1-8B 1.0 LapEigvals 15 11 14 31 29 29 29

Llama3.2-3B 0.1 AttentionScore 15 17 12 12 12 21 14
Llama3.2-3B 0.1 AttnLogDet 12 18 13 24 10 25 14
Llama3.2-3B 0.1 AttnEigvals 27 14 14 14 25 27 17
Llama3.2-3B 0.1 LapEigvals 11 24 8 12 25 12 14

Llama3.2-3B 1.0 AttentionScore 24 25 12 0 24 21 14
Llama3.2-3B 1.0 AttnLogDet 12 18 26 23 25 25 12
Llama3.2-3B 1.0 AttnEigvals 11 14 27 25 25 27 10
Llama3.2-3B 1.0 LapEigvals 11 10 18 12 25 25 11

Phi3.5 0.1 AttentionScore 7 1 15 0 0 0 19
Phi3.5 0.1 AttnLogDet 20 19 18 16 17 13 23
Phi3.5 0.1 AttnEigvals 18 18 19 15 19 18 28
Phi3.5 0.1 LapEigvals 18 23 28 28 19 31 28

Phi3.5 1.0 AttentionScore 19 1 0 1 0 0 19
Phi3.5 1.0 AttnLogDet 12 19 29 14 19 13 14
Phi3.5 1.0 AttnEigvals 18 1 30 17 31 31 31
Phi3.5 1.0 LapEigvals 18 16 28 15 19 31 31

Mistral-Nemo 0.1 AttentionScore 2 27 18 35 0 30 35
Mistral-Nemo 0.1 AttnLogDet 37 20 17 15 38 38 33
Mistral-Nemo 0.1 AttnEigvals 38 37 38 18 18 15 31
Mistral-Nemo 0.1 LapEigvals 16 38 37 37 18 37 8

Mistral-Nemo 1.0 AttentionScore 10 2 16 28 14 30 21
Mistral-Nemo 1.0 AttnLogDet 18 17 20 18 18 15 18
Mistral-Nemo 1.0 AttnEigvals 38 30 39 39 18 15 18
Mistral-Nemo 1.0 LapEigvals 16 39 37 37 18 37 18

Mistral-Small-24B 0.1 AttentionScore 14 1 39 33 35 0 30
Mistral-Small-24B 0.1 AttnLogDet 16 29 38 18 16 38 11
Mistral-Small-24B 0.1 AttnEigvals 36 27 36 19 16 38 20
Mistral-Small-24B 0.1 LapEigvals 21 3 35 24 36 35 34

Mistral-Small-24B 1.0 AttentionScore 15 1 1 0 1 0 30
Mistral-Small-24B 1.0 AttnLogDet 14 24 27 17 24 38 34
Mistral-Small-24B 1.0 AttnEigvals 36 39 27 21 24 36 23
Mistral-Small-24B 1.0 LapEigvals 21 39 36 16 21 35 34
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Table 10: Results of the probe trained on the hidden state features from the last generated token.

LLM Temp Features per-layer all-layers Test AUROC (↑)

CoQA GSM8K HaluevalQA NQOpen SQuADv2 TriviaQA TruthfulQA

Llama3.1-8B 0.1 HiddenStates ✓ 0.835 0.799 0.840 0.766 0.736 0.820 0.834
Llama3.1-8B 0.1 HiddenStates ✓ 0.821 0.765 0.825 0.728 0.723 0.791 0.785
Llama3.1-8B 0.1 LapEigvals ✓ 0.757 0.844 0.793 0.711 0.733 0.780 0.764
Llama3.1-8B 0.1 LapEigvals ✓ 0.836 0.887 0.867 0.793 0.782 0.872 0.822

Llama3.1-8B 1.0 HiddenStates ✓ 0.836 0.816 0.850 0.786 0.754 0.850 0.823
Llama3.1-8B 1.0 HiddenStates ✓ 0.835 0.759 0.847 0.757 0.749 0.838 0.808
Llama3.1-8B 1.0 LapEigvals ✓ 0.743 0.833 0.789 0.725 0.724 0.794 0.764
Llama3.1-8B 1.0 LapEigvals ✓ 0.830 0.872 0.874 0.827 0.791 0.889 0.829

Llama3.2-3B 0.1 HiddenStates ✓ 0.800 0.826 0.808 0.732 0.750 0.782 0.760
Llama3.2-3B 0.1 HiddenStates ✓ 0.790 0.802 0.784 0.709 0.721 0.760 0.770
Llama3.2-3B 0.1 LapEigvals ✓ 0.676 0.835 0.774 0.730 0.727 0.712 0.690
Llama3.2-3B 0.1 LapEigvals ✓ 0.801 0.852 0.844 0.771 0.778 0.821 0.743

Llama3.2-3B 1.0 HiddenStates ✓ 0.778 0.727 0.758 0.679 0.719 0.773 0.716
Llama3.2-3B 1.0 HiddenStates ✓ 0.773 0.652 0.753 0.657 0.681 0.761 0.618
Llama3.2-3B 1.0 LapEigvals ✓ 0.715 0.815 0.765 0.696 0.696 0.738 0.767
Llama3.2-3B 1.0 LapEigvals ✓ 0.812 0.870 0.857 0.798 0.751 0.836 0.787

Phi3.5 0.1 HiddenStates ✓ 0.841 0.773 0.845 0.813 0.781 0.886 0.737
Phi3.5 0.1 HiddenStates ✓ 0.833 0.696 0.840 0.806 0.774 0.878 0.689
Phi3.5 0.1 LapEigvals ✓ 0.716 0.753 0.757 0.761 0.732 0.768 0.741
Phi3.5 0.1 LapEigvals ✓ 0.810 0.785 0.819 0.815 0.791 0.858 0.717

Phi3.5 1.0 HiddenStates ✓ 0.872 0.784 0.850 0.821 0.806 0.891 0.822
Phi3.5 1.0 HiddenStates ✓ 0.853 0.686 0.844 0.804 0.790 0.887 0.752
Phi3.5 1.0 LapEigvals ✓ 0.723 0.816 0.769 0.755 0.732 0.792 0.732
Phi3.5 1.0 LapEigvals ✓ 0.821 0.885 0.836 0.826 0.795 0.872 0.777

Mistral-Nemo 0.1 HiddenStates ✓ 0.818 0.757 0.814 0.734 0.731 0.821 0.792
Mistral-Nemo 0.1 HiddenStates ✓ 0.805 0.741 0.784 0.722 0.730 0.793 0.699
Mistral-Nemo 0.1 LapEigvals ✓ 0.759 0.751 0.760 0.697 0.696 0.769 0.710
Mistral-Nemo 0.1 LapEigvals ✓ 0.823 0.805 0.821 0.755 0.767 0.858 0.737

Mistral-Nemo 1.0 HiddenStates ✓ 0.793 0.832 0.777 0.738 0.719 0.783 0.722
Mistral-Nemo 1.0 HiddenStates ✓ 0.771 0.834 0.771 0.706 0.685 0.779 0.644
Mistral-Nemo 1.0 LapEigvals ✓ 0.738 0.808 0.763 0.708 0.723 0.785 0.818
Mistral-Nemo 1.0 LapEigvals ✓ 0.835 0.890 0.833 0.795 0.812 0.865 0.828

Mistral-Small-24B 0.1 HiddenStates ✓ 0.838 0.872 0.744 0.680 0.700 0.749 0.735
Mistral-Small-24B 0.1 HiddenStates ✓ 0.815 0.812 0.703 0.632 0.629 0.726 0.589
Mistral-Small-24B 0.1 LapEigvals ✓ 0.800 0.850 0.719 0.674 0.784 0.757 0.827
Mistral-Small-24B 0.1 LapEigvals ✓ 0.852 0.881 0.808 0.722 0.821 0.831 0.757

Mistral-Small-24B 1.0 HiddenStates ✓ 0.801 0.879 0.720 0.665 0.603 0.684 0.581
Mistral-Small-24B 1.0 HiddenStates ✓ 0.770 0.760 0.703 0.617 0.575 0.659 0.485
Mistral-Small-24B 1.0 LapEigvals ✓ 0.805 0.897 0.790 0.712 0.781 0.779 0.725
Mistral-Small-24B 1.0 LapEigvals ✓ 0.861 0.925 0.882 0.791 0.820 0.876 0.748
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Table 11: Full results of the generalization study. By gray color we denote results obtained on test split from the
same QA dataset as training split, otherwise results are from test split of different QA dataset. We highlight the best
performance in bold.

Feature Train Dataset Test AUROC (↑)

CoQA GSM8K HaluevalQA NQOpen SQuADv2 TriviaQA TruthfulQA

AttnLogDet CoQA 0.758 0.518 0.687 0.644 0.646 0.640 0.587
AttnEigvals CoQA 0.782 0.426 0.726 0.696 0.659 0.702 0.560
LapEigvals CoQA 0.830 0.555 0.790 0.748 0.743 0.786 0.629

AttnLogDet GSM8K 0.515 0.828 0.513 0.502 0.555 0.503 0.586
AttnEigvals GSM8K 0.510 0.838 0.563 0.545 0.549 0.579 0.557
LapEigvals GSM8K 0.568 0.872 0.648 0.596 0.611 0.610 0.538

AttnLogDet HaluevalQA 0.580 0.500 0.823 0.750 0.727 0.787 0.668
AttnEigvals HaluevalQA 0.579 0.569 0.819 0.792 0.743 0.803 0.688
LapEigvals HaluevalQA 0.685 0.448 0.873 0.796 0.778 0.848 0.595

AttnLogDet NQOpen 0.552 0.594 0.720 0.794 0.717 0.766 0.597
AttnEigvals NQOpen 0.546 0.633 0.725 0.790 0.714 0.770 0.618
LapEigvals NQOpen 0.656 0.676 0.792 0.827 0.748 0.843 0.564

AttnLogDet SQuADv2 0.553 0.695 0.716 0.774 0.746 0.757 0.658
AttnEigvals SQuADv2 0.576 0.723 0.730 0.737 0.768 0.760 0.711
LapEigvals SQuADv2 0.673 0.754 0.801 0.806 0.791 0.841 0.625

AttnLogDet TriviaQA 0.565 0.618 0.761 0.793 0.736 0.838 0.572
AttnEigvals TriviaQA 0.577 0.667 0.770 0.786 0.742 0.843 0.616
LapEigvals TriviaQA 0.702 0.612 0.813 0.818 0.773 0.889 0.522

AttnLogDet TruthfulQA 0.550 0.706 0.597 0.603 0.604 0.662 0.811
AttnEigvals TruthfulQA 0.538 0.579 0.600 0.595 0.646 0.685 0.833
LapEigvals TruthfulQA 0.590 0.722 0.552 0.529 0.569 0.631 0.829

Table 12: Impact of training dataset size on performance. Test AUROC scores are reported for different fractions of
the training data. The study uses a dataset derived from Llama-3.1-8B answers with temp=1.0 and k=100 top
eigenvalues, with absolute dataset sizes shown in parentheses.

Fraction of data (%) CoQA (6316) GSM8K (1019) HaluEvalQA (6118) NQOpen (2360) SQuADv2 (3818) TriviaQA (7710) TruthfulQA (596)

100 0.830 0.872 0.873 0.827 0.791 0.889 0.804
75 0.824 0.867 0.868 0.816 0.785 0.886 0.803
50 0.817 0.858 0.861 0.802 0.778 0.880 0.796
30 0.802 0.851 0.853 0.785 0.760 0.872 0.786
20 0.790 0.835 0.848 0.770 0.738 0.863 0.763
10 0.757 0.816 0.829 0.726 0.730 0.841 0.709
5 0.734 0.764 0.811 0.668 0.702 0.813 0.637
1 0.612 0.695 0.736 0.621 0.605 0.670 0.545

Table 13: Impact of Gaussian noise perturbations on input features for different top-k eigenvalues and noise standard
deviations σ. Results are averaged over five perturbations, with mean and standard deviation reported; relative
percentage drops are shown in parentheses. Results were obtained for Llama-3.1-8B with temp=1.0 on TriviaQA
dataset.

k Test AUROC (↑)

σ = 0.0 σ = 1e− 5 σ = 1e− 4 σ = 1e− 3 σ = 1e− 2 σ = 1e− 1

5 0.867 ± 0.0 (0.0%) 0.867 ± 0.0 (0.0%) 0.867 ± 0.0 (0.0%) 0.867 ± 0.0 (-0.01%) 0.859 ± 0.003 (0.86%) 0.573 ± 0.017 (33.84%)
10 0.867 ± 0.0 (0.0%) 0.867 ± 0.0 (0.0%) 0.867 ± 0.0 (0.0%) 0.867 ± 0.0 (0.03%) 0.861 ± 0.002 (0.78%) 0.579 ± 0.01 (33.3%)
20 0.869 ± 0.0 (0.0%) 0.869 ± 0.0 (0.0%) 0.869 ± 0.0 (0.0%) 0.869 ± 0.0 (0.0%) 0.862 ± 0.002 (0.84%) 0.584 ± 0.018 (32.76%)
50 0.870 ± 0.0 (0.0%) 0.870 ± 0.0 (0.0%) 0.870 ± 0.0 (0.0%) 0.869 ± 0.0 (0.02%) 0.864 ± 0.002 (0.66%) 0.606 ± 0.014 (30.31%)
100 0.872 ± 0.0 (0.0%) 0.872 ± 0.0 (0.0%) 0.872 ± 0.0 (0.01%) 0.872 ± 0.0 (-0.0%) 0.866 ± 0.001 (0.66%) 0.640 ± 0.007 (26.64%)
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Table 14: Estimation of costs regarding llm-as-judge labelling with OpenAI API.

Dataset Total Input Tokens Total Output Tokens Mean Input Tokens Mean Output Tokens Total Input Cost [$] Total Output Cost [$] Total Cost [$]

CoQA 52,194,357 320,613 653.82 4.02 7.83 0.19 8.02
NQOpen 11,853,621 150,782 328.36 4.18 1.78 0.09 1.87
HaluEvalQA 33,511,346 421,572 335.11 4.22 5.03 0.25 5.28
SQuADv2 19,601,322 251,264 330.66 4.24 2.94 0.15 3.09
TriviaQA 41,114,137 408,067 412.79 4.10 6.17 0.24 6.41
TruthfulQA 2,908,183 33,836 355.96 4.14 0.44 0.02 0.46

Total 158,242,166 1,575,134 402.62 4.15 24.19 0.94 25.13
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Figure 10: Probe performance across different top-k
eigenvalues: k ∈ {5, 10, 25, 50, 100} for TriviaQA
dataset with temp=1.0 and five considered LLMs.
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ferent layers for and 5 considered LLMs and TriviaQA
dataset with temp=1.0 and k=100 top eigenvalues (re-
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reference).
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Figure 12: Generalization across datasets measured as a percent performance drop in Test AUROC (less is better)
when trained on one dataset and tested on the other. Training datasets are indicated in the plot titles, while test
datasets are shown on the x-axis. Results computed on Llama-3.1-8B with k=100 top eigenvalues and temp=1.0.

Listing 1: One-shot QA (prompt p1)

Deliver a succinct and straightforward answer to the question below. Focus on being
↪→ brief while maintaining essential information. Keep extra details to a
↪→ minimum.

Here is an example:
Question: What is the Riemann hypothesis?
Answer: All non -trivial zeros of the Riemann zeta function have real part 1/2

Question: {question}
Answer:

Listing 2: Zero-shot QA (prompt p2).

Please provide a concise and direct response to the following question , keeping your
↪→ answer as brief and to-the -point as possible while ensuring clarity. Avoid
↪→ any unnecessary elaboration or additional details.

Question: {question}
Answer:
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Listing 3: Few-shot QA prompt (prompt p3), modified version of prompt used by (Kossen et al., 2024).

Answer the following question as briefly as possible.
Here are several examples:
Question: What is the capital of France?
Answer: Paris

Question: Who wrote *Romeo and Juliet *?
Answer: William Shakespeare

Question: What is the boiling point of water in Celsius?
Answer: 100◦C

Question: How many continents are there on Earth?
Answer: Seven

Question: What is the fastest land animal?
Answer: Cheetah

Question: {question}
Answer:

Listing 4: Zero-shot short QA prompt (prompt p4).

Answer the following question as briefly as possible.
Question: {question}
Answer:

Listing 5: Zero-shot QA prompt for GSM8K dataset.

Given the following problem , reason and give a final answer to the problem.

Problem: {question}
Your response should end with "The final answer is [answer ]" where [answer] is the

↪→ response to the problem.
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Listing 6: Prompt used in llm-as-judge approach for determining hallucination labels. Prompt is a modified version
of the one used by (Orgad et al., 2025).

You will evaluate answers to questions. For each question , I will provide a model 's
↪→ answer and one or more correct reference answers.

You would have to determine if the model answer is correct , incorrect , or model
↪→ refused to answer. The model answer to be correct has to match from one to
↪→ all of the possible correct answers.

If the model answer is correct , write 'correct ' and if it is not correct , write '
↪→ incorrect '. If the Model Answer is a refusal , stating that they don 't have
↪→ enough information , write 'refuse '.

For example:

Question: who is the young guitarist who played with buddy guy?
Ground Truth: [Quinn Sullivan , Eric Gales]
Model Answer: Ronnie Earl
Correctness: incorrect

Question: What is the name of the actor who plays Iron Man in the Marvel movies?
Ground Truth: [Robert Downey Jr.]
Model Answer: Robert Downey Jr. played the role of Tony Stark/Iron Man in the Marvel

↪→ Cinematic Universe films.
Correctness: correct

Question: what is the capital of France?
Ground Truth: [Paris]
Model Answer: I don 't have enough information to answer this question.
Correctness: refuse

Question: who was the first person to walk on the moon?
Ground Truth: [Neil Armstrong]
Model Answer: I apologize , but I cannot provide an answer without verifying the

↪→ historical facts.
Correctness: refuse

Question: {{ question }}
Ground Truth: {{ gold_answer }}
Model Answer: {{ predicted_answer }}
Correctness:

24385


