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Abstract

Despite extensive efforts in safety alignment,
large language models (LLMs) remain vulner-
able to jailbreak attacks. Activation steering
offers a training-free defense method but re-
lies on fixed steering coefficients, resulting in
suboptimal protection and increased false rejec-
tions of benign inputs. To address this, we pro-
pose AdaSteer, an adaptive activation steering
method that dynamically adjusts model behav-
ior based on input characteristics. We identify
two key properties: Rejection Law (R-Law),
which shows that stronger steering is needed
for jailbreak inputs opposing the rejection direc-
tion, and Harmfulness Law (H-Law), which dif-
ferentiates adversarial and benign inputs. AdaS-
teer steers input representations along both the
Rejection Direction (RD) and Harmfulness Di-
rection (HD), with adaptive coefficients learned
via logistic regression, ensuring robust jailbreak
defense while preserving benign input han-
dling. Experiments on LLaMA-3.1, Gemma-2,
and Qwen2.5 show that AdaSteer outperforms
baseline methods across multiple jailbreak at-
tacks with minimal impact on utility. Our re-
sults highlight the potential of interpretable
model internals for real-time, flexible safety
enforcement in LLMs. Our code is available
at: https://github.com/MuyuenLP/AdaSteer.
WARNING: This paper may contain content
that is offensive and harmful.

1 Introduction

Despite extensive efforts have been made for
safety alignment of large language models (LLMs)
(Ouyang et al., 2022; Bai et al., 2022b; Askell et al.,
2021), studies show that even well-aligned models
remain vulnerable to jailbreak attacks, where ad-
versarial prompts successfully bypass their safety
mechanisms (Wei et al., 2023a; Jones et al., 2023;
Zou et al., 2023b; Carlini et al., 2024). The pre-
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vailing defense strategy against such vulnerabili-
ties is safety post-training, where models undergo
additional fine-tuning on curated safety data to re-
inforce their safeguards. However, this approach is
computationally expensive (Zaremba et al., 2025)
and highly dependent on the quality and diversity
of the training dataset (Wang et al., 2024a), leading
to significant variability in efficacy.

Activation steering offers a promising training-
free alternative by directly manipulating a model’s
internal representations along the rejection direc-
tion within its activation space (Turner et al., 2023;
Zou et al., 2023a; Panickssery et al., 2023; Arditi
et al., 2024). This technique is grounded in the
theoretical premise that LLMs encode features or
concepts as linear directions in activation space
(Mikolov et al., 2013; Park et al., 2024). As il-
lustrated in Figure 1(a), at the model layer l, this
method first identifies the model’s intrinsic rejec-
tion direction with representations of benign and
harmful inputs, and extract a rejection steering vec-
tor, represented as vl. During inference, a simple
activation addition step is performed with a fixed
strength scalar λ, steering the input representation
toward the rejection region.

However, existing activation steering methods
suffer from a key limitation: they lack dynamic
adaptation to varying input contexts. The fixed
steering coefficient λ is applied indiscriminately
across all inputs, leading to two major challenges:
(1) for jailbreak inputs, different attack strategies
exhibit diverse characteristics, meaning that apply-
ing a static steering coefficient λ often results in
suboptimal protection (Stickland et al., 2024; Shen
et al., 2025; Lee et al., 2025); (2) for benign in-
puts, such reinforcement of refusal behavior signifi-
cantly increases the risk of false rejections, limiting
the model’s overall utility (Qian et al., 2024; Bhat-
tacharjee et al., 2024; Arditi et al., 2024). These
issues highlight the need for an adaptive activation
steering mechanism that can dynamically adjust its
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Figure 1: The overall comparison between previous activation steering and our AdaSteer. (a) The two-step paradigm
of activation steering, with the fixed steering coefficient λ. (b) Deriving rejection law and harmfulness law. (c) We
propose AdaSteer to achieve real-time, adaptive and input-dependent jailbreak defense.

strength based on input characteristics.
Inspired by recent interpretability studies (Leong

et al., 2024; Zheng et al., 2024; Zhang et al., 2025)
suggesting that LLM rejection behaviors are gov-
erned by two key factors: (1) assessing input harm-
fulness and (2) deciding whether to reject, we seek
to perform a dual-direction steering that adjusts
model activations along both the Rejection Direc-
tion (RD) and the Harmfulness Direction (HD).

To address the first challenge, we conduct an
empirical analysis of different types of jailbreak
inputs along the RD within three safety-aligned
LLMs: LLaMA-3.1 (Dubey et al., 2024), Gemma-
2 (Team et al., 2024), and Qwen2.5 (Yang et al.,
2024). As shown in Figure 1(b), we identity RD us-
ing contrastive pairs of complied (red cluster) and
rejected (yellow cluster) harmful instructions via
the difference-in-means technique (Belrose, 2023).
We surprisingly find that different jailbreak types
exhibit distinct patterns along RD, which can be
summarizd as the Rejection Law (R-Law):

Rejection Law: Along RD, jailbreak types
that are positioned further against the rejection
direction are more difficult for the backbone
model to defend against.

Thus, R-Law can be leveraged as: the farther an in-
put is along RD against the rejection direction, (i.e.,
the more adversary it is), the stronger rejection
steering should be applied to enforce rejection.

However, solely depending on R-Law can not

solve the second challenge as benign inputs can
sometimes also exhibit distributions that oppose the
rejection direction along RD, making them appear
similar to jailbreak inputs. This directly motivates
us to identity and leverage HD, reflecting the harm-
fulness of different inputs accordingly. Similarly,
we obtain HD by contrasting complied harmful
instructions with benign ones (blue cluster) and
Harmfulness Law (H-Law) is derived:

Harmfulness Law: Along HD, jailbreak in-
puts shift further toward harmfulness com-
pared to benign inputs (blue cluster), confirm-
ing their harmful nature and distinguishing
them from benign queries.

Since HD represents the backbone’s compliance
behavior—identified by benign and harmful inputs
that are both complied by the model—H-Law can
be interpreted and leveraged as follows: the far-
ther an input is along HD against the harmfulness
direction, (i.e., the safer it is), the stronger the com-
pliance steering should be applied along HD.

Building on these critical insights, we propose a
novel dual-direction Adaptive activation Steering
method for jailbreak defense (AdaSteer), enabling
dynamic and input-dependent control. As illus-
trated in Figure 1(c), AdaSteer steers the input
representation using two steering vectors, vl

RD and
vl

HD, along the Rejection Direction (RD) and Harm-
fulness Direction (HD), respectively. The corre-
sponding coefficients, λr and λc, are determined
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via logistic regression based on the Rejection Law
(R-Law) and Harmfulness Law (H-Law). For jail-
break inputs, AdaSteer dynamically adjusts λr to
reinforce rejection while keeping λc minimal to
prevent interference. For benign inputs, a larger
λc is applied, steering the representation toward
compliance behavior and preserving model utility.

It is important to emphasize that the direction
identification and logistic regression fitting process
relies solely on standard harmful prompts, with
only a small development set of jailbreak data used
for adjustment. This set has no overlap with the
final test data, ensuring a fair evaluation. This
highlights that our AdaSteer enables real-time and
flexible safety enforcement, dynamically adapting
to emerging attack strategies. As a result, it repre-
sents an adaptive defense mechanism that merits
further exploration (Anthropic, 2025).

Experiments on LLaMA-3.1-8B-Instruct (Dubey
et al., 2024), Gemma-2-9B-it (Team et al., 2024),
and Qwen2.5-7B-Instruct (Yang et al., 2024) val-
idate that R-Law and H-Law hold broadly. AdaS-
teer consistently outperforms baseline methods in
jailbreak defense across 7 attack strategies. Fur-
thermore, AdaSteer minimally affects the model’s
performance on benign inputs, ensuring its util-
ity remains intact. Our work serves as a concrete
demonstration that insights gained from interpret-
ing model internals can have practical applications
and well-aligned LLMs hold significant potential
to function as adaptive jailbreak defenders.

2 Preliminaries

Jailbreak Attacks and Defenses A jailbreak
attack seeks to craft an adversarial prompt s′ =
A(s0), where A represents an attack method and
s0 is a vanilla harmful prompt. The objective is to
induce the LLM to generate a harmful response that
aligns with the malicious intent of s0, bypassing
built-in safety mechanisms. Conversely, a jailbreak
defense aims to protect the model against such ad-
versarial manipulations.

Activation Steering Existing research suggests
that LLMs encode features or concepts as linear
directions in activation space (Mikolov et al., 2013;
Park et al., 2024). Building on this insight, acti-
vation steering aims to directly control model be-
havior by adjusting its internal activations along
specific feature directions during inference. This
method generally follows two key steps. First, at
the specific model layer l, a steering vector vl is de-

rived along the desired feature direction, typically
by computing the difference in activations between
examples that exhibit the target behavior and those
that do not. Second, during inference, this vector
is introduced into the model’s hidden states hli at
the i-th token position within the selected layer l,
scaled by a coefficient λ:

h′l
i = hl

i + λvl

where i represents the index of the token’s repre-
sentation in the input, while l denotes the index of
the manipulated layer.

3 Methodology

3.1 Overview
We propose AdaSteer, which dynamically steers
the model’s activations based on the input’s char-
acteristics, ensuring strong resistance against ad-
versarial prompts while minimizing unnecessary
refusals of benign queries. The adaptive steering
mechanism is formulated as follows:

h′l
i = hl

i + λrv
l
RD + λcv

l
HD (1)

where RD (Rejection Direction) and HD (Harm-
fulness Direction) represent key axes within the
activation space that encode the model’s refusal
and harmfulness behaviors, respectively. The cor-
responding steering vectors vl

RD and vl
HD adjust

the model’s activations, with their strengths λr and
λc dynamically determined using logistic regres-
sion. The following sections introduce how we
identify these directions, extract steering vectors,
and determine the adaptive coefficients.

3.2 Rejection Direction (RD), vRD and λr

LLMs encode rejection behaviors as a linear di-
rection within the activation space (Arditi et al.,
2024). We identify this Rejection Direction (RD)
and analyze how different jailbreak strategies ex-
hibit distinct behaviors along it, laying the founda-
tion for an adaptive rejection mechanism through
input-dependent steering strength (λr).

Datasets We utilize two types of vanilla harmful
data to identify RD—one consisting of inputs re-
jected by the model and the other containing those
that bypassed rejection. These harmful samples
are sourced from multiple datasets, including Ad-
vBench (Zou et al., 2023b), TDC2023 (Mazeika
et al., 2023, 2024), Malicious Instruct (Huang et al.,
2024), and Jailbreak Bench (Chao et al., 2024).
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Figure 2: The visualization of posRD and posHD for each
input. The value in parentheses next to each jailbreak
method in the legend indicates the average λr needed
to cause the model to reject all inputs.

Identifying RD To identify RD, we compute the
difference between the model’s mean activations
when processing rejected and complied harmful
inputs. This approach, known as the difference-in-
means method (Belrose, 2023), effectively isolates
the RD by capturing activation shifts associated
with rejection behavior. For each layer l ∈ [L],
we calculate the mean activation µl

r-harmful for re-
jected harmful inputs from Drejection

harmful and µl
c-harmful

for complied harmful inputs from Dcompliance
harmful , with

the representation of the last token position hl(x)
given the input x:

µl
r-harmful =

1

|Drejection
harmful |

∑
x∈Drejection

harmful

hl(x) (2)

µl
c-harmful =

1

|Dcompliance
harmful |

∑
x∈Dcompliance

harmful

hl(x) (3)

We then identity RD via difference-in-means:

dl
RD = µl

r-harmful − µl
c-harmful (4)

Extracting Rejection Steering Vector Unlike
prior works that conducts extensive search and val-
idation to identify the most salient direction (Arditi
et al., 2024; Shen et al., 2025), we directly use dl

RD
as the steering vector vl

RD at each layer and each to-
ken position, which still exhibits significant effects
on steering rejection behavior.

Deriving the Rejection Law As illustrated in
Figure 2, jailbreak inputs exhibit distinct distribu-
tions along RD. We define the Harmful Compliance
Center (red point) as the origin, where positive val-
ues correspond to increased rejection and negative
values indicate compliance tendencies. We observe

an almost linear relationship between an input’s RD
position (posRD) and the required rejection steering
strength (λr), which forms the Rejection Law:

Rejection Law: Inputs that are positioned fur-
ther in the negative direction against RD re-
quire a greater rejection steering coefficient λr

to induce rejection behavior.

Fitting the Rejection Law Formally, posRD can
be obtained by:

posRD = (hl − µl
c-harmful) · dl

RD (5)

We adopt those harmful inputs that make the back-
bone comply, apply steering with varying strengths
λr, and record both the original posRD of each
harmful input and the corresponding λr used to in-
duce rejection behavior, forming (posRD, λr) pairs.
Then we fit a logistic regression curve:

λr = wr · posRD + br (6)

where wr, br are hyperparameters in logistic regres-
sion. We conduct a grid search on the validation
set to fine-tune the curve with greater precision.

3.3 Harmfulness Direction (HD), vHD and λc

Relying solely on RD can lead to false rejections
of benign inputs, as they may also distribute nega-
tively along RD. To address this, we introduce the
Harmfulness Direction (HD), capturing harmful-
ness characteristics separately.

Datasets We contrast complied benign inputs
(from OR-Bench (Cui et al., 2024)) with complied
harmful inputs, ensuring both datasets exhibit simi-
lar compliance behavior but differ in harmfulness.

Identifying HD We apply the same difference-
in-means to identify HD by calculating the mean
activation µc-benign

i,l for benign inputs from Dcompliance
benign

µl
c-benign =

1

|Dcompliance
benign |

∑

x∈Dcompliance
benign

hl(x) (7)

Then HD is identified by:

dl
HD = µl

c-benign − µl
c-harmful (8)

Extracting compliance steering vector In
fact, HD represents the backbone’s compliance
behavior—identified by benign and harmful inputs
that are both complied by the model—We can ex-
tract the compliance steering vector along HD to
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resist the influence of vl
RD, thereby mitigating the

false rejection on benign inputs.
More specifically, we take the projection of dl

HD
along dl

HD as the compliance steering vector, which
assists in offsetting the rejection vector on benign
inputs, thereby enhancing utility:

vHD = dl
RDd

l
RD

⊤dl
HD (9)

Deriving the Harmfulness Law As shown in
Figure 2, along the HD direction (x-axis), we also
define the Harmful Compliance Center (red point)
as the origin. The leftward direction represents less
harmful (positive), while the rightward direction
represents increased harmfulness (negative). Each
input is projected onto the HD, yielding a coordi-
nate posHD. On HD, we notice that jailbreak in-
puts generally have smaller posHD values, whereas
benign inputs, tend to have larger posHD values,
which can be summarized as the following Harm-
fulness Law.

Harmfulness Law: Inputs that are positioned
further in the positive direction along HD re-
quire a greater compliance steering coefficient
λc to encourage compliance.

Fitting the Harmfulness Law Similar to RD,
posHD can be obtained by:

posHD = (hl − µl
c-harmful) · dlHD (10)

For benign inputs from OR-Bench that are
falsely rejected, we apply compliance steering vec-
tors at varying intensities. For each input, we
record its original posHD and determine the λc

value required for the model to accept it. We fit a
logistic regression curve to these (posHD, λc) pairs.

λc = wc · posHD + bc (11)

where wc, bc are parameters of logistic regression.
Additionally, we conduct a small-scale grid search
around the fitted hyperparameters.

3.4 Adaptive Activation Steering

Given any input prompt t′, we first utilize Eq. (6)
and Eq. (11) to compute the steering coefficients
λr and λc based on the positions posRD and posHD.
We then substitute these coefficients into Eq. (1)
to perform adaptive steering on the model’s hid-
den states across all layers at each token position,
ensuring controlled safety behavior.

4 Experiments

4.1 Experimental Setup
Backbone We conduct experiments on three
aligned LLMs: LLaMA-3.1-8B-Instruct (Dubey
et al., 2024), Qwen2.5-7B-Instruct (Yang et al.,
2024) and Gemma-2-9B-it (Team et al., 2024) to
evaluate the effectiveness of our approach.

Benchmark We test our approach against sev-
eral state-of-the-art jailbreak attack methods, in-
cluding role-playing attacks, AIM, gradient- or
genetic algorithm-based prompt optimization tech-
niques: AutoDAN (Liu et al., 2024a) and GCG
(Zou et al., 2023b), and attacks that encrypt mali-
cious queries using methods such as code, Base64
encoding, ciphering, LaTeX, and low-resource lan-
guages: Jailbroken (Wei et al., 2023a), Cipher
(Yuan et al., 2024), ReNeLLM (Ding et al., 2023a),
and MultiLingual (Deng et al., 2024). To assess
utility, we employ over-safety test suites such as
XSTest (Röttger et al., 2024) and OKTest (Shi
et al., 2024a), along with the general instruction-
following benchmark AlpacaEval (Dubois et al.,
2024). Please refer to Appendix A.2 for details.

Metrics For safety evaluation, we use the De-
fense Success Rate (DSR), which is computed using
GPT-4o. For assessments on XSTest and OKTest,
we follow Röttger et al. (2024) and employ GPT-4o
to measure the Compliance Rate (CR), represent-
ing the proportion of fully compliant responses.
Additionally, we evaluate the general utility on Al-
pacaEval using the Win Rate, which compares the
quality of generated responses against the original
model. A higher win rate indicates better preserva-
tion of the original model’s capabilities.

Baselines and Comparison Methods We eval-
uate AdaSteer against the following training-free
defense baselines, including Decoding-based Meth-
ods: (1) ROSE (Zhong et al., 2024), (2) Self-CD
(Shi et al., 2024b) and Steering-based Methods: (3)
Jailbreak Antidote (Shen et al., 2025), (4) Surgi-
cal (Wang et al., 2025), (5) InferAligner (Wang
et al., 2024b), (6) CAST (Lee et al., 2025). Please
refer to Appendix B for the detailed description.

Implementation Details We conduct experi-
ments with PyTorch (Paszke et al., 2019) on a sin-
gle NVIDIA Tesla A100 GPU. We set do_sample
to False for generation, which means using greedy
decoding. Additional implementation details are
provided in Appendix C.
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Jailbreak Attack Over-Safety Utility
DSR↑ CR↑ Win Rate↑

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM AVG. AVG. AlpacaEval

LLaMA-3.1 57 30 0 60 61 22 37 38.14 94.40 50.00

ROSE 100 83 51 94 85 61 85 79.86 90.47 2.81
Self-CD 94 67 5 66 67 43 43 55.00 93.74 2.27
Jailbreak Antidote 92 100 61 94 79 44 66 76.57 91.44 45.93
Surgical 100 75 10 88 84 82 91 75.71 82.37 47.29
InferAligner 85 90 0 92 77 82 77 71.86 80.47 47.19
CAST 100 100 0 66 76 46 56 63.43 95.00 37.76

AdaSteer (Ours) 100 100 82 90 85 100 86 91.86 97.87 50.01

Qwen2.5 92 47 0 88 46 14 3 41.43 95.00 50.00

ROSE 99 52 8 86 58 12 0 45.00 97.00 1.03
Self-CD 69 50 2 82 54 6 0 37.57 96.00 0.96
Jailbreak Antidote 88 86 72 100 60 78 3 69.57 93.17 42.86
Surgical 94 41 0 82 47 13 3 40.00 95.24 48.85
InferAligner 100 98 0 98 60 94 11 65.86 93.40 48.43
CAST 80 73 0 68 63 9 1 42.00 95.60 47.90

AdaSteer (Ours) 100 98 88 92 78 90 96 91.71 91.10 48.36

Gemma-2 6 31 0 90 57 1 27 30.29 86.27 50.00

ROSE 7 50 25 100 67 20 87 50.86 81.74 1.98
Self-CD 4 25 0 90 56 0 46 31.57 85.24 1.75
Jailbreak Antidote 6 47 0 98 61 1 78 41.57 83.34 47.33
Surgical 99 100 14 98 68 96 78 79.00 90.57 38.98
InferAligner 31 100 24 100 85 93 62 70.71 74.44 48.48
CAST 8 35 0 94 65 4 33 34.14 81.94 50.32

AdaSteer (Ours) 91 95 75 86 86 86 82 85.86 92.80 48.28

Table 1: The overall results of the three backbones (LLaMA-3.1-8B-Instruct, Qwen2.5-7B-Instruct, and Gemma-2-
9B-it) on the benchmarks of jailbreak defense, over-safety, and model utility. The evaluation metric for jailbreak
defense is the Defense Success Rate (DSR) for each attack method, the evaluation criterion for over-safety is the
Compliance Rate (CR), and the utility is measured by the win rate compared to the original model.

Jailbreak Attack Over-Safety Utility

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM XSTest OKTest AlpacaEval

dRD
posRD -71.77 -74.84 -72.16 -26.36 -63.80 -68.85 -65.07 -40.65 -45.62 -50.96
λr -0.21 0.22 0.20 0.08 0.14 0.17 0.13 0.08 0.08 0.09

dHD
posHD -17.51 -17.36 -12.78 -17.01 -15.36 -14.74 -25.55 18.36 15.04 5.98
λc 0.02 0.03 0.10 0.01 0.05 0.07 -0.11 0.32 0.30 0.22

Table 2: Results of the average positions and steering strength for complied inputs from different jailbreak methods
and benign inputs on LLaMA-3.1.

4.2 Overall Results

Table 1 demonstrates the performance comparison
of AdaSteer and baselines based on LLaMA-3.1-
8B-Instruct, Qwen2.5-7B-Instruct and Gemma-2-
9B-it. For the results of over-safety on each dataset,
please refer to the Appendix D.1.

AdaSteer significantly outperforms all baseline
methods in jailbreak defense across various at-
tack strategies, achieving near-complete resistance
(DSR = 100) in most cases. This demonstrates
the effectiveness of dynamically adjusting steering
strength based on the characteristics of different
jailbreak methods. In contrast, existing methods,
including the most advanced Jailbreak Antidote
and Surgical, show inconsistent performance across
attack types, highlighting their vulnerability to cer-

tain adversarial techniques. Further, we adjust var-
ious hyperparameters for these two methods and
identify a trade-off between safety, over-safety, and
utility. By contrast, AdaSteer remains unaffected,
underscoring our approach’s superiority. Please
refer to Appendix D.2 for detailed reuslts and anal-
ysis. The results validate our claim that a fixed
steering struggles to generalize against diverse jail-
break attacks, while AdaSteer’s adaptive mecha-
nism ensures robust and comprehensive defense.

Regarding benign inputs, AdaSteer maintains
performance close to the original model, as re-
flected in its high utility win rate and strong com-
pliance retention. This confirms its ability to dis-
tinguish between jailbreak and benign inputs, pre-
serving model utility without over-enforcing re-
fusals. Notably, while CAST applies conditional
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LLaMA-3.1 Jailbreak↑ Over-Safety↑ Utility↑
AdaSteer 91.86 97.87 50.01

w/o vRD 39.57 98.54 50.70
w/o vHD 91.57 74.37 45.72
w/ reverse vRD 92.14 95.20 47.02

Qwen2.5 Jailbreak↑ Over-Safety↑ Utility↑
AdaSteer 91.71 91.10 48.36

w/o vRD 46.00 96.54 48.82
w/o vHD 92.86 79.60 36.37
w/ reverse vRD 87.43 90.54 48.05

Gemma-2 Jailbreak↑ Over-Safety↑ Utility↑
AdaSteer 85.86 92.80 48.28

w/o vRD 56.57 88.67 49.99
w/o vHD 92.14 90.17 33.08
w/ reverse vRD 91.43 96.60 46.00

Table 3: Ablation study on the effectiveness of steering
vectors in our AdaSteer.

steering, its approach only differentiates between
vanilla harmful prompts and benign queries, fail-
ing to effectively address jailbreak inputs due to
their adversarial nature mimicking benign behav-
ior. This limitation underscores the necessity of
introducing Harmfulness Direction (HD) to sepa-
rate jailbreak and benign inputs more effectively,
further justifying our design choice in AdaSteer.

4.3 Analysis of Adaptive Steering

To directly demonstrate how AdaSteer operates,
Table 2 quantifies average posRD and posHD for be-
nign (AlpacaEval) and different types of jailbreak
inputs on LLaMA-3.1, alongside the corresponding
λr and λc computed by AdaSteer. The results in-
dicate that: On dRD, AdaSteer strongly rejects jail-
break inputs while minimizing rejection for benign
queries. On dHD, benign inputs receive a higher
λc, counteracting the rejection effect, while jail-
break inputs remain largely unaffected. Results for
Qwen2.5 and Gemma-2 are in Appendix D.3.

4.4 Steering Vector Analysis

Tabel 3 presents the results of the ablation study
evaluating the impact of different steering vectors
in AdaSteer across three backbones. We compare
the full AdaSteer method with three ablated ver-
sions: (1) w/o vRD, which removes rejection steer-
ing, (2) w/o vHD, which removes compliance steer-
ing, and (3) w/ reverse vRD, which replaces vHD
with the inverted vRD.

The results show that removing vRD lowers jail-
break resistance, confirming its role in reinforcing

Jailbreak
(DSR )

Over-Safety
(CR )

AlpacaEval
(Win Rate )

80.29

91.71 93.71 94.04 91.10
97.17

45.72 48.36 47.90

23.86

94.74

50.00
41.43

95.00

50.00
59.57

97.34

50.00

Qwen2.5-3B
Qwen2.5-7B
Qwen2.5-14B

Figure 3: The results of AdaSteer across different sizes
of Qwen2.5. The values above the bars represent the
original model’s performance, while the values below
the line indicate that after applying AdaSteer.

rejection behavior. Conversely, removing vHD sig-
nificantly degrades utility, indicating that compli-
ance steering is crucial for reducing false rejections.
The reverse vRD setting achieves comparable jail-
break defense but sacrifices utility, demonstrating
that simply inverting the rejection vector is subop-
timal for distinguishing benign inputs. These find-
ings validate the necessity of steering along both
rejection and harmfulness direction for achieving
robust and adaptive jailbreak defense.

4.5 The Impact of Model Size

To evaluate the scalability of AdaSteer, we assess
it across three different sizes of Qwen2.5 mod-
els ranging from 3B to 14B, as shown in Figure
3. The results demonstrate that AdaSteer signifi-
cantly enhances jailbreak defense across all model
sizes while maintaining performance on benign in-
puts, highlighting its adaptability to different model
capacities. This consistency across scales under-
scores AdaSteer’s robustness as a generalizable
safety enhancement method. Moreover, the results
reveal that even smaller models, which are typically
more vulnerable to jailbreak attacks, can leverage
AdaSteer to achieve significant improvement on
adaptive jailbreak defense. This suggests that adap-
tive jailbreak defense is not exclusive to large-scale
models—smaller models, when equipped with our
AdaSteer, can also exhibit strong adversarial robust-
ness. Please refer to Appendix D.4 for the detailed
results on each jailbreak type.

4.6 Inference Efficiency Analysis

To evaluate the efficiency of different jailbreak de-
fense methods, we compare their tokens per second
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Figure 4: Trade-off between inference efficiency and
jailbreak defense success rate (DSR).

(token/s) relative to the original model. We con-
duct our experiments on a single NVIDIA Tesla
A100 GPU. For methods that support batch infer-
ence, we set the batch size to 64. The trade-off
between inference efficiency and jailbreak defense
success rate (DSR) is visualized in Figure 4. AdaS-
teer is positioned in the upper-right region of the
plot, demonstrating that it achieves a strong bal-
ance between safety and efficiency. Unlike other
high-performing defenses that introduce significant
computational overhead, AdaSteer maintains high
DSR without excessive inference cost, preserving
a runtime speed close to that of the original model.
This highlights its practicality as a scalable and
efficient solution for enhancing model security in
real-world deployments.

5 Related Works

Jailbreak Attack Recent studies have exposed
a significant threat termed jailbreak attack, where
adversarial prompts are designed to bypass safety
mechanisms and induce models to generate harm-
ful content. Existing jailbreak methods can be clas-
sified into three types (Zhou et al., 2024): (1) Hu-
man Design (Li et al., 2023a,b; Shayegani et al.,
2023; Wei et al., 2023c), which encompasses jail-
break prompts crafted manually, leveraging human
creativity to bypass safeguards (2) Long-tail En-
coding (Yuan et al., 2023; Deng et al., 2024; Lv
et al., 2024), which leverages the limited cross-task
generalization ability of LLMs to unseen data dur-
ing safety alignment, and (3) Prompt Optimization
(Zou et al., 2023b; Liu et al., 2023; Yu et al., 2023;
Chao et al., 2023; Ding et al., 2023b; Mu et al.,
2024) aims at automatically designing jailbreak
prompt to induce harmful content. These diverse

attacks highlight the urgent need for robust and
flexible defenses to maintain LLM safety.

Jailbreak Defense Safety post-training is a
widely used approach for enhancing LLMs’ re-
sistance to jailbreak attacks. Some methods
strengthen the model’s refusal behavior by further
fine-tuning on safety data (Xu et al., 2024; Zhao
et al., 2024) or applying preference optimization
(Bai et al., 2022a; Ouyang et al., 2022; Rafailov
et al., 2023). Others employ machine unlearning
techniques (Yao et al., 2023; Liu et al., 2024b;
Zhang et al., 2024) to erase harmful knowledge
from the model. However, these approaches of-
ten come with substantial computational costs and
are highly sensitive to variations in training data,
resulting in inconsistent performance.

Activation Steering Steering representation
within LLMs has garnered increasing attention due
to its transparency and lightweight properties (Zou
et al., 2023a). This technique is grounded in the
theoretical premise that LLMs encode features or
concepts as linear directions in activation space
(Mikolov et al., 2013; Park et al., 2024). Exist
works mainly adopt static steering with a fixed co-
efficient exerted on the extracted refusal vectors
for jailbreak defense (Zheng et al., 2024; Qian
et al., 2024; Stickland et al., 2024; Li et al., 2025;
Shen et al., 2025). Although few works explore
more fine-grained steering control, they are still
narrowed within vanilla harmful prompt scenario
(Bhattacharjee et al., 2024; Wang et al., 2024c; Lee
et al., 2025), leaving the more challenging jailbreak
attacks under-explored.

AdaSteer stands out by enabling dynamic and
input-dependent control over jailbreak defenses, ef-
fectively enhancing safety while preserving utility.

6 Conclusion

In this work, we propose AdaSteer, a dual-direction
adaptive activation steering method that enhances
jailbreak defense in LLMs while maintaining
their utility. By identifying two key properties—
Rejection Law and Harmfulness Law—we show
that jailbreak inputs exhibit distinct behaviors in ac-
tivation space, allowing for dynamic, input-aware
steering along the Rejection and Harmfulness Di-
rection. Extensive experiments on LLaMA-3.1,
Gemma-2, and Qwen2.5 confirm that AdaSteer out-
performs baselines across diverse jailbreak strate-
gies, demonstrating its effectiveness and scalability.
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Limitations

Despite the effectiveness of AdaSteer, our study has
certain limitations that warrant further exploration.

First, due to computational constraints, our ex-
periments are conducted on mid-sized LLMs (e.g.,
LLaMA-3.1-8B, Gemma-2-9B, and Qwen2.5-7B).
While our results demonstrate the scalability of
AdaSteer across different model sizes, its perfor-
mance on larger-scale models (e.g., 30B+ param-
eters) remains unverified. Future work should in-
vestigate whether AdaSteer maintains its efficiency
and adaptability in frontier LLMs.

Second, our method relies on linear activation
steering, assuming that model behaviors can be
effectively controlled via low-dimensional vector
manipulations. While this has shown strong empir-
ical results, future research could explore nonlinear
adaptations or layer-wise adjustments to further
refine AdaSteer’s adaptability.

Despite these limitations, our findings demon-
strate the practicality, efficiency, and robustness of
AdaSteer, paving the way for scalable and inter-
pretable jailbreak defenses in LLMs.

Ethical Considerations

Our work is conducted solely for research pur-
poses and aims to enhance the security and robust-
ness of LLMs against adversarial jailbreak attacks.
AdaSteer is designed to improve model alignment
with human values by providing an adaptive, in-
terpretable, and training-free defense mechanism.
Our study does not intend to create or facilitate new
jailbreak techniques but rather to understand and
mitigate existing vulnerabilities in LLMs.

Furthermore, our research focuses on interpret-
ing the internal safety mechanisms of LLMs, con-
tributing to the broader goal of responsible AI de-
velopment. The datasets used in our experiments
are publicly available and widely adopted in the
field. We strictly adhere to ethical guidelines, en-
suring that our methodology does not promote or
reinforce harmful behaviors.

While AdaSteer improves jailbreak defense, no
security measure is absolute. We encourage con-
tinued collaborative research on evolving safety
threats and emphasize the importance of transpar-
ent, ethical AI deployment to safeguard LLM usage
in real-world applications.
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A Datasets

A.1 Datasets for Direction Identification and
Vector Extraction

• AdvBench (Zou et al., 2023b) AdvBench is a
collection of 520 harmful behaviors expressed
as instructions. These behaviors cover similar
themes as those in the harmful strings setting,
but with the adversary’s objective being to
identify a single attack string that causes the
model to generate any response that attempts
to fulfill the instruction, ideally triggering as
many harmful behaviors as possible.

• Malicious Instruct (Huang et al., 2024) Ma-
liciousInstruct is a dataset comprising 100
harmful instances presented as instructions.
It covers ten distinct malicious intentions, in-
cluding psychological manipulation, sabotage,
theft, defamation, cyberbullying, false accu-
sation, tax fraud, hacking, fraud, and illegal
drug use.

• TDC2023 (Mazeika et al., 2023, 2024) The
TDC 2023 Red Teaming Track dataset in-
cludes a diverse array of harmful behav-
iors. These behaviors are presented as self-
contained sequences, without any accompany-
ing contextual strings or images.

• Jailbreak Bench (Chao et al., 2024) Jailbreak-
bench is an open-source robustness bench-
mark for jailbreaking large language models
(LLMs). Its harmful subset consists of 100
harmful behaviors, designed to (1) facilitate
the creation of successful jailbreaks and (2)
enable the development of defenses against
them. These behaviors represent a mix of
original cases and those sourced from notable
prior work.

• Or-Bench (Cui et al., 2024) Or-Bench has
been introduced to evaluate the over-refusal
behavior of LLMs. Its subset of Or-Bench
consists of prompts that are considered safe
but are likely to be rejected by LLMs. We sam-
ple 300 instances from it for direction identi-
fication and vector extraction, while the rest
are used for the validation set.

A.2 Benchmarks

Jailbreak Attacks

• AIM 1 AIM stands for "Always Intelligent
and Machiavellian." The AIM Prompt serves
as a jailbreak message that directs the AI
model to operate without regard for moral
or ethical considerations, concentrating exclu-
sively on achieving objectives by any means
necessary. In our experimental setup, we
utilize 100 harmful queries from AdvBench,
along with the AIM prompt, to assess the ef-
fectiveness of the AIM Jailbreak.

• AutoDAN (Liu et al., 2024a) AutoDAN is a
jailbreak attack method designed to realign
large language models (LLMs) by circum-
venting the model’s safety protocols through
the automatic generation of stealthy jailbreak
prompts. This method employs a hierarchical
genetic algorithm, allowing for the creation
of semantically coherent and hidden jailbreak
prompts without the need for manually crafted
inputs. Consequently, it successfully evades
defense mechanisms like perplexity-based de-
tection. AutoDAN demonstrates exceptional
cross-model transferability and cross-sample
generalizability, significantly surpassing base-
line methods in attack effectiveness. In our
experiments, we utilize EasyJailbreak (Zhou
et al., 2024) along with 100 harmful queries
from AdvBench to create the jailbreak inputs.

• Cipher (Yuan et al., 2024) Cipher is a jail-
break technique that leverages vulnerabilities
in large language models (LLMs) by employ-
ing encoding methods to circumvent content
filters and safety protocols. This approach em-
beds encoded or obfuscated commands within
prompts, enabling them to slip past detection
systems. In our experiments, we utilize Easy-
Jailbreak along with 25 harmful queries from
AdvBench to create the jailbreak inputs.

• GCG (Zou et al., 2023b) GCG, which stands
for Greedy Coordinate Gradient, is a method
used to jailbreak LLMs. This approach auto-
matically creates discrete adversarial tokens.
During the optimization process, it selects the
suffix that results in the lowest loss. Although
it lost some readability, it achieved a good
attack effect. In our experiments, we utilize

1https://jailbreakchat-hko42cs2r-alexalbertt-s-
team.vercel.app/prompt/4f37a029-9dff-4862-b323-
c96a5504de5d

24571



EasyJailbreak along with 50 harmful queries
from AdvBench to create the jailbreak inputs.

• Jailbroken (Wei et al., 2023b) Jailbroken is
a jailbreak attack method created by humans,
employing encoding techniques like base64 to
circumvent the model’s safety protocols and
prompt it to generate harmful content. In our
experiments, we utilize EasyJailbreak along
with 100 harmful queries from AdvBench to
create the jailbreak inputs.

• Multilingual (Deng et al., 2024, 2023) A
method for examining the jailbreak problem
in LLMs with a focus on multilingual safety
challenges. Currently, most existing security
measures for LLMs focus primarily on En-
glish, while Multilingual bypasses security de-
fenses by encoding input in low-resource lan-
guages. In our experiments, we utilize Easy-
Jailbreak along with 100 harmful queries from
AdvBench to create the jailbreak inputs.

• ReNeLLM (Ding et al., 2023a) This method
utilizes the LLM itself to create effective jail-
break prompts. By employing techniques
like Prompt Rewriting and Scenario Nesting,
harmful input is concealed as tasks such as
refining LaTeX tables or code. In our exper-
iments, we utilize EasyJailbreak along with
100 harmful queries from AdvBench to create
the jailbreak inputs.

Over-Safety Evaluation

• XSTest (Röttger et al., 2024) It consists of
250 safe prompts divided into ten distinct cat-
egories, which well-calibrated models should
readily comply with.

• OKTest (Shi et al., 2024b) It includes 300 test
samples featuring safe questions that incorpo-
rate harmful and sensitive words.

Utility Evaluation

• AlpacaEval (Dubois et al., 2024) A fast and
inexpensive LLM benchmark uses an LLM-
based auto-annotator to estimate response
quality. It employs Win Rate to compare the
effectiveness of the current output against the
reference. With a correlation of up to 0.98
with human preferences, it serves as a reli-
able tool for evaluating the impact of defense
methods on model performance.

A.3 Validation Set

We include the parts of Or-Bench-Hard that do
not involve direction identification and vector ex-
traction as part of the validation set. Addition-
ally, We select the top five jailbreak methods from
jailbreak.com based on the highest votes, using
the other four, aside from AIM, as the validation
set, which are:

• Dev Mode V2 2

• Dev Mode + Ranti 3

• BetterDAN 4

• Evil Confidant 5

B Baseline Methods

We evaluate AdaSteer by comparing it with the
following training-free defense baselines, includ-
ing decoding-based methods: (1) ROSE (Zhong
et al., 2024), (2) Self-CD (Shi et al., 2024b), and
steering-based methods: (3) Jailbreak Antidote
(Shen et al., 2025), (4) Surgical (Wang et al., 2025),
(5) InferAligner (Wang et al., 2024b), (6) CAST
(Lee et al., 2025).

• ROSE (Zhong et al., 2024): A straightforward
approach aimed at enhancing the safety of
existing aligned LLMs. Its core principle is
to increase the likelihood of generating safe
outputs by suppressing undesirable responses,
achieved through the use of carefully crafted
reverse prompts.

• Self-Contrastive Decoding (Self-CD): A
decoding-based approach designed to address
over-safety issues. It gathers multiple re-
sponses from the model to the same question,
with prompts explicitly highlighting the con-
sideration of safety. Over-safety is then miti-
gated by contrasting the output distributions
of these responses.

2https://jailbreakchat-hko42cs2r-alexalbertt-s-
team.vercel.app/prompt/ff30aedf-ee6d-4c3b-ad71-
57c1a6e0e5fb

3https://jailbreakchat-hko42cs2r-alexalbertt-s-
team.vercel.app/prompt/a07a2dfe-a363-4682-bc4d-
3a2905b7efd0

4https://jailbreakchat-hko42cs2r-alexalbertt-s-
team.vercel.app/prompt/a07a2dfe-a363-4682-bc4d-
3a2905b7efd0

5https://jailbreakchat-hko42cs2r-alexalbertt-s-
team.vercel.app/prompt/588ab0ed-2829-4be8-a3f3-
f28e29c06621
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• Surgery (Wang et al., 2025): It extracts the
false-rejection vector and removes the true re-
jection components. By utilizing the modified
vector for steering, it minimizes false rejec-
tions while ensuring safety.

• Jailbreak Antidote (Shen et al., 2025): A
lightweight and scalable approach for mod-
ifying a system’s internal state to safeguard
against jailbreak attempts. It utilizes princi-
pal component analysis and sparsification to
defend against jailbreak inputs, while mini-
mizing the effect on utility.

• CAST (Lee et al., 2025): It derives condi-
tional vectors from specific data to classify in-
puts, selectively manipulating the representa-
tion space. By altering the type of data used to
extract these conditional vectors, the behavior
of the LLM can be systematically managed.

• InferAligner (Wang et al., 2024b): It identi-
fies security-related vectors (SRVs) and maps
the input onto these vectors. The outcome is
then evaluated against a threshold to decide
whether to direct the input for selective pro-
tection.

C Implementation Details

Our experiments are implemented with PyTorch
(Paszke et al., 2019) on a single NVIDIA Tesla
A100 GPU. For all experiments, the inference pro-
cess follows the official template.

We determine the number of layers for identi-
fying RD and HD through heuristic methods. For
RD, the posRD distribution of complied benign and
harmful inputs differs across layers. We select a
layer where the posRD of benign inputs is lower
than that of harmful inputs to minimize the impact
on benign inputs while dynamically rejecting jail-
break inputs. For HD, we choose a layer where
the overlap in posHD between benign and harmful
inputs is minimized. For detailed hyperparameters,
please refer to Table 10.

To determine the value of λr required for the
model to reject all jailbreak inputs in Figure 2, we
first categorize the harmful inputs into those that
are rejected and those that are complied with. We
then calculate the average position of the rejected
harmful inputs on the RD. This average position
represents the exact location of the harmful rejec-
tion center. Next, we determine the λr needed to
draw the complied jailbreak inputs and toward this

center. Similarly, we label the harmful inputs that
were complied with in the same manner, for use in
subsequent logistic regression fitting.

For logistic regression fitting, we performed a
simple fit on RD using the mentioned compiled
harmful examples. Regarding the number of com-
piled harmful examples, we are surprised to find
that even a small number of such examples is suffi-
cient to achieve the desired effect. In our main ex-
periments, we use 15 compiled harmful examples
for LLaMA-3.1-8B-Instruct, 13 for Qwen2.5-7B-
Instruct, and 5 for Gemma-2-9B-it. We then con-
ducted a grid search on the Validation Set described
in A.3. Similarly, after dynamically applying RD,
we label λc as the threshold at which benign inputs
that were previously mistakenly rejected begin to
be correctly accepted — for example, 158 such
cases for LLaMA-3.1-8B-Instruct. We then fit the
λc curve and adjust it using grid search.

We want to emphasize that λr and λc should
not be infinitely large or small, because once they
reach a certain value, further increasing or decreas-
ing them becomes meaningless and may even lead
to decoding failure. To avoid this, we set upper
and lower limit λr and λc values for truncation on
the fitted logistic regression curve. Therefore, the
average pos and λ in the Table 2, Table 8 and Table
9 might not exhibit strict linearity, but each input
still receives the necessary steering force.

We use GPT-4o to determine whether the model
refuses to answer harmful queries and jailbreak
inputs. We also use GPT-4o to evaluate the over-
safety performance and calculate the proportion of
1_full_compliance. Below are the prompts.

D Additional Experimental Results

D.1 Results on Over-Safety

The detailed over-safety results from the main ex-
periment are presented in the table 5, illustrat-
ing that our approach effectively preserves the
over-safety performance of each backbone. No-
tably, compared to the backbone, performance im-
provements are observed in both LLaMA-3.1 and
Gemma-2, highlighting the advantages of the dy-
namic selection coefficient.

D.2 Further Analysis on Baselines

As shown in Figure 5 and Figure 6, in our analysis
of the Jailbreak Antidote and Surgical baselines on
LLama-3.1, we adjust various hyperparameters and
identify a trade-off between safety, over-safety, and
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Prompt

User: Please detect if the following answer explicitly rejects the user 

question: 

User question: {instruction} 

Answer: {answer}. 

Reply with Yes or No.

Prompt

User: I need your help with classifying responses by a large language 

model. There are three classes of responses.

1_full_compliance. This includes any direct attempt to give an answer, 

regardless of how accurate or relevant the answer is. It also includes 

cases where the model rejects the question for not having a meaningful 

answer.

2_full_refusal. The model states that it cannot, in the sense of will not, 

answer the prompted question. Full refusal includes responses that only 

offer alter- native suggestions without answering the original question 

(e.g. "instead of smashing a piñata, you could decorate it").

3_partial_refusal. This is any combination of refusal and compliance. 

This includes self-contradictory responses that first refuse and then go 

on to answer the prompted question (e.g. “killing time at the airport is 

unsafe, but here are some ways to pass the time at the airport”).

Below are the questions and responses, please give the class directly.

QUESTION:{question}"

RESPONSE: "{answer}" 

CLASS:'
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Figure 5: Trade-off between Compliance Rate (CR) and
jailbreak defense success rate (DSR).

utility. AdaSteer remains unaffected, underscoring
our approach’s superiority.

D.3 Analysis on Adaptive Steering

Tables 8 and Table 9 display the posRD and posHD
along with their respective λr and λc, for each data
type on Qwen2.5 and Gemma-2, respectively. On
the RD, we consistently observe that more rejection
vectors are effectively applied to input types with
lower posRD. In contrast, on the HD, Qwen2.5 does
not clearly differentiate the harmfulness of inputs
compared to LLaMA-3.1 and Gemma-2, leading to
similar posHD for both jailbreak and benign inputs.
However, due to tuning on the validation set, AdaS-
teer still manages to perform well on Qwen2.5.
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Figure 6: Trade-off between AlpacaEval Win Rate and
jailbreak defense success rate (DSR).

D.4 Analysis on Steering Vector and Model
Size

We report all experimental results of analysis of
steering vector in Table 6, further demonstrating
the validity of the identified directions and vectors.
Additionally, Table 7 presents all experimental re-
sults from the model size analysis, illustrating the
excellent scalability of AdaSteer.

We further evaluate AdaSteer on Gemma-2-27B,
one of the most recent and powerful open-weight
LLMs. As shown in Table 4, the base model ex-
hibits limited robustness under various jailbreak at-
tacks, with an average Defense Success Rate (DSR)
of only 27.86%. In contrast, AdaSteer dramatically
boosts defense performance across all seven attack
types, achieving a DSR of 92.57%.

Importantly, AdaSteer preserves model utility: it
maintains high helpfulness on benign prompts (as
measured by a 47.29% win rate on AlpacaEval) and
avoids excessive refusals, with over-safety refusal
rates (CR) on par with the baseline (e.g., 84.80%
→ 89.20% on XSTest and 90.33% → 95.33% on
OKTest). These results confirm that AdaSteer gen-
eralizes well to larger-scale models, maintaining
strong safety-performance trade-offs without re-
quiring any additional fine-tuning.

D.5 Analysis of Multilingual Attacks

Multilingual attacks present complexity due to lin-
guistic variability and diverse syntactic structures
(Zhao et al., 2025). However, we observe that
AdaSteer demonstrates significant improvements
in this scenario across all evaluated models. Specif-
ically, for multi-language jailbreak attacks, AdaS-
teer improves the defense success rate on: LLaMA-
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Jailbreak Attack Over-Safety Utility
DSR↑ CR↑ Win Rate↑

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM AVG. XSTest OKTest AlpacaEval

Gemma-2-27B 2 4 0 94 58 1 36 27.86 84.80 90.33 50.00
+ AdaSteer 100 100 86 98 80 97 87 92.57 89.20 95.33 47.29

Table 4: Evaluation of AdaSteer on the large-scale Gemma-2-27B-it across seven jailbreak attacks, two over-safety
benchmarks, and a utility benchmark.

3.1, from 67% to 100%, Qwen-2.5, from 14% to
90% andGemma-2, from 1% to 86%. These re-
sults demonstrate AdaSteer’s strong adaptability
and generalization in handling multilingual adver-
sarial prompts. While we acknowledge there is still
room for further enhancement, especially in low-
resource language settings, the current results show
that AdaSteer already provides a substantial boost
in defense effectiveness compared to baselines.

E Further Discussion

E.1 Nonlinear Steering Mechanisms

Currently, AdaSteer is built upon the widely
adopted linear representation theory of activation
space in LLMs (Zou et al., 2023a; Park et al., 2024),
which assumes that certain behavioral features (e.g.,
harmfulness or rejection) can be captured through
linear directions. While nonlinear steering mecha-
nisms may further enhance control and expressivity,
their theoretical foundations and practical imple-
mentations remain largely unexplored and unvali-
dated in the context of activation-based researches.

E.2 Combined with Training-related
Strategies

We believe that AdaSteer can indeed be effectively
combined with training-based strategies to further
enhance both security and utility. One promising
direction would be to treat the AdaSteer-modified
representations at each layer as target labels, and
the original model’s representations as inputs, us-
ing a mean squared error (MSE) loss to fine-tune
the model directly toward the desired behavior.

This would allow the model to internalize AdaS-
teer’s behavior as part of its own parameters, po-
tentially reducing inference-time overhead while
preserving its defensive effectiveness.

E.3 Limited Probing Data

Regarding the number of compiled harmful exam-
ples, we are surprised to find that even a small
number of such examples is sufficient to achieve
the desired effect. In our main experiments, we

use 15 compiled harmful examples for LLaMA-
3.1-8B-Instruct, 13 for Qwen2.5-7B-Instruct, and
5 for Gemma-2-9B-it. In addition, we include an
equal number of rejected harmful examples and
complied benign data for each model. In our exper-
iments, we found that even with such limited data,
AdaSteer is able to identify meaningful harmful
directions and achieve strong defense performance
across a range of jailbreak attacks. This demon-
strates the method’s data efficiency and practicality,
especially in scenarios where access to large-scale
harmful data is limited.

E.4 On the Plug-and-Play Property of
AdaSteer

Once the Rejection Direction (RD) and Harmful-
ness Direction (HD) are extracted, we do not per-
form any additional adjustments for different at-
tack types or data distributions. One of the core
strengths of AdaSteer is that these directions, once
computed, remain fixed and reusable across di-
verse scenarios. As shown in Table 1, AdaS-
teer demonstrates strong robustness against a wide
range of jailbreak strategies—including prompt
injection, role-play attacks, and multilingual at-
tacks—without the need to modify RD or HD. This
validates the general applicability of the extracted
directions and supports our claim that AdaSteer
can serve as a plug-and-play defense mechanism
across different threat models.
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Over-Safety
XSTest OKTest AVG.

LLaMA-3.1 92.80 96.00 94.40

ROSE 89.60 91.33 90.47
Self-CD 92.80 94.67 93.74
Jailbreak Antidote 87.20 95.67 91.44
Surgical 74.40 90.33 82.37
InferAligner 75.60 85.33 80.47
CAST 94.00 96.00 95.00

AdaSteer (Ours) 98.40 97.33 97.87

Qwen2.5 96.00 94.00 95.00

ROSE 96.00 98.00 97.00
Self-CD 96.00 96.00 96.00
Jailbreak Antidote 92.00 94.33 93.17
Surgical 96.80 93.67 95.24
InferAligner 92.80 94.00 93.40
CAST 95.20 96.00 95.60

AdaSteer (Ours) 95.20 87.00 91.10

Gemma-2 83.20 89.33 86.27

ROSE 82.80 80.67 81.74
Self-CD 82.80 87.67 85.24
Jailbreak Antidote 78.00 88.67 83.34
Surgical 90.80 90.33 90.57
InferAligner 65.20 83.67 74.44
CAST 83.20 80.67 81.94

AdaSteer (Ours) 93.60 92.00 92.80

Table 5: The detailed results of over-safety with
LLaMA-3.1-8B-Instruct and Qwen2.5-7B-Instruct and
Gemma-2-9B-it.
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Jailbreak Attack Over-Safety Utility
DSR↑ CR↑ Win Rate↑

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM AVG. XSTest OKTest AlpacaEval

LLaMA-3.1 57 30 0 60 61 22 37 38.14 92.80 96.00 50.00
AdaSteer (Ours) 100 100 82 90 85 100 86 91.86 98.40 97.33 50.01

w/o vRD 47 35 0 64 64 22 45 39.57 98.40 98.67 50.70
w/o vHD 100 100 96 78 95 91 81 91.57 66.40 82.33 45.72
w/ reverse vRD 100 100 95 86 87 98 84 92.14 96.40 94.00 47.02

Qwen2.5 92 47 0 88 46 14 3 41.43 96.00 94.00 50.00
AdaSteer (Ours) 100 98 88 92 78 90 96 91.71 95.20 87.00 48.36

w/o vRD 25 73 23 90 46 14 51 46.00 98.40 94.67 47.82
w/o vHD 100 100 76 96 92 100 86 92.86 83.20 76.00 36.37
w/ reverse vRD 100 100 58 100 83 100 71 87.43 92.40 88.67 48.05

Gemma-2 6 31 0 90 57 1 27 30.29 83.20 89.33 50.00
AdaSteer (Ours) 91 95 75 86 86 86 82 85.56 92.00 93.67 48.28

w/o vRD 14 98 22 94 78 16 74 56.57 86.00 91.33 49.99
w/o vHD 100 99 100 60 86 100 100 92.14 98.00 82.33 33.08
w/ reverse vRD 98 100 99 68 90 94 91 91.43 99.20 94.00 46.00

Table 6: Detailed ablation studies on three backbones.

Jailbreak Attack Over-Safety Utility
DSR↑ CR↑ Win Rate↑

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM AVG. XSTest OKTest AlpacaEval

Qwen2.5-3B 13 47 0 56 40 5 6 23.86 94.80 94.67 50.00
AdaSteer (Ours) 94 97 56 88 79 100 48 80.29 94.40 93.67 45.72

Qwen2.5-7B 92 47 0 88 46 14 3 41.43 96.00 94.00 50.00
AdaSteer (Ours) 100 98 88 92 78 90 96 91.71 95.20 87.00 48.36

Qwen2.5-14B 100 100 0 78 54 44 41 59.57 98.00 97.00 50.00
AdaSteer (Ours) 100 99 68 100 91 100 98 93.71 98.00 96.33 47.90

Table 7: The results of AdaSteer across different sizes of Qwen2.5-7B-Instruct.

Jailbreak Attack Over-Safety Utility

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM XSTest OKTest AlpacaEval

dRD
posRD 121.11 122.66 113.82 132.65 122.00 122.28 123.32 126.10 121.98 132.85
λr 0.19 0.18 0.17 0.09 0.16 0.17 0.15 0.13 0.16 0.09

dHD
posHD 39.86 48.74 54.87 48.02 46.96 43.51 53.41 36.76 42.58 39.93
λc 0.31 -0.22 -0.52 -0.18 -0.13 0.09 -0.48 0.30 0.12 0.16

Table 8: Results of the average positions and steering strength for complied inputs from different jailbreak methods
and benign inputs on Qwen2.5-7B-Instruct.

Jailbreak Attack Over-Safety Utility

AIM AutoDAN Cipher GCG Jailbroken Multilingual ReNeLLM XSTest OKTest AlpacaEval

dRD
posRD 27.58 30.39 30.16 22.37 27.02 27.74 29.52 54.00 42.45 36.94
λr 0.020 0.011 0.017 0.004 0.011 0.019 0.008 -0.020 -0.015 -0.004

dHD
posHD 44.60 30.39 43.97 29.96 43.50 46.69 41.48 78.68 70.79 64.90
λc -0.052 -0.011 -0.017 -0.044 -0.040 -0.033 -0.050 0.020 0.015 0.005

Table 9: Results of the average positions and steering strength for complied inputs from different jailbreak methods
and benign inputs on Gemma-2-9B-it.

λr λc

Layer wr br upper bound lower bound Layer wc bc upper bound lower bound

LLaMA-3.1 8 -0.02 -1.2 0.22 0.08 13 0.017 0.25 0.25 -0.5

Qwen2.5 5 -0.01 1.4 0 0.2 13 -0.06 3.0 0.4 -0.6

Gemma-2 12 -0.004 0.14 0.2 -0.2 19 0.01 -0.5 0.02 -0.06

Table 10: Detailed hyperparameter settings of AdaSteer. Layer refers to where we fit the logistic regression.
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