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Abstract
We present REARANK, a large language
model (LLM)-based listwise reasoning rerank-
ing agent. REARANK explicitly reasons be-
fore reranking, significantly improving both
performance and interpretability. Leveraging
reinforcement learning and data augmentation,
REARANK achieves substantial improvements
over baseline models across popular informa-
tion retrieval benchmarks, notably requiring
only 179 annotated samples. Built on top of
Qwen2.5-7B, our REARANK-7B demonstrates
performance comparable to GPT-4 on both in-
domain and out-of-domain benchmarks and
even surpasses GPT-4 on reasoning-intensive
BRIGHT benchmarks. These results under-
score the effectiveness of our approach and
highlight how reinforcement learning can en-
hance LLM reasoning capabilities in reranking.
The code is available https://github.com/
lezhang7/Rearank.

1 Introduction

Information retrieval (IR) is a fundamental com-
ponent of intelligent systems, forming the basis
for accessing, organizing, and reasoning over infor-
mation across different modalities (Radford et al.,
2021; Zhang et al., 2023; Li et al., 2025a,b; Chen
et al., 2025; Fu et al., 2025; Huang et al., 2025).
Modern IR systems (Reimers and Gurevych, 2019,
2020; Wang et al., 2021; Formal et al., 2021; Wei
et al., 2025) typically follow a two-stage approach:
initial retrieval (e.g., fast lexical methods (Robert-
son et al., 2009)) to gather candidates, followed by
reranking for fine-grained prioritization of relevant
results. This two-stage process is particularly cru-
cial for Retrieval-Augmented Generation systems
(Lewis et al., 2020; Borgeaud et al., 2022; Zhang
et al., 2023; Liu et al., 2024), where accurate re-
trieval and effective reranking of context passages
significantly impact generated output quality.

*equal contribution

User:  Rank { Passage1, Passage2, ... } for the query { Query }. 

<think>
- Passage l1]: This passage provides a detailed definition 

of … It is relevant to the query. Keywords: xxx
- Passage [2]: This passage provides a clear …. It is highly 

relevant to the query. Keywords: xxx 
- Passage [3]: This passage … It is relevant but less 

relevant than Passages [1] and [2]. Keywords: xxx
- …

</think>

<answer>    [2] > [1] > [3] > […]   </answer>

Step

Figure 1: (Top) Average rerank results on popular bench-
marks (over BM25 top 100), the performance improves
with RL training; (Bottom) REARANK inference exam-
ple. The agent provides the reasoning and final ranking
of all passages, unlike current agents (Sun et al., 2023;
Pradeep et al., 2023b) that only output the final answer.

Recent advances in large language models
(LLMs) (Yang et al., 2024, 2025; Achiam et al.,
2023; Zhou et al., 2025; Dao et al., 2022) have
shown strong promise for this reranking phase
(Sun et al., 2023), particularly through their use as
reranking agents that rely on direct outputs rather
than internal states (e.g. logits) . This paradigm,
exemplified by zero-shot prompting methods (Sun
et al., 2023; Ma et al., 2023; Zhuang et al., 2024),
offers significant deployment flexibility, especially
in model-as-a-service scenarios. However, effec-
tively adapting LLMs specifically as reranking
agents presents several key challenges: (i) LLMs
are not inherently optimized for ranking objec-
tives, and crucially, current zero-shot methods do
not learn from the interaction signals generated
during the reranking process; (ii) Achieving com-
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petitive performance often necessitates supervised
fine-tuning, a process severely constrained by the
scarcity and high cost of acquiring high-quality
labeled ranking data (Sun et al., 2023); (iii) The
decision-making processes within these models fre-
quently lack transparent and interpretable reason-
ing, which limits explainability and fails to leverage
test-time scaling properties of LLMs; (iv) State-of-
the-art reranking agents frequently depend on large,
often proprietary models (e.g., GPT-4) or face sig-
nificant challenges in local deployment. This de-
pendency on large models incurs substantial com-
putational costs and significant inference latency
(e.g., reranking 20 passages with reasoning pro-
cess using DeepSeek-R1 (Guo et al., 2025) via API
takes around 90-120 seconds).

In this work, we propose REARANK, the first rea-
soning listwise reranking agent. REARANK’s op-
timization for listwise reranking with explicit rea-
soning is incentivized using reinforcement learning
(RL). This approach effectively leverages the rich,
order-based signals inherent in listwise reranking.
To address the significant data scarcity challenge
typically associated with training listwise models,
we introduce a data augmentation pipeline capable
of generating extensive listwise ranking sets from
a remarkably small seed of only 179 annotated
queries. At inference, REARANK generates ex-
plicit, interpretable reasoning for each ranking step,
as shown in fig. 1, enabling test-time scaling. Built
upon the principle of injecting strong reasoning
capabilities into a compact model, REARANK oper-
ates with low operational cost. The combination of
its practical model size and listwise reranking strat-
egy enhances inference efficiency by minimizing
LLM calls, thereby facilitating local deployment.

Our experimental results demonstrate REAR-
ANK’s effectiveness: it significantly surpasses base-
line models and achieves performance compara-
ble to strong models like GPT-4 and the recent
powerful reasoning model Qwen3-32B on standard
and out-of-domain benchmarks. Notably, REAR-
ANK even surpasses strong GPT-4 performance on
reasoning-intensive tasks, highlighting its advan-
tages in combining reasoning with practical effi-
ciency, as summarized in fig. 1.

Our main contributions are threefold: (i) We
introduce REARANK, a novel reasoning-based
reranking agent based on the listwise reranking
strategy that effectively integrates explicit reason-
ing capabilities into the reranking process. We
formularize the reranking problem in RL frame-

work, and propose a data synthesis method requir-
ing only 179 annotated queries, and a new reward
model leveraging ranking information for training,
enabling efficient RL training of REARANK; and
(ii) REARANK achieves significant performance
improvements over strong baselines and matches
or surpasses results from competitive models like
GPT-4 and strong reasoning model Qwen3, partic-
ularly on reasoning-intensive tasks, while offering
substantially improved inference efficiency due to
its compact model size. (iii) We provide a com-
prehensive analysis on reasoning transferability
and examining the relationship between reason-
ing length and final ranking performance to better
understand the role of reasoning in reranking.

2 Related Work

Large Reasoning Models Recent advancements
in LLMs have yielded increasingly sophisticated
reasoning capabilities (Liu et al., 2025; Wu et al.,
2025), often emerging with scale (Wei et al., 2022a;
Kojima et al., 2022). Techniques like Chain-of-
Thought prompting (Wei et al., 2022b) and its vari-
ants (Kojima et al., 2022; Wang et al., 2022) further
enhance these skills by enabling explicit reasoning
processes. Beyond prompting, training methods
like RL (Guo et al., 2025) are used to incentivize
long CoT reasoning; models such as Deepseek-R1
, OpenAI o1, and o3 leverage RL for enhanced rea-
soning, showing general task improvements. These
developments enable LLM application in complex
domains like math problems and planning. Our
work applies these advanced reasoning capabilities
to reranking.

LLMs for Re-ranking LLMs are increasingly
being used for reranking, moving beyond tradi-
tional feature-based models (Zhang et al., 2024b;
Lee et al., 2024; Ma et al., 2024a; BehnamGhader
et al., 2024; Sachan et al., 2022). Approaches range
from pointwise (Liang et al., 2022), pairwise (Qin
et al., 2023), setwise (Zhuang et al., 2024) to list-
wise methods (Ma et al., 2023; Sun et al., 2023;
Pradeep et al., 2023b). While few-shot/zero-shot
prompting was explored, supervised fine-tuning on
ranking data shows further gains (Pradeep et al.,
2023b,a). Building on this, our work proposes a
novel RL approach without cold start for training
a listwise LLM reranker, focusing on robust per-
formance and reasoning capabilities, especially in
out-of-domain and reasoning-intensive scenarios.

A concurrent work (Zhuang et al., 2025) also
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trains an LLM as a setwise reranker using RL.
It simplifies the task to finding the single most
relevant passage index, relying on a sparse text-
matching binary reward signal. This signal lacks
the rich, order-based information present in listwise
ranking, which consequently necessitates extensive
training data. Furthermore, setwise inference is
highly inefficient as it ranks only one passage at a
time, unlike our listwise method which reranks an
entire passages simultaneously as shown in fig. 2.
Therefore, we adopt the listwise reranking strategy.

Rank the passages based on 
their  relevance to the query

Which is  the most relevant 
passage to the query

3P1 4P2 1P3 5P4 2P5

P4 > P2 > P1 
> P5 >P3

P4

(a) listwise rerank

(b) setwise rerank

Input

listwise
Score [0,1]

text-match 
score 0/1

Q

Figure 2: Listwise vs. Setwise Reranking. Setwise
reranking yields binary scores (0 or 1); listwise rerank-
ing offers richer, continuous scores between 0 and 1.

3 Method

3.1 Listwise Re-ranking Agent
Given a query q and an initial set of n retrieved pas-
sages P = (p1, . . . , pn), the objective of reranking
is to find the optimal permutation (ranking) of these
passages. This can be formally expressed as maxi-
mizing a ranking quality score:

max
σ∈Kn

r({pσ(1), pσ(2), . . . , pσ(n)}), (1)

where Kn is the set of all possible permutations of
the passages P , σ represents a specific permutation
(a ranking), pσ(i) is the passage located at rank i in
the ranking defined by σ, and r is a scoring function
that measures the quality of the entire ranked list.

Listwise reranking methods (Sun et al., 2023;
Ma et al., 2024b; Pradeep et al., 2023b) reorder
subsets of passages using a sliding window. This
is necessary due to the limited context length of
LLMs, preventing simultaneous processing of all
passage at a time. Given an initial ranking τ over
passages P , an LLM-based permutation function h
(see fig. 2) is applied to a window of size w starting
at index i to determine the reordering within the
final ranking σ based on relevance to q:

{pσ(i), . . . , pσ(i+w−1)},
=h({pτ(i), . . . , pτ(i+w−1)}, q),

(2)

The final top-k list is constructed by iteratively
applying h using a sliding window that processes
the whole passages list, often from the end towards
the beginning. This window is typically shifted by
w/2 steps to create overlap, resulting in approxi-
mately O(2n/w) total LLM calls for n passages
and offering significant efficiency advantages.

3.2 RL for Listwise Re-ranking
A common mathematical framework for reinforce-
ment learning is the Markov Decision Process
(MDP), formally defined as a tuple (S,A, T, r, γ).
Here, S represents the state space, A is the action
space, T : S × A× S → [0, 1] denotes transition
probabilities, r : S×A → R is the reward function,
and γ ∈ [0, 1) is the discount factor.

In the context of passage reranking, we model
the process as an MDP where the agent is our LLM
policy πθ. The environment is defined by the query
q and an initial ranking τ over a set of passages
P = (p1, . . . , pn). The state space S is defined
by the current ranking of passages and the query,
specifically S = ({pτ(1), . . . , pτ(n)}, q). The ac-
tion space A corresponds to the set of possible
permutation functions h that the LLM can apply to
the current state. The transition function T mod-
els how actions lead to new states (rankings). The
reward function r quantifies the quality of a rerank-
ing action based on relevance metrics, providing
feedback to the agent.

We train πθ, an LLM fine-tuned to generate an
output sequence G consists of reasoning process
and a new permutation σθ based on the input x =
({pτ(1), . . . , pτ(n)}, q). The learning objective is to
maximize the expected reward:

θ∗ = argmax
θ

E(q,P )∼D[r(σθ)],

where D is the data distribution.
Inspired by DeepSeek-R1 (Guo et al., 2025), we

employ the simple Grouped Policy Optimization
(GRPO) algorithm. Training involves sampling a
group of output sequences G = {o1, o2, . . . , oG}
for each input x with the system prompt. A rule-
based reward ri is computed for each output se-
quence oi and normalized within the group G to
yield advantages Âi. Following DeepSeek-Math’s
(Shao et al., 2024) approach using current policy
samples, the token-level objective is:

JGRPO(θ) = − 1

|G|

|G|∑

i=1

1

|oi|

|oi|∑

t=1

li,t, (3)
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Figure 3: Pipeline of the proposed GRPO-based RL framework for listwise passage reranking. Training utilizes data
generated by sampling multiple passage sets per query and evaluating them with consistent relevance judgments.

where

li,t =
πθ (oi,t | x, oi,<t)

[πθ (oi,t | x, oi,<t)]nograd
Âi,t

− βDKL [πθ(· | x, oi,<t)∥πref(· | x, oi,<t)] .
(4)

Here, |G| is the number of output sequences
sampled from current policy πθ given input x,
|oi| is sequence length, and li,t is the per-token
loss. πθ(oi,t | x, oi,<t) is the policy probability
for token oi,t given x and preceding tokens oi,<t,
with [·]nograd denoting gradient detachment. The
token-wise advantage Âi,t is derived from outcome
supervision, calculated as the Z-score of the in-
stance reward ri relative to the batch rewards r:
Âi,t =

ri−mean(r)
std(r) . The KL penalty, using a fixed

reference policy πref and coefficient β, encourages
stability. The algorithm pipeline is shown in fig. 3.

3.3 Reward Design
The reward signal guides the RL agent by evalu-
ating the quality of its generated output sequence.
The output sequence Gi includes structured compo-
nents for reasoning (<think>...<|think|>) and
ranking (<answer>...<|answer|>), as illustrated
in fig. 1. The total reward r is a composite signal
designed to encourage both high ranking perfor-
mance and adherence to the desired output format.

The primary reward signal is based on the rich,
order-based information inherent in listwise rerank-
ing, measured by Normalized Discounted Cumu-
lative Gain (NDCG). Considering LLM context
limits, we use NDCG@10 to evaluate the ranking
of top-10 passages. For a generated permutation
{pσ(1), pσ(2), . . . , pσ(n)} for q, its score is rrerank =

NDCG@10 = DCG@10
IDCG@10 , where DCG@10 =

∑10
i=1

reli
log2(i+1) and IDCG@10 =

∑10
i=1

relideal
i

log2(i+1) .
Here, each query has an associated relevance judge-
ments including a set of passages with scores anno-
tated by human expert, reli is the relevance score

from the annotated relevance judgments for pσ(i) in
the generated permutation, and relideal

i is the ideal
relevance score from the relevance judgments for
the passage that would be at rank i in the ideal
ranking for that query. Since the maximum possi-
ble NDCG@10 can vary depending on whether the
randomly sampled passage set P contains relevant
documents, we define the ranking reward rrank as a
relative improvement score. This approach uses
min-max normalization to normalize for the differ-
ences in scales of reward scores between two dif-
ferent candidate sets and reduces reward variance
(Greensmith et al., 2004; Schulman et al., 2015):

rrank =
rrerank − rinit

r∗ − rinit
, (5)

where r∗ = maxσ∈Kn r({pσ(1), pσ(2), . . . , pσ(n)})
is the best achievable NDCG@10 for that specific
passages set P ; rinit = r({pτ(1), pτ(2), . . . , pτ(n)})
is the NDCG@10 of the initial ranking τ over P .

We also incorporate format rewards to encourage
the desired output structure. A reward rformat1 =
1 is given if both <think> and <answer> tags
are present in the output sequence. A reward
rformat2 = 1 is given if the content within the
<answer> tags follows the specified ranking list
format (e.g., [3] > [1] >[2]).

The final reward r for a generated sequence is a
weighted sum of these components:

r = 0.8 · rrank + 0.1 · rformat1 + 0.1 · rformat2 (6)

3.4 Initial State Expansion

Training effective listwise rerankers faces a pri-
mary challenge in the scarcity of high-quality train-
ing data, defined as query q paired with relevance
judgments. To address this, we introduce a multi-
sampling data augmentation method. Utilizing a
small dataset of 179 queries from MSMARCO-V2
with fine-grained relevance judgments (0-3), we
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randomly sample multiple diverse sets of candi-
date passages P for each query q from its BM25
top 100 retrieval results. The core idea is to evalu-
ate new ranking {pσ(1), . . . , pσ(n)} produced from
these varied initial ranking τ over diverse P us-
ing the same set of relevance judgments. This
multi-sampling approach shares conceptual sim-
ilarities with negative sampling in contrastive learn-
ing (Xiong et al., 2020; Zhang et al., 2024a, 2025;
BehnamGhader et al., 2024; Lee et al., 2024). By
sampling varied initial passage sets and intial rank-
ing, we effectively generate diverse ranking scenar-
ios for a given query, allowing the model to learn
robustly from a wider range of non-ideal inputs.
This method generates rich listwise ranking data
from limited annotations, enabling the model to
learn robustly from diverse initial conditions and
significantly reducing the need for large-scale, fully
annotated query sets.

4 Experiments

4.1 Experimental Setup

Training Details Training data instances are gen-
erated by randomly sampling 20 candidate pas-
sages per query, repeated 50 times for each of
the 179 queries. Samples without any passages
marked as relevant (with a score = 0) in the rele-
vance judgments or the initial nDCG@10 < 0.1 are
filtered out, resulting in 12k training instances. We
choose Qwen2.5-7B-Instruct as our baseline model.
Training is conducted using the VeRL (Sheng et al.,
2024) framework with a batch size of 128 and 32
rollouts per step. We trained the model directly via
RL, without an initial SFT phase. The training runs
for over 160 steps across 8 H100 GPUs.

Sliding window reranking Our REARANK em-
ploys a sliding window to get top-k passages as
introduced in section 3.1. Following common prac-
tice (Sun et al., 2023; Zhuang et al., 2025; Zhang
et al., 2024b), we retrieve the top 100 passages
using BM25 with plain query (n = 100). We set
the window size to k = 20, resulting in 10 LLM
calls per query (2 × 100/20 = 10) to get top-10
passages.

Baselines To evaluate the effectiveness of REAR-
ANK, we compare it against several strong base-
lines representing different reranking paradigms.
Our zero-shot baselines include powerful large lan-
guage models: Qwen2.5-7B (Yang et al., 2024)
and GPT-4 (Achiam et al., 2023). We also incorpo-

rate the state-of-the-art open-source reasoning lan-
guage model Qwen3-32B (Yang et al., 2025) and
Qwen3-235B-A22B, which claim to surpass 671B
Deepseek-R1. We adapt these models using the
same sliding window strategy and prompt as REAR-
ANK, naming them RankQwen and RankGPT, re-
spectively. As a supervised fine-tuning (SFT)
baseline, we include RankZephyr (Pradeep et al.,
2023b), which is distilled on 105k synthetic rank-
ing data sourced from RankGPT. Furthermore, to
compare different RL training strategies, we in-
clude Rank-R1 (Zhuang et al., 2024), a concur-
rent LLM reranker using the same base model
(Qwen2.5-7B) but adopting a setwise reranking
strategy. This provides valuable insights into the
differences between the listwise (used by REAR-
ANK) and setwise RL approaches for reranking.
The prompts are shown at app. A.

Benchmarks To thoroughly evaluate our
reasoning-enhanced reranker’s performance
and generalization, we select three distinct
benchmark suites. We evaluate on the in-domain
TREC-DL19 (Craswell et al., 2020a) and DL20
(Craswell et al., 2020b) datasets, both derived from
MS-MARCO-V1. For assessing out-of-domain
(OOD) generalization, we use BEIR (Thakur et al.,
2021), a diverse collection from sources outside of
MS-MARCO. Crucially, real-world information
retrieval tasks often demand capabilities beyond
simple keyword matching or semantic similarity,
requiring deeper reasoning to understand com-
plex relationships or logic within the content
and the query. To systematically evaluate our
reasoning-enhanced REARANK, we utilize the
BRIGHT (Su et al., 2024) benchmark, which is
specifically designed to test reasoning abilities in
retrieval contexts. For all evaluations, we report
the nDCG@10 as the evaluation metric.

4.2 In-domain & OOD Retrieval Results

As shown in table 1, GPT-4 achieves the best perfor-
mance across benchmarks, due to its superior text
understanding. The Qwen2.5-7B also performs
strongly, surpassing the legacy GPT-3.5 on both
sets. Our REARANK, based on Qwen2.5-7B trained
via our RL approach with reasoning ability, demon-
strates performance closely comparable to GPT-4.
This suggests the significant potential of advanced
reasoning capabilities learned via RL for reranking.

REARANK achieves considerable improvements
over the RankQwen2.5-7B baseline: a significant
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Model #Train In-Domain Out-of-Domain

DL19 DL20 Covid NFCorpus DBPedia SciFact Signal News Robust04 BEIR (Avg)

BM25† - 50.58 47.96 59.47 30.75 31.80 67.89 33.05 39.52 40.70 43.31
RankQwen2.5-7B zero-shot 68.25 62.73 77.74 37.40 39.83 70.83 31.73 43.24 49.95 50.10
RankGPT3.5 zero-shot 65.80 62.91 76.67 35.62 44.47 70.43 32.10 48.85 50.62 51.25
RankGPT4‡ zero-shot 75.59 70.56 85.51 38.47 47.12 74.95 34.40 52.89 57.55 55.84
RankZephyr-7B 105K SFT 73.90 70.60 83.54 38.38 44.34 75.18 31.44 52.35 54.19 54.20

Reasoning Language Model
RankQwen3-32B zero-shot 73.13 70.00 83.86 36.28 45.44 71.78 32.06 51.73 57.27 54.06
RankQwen3-235B zero-shot 71.94 69.37 83.68 35.64 41.33 63.30 32.53 50.79 58.16 52.20
Rank-R1-7B 72k RL 72.70 68.50 83.12 35.97 43.43 74.47 32.16 48.43 55.17 53.25
REARANK-7B 179 RL 74.16 70.00 81.28 35.20 45.23 75.02 36.00 51.88 57.49 54.59
∆ over baseline* +5.91 +7.27 +3.54 -2.20 +5.40 +4.19 +4.27 +8.64 +7.54 +4.49

Table 1: Reranking Agent Results (nDCG@10) on TREC-DL and BEIR Benchmarks. † denotes initial BM25
retrieval performance. ‡RankGPT4 reranks top 30 passages from RankGPT3.5. All other models rerank on the BM25
top 100 passages. Training data size indicates the number of annotated queries used. *Baseline is RankQwen2.5-7B

6.5% improvement in nDCG@10 on the in-domain
benchmarks and a notable 4.5% improvement in
nDCG@10 on the OOD benchmark. These sub-
stantial gains are particularly impressive given that
they are achieved using only 179 annotated queries
(used for RL training).

Comparing against SFT RankZephyr-7B, REAR-
ANK-7B demonstrates comparable performance
on TREC-DL while achieving superior results in
BEIR. This finding suggests that while SFT can be
effective for in-domain data, our RL approach may
offer enhanced robustness and better generalization
capabilities when applied to out-of-domain tasks.

Evaluating against powerful reasoning language
models, including the large Qwen3 and the concur-
rent Setwise Rank-R1, reveals significant strengths
of REARANK. Despite being trained on a dataset
of only 179 queries (0.2% of Rank-R1’s reported
data), REARANK-7B surpasses Setwise Rank-R1
across benchmarks. Furthermore, REARANK-7B’s
performance exceeds both Qwen3-32B and Qwen3-
235B. REARANK-7B achieves superior reranking
performance with less training data and a more
compact size than state-of-the-art methods. In-
terestingly, Qwen3-32B surpasses Qwen3-235B.
Our investigation, consistent with (Marjanović
et al., 2025), suggests Qwen3-235B’s excessive
self-reflection (marked by "wait") leads to confu-
sion and degraded performance.

4.3 Reasoning-intensive Retrieval Results
Table 2 presents performance results on the
reasoning-intensive BRIGHT benchmark. Notably,
REARANK-7B even outperforms the powerful GPT-
4 model on this benchmark, highlighting its strong
reasoning capabilities developed through RL train-
ing. The SFT method, RankZephyr-7B, performs

considerably poorer on BRIGHT, falling below the
lexical-based BM25 baseline. This reinforces our
observation that SFT generalizes poorly to out-of-
domain and reasoning-intensive scenarios.

Comparing with the concurrent Setwise Rank-
R1, our listwise REARANK-7B achieves better per-
formance on the BRIGHT benchmark also. This
superior performance, particularly against another
RL-trained model, underscores the effectiveness of
our approach. Furthermore, while REARANK-7B
is smaller and does not undergo general reasoning
training (e.g. math, coding, agent) like Qwen3,
its performance remains closely comparable. This
near parity, despite inherent disadvantages, further
confirms our method’s effectiveness.

These strong results on a reasoning-intensive
task against competitive LLM baselines (GPT-4,
Rank-R1) highlight the efficacy of REARANK’s
design. Its RL framework, trained on a limited high-
quality dataset via our synthesis pipeline, enables
learning complex reranking strategies. The listwise
nature provides a richer signal for robust ranking
compared to setwise methods, while also offering
inference efficiency (fewer LLM calls).

4.4 Ablation Studies
To quantify the effectiveness of individual com-
ponents within REARANK, we conducted abla-
tion studies, summarized in table 3. Our first in-
vestigation examined the effect of applying the
REARANK’s reasoning prompt directly to Qwen2.5-
7B. While Qwen2.5-7B shows marginal improve-
ment with the reasoning prompt over its zero-shot
baseline, it significantly underperforms REARANK.
This suggests that prompting alone is insufficient
for eliciting robust reasoning in this context.

We then investigate the impact of data filtering.
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Model #Train StackExchange Coding Theorem-based Avg.
Bio. Earth. Econ. Psy. Rob. Stack. Sus. Pony LC. AoPS TheoT. TheoQ.

BM25† - 18.2 27.9 16.4 13.4 10.9 16.3 16.1 4.3 24.7 6.5 2.1 7.3 13.7
RankQwen2.5-7B zero-shot 22.7 25.8 14.6 18.7 14.2 11.7 21.4 5.3 23.9 6.0 7.4 7.9 15.0
RankGPT4 zero-shot 33.8 34.2 16.7 27.0 22.3 27.7 11.1 15.6 3.4 1.2 8.6 0.2 16.8
RankZephyr-7B 105K SFT 21.9 23.7 14.4 10.3 7.6 13.7 16.6 6.5 24.7 6.8 2.0 7.3 13.0

Reasoning Language Model
RankQwen3-32B zero-shot 24.9 29.4 20.9 25.7 18.3 16.0 23.2 7.6 27.6 7.8 8.9 8.4 18.2
RankQwen3-235B zero-shot 26.4 26.7 22.1 26.3 18.8 17.0 24.9 8.2 27.2 7.7 11.7 8.6 18.8
Rank-R1-7B 72k RL 26.0 28.5 17.2 24.2 19.1 10.4 24.2 4.3 19.8 4.3 10.9 8.3 16.4
REARANK-7B 179 RL 23.4 27.4 18.5 24.2 17.4 16.3 25.1 8.0 27.0 7.4 9.5 7.9 17.7
∆ over baseline* +0.8 +1.7 +4.0 +5.5 +3.3 +4.6 +3.7 +2.7 +3.0 +1.4 +2.1 0.0 +2.7

Table 2: Reranking Agent Results (nDCG@10) on BRIGHT . † represent initial retrieval; all other models show
reranking performance on the top 100 BM25 results. *Baseline is RankQwen2.5-7B

Model Variant TREC-DL BEIR BRIGHT

Qwen2.5-7B (baseline) 65.5 50.1 15.0
+Reasoning Prompt 65.9 51.4 15.4

wo/ Filter nDCG@10 < 0.1 71.3 53.6 16.9
w/ rrank = Srerank 70.9 53.2 16.7
w/ rrank = Srerank − Sinit 71.5 54.0 17.2
w/ direct SFT 66.7 50.7 14.7

REARANK-7B (full model) 72.0 54.6 17.7

Table 3: Ablation of components of the approach.

The "wo/ Filter nDCG@10 < 0.1" variant removes
the filter on low-quality candidate sets (best possi-
ble nDCG@10 < 0.1)—many lacking relevant pas-
sages and yielding zero reward—which degrades
performance. This underscores the importance of
curating high-quality training instances.

Next, we explored reward function design. Us-
ing raw NDCG@10 ("w/ rrank = Srerank") results in
lower performance due to high variance. Subtract-
ing the initial score ("w/ rrank = Srerank − Sinit")
improved stability but still underperforms REAR-
ANK. This could be due to small learning signals
as a result of small reward value scale. Our full
model’s normalized reward function provided more
effective guidance, yielding the best results.

Finally, to isolate the benefits of our RL training
approach from those gained solely from training
on high-quality data, we also trained a SFT base-
line ("w/ direct SFT"). This model was trained on
12k instances representing the best possible rank-
ings derived from our multi-sampled candidate sets
based on relevance judgments. Trained on this
small dataset, the SFT baseline showed marginal
improvements on in-domain and OOD tasks com-
pared to the base Qwen2.5-7B model, but impor-
tantly, it negatively impacted the model’s reasoning
ability on the BRIGHT benchmark. This under-
scores the necessity of the RL approach for effec-
tively leveraging small, high-quality data to train a

robust and reasoning-capable reranking agent.
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Figure 4: (Top) Reward evolving curve (Bottom) Re-
sponse length curve.

5 Analysis

Analysis of Reward Functions We investigate
the impact of different reward functions on REAR-
ANK’s training. We compare three nDCG@10
formulations: Normalized nDCG (our method:
scaled by ideal nDCG), Absolute nDCG (Srerank),
and Difference nDCG (rrank = Srerank − Sinit, im-
provement over initial).

The top panel of Figure 4 shows reward curves.
Normalized nDCG consistently grows, reaching
∼ 0.8 by 100 steps, signifying that the achieved
ranking quality is approximately 80% of the ideal
quality for the candidate set. Absolute nDCG satu-
rates early (∼ 50 steps). Difference nDCG shows
limited progress, plateauing at ∼ 0.15 average im-
provement. This suggests Normalized nDCG pro-
vides a more effective signal for learning towards
optimal ranking quality. The bottom panel shows
response length trends. Normalized nDCG yields
generally longer responses (∼ 850 tokens). Other
functions saturate earlier (∼ 700 tokens), suggest-
ing that the stronger signal from Normalized nDCG
encourages more detailed responses and reasoning.
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<think>
1. [1] - This passage is about insect population declines and doesn't 
address why insects are attracted to light or the reasoning mentioned in 
the query.
2. [2] - This passage is about the history of electromagnetic radiation and 
doesn't address the attraction of insects to light.
3. [3] - This passage is about the history of electromagnetic radiation and 
doesn't address the attraction of insects to light.
4. [4] - This passage is about the properties of translucent objects and 
doesn't address the attraction of insects to light.
5. [5] - This passage is about insect sensory abilities and doesn't address 
the attraction of insects to light.</think>

Before RL
<think>
- Passage [1]: Mentions color perception in animals but does not discuss insect 
attraction to light or heat radiation. Relevant keywords: color perception, red, bulls.
- Passage [2]: Same as passage [1]. Relevant keywords: color perception, red, bulls.
- Passage [3]: Discusses the function of ocelli in insects but does not address light 
attraction or heat radiation. Relevant keywords: ocelli, insects, flight, image 
focusing.
- Passage [4]: Same as passage [3]. Relevant keywords: ocelli, insects, flight, image 
focusing.
- Passage [5]: Discusses the perception of darkness and the physics of light 
absorption but does not address insect attraction to light or heat radiation. 
Relevant keywords: perception of darkness, light absorption, physics.</think>

After RL

Claim in article about why insects are attracted to light In this article they are addressing the reason insects are attracted to light when they say Heat radiation as an 
attractive component is refuted by the effect of LED lighting, which supplies negligible infrared radiation yet still entraps vast numbers of insects. I don't see why 
attraction to LEDs shows they're not seeking heat. Could they for example be evolutionarily programmed to associate light with heat? So that even though they don't 
encounter heat near/on the LEDs they still "expect" to?

Query

Figure 5: Reasoning patterns: Before- vs. After-RL training under identical prompt and query.

Model Reasoning TREC-DL BEIR BRIGHT

Qwen3-32B ✓ 71.6 54.1 18.2
Qwen3-32B ✗ 70.9 54.3 17.8

∆ +0.6 -0.2 +0.4

REARANK-7B ✓ 72.0 54.6 17.7
REARANK-7B ✗ 68.2 52.9 16.4

∆ +3.9 +1.7 +1.3

Qwen2.5-7B - 65.5 50.1 15.0

Table 4: Performance with Reasoning activated and
disactivated. ∆ is improvement with reasoning.

Is reasoning helpful? The reasoning ability of
REARANK is activated by the system prompt used
in RL training (see app.A). While Qwen3-32B also
provides a switch to enable or disable the "think-
ing" mode, our observations, detailed in table 4, in-
dicate that enabling reasoning yields only marginal
improvements in its reranking performance. Specif-
ically, Qwen3-32B shows slight gains on TREC-
DL and BRIGHT (+0.6 and +0.4, respectively) and
a minor decrease on BEIR (-0.2), suggesting its
high performance stems primarily from strong pre-
training, rather than reasoning capacity.

In contrast, reasoning is core to our specialized
reranking agent, REARANK, and significantly en-
hances its performance. As the table illustrates,
REARANK-7B without reasoning (use zero-shot
prompt), already outperforms the Qwen2.5-7B
baseline, demonstrating an inherent improvement
in reranking capacity. However, incorporating rea-
soning leads to considerable gains, underscoring
the importance of reasoning learned via RL.

Reasoning Pattern As illustrated in fig. 5, RL
training profoundly impacts reasoning patterns.
The trained model learns a strategic reranking ap-
proach, reasoning about the relevance of the pas-
sage to the query and extracting key judgment

words. It also intelligently leverages terms like
"same" for concise comparisons with prior pas-
sages, reducing verbose reasoning while still pro-
viding keywords. The model without RL training,
even with a reasoning prompt, does not show such
strategy and employs shorter reasoning chains.

Is improved reasoning transferable? To inves-
tigate the transferability of improved reasoning
gained from our reasoning-based reranking RL
training, we evaluate the model on mathematical
reasoning questions. Following (Ye et al., 2025),
we report the pass@1 score averaged over 16 sam-
ples with a temperature of 0.7 on the AIME 2024
and AMC datasets. As shown in Table 5, we ob-
serve consistent improvements on both the chal-
lenging math tasks. This improvement suggests
that training on the reranking task can, to a certain
extent, transfer to other reasoning tasks.

Model AIME 2024 AMC

Qwen2.5-7B-Instruct 11.87 51.41
(Ours) Rearank-7B 12.92 52.66

Table 5: Math Reasoning Transfer Results (Pass@1)

Figure 6: Impact of reasoning length. Data points are
binned into 20 equal-width intervals by token count.
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Impact of Reasoning Length on Performance
We analyzed the impact of reasoning length on
REARANK’s reranking performance by repeatedly
reranking biology samples from BRIGHT (50
times per query, temp. = 0.6), filtering instances
with 0 scores. Contrary to (Marjanović et al., 2025),
Figure 6 reveals no clear correlation between rea-
soning length and reranking performance.

Figure 7: Multiple reranking results of REARANK.

Multiple Rerank Pass Needed Analyzing the
impact of multiple reranking passes with REAR-
ANK (evaluating performance with and without rea-
soning) reveals mixed results across benchmarks
(fig. 7). Multiple passes improve performance on
TERC-DL and BEIR without reasoning, but de-
grade it on BRIGHT. With reasoning, gains are
seen on TREL-DL, but performance is harmed on
other benchmarks. These findings indicate that for
REARANK, a single reranking pass is sufficient.

6 Conclusion

We presented REARANK, a pioneering reasoning
listwise reranking agent trained via Reinforcement
Learning. REARANK significantly outperforms
baselines and achieves competitive, even superior,
results compared to GPT-4 and Qwen3 models
across various benchmarks, notably with only 179
labeled training samples. Our analysis confirms
that the RL-acquired reasoning capabilities transfer,
facilitating new and effective reranking strategies.

Limitations

While REARANK demonstrates promising re-
sults, several limitations should be acknowledged.
Firstly, the quality and faithfulness of its gener-
ated explanations for ranking decisions, which may
contain a certain degree of hallucination, have not
been formally evaluated. Secondly, its performance
heavily relies on the quality of initial candidates
provided by BM25, which potentially limits im-
provements in scenarios with poor initial retrieval.
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A Prompt Template

We provide the prompt template used in the exper-
iments. Each prompt is concatenation of system
prompt and user instruction. The user iteratively
provides each passage paired with its original rank
identifier. The prompt concludes with a post promt
message containing the ranking query and explicit
output format requirements.

A.1 Reasoning prompt
This is the prompt used by REARANK.

Reasoning System Prompt

You are DeepRerank, an intelligent assistant that can
rank passages based on their relevancy to the search
query. You first thinks about the reasoning process in
the mind and then provides the user with the answer.
I will provide you with passages, each indicated by
number identifier []. Rank the passages based on
their relevance to the search query. Search Query:
[QUERY]. Rank the [NUM] passages above based
on their relevance to the search query. The passages
should be listed in descending order using identi-
fiers. The most relevant passages should be listed
first. The output format should be <answer> [] > []
</answer>, e.g., <answer> [1] > [2] </answer>.

Reasoning User Instruction

Iterative User Message (per passage): [RANK] [Pas-
sage Content (truncated)]

Iterative Assistant Message (per passage): Re-
ceived passage [RANK].

Post Prompt: Please rank these passages according
to their relevance to the search query: "[QUERY]"
Follow these steps exactly:

1. First, within <think> tags, analyze EACH pas-
sage individually:

• Evaluate how well it addresses the query
• Note specific relevant information

2. Then, within <answer> tags, provide ONLY
the final ranking in descending order of rele-
vance using the format: [X] > [Y] > [Z]

A.2 Zero-shot prompt
This is original prompt used for RankQwen and
RankGPT.

Zero-shot System Prompt

You are RankGPT, an intelligent assistant that can
rank passages based on their relevancy to the query.
I will provide you with [NUM] passages, each indi-
cated by number identifier [].
Rank the passages based on their relevance to query:
[QUERY].

Zero-shot User Instruction

Iterative User Message (per passage):
[RANK] [Passage Content (truncated)]

Iterative Assistant Message (per passage): Re-
ceived passage [RANK].

Post Prompt: Search Query: [QUERY].
Rank the [NUM] passages above based on their rel-
evance to the search query. The passages should be
listed in descending order using identifiers. The most
relevant passages should be listed first. The output
format should be [] > [], e.g., [1] > [2]. Only
response the ranking results, do not say any word or
explain.

B Case Study

Figure 8 provides an illustrative example from the
BRIGHT dataset, detailing the inference reasoning
process employed by REARANK. For each passage,
the agent first analyzes its content to understand
its key themes and then determines its relationship
to the query. Relevant information, typically key-
words, is then extracted based on this analysis. We
conducted a manual evaluation of the generated
reasoning content and found it to be of high quality,
contributing to the trustworthiness of the system’s
outputs. This reasoning process ultimately informs
the final ranking of passages presented in the an-
swer.
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<think>
- Passage [1]: This passage discusses the RGB color system and how pixels are represented in digital images. It mentions the RGB color compon, which is relevant to 

the query about the RGB equivalent for smells. Specific relevant information: RGB color system, pixel representation.
- Passage [2]: This passage discusses color blindness and the effects it has on color discrimination. It does not directly address the query about a RGB equivalent for 

smells. Specific relevant information: color blindness, red-green axis, blue-yellow axis.
- Passage [3]: This passage explains how the RGB color system works and how colors are mixed. It mentions the RGB color compon, which is relevant to the query 

about the RGB equivalent for smells. Specific relevant information: RGB color system, color mixing, primary colors
</think>

Query: Is there an RGB equivalent for smells? Millions of colors in the visible spectrum can be generated by mixing red, green and blue - the RGB color system. Is there a 
basic set of smells that, when mixed, can yield all, or nearly all detectable smells ?
Passage 1: viewing distance, the separate sources are indistinguishable, which the eye interprets as a given solid color. All the pixels together arranged in the rectangular 
screen surface conforms the color image. During digital image processing each pixel can be represented in the computer memory or interface hardware (for example, a 
graphics card) as binary values for the red, green, and blue color components. When properly managed, these values are converted into intensities or voltages via gamma 
correction to correct the inherent nonlinearity of some devices, such that the intended intensities are reproduced on the display
Passage 2: Effects[edit] A color blind person will have decreased (or no) color discrimination along the red–green axis, blue–yellow axis, or both. However, the vast majority 
of the color blind are only affected on their red–green axis. The first indication of color blindness generally consists of a person using the wrong color for an object, such as 
when painting, or calling a color by the wrong name. The colors that are confused are very consistent among people with the same type of color blindness. Normal sight 
Deuteranopic sight Protan
Passage 3:  more or less saturated depending on the difference of the strongest and weakest of the intensities of the primary colors employed. When one of the 
components has the strongest intensity, the color is a hue near this primary color (red-ish, green-ish, or blue-ish), and when two components have the same strongest 
intensity, then the color is a hue of a secondary color (a shade of cyan, magenta or yellow). A secondary color is formed by the sum of two primary colors of equal intensity: 
cyan is green+blue, magenta is blue+red, and yellow

<answer> [3] > [1] > [2] </answer>

Figure 8: Examples from biology split of BRIGHT, only 3 passages selected for better visibility. Relevant sentences
in the passages and Key reasoning content in the thinking process are highlight.
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