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Abstract
Social reasoning abilities are crucial for AI sys-
tems to effectively interpret and respond to mul-
timodal human communication and interaction
within social contexts. We introduce SOCIAL
GENOME, the first benchmark for fine-grained,
grounded social reasoning abilities of multi-
modal models. SOCIAL GENOME contains
272 videos of interactions and 1,486 human-
annotated reasoning traces related to inferences
about these interactions. These traces contain
5,777 reasoning steps that reference evidence
from visual cues, verbal cues, vocal cues, and
external knowledge (contextual knowledge ex-
ternal to videos). SOCIAL GENOME is also
the first modeling challenge to study exter-
nal knowledge in social reasoning. SOCIAL
GENOME computes metrics to holistically eval-
uate semantic and structural qualities of model-
generated social reasoning traces. We demon-
strate the utility of SOCIAL GENOME through
experiments with state-of-the-art models, iden-
tifying performance gaps and opportunities for
future research to improve the grounded social
reasoning abilities of multimodal models.

1 Introduction

Humans rely on social reasoning to interpret and
navigate everyday interactions (Gagnon-St-Pierre
et al., 2021). This form of reasoning is a core com-
petency of social intelligence (Kihlstrom and Can-
tor, 2000; Conzelmann et al., 2013), occurs with
specialized neural and cognitive systems (Cao et al.,
2024; Read et al., 2013), and involves integrating
information over time from multimodal behaviors
such as gestures, language, and prosody (Morency,
2010; Read and Miller, 2014; Liang et al., 2024).
Multimodal cues are often fine-grained (e.g., a fleet-
ing glance), interleaved (e.g., a shrug followed by
a sigh), and context-dependent, requiring external
knowledge of contextual information to be inter-
preted accurately (Hechter and Opp, 2001).

*equal contribution, †corresponding author

Figure 1: Reasoning over multimodal social interac-
tions involves extracting, integrating, and referencing
evidence from multiple behavioral modalities, as well
as information from external knowledge.

Developing algorithms for multimodal social
reasoning will be essential to advance artificial
intelligence (AI) systems with social intelligence
(Mathur et al., 2024). When AI systems reason
about human social interactions, it is important for
systems to have the ability to generate explana-
tions with accurate, grounded references to fine-
grained multimodal behaviors and external knowl-
edge concepts informing inferences. Figure 1 visu-
alizes these aspects of multimodal social reasoning.
This capability is especially important for AI sys-
tems reasoning about interactions in high-stakes
domains, such as healthcare and assistive robots.

Progress towards improving multimodal social
reasoning in models has been limited by a lack of
evaluation tasks – measuring a capability is an es-
sential first step towards advancing it. To address
this challenge, we introduce SOCIAL GENOME,
the first benchmark for grounded multimodal social
reasoning that includes 272 videos of face-to-face
interactions and 1,486 human-annotated reasoning
traces explaining inferences about social informa-
tion in these videos. Across these traces, SOCIAL

GENOME contains 5,777 social reasoning steps.
Each reasoning step is tagged with the modality of
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Figure 2: A sample reasoning trace from the SOCIAL GENOME benchmark. Reasoning traces in SOCIAL GENOME
contain fine-grained, multimodal social cues and references to external knowledge informing the social inference.
Social reasoning traces produced by humans can contain complex reasoning paths (sample visualized above) that
reference and build upon multimodal evidence and external knowledge across temporal segments of interactions.

information being referenced: visual, verbal, and
vocal cues from social interactions in videos, and
external knowledge of contextual information that
human annotators used to perform social inferences
(information external to stimuli in videos). Rea-
soning traces in SOCIAL GENOME are dense with
references to over 11,000 entities (people, objects,
concepts), over 5000 multimodal cues, and over
2,900 external knowledge observations. SOCIAL

GENOME is the first social reasoning benchmark1

that includes external knowledge and dense reason-
ing traces. A sample human-annotated reasoning
trace is visualized in Figure 2.

This paper defines metrics to holistically assess
semantic and structural aspects of model-generated
social reasoning traces. We demonstrate the util-
ity of SOCIAL GENOME by using these metrics
to distill insights regarding social reasoning capa-
bilities and limitations in state-of-the-art (SOTA)
models. For example, we find that models struggle
to perform well under both zero-shot and in-context
learning (ICL) settings, demonstrating the signifi-
cant challenge of building this understudied form
of reasoning in models. Our findings contribute
novel insights regarding gaps and opportunities for
future research to improve grounded social reason-
ing abilities of multimodal models.

1cmu-multicomp-lab.github.io/social-genome

2 Background

Prior research on social reasoning in models has pri-
marily focused on the ability of models to interpret
text-based social scenarios and perform question-
answering (QA) tasks about characters’ motiva-
tions, intents, and actions; Social IQa remains a
key unimodal benchmark in this area (Sap et al.,
2019). SOTA language models can accurately per-
form a majority of the inferences in Social IQa,
but a gap remains between model and human per-
formance (Sap et al., 2022; Shapira et al., 2024).
SOTA models have also struggled with text-based
QA tasks that probe competencies relevant to social
reasoning, specifically theory-of-mind to interpret
the goals and beliefs of characters (Le et al., 2019;
Shapira et al., 2024; Ullman, 2023; Kim et al.,
2023). Crowd-sourced knowledge bases of norms
(Forbes et al., 2020; Ziems et al., 2023) have been
useful to inform social reasoning research.

The ability of models to reason about multi-
modal social interactions, in particular face–to–
face, embodied, real-world social interactions, has
been comparatively understudied. Key benchmarks
include the video QA tasks of Social-IQ 1.0 (Zadeh
et al., 2019) and Social-IQ 2.0 (Wilf et al., 2023);
both examine model QA accuracy when answer-
ing questions about social interactions in videos.
SOTA models have struggled to perform well on
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Benchmark
Social Reasoning

Task Focus
Reasoning

Traces
Fine-Grained

Evaluation
External

Knowledge

SOCIAL GENOME (this paper) ✓ ✓ ✓ ✓
SOCIAL-IQ 1.0 (Zadeh et al., 2019) ✓ ✗ ✗ ✗
SOCIAL-IQ 2.0 (Wilf et al., 2023) ✓ ✗ ✗ ✗
TVQA (Lei et al., 2018) ✗ ✗ ✗ ✗
MOVIEQA (Tapaswi et al., 2016) ✗ ✗ ✗ ✗
MEMOR (Shen et al., 2020) ✗ ✗ ✗ ✗

EGO4D-SOCIAL (Grauman et al., 2022) ✗† ✗ ✗ ✗

Table 1: SOCIAL GENOME enables the study of fine-grained, grounded social reasoning in multimodal models. ✓ =
provided; ✗ = not provided. †Ego4D has a social signal perception task, which differs from a social reasoning task.

Social-IQ 2.0 (Xie and Park, 2023; Pirhadi et al.,
2023; Li et al., 2024c; Agrawal et al., 2024; Chen
et al., 2024). Prior focus on QA accuracy to assess
social reasoning ability has not enabled researchers
to study the extent to which models can effectively
reference fine-grained multimodal cues and exter-
nal knowledge informing inferences. Models with
high accuracy on QA tasks can perform poorly at
generating valid or comprehensive reasoning traces
(Jhamtani and Clark, 2020; Gu et al., 2023), moti-
vating the creation of benchmarks with fine-grained
evaluation that goes beyond QA tasks. We intro-
duce SOCIAL GENOME as the first benchmark to
study grounded, fine-grained social reasoning in
multimodal models. Table 1 summarizes the nov-
elty of SOCIAL GENOME relative to prior human-
centered video understanding tasks.

3 Building SOCIAL GENOME

3.1 Sourcing Seed Videos and Questions
SOCIAL GENOME contains 272 seed videos and
1486 questions adapted from the SOCIAL-IQ 2.0
dataset (Wilf et al., 2023) (details in Appendix A.1).
Videos include real-world face-to-face interactions
(1 min per video, ∼4.5 hours); questions probe
behaviors, emotions, and cognitive states of indi-
viduals and groups. SOCIAL GENOME introduces
a new set of 1486 human reasoning traces with
5700+ steps that answer these questions.

3.2 Task Notation
Given a video V , a question Q about social in-
teractions in the video, and answer options A =
{Acorrect, Aincorrect1 , Aincorrect2 , Aincorrect3}, a model
performing the SOCIAL GENOME task must gener-
ate a reasoning trace R = {e1, e2, . . . , en}, where
each reasoning step ei represents a single piece of
evidence contributing toward the social inference to
select an answer Aa from A. Each reasoning step ei
must be tagged with two attributes: (1) a modality

tag mi ∈ {visual, verbal, vocal, n/a} indicating
the communication modality of the evidence and
(2) an external knowledge tag ki ∈ {yes, no}, in-
dicating whether the evidence references external
knowledge of contextual information. This task
to generate R and answer question Q evaluates a
model’s ability to extract and reference multimodal
aspects of human communication and knowledge
informing social inferences. Given the input tu-
ple (V,Q,A), each model performing the SOCIAL

GENOME task will produce an output tuple (Aa, R).
Metrics in SOCIAL GENOME study the social in-
ference accuracy of Aa and the semantic and struc-
tural aspects of social reasoning in R.

3.3 Social Reasoning Trace Annotations
Human Annotation Given a video V , question
Q, and answer options A, annotators read Q and A,
watched V , and wrote reasoning trace R. Annota-
tions were collected with an IRB-approved Prolific
study (details in Appendix A.3).

Grounded and Fine-Grained Behaviors Hu-
mans build upon low-level observations of fine-
grained behaviors (e.g, shifts in body language)
and high-level, top-down processing (e.g., implicit
situational knowledge) when interpreting social
scenes (Baird and Baldwin, 2001; Bodenhausen
and Morales, 2013). Annotators were instructed
to reference any low-level and high-level evidence
they relied upon to answer questions: for example,
low-level evidence might be "the woman takes a
step back with her mouth wide open (visual cue)"
and high-level evidence that interprets that low-
level cue might be "the woman is surprised (ex-
ternal knowledge regarding how ’surprise’ might
manifest"). For each step, annotators tagged the
modality referenced (visual, verbal, vocal, n/a).

Grounded External Knowledge Annotators
tagged each reasoning step with yes or no to indi-
cate whether external knowledge was referenced.
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External knowledge includes contextual norms, cul-
tural expectations, and prior understanding of so-
cial commonsense (Forguson and Gopnik, 1988)
that goes beyond stimuli in the video. For example,
if a man raises his arm and the annotator recognizes
his movement as a "high five," the identification
of the gesture is based on external knowledge of
social gestures. If a reasoning step focuses solely
on noting a low-level behavioral signal (e.g., "the
man raised his voice rapidly"), this evidence would
not be viewed as containing external knowledge.

Ensuring Annotation Quality Trained experts
validated each Prolific annotation. They watched
each video, read each QA tuple, and read the anno-
tation to ensure that traces represented valid reason-
ing, had correct modality and external knowledge
tags, and referred to relevant information. Cases
of incomplete annotation or deviation from instruc-
tions were fixed (details in Appendix A.4).

3.4 Dataset Statistics
SOCIAL GENOME contains 1486 human-annotated
reasoning traces with 5,777 total steps, 3.89 ± 1.68
steps per trace (min of 1 step and max of 10 steps),
43 ± 26 words per trace, and 11± 5 words per
step. Reasoning steps draw on multimodal evi-
dence; 44% of steps reference visual cues, 27%
reference verbal cues, and 17% reference vocal
cues. Overall, 77% of traces reference at least one
visual cue, 63% reference at least one verbal cue,
and 47% reference at least one vocal cue.

External knowledge plays a critical role in SO-
CIAL GENOME: 51% of reasoning steps referenced
external knowledge, with each trace referencing an
average of 2 pieces of external knowledge. With
spaCy named entity recognition (NER) (Honnibal
et al., 2020), we found 11,253 entities (people, ob-
jects, concepts) mentioned, with 7.6 unique entities
and 2.23 emotions referenced per reasoning trace,
demonstrating the high density of annotations. Ad-
ditional details regarding dataset statistics are in
Section 7 and Appendix A.2.

3.5 Social Reasoning Metrics and Statistics
We develop metrics to evaluate semantic and struc-
tural aspects of social reasoning traces generated by
models performing tasks in the SOCIAL GENOME

benchmark. Collectively, these metrics reveal
strengths and weaknesses in model social reason-
ing and multimodal grounding abilities and the
extent to which model traces differ from human

reasoning. This multi-dimensional evaluation mit-
igates against models hacking individual metrics
to achieve higher scores. For each sample, we
compute the following metrics between model rea-
soning trace RM with n steps e1...en and the corre-
sponding human trace RH with m steps h1...hm.

Accuracy Measures accuracy of the model-
generated answer by comparing it to ground truth.
Human annotator accuracy on SOCIAL GENOME

is 0.85 (Appendix A.5). Higher values indicate
stronger social inference ability (max value is 1).

Similarity-Trace (Strace) Measures the high-
level semantic similarity between RM and RH :

Strace =
⟨RM,RH⟩

∥RM∥ · ∥RH∥

where RM is the aggregate embedding of ev-
idence steps in RM and RH is the aggregate
embedding of evidence steps in RH . The em-
bedding model all-MiniLM-L6-v2 (Reimers and
Gurevych, 2019), selected for its efficiency and
accuracy, was used to embed evidence steps for
this and other semantic similarity metrics. Higher
values indicate stronger alignment in semantic in-
formation between RM and RH (max value is 1).

Similarity-Step (Sstep) Measures the fine-
grained semantic similarity between RM and RH .
For each step ei in RM , the metric identifies its
closest semantic step hj in RH . The final metric is
the mean of these maximum similarity values:

Sstep =
1

n

n∑

i=1

max
j

⟨ei,hj⟩
∥ei∥ · ∥hj∥

where ei is the embedding of evidence step ei and
hj is the embedding of evidence step hj . Higher
values reflect stronger alignment in semantic infor-
mation between fine-grained steps of evidence in
RM and RH (max value is 1).

Similarity-Num Steps (Snum) Measures the
number of steps in RM with a similarity above
threshold τ , when compared to any step in RH :

Snum =

n∑

i=1

1

(
max

j

⟨ei,hj⟩
∥ei∥ · ∥hj∥

> τ

)

where 1(·) is the indicator function and τ = 0.6
(empirically selected). Higher values indicate more
semantically-aligned evidence between RM and
RH (max value is n).
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DifferenceSequence (DS) Measures structural
similarity between RM and RH using the respec-
tive modality sequences SM and SH from the
reasoning traces (e.g., ["visual", "external knowl-
edge"]). A similarity score based on edit distance,
adapted from the Levenshtein distance, is com-
puted between SM and SH (Appendix B.2). Higher
values of DS indicate greater structural similarity
between RM and RH (max value is 1).

EmotionMetric Measures the alignment of emo-
tional content in RM and RH . This metric extracts
sets of emotions referenced by RM and RH (in-
structions in Appendix B.3) and computes the over-
lap in sets. Higher values can indicate stronger
emotional alignment between RM and RH (max
value is emotion set size in RH ).

All Modality Steps Measures the overlapping
number of unique modalities in RM and RH .
Higher values indicate that RM had more overlap
with modalities referenced by RH (max value is
the number of unique modalities in RH ).

Visual Steps Measures the number of steps in
both RM and RH with visual evidence, to evaluate
how closely RM aligns with RH (max value is
number of visual steps in RH ).

Verbal Steps Measures the number of steps in
both RM and RH with verbal evidence, to evaluate
how closely RM aligns with RH (max value is the
number of verbal steps in RH ).

Vocal Steps Measures the number of steps in
both RM and RH with vocal evidence to evaluate
how closely RM aligns with RH (max value is the
number of vocal steps in RH ).

External Knowledge Steps Measures the num-
ber of steps in both RM and RH with external
knowledge evidence, to evaluate how closely RM

aligns with RH (max value is the number of exter-
nal knowledge steps in RH ).

NumSteps (NS) Measures the absolute differ-
ence in the number of reasoning steps between RM

and RH . Lower values indicate stronger alignment
in length between model and human chains (value
of 0 indicates that RH and RH are the same length).

3.6 SOCIAL GENOME ICL Training Set
To create samples for ICL experiments, we ran-
domly sampled 16 questions from unique videos

in the training set of SOCIAL-IQ 2.0 and col-
lected reasoning trace annotations in the same for-
mat as annotations in Section 3.3. ICL experi-
ments in Section 4 are conducted by providing each
model with different numbers of training samples
k ∈ {0, 1, 2, 4, 8, 16}, before the model is given an
input tuple (V , Q, A) and generates a sequence of
tokens with an answer Aa and reasoning trace R.

4 Social Reasoning Experiments

We use SOCIAL GENOME to study the performance
of multimodal video understanding models in fine-
grained, grounded social reasoning. These models
have exhibited SOTA performance on video under-
standing tasks and take videos as input. We tested
2 closed-source models and 5 open-source mod-
els: Gemini-1.5-Flash (Team et al., 2024), GPT-
4o (OpenAI), LLaVA-Video and LLaVA-Video-
Only (Zhang et al., 2024c), LongVA (Zhang et al.,
2024a), Video-ChatGPT (Maaz et al., 2023), and
VideoChat2 (Li et al., 2023a). Models have differ-
ent architectures, pretraining data, and fine-tuning
tasks, and models generated reasoning traces and
answers for all samples (details in Appendix C).
LLaVA-Video-Only answered questions, but did
not generate valid traces that could be studied; this
model does not appear in trace-related metrics.

4.1 Quantitative Results and Insights
Figure 3 visualizes each model’s average perfor-
mance for our 12 metrics2, with human baselines in
gray. Results tables (Tables 4, 5, 6) are in Appendix
C. Key findings are discussed below.

Social Inference Accuracy Human social infer-
ence ability is substantially higher than all mod-
els, as seen in results from the Accuracy metric.
Gemini-1.5-Flash and GPT-4o achieve the high-
est accuracies of 74.4% and 71.0% respectively
(k = 0), approximately 10-15% lower than human
annotator accuracy (85.3%), answering ∼30% of
questions incorrectly. Closed-source models out-
perform open-source models in social inference.
The highest-performing open-source model was
LLaVA-Video at 62.9% (k = 0). Gemini-1.5-Flash
and GPT-4o are much larger than open-source mod-
els, suggesting that increased model scale is use-
ful, but not sufficient, for social inference. Video-

2Visualized metrics are normalized to [0,1] by human base-
lines, except for those with an upper bound of 1 by definition
(Accuracy, Similarity-Trace, Similarity-Step, DifferenceSe-
quence) and absolute measures (NumSteps).
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Figure 3: Performance of models across number of few-shot ICL samples (k) and ground truth noted in gray. The
first six metrics focus on social inference accuracy, semantic similarity, and structural similarity between model and
human reasoning traces. The final six metrics focus on fine-grained multimodal evidence and external knowledge
referenced by models, in comparison to evidence referenced by humans. With these metrics, SOCIAL GENOME
enables a holistic study of multimodal, grounded social reasoning.

ChatGPT and VideoChat2 perform 30-40% lower
than other open-source models across all values of
k. These models have the smallest context length,
constraints which may influence performance.

Social inference accuracy for models decreased
as the number of few-shot ICL samples increased,
with the exception of GPT-4o, which demonstrated
a slight improvement at k = 16. Few-shot ICL
conditions language models on tasks by provid-
ing examples of inputs and outputs (Liu et al.,
2024) and can be viewed as a form of inductive
reasoning, as the model is tasked with inferring
generalizable rules from a set of examples. This
technique has improved model reasoning abilities
in domains such as mathematics and code gener-
ation (Dong et al., 2024; Zhou et al., 2022; Patel
et al., 2023), which have explicit rules and for-
mal structure (Galotti, 1989). In contrast to these
domains, social reasoning often operates with im-

plicit rules, less formal structure (Perkins, 1989)
and ambiguity in premises (Mathur et al., 2024).
Our findings suggest that few-shot ICL may not
be an effective approach to elicit multimodal so-
cial reasoning abilities. Additional experiments
using SOCIAL GENOME samples as a form of su-
pervision for models (discussed in Appendix D)
demonstrate that chain-of-thought prompting did
not improve model accuracy, and models struggled
to perform inferences relying on implicit and con-
textual knowledge. Our finding that few-shot ICL
is insufficient to elicit multimodal social reasoning
aligns with findings from unimodal experiments on
SOCIAL-IQA and TOMI datasets (Le et al., 2019;
Sap et al., 2019, 2022; Kim et al., 2023).

Semantic Alignment It is challenging for mod-
els to generate social reasoning traces with high
semantic alignment to human reasoning, as seen in
the results from the Similarity-Trace, Similarity-
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Step, and Similarity-Num Steps metrics. For
Similarity-Trace, only Gemini-1.5-Flash achieved
slightly above 50% (k = 0), and LongVA out-
performed Gemini-1.5-Flash after k = 4. For
Similarity-Step, no models achieved above 50%,
but Video-ChatGPT outperformed all models for
k ∈ {0, 1, 2, 4} (5-12% higher than GPT-4o and 2-
5% higher than Gemini-1.5-Flash). For Similarity-
Num Steps, Gemini-1.5-Flash achieved the highest
performance (27%), far below ground truth. Low
performance can be explained by failure to refer-
ence cues that humans reference (“Fine-Grained
Grounding" metrics below). Performance on these
metrics did not improve as k increased.

Structural Alignment Model reasoning traces
tend to reference multimodal evidence in differ-
ent amounts and orders than humans, as seen
in the results from the DifferenceSequence met-
ric. Model-generated sequences of multimodal evi-
dence that were most structurally-aligned with hu-
man sequences were from Gemini-1.5-Flash (0.53
at k = 4) and LLaVA-Video (0.49 at k = 4), both
far below the maximum alignment value (1). As
k increased, DifferenceSequence metric scores in-
creased for Gemini-1.5-Flash, LLaVA-Video (up
to k = 4), and GPT-4o (after k = 2). These findings
suggest that structured samples of human social
reasoning, as introduced by SOCIAL GENOME, can
be useful when conditioning models to generate
reasoning traces with more human-like structure.

Emotion Alignment It is challenging for models
to generate social reasoning chains with high emo-
tional alignment with human reasoning, as seen in
the results from the EmotionMetric. All models
achieved less than 22%, far below ground truth.
While the highest scores were achieved by Gemini-
1.5-Flash and GPT-4o at k = 0, scores from several
models steadily improved after k = 2.

Fine-Grained Multimodal Grounding The fi-
nal 6 metrics study evidence referenced by model
reasoning traces. The AllModality Steps metric
serves as a proxy for how well models refer to fine-
grained, multimodal cues and external knowledge.
As seen in AllModality Steps results, all models ref-
erenced fewer pieces of multimodal evidence and
external knowledge than human reasoning.

While we discuss modality-specific findings be-
low, our use of SOCIAL GENOME to study SOTA
models is currently limited by these models’ modal-
ity processing abilities. The Gemini-1.5-Flash API

reports that audio is processed on the backend, but
other models do not process audio. However, de-
spite the absence of audio, models referenced ver-
bal and vocal evidence inferred from visual frames.
For example, LongVA generated vocal evidence
about a woman’s "tone suggesting frustration," af-
ter generating visual evidence about the woman’s
face appearing dissatisfied. As new models are de-
veloped in the coming years with abilities to jointly
process video and audio, SOCIAL GENOME will
continue to be applicable to study model abilities
in grounded multimodal social reasoning.

Visual Steps: Closed-source models exhibited
a strong ability to reference visual evidence, with
GPT-4o and Gemini-1.5-Flash closer to ground
truth than open-source models. Performance on
this metric for all models was highest at k = 0.

Verbal Steps: The ability of models to refer-
ence verbal evidence showed substantial variation.
Gemini-1.5-Flash exhibited the strongest ability
to reference verbal cues (0.90 at k = 0). Model
performance on this metric did not improve as k in-
creased, and GPT-4o referenced substantially fewer
verbal cues in comparison to other models.

Vocal Steps: The ability of models to reference
vocal evidence was substantially lower than human
ability. LongVA referenced more vocal evidence
than other models at k = 0. Model performance on
this metric did not improve as k increased.

External Knowledge Steps: The ability of mod-
els to reference external knowledge in social rea-
soning traces was lower than humans. In contrast
to trends observed in other modality step metrics,
we find that providing additional few-shot samples
improved the ability of Gemini-1.5-Flash, GPT-4o,
LongVA (up to k = 4), and LLaVA-Video (up to k
= 4) to reference external knowledge. These find-
ings suggest that human social reasoning traces
can be used to condition models to ground social
reasoning with external knowledge references.

Num Steps: Model reasoning traces varied in
length and contained more steps than human traces.
LLaVA-Video and LongVA generated model rea-
soning traces that were most aligned with the length
of human traces. Providing additional few-shot
samples improved the ability of models to align
with human social reasoning trace length.

4.2 Human and Qualitative Evaluation
We conducted human evaluation of model reason-
ing traces. Trained annotators analyzed 48 samples
from all models, with model names and k values
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Figure 4: Representative social reasoning traces from a Human Annotator, Gemini-1.5-Flash, and LLaVA-Video.
These examples illustrate the grounded social reasoning abilities and reasoning structures across humans and models.

anonymized. Traces were rated to assess references
to low-level cues (fine-grained), information cross-
referenced across steps (compositional), relevant
evidence (comprehensive), correctness of modality
tags, and validity of reasoning (details in Appendix
E). Annotator agreement was computed with Co-
hen’s Kappa κ (Cohen, 1960).

Reasoning traces from Gemini-1.5-Flash and
GPT-4o received the highest ratings for fine-
grained (κ = 0.87), compositional (κ = 0.92), com-
prehensive (κ = 0.94), and valid (κ = 0.94) rea-
soning, followed by LLaVA-Video and LongVA,
with VideoChatGPT and VideoChat2 rated lowest.
These findings validate model performance trends
in Section 4.1. Modality tag correctness across
samples was 98%, and metrics correlated with hu-
man judgements (R2 > 0.75 for Gemini-1.5-Flash
semantic metrics, details in Appendix E), support-
ing the validity of benchmark processing.

Evidence and Error Propagation Figure 4 il-
lustrates the strong ability of Gemini-1.5-Flash to
reference and integrate multimodal cues and exter-
nal knowledge. In contrast, LLaVA-Video did not
reference low-level cues and based its reasoning
upon an incorrect premise which led to an incor-
rect inference. The human trace referred to fine-
grained behaviors (e.g., lip movements) that are
not present in the model traces, yet do influence the

scene interpretation. Metrics in Section 3.5 serve
as proxies to estimate these types of information
gaps between human and model reasoning. Our
findings motivate future work on model training
and architectures that better capture fine-grained
cues and handle error propagation in reasoning.

Hierarchical Social Reasoning Figure 4 shows
the hierarchical structure of human social reason-
ing traces, in which low-level cues (e.g., brief
lip movement) are referenced, combined, and re-
interpreted as intermediate evidence for further rea-
soning. “Forking" reasoning structures are com-
mon for humans interpreting everyday situations,
unlike the linear “long chain" structures for formal
reasoning in domains such as mathematics (Perkins,
1989; Galotti, 1989). Compared to human traces,
model traces show flatter structures which have the
potential to overlook intermediate evidence. Our
findings motivate future work to train models capa-
ble of more hierarchical social reasoning.

5 Conclusion

We introduce SOCIAL GENOME, the first bench-
mark for fine-grained, grounded social reasoning
abilities of multimodal models. Reasoning traces
contributed by SOCIAL GENOME include multi-
modal cues and external knowledge concepts that
humans find useful when performing social infer-
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ences. We define metrics to assess semantic and
structural aspects of reasoning traces and contribute
novel insights regarding gaps and opportunities to
improve the grounded social reasoning capabili-
ties of multimodal models. Future AI systems
reasoning about social interactions must be able
to ground reasoning in concrete multimodal evi-
dence and external knowledge concepts. SOCIAL

GENOME serves as a first step towards studying and
advancing this form of reasoning in AI systems.

6 Limitations

Social Reasoning in Natural Language The cur-
rent scope of SOCIAL GENOME focuses on study-
ing model-generated social reasoning traces in nat-
ural language. This scope is necessary and relevant
to contexts that require AI systems to generate nat-
ural language explanations of social inferences –
for example, a healthcare agent or hospital robot
reasoning about human nonverbal behaviors dur-
ing a nurse-patient social interaction. However,
an open question remains regarding the extent to
which natural language can effectively represent
the nuances of human social interactions and social
reasoning (Mathur et al., 2024). It is possible that
both humans and models verbalizing social reason-
ing through natural language are not fully capturing
why they came to certain inferences (Turpin et al.,
2023). Several lines of work in reasoning have
operated in the latent space of models instead of
natural language (Hao et al., 2024; Geiping et al.,
2025), and we believe SOCIAL GENOME informs
and motivates future work to develop techniques to
study social reasoning in the latent space.

Video Lengths The videos in SOCIAL GENOME

each have a length of ∼1 minute, consistent with
the lengths of existing video understanding bench-
marks (e.g., SOCIAL-IQ 1.0 and SOCIAL-IQ 2.0
have 1-minute samples (Wilf et al., 2023; Zadeh
et al., 2019), TVQA has 1.3 minute samples (Lei
et al., 2018), and MEmoR has 30 second samples
(Shen et al., 2020)). Social reasoning regularly oc-
curs in micro-social and shorter-term contexts; hu-
mans make split-second inferences about emotions
(Nook et al., 2015), social behaviors and gestures
(Beattie and Aboudan, 1994), and personality (Lin
et al., 2021), among other social phenomena. The
interactions in SOCIAL GENOME videos contain
rich, nuanced social signals and multimodal be-
havioral dynamics that require social reasoning to
interpret. Our paper demonstrates that current state-

of-the-art models struggle to interpret 1-minute so-
cial interactions. The length of our videos is not a
technical limitation of our research. We would like
to motivate the need for community-driven curation
of longer-form datasets in future years.

Scope of the Study Videos in SOCIAL GENOME

have interactions in English, and annotators were
required to be proficient in English. The study was
scoped within these constraints, consistent with
prior multimodal video understanding tasks (Table
1). A multilingual and multicultural data collection
was not within the scope of this research. Our paper
motivates future research in multimodal social rea-
soning that includes a community-driven curation
of interaction data across sociocultural contexts.

7 Ethics

Ethical Annotation We curated annotations
from videos in existing publicly available datasets.
We hired workers from Prolific to annotate reason-
ing traces. All workers received fair compensa-
tion for their annotation ($12 per hour, pro-rated).
Worker privacy and confidentiality were respected,
with no identifiable information stored. Further
details on Prolific annotation are in Appendix A.3.

Bias Considerations Annotators in the original
SOCIAL-IQ 2.0 dataset, from which we sourced
seed videos, used terms such as "man" in align-
ment with annotator perception of gender. In SO-
CIAL GENOME we did not frame judgements about
gender identity of individuals based on these an-
notations. In SOCIAL GENOME, 45% of samples
refer to women, and 17% make no reference to
gender. Samples involving women do not have
reasoning traces that refer more frequently to emo-
tion words (r = 0.033). We find no substantial
difference in model performance across gender; for
example, Gemini-1.5-Flash social inference accu-
racy is 74.9% for samples solely involving women,
73.4% for sampling solely involving men, 73.6%
for samples referring to multiple genders, and 77%
for samples that do not specify gender.

Environmental Statement Experiments used a
single A100 GPU, a carbon footprint of 1.24
kgCO2e, and an energy consumption of 3.72 kWh3.

Risks for Social Reasoning in AI Social reason-
ing abilities are essential for future AI systems to

3http://calculator.green-algorithms.org
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effectively work with and alongside humans. SO-
CIAL GENOME has the potential to support the re-
search community in studying and advancing these
capabilities in AI systems. We envision AI sys-
tems using social reasoning to enhance human au-
tonomy, health, and well-being. However, these
technologies exist with potential risks in amplify-
ing toxicity (Zhou et al., 2023), surveillance, and
manipulation. We support broader research and pol-
icy efforts to mitigate against misuse and potential
harms of socially-intelligent AI.
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A SOCIAL GENOME Dataset Appendix

A.1 SOCIAL GENOME Data Sourcing
All videos in SOCIAL GENOME were sourced from
publicly-available SOCIAL-IQ 2.0 modeling chal-
lenge (Wilf et al., 2023). We obtained permis-
sion from the authors to access the original test set
videos and question-answer tuples from this dataset
(275 videos and 1514 QA Tuples). Our use of these
videos aligns with Social-IQ 2.0 repository’s MIT
license and intended research purpose. We chose
to use these test set videos as candidate seed videos
to build SOCIAL GENOME because the answers to
questions posed about these videos have not been
released online, reducing chances of benchmark
contamination (Jacovi et al., 2023; Xu et al., 2024;
Deng et al., 2024). Videos, questions, and answer
options are available and open to the community,
consistent with the permissive MIT License for
SOCIAL-IQ 2.0. Scripts to access our SOCIAL

GENOME dataset and prepare model outputs into
submissions for our leaderboard are available un-
der an MIT license. Our leaderboard, accessible
from the project website4, supports researchers in
computing metrics on SOCIAL GENOME.

We note that prior papers that test models on
SOCIAL-IQ 2.0 have used the validation set, not
the test set (Xie and Park, 2023; Pirhadi et al., 2023;
Guo et al., 2023; Li et al., 2024c; Agrawal et al.,
2024; Chen et al., 2024). Therefore, we do not
directly compare prior works’ validation set perfor-
mance with our results on the test set.

During manual inspection of each video and QA
tuple, we filtered out QA tuples with answer op-
tions containing ambiguity – if at least 2 annota-
tors judged a question to have ambiguous answer
options (at least two plausibly-correct answers),
we discarded the question. The resulting SOCIAL

GENOME set contained 272 videos and 1486 QA
tuples. These samples contain face-to-face dyadic
and multi-party social interactions and questions
that probe understanding of affective states, causal
social dynamics, and social events.

A.2 SOCIAL GENOME Entities
Across the 1486 samples and 11,253 entities
(people, objects, concepts) mentioned in SOCIAL

GENOME, we visualize the distribution of non-
human entities (objects, concepts) in Figure 5, with
an average of 7.6 unique entities referenced per

4cmu-multicomp-lab.github.io/social-genome

human-annotated reasoning trace. Figure 6 visual-
izes entities most frequently mentioned by human
annotators (not including words such as "man" and
"woman" repeated from question statements). As
seen in Figure 6, human annotators constructing
social reasoning traces focused on multimodal as-
pects of social interactions, with evidence spanning
vocal (e.g., "tone", "voice"), visual (e.g., "eyes",
"head", "body"), and verbal (e.g, "words", "con-
versation") cues. These observations support the
perspective that interpreting and reasoning about
real-world social interactions requires an integra-
tion of multimodal information.

Figure 5: Distribution of entity counts in SOCIAL
GENOME samples.

Figure 6: Top entity counts mentioned by human anno-
tators in SOCIAL GENOME reasoning traces.

Annotators mentioned an average of 2.23 emo-
tions per trace, indicating that affective content
informed their reasoning when interpreting interac-
tions (Mathur et al., 2023). Emotional constructs
most frequently mentioned by annotators were the
following: happy, serious, surprised, excited, ner-
vous, calm, confused, angry, annoyed, comfortable,
sarcastic, and positive.
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A.3 SOCIAL GENOME Annotation
Annotators were recruited on the Prolific5 platform
to perform an IRB-approved study with informed
consent regarding our data use. Screens for an-
notators were employed to ensure that participants
were adults, had access to a desktop to watch videos
and perform annotations, were fluent in English,
were based in the United States, completed at least
a high school education, and had high prior task
approval rates on Prolific (97-100% completion).
Each annotator watched 2 videos and provided rea-
soning traces for all questions associated with each
video (approximately 10 questions per annotation).
Instructions for annotators are listed in Figure 7.
Annotators were compensated at $12 per hour pro-
rated. This process was time-intensive, with each
annotation taking approximately ∼25 minutes.

Before running the Prolific study, we ran 4 itera-
tions of annotation instructions with pilot groups
to refine instructions. We experimented with in-
structions that had annotators provide reasoning
traces without knowing the correct answer and
while knowing the correct answer. We found that
providing annotators with the correct answer option
did not change the detail, structure, or coherence
of the reasoning traces generated. Therefore, we
chose to provide annotators with the correct answer
option (Figure 7) and focus the large-scale Pro-
lific data collection on obtaining detailed reasoning
traces, instead of additional QA answer responses.

A.4 SOCIAL GENOME Validation
After obtaining human-annotated reasoning chains
from Prolific, we conduct validation to ensure the
validity and correctness of annotations. At least 2
annotators evaluated each trace, and complex cases
were evaluated by at most 3 annotators to watch
each video, read each question and set of answer
options, and check whether chains (1) represented
valid reasoning paths, (2) had correct evidence tags
for visual, verbal, vocal and external knowledge,
and (3) comprehensively referred to relevant low-
level social information in videos. If an annotator
did not complete an annotation in a satisfactory
manner (e.g., incomplete reasoning chain, minimal
effort), the task was returned to them on Prolific. If
annotations could be rapidly fixed (e.g., changing
an incorrect modality tag from "visual" to "vocal"),
the authors performed this fix themselves without
sending the annotation task to the annotator.

5https://app.prolific.com

A.5 SOCIAL GENOME Human Accuracy
For each video in SOCIAL GENOME, two human
annotators on Prolific watched the video, read each
question, and selected one of four provided an-
swer options. Annotators were paid $12 per hour
(pro-rated) for completing each study. For each
question, annotators also had the option to indi-
cate whether or not they were “uncertain" about
the answer option they selected, and the authors
examined these samples to ensure all QA tuples in
SOCIAL GENOME had correct answers, to avoid the
situation in which a sample could have more than
one plausibly-correct answer option. Human anno-
tators on Prolific achieved an accuracy of 85.3%
on the 1486 questions in SOCIAL GENOME. Inter-
annotator agreement among Prolific annotators was
positive (Cohen’s κ = 0.60) (Cohen, 1960), and an-
swer correctness was confirmed independently by
authors, as described earlier.

B SOCIAL GENOME Metrics Appendix

B.1 Embeddings for Semantic Similarity
The metrics Similarity-Trace, Similarity-Step, and
Similarity-Num Steps are computed with embed-
dings from the all-MiniLM-L6-v2 from Sentence-
BERT (Reimers and Gurevych, 2019). We found
this embedding strong, efficient, and useful for our
task; as future embedding models are enhanced and
released in the coming years, the SOCIAL GENOME

framework allows for the embedding model called
by semantic similarity metrics to be updated.

B.2 DifferenceSequence Metric
For model reasoning chain RM with modality se-
quence SM and human reasoning chain RH with
modality sequence SH , the DifferenceSequence
(DS) metric is computed as a normalized simi-
larity score by adapting the Levenshtein distance
(Levenshtein, 1966) between SM and SH :

DS = 1− Levenshtein(SM ,SH )

|SM |+ |SH |
Levenshtein(SM , SH) is the following:

=





|SM |, if |SH | = 0

|SH |, if |SM | = 0

min
[
Levenshtein(SM [: −1], SH [: −1]) + δ,

Levenshtein(SM [: −1], SH) + 1,

Levenshtein(SM , SH [: −1]) + 1
]

otherwise
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Annotation Instructions

In this study, you will be watching short videos that contain social interactions. You will be briefly explaining
your thought process along several dimensions while answering questions about each video. Your answers will be
entered through a Google spreadsheet. Participants in this study must have the ability to watch videos and write
logical text responses in English describing their step-by-step reasoning while interpreting videos.

If you give your consent to participate in this study, please select "I agree": <I agree>

(If the annotator declines, they move to a page that states: “As you do not wish to participate in this study, please
return your submission on Prolific by selecting the ’Stop without completing’ button.")

In the provided spreadsheet (link below), you will see 2 videos linked in the "Video URL" column and a set of
corresponding questions and answers for each video. The yellow-highlighted box indicates the correct answer for
each question. Your goal is to do the following:

1. Click the blue URL next to each set of questions in the "Video URL" column. Watch the video and pay
attention to the behaviors of people interacting.

2. For each question associated with each video, provide the reasoning chain in order to answer the question:

(a) Read the question, read the answer options, and note the correct answer (highlighted in yellow).
(b) In the "Evidence" column, describe the reasoning steps you took to reach the correct answer. Put each

step in a separate row in the spreadsheet. (If applicable) steps should start with low-level observations
(behavioral information from the video OR external knowledge) and build up to higher-level concepts.

3. For each piece of evidence, in the same row, fill out the "Modality" column drop-down menu to indicate
whether your evidence is from visual information (facial movements, gestures, anything vision-related, etc),
vocal information (e.g., audio/speech), verbal information (e.g., the actual content of words being spoken),
or external knowledge (e.g., cultural norms, your own understanding of what a behavior means).

4. Please aim for 5-10 reasoning steps per question (if applicable).

We will look at the spreadsheet during our manual review of submissions. All questions must have evidence
presented with the answer selected: <link to the spreadsheet>

Figure 7: Sample instructions provided to annotators on Prolific to provide SOCIAL GENOME reasoning traces.
Annotators entered information into a structured spreadsheet with links to videos, questions, answer options, and
columns to enter reasoning traces, modality tags, and external knowledge tags.

with δ = 1(SM [−1] ̸= SH [−1]), where 1(·) re-
turns 1 if the final elements differ and 0 otherwise.
We use an implementation6 that treats a substitu-
tion as equivalent to one insertion plus one deletion,
making the distance effectively an InDel distance.
We compute the minimum number of edits that
are needed to transform one sequence to another.
Higher edit distances indicate that more edits are
needed to align sequences (more dissimilarity).

Therefore, the overall DS similarity metric be-
tween SM and SH can range from 0 (maximum
number of edits required) to 1 (minimum num-
ber of edits required). Higher DS values indicate
greater structural similarity between the sequences
SM and SH , with respect to the type and order of
modality evidence being referenced.

B.3 Emotion Named Entity Recognition
We perform NER with spaCy (Honnibal et al.,
2020). In spaCy’s NER v3 configuration,

6https://rapidfuzz.github.io/Levenshtein/index.html

we broadly defined an emotion label as a
“description of how a person is feeling".
To avoid identifying words like "feels" as entities,
we also passed an example into the spaCy NER
configuration that explicitly labeled "feels" as not
an emotion entity (e.g., “She feels sad because
her friend didn’t come with her"). There
are an average of 2.23±1.63 emotion entities refer-
enced per human reasoning chain.

B.4 Chain Processing for Metrics
Computing metrics requires a standardized format
for model-generated reasoning chains. Several
model generations (in particular, the generations
from open-source models) required processing be-
fore metrics could be computed.

We first parsed generations from models by split-
ting each generation based on its structure, such
as the presence of line breaks, numbering, or sen-
tences. For example, if a model generated a multi-
sentence response, but did not include line breaks
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Model Prompt Template

Trace: Having a model provide a reasoning trace in the response (remove the “few-shot examples"
for zero-shot experiments at k = 0):

Watch the video and answer questions about social information in the
video, following the format of the examples below.

<FEW-SHOT EXAMPLE with Question and Answer Options>

Which of these is the correct answer? Output either A, B, C, or D.
Provide the reasoning steps you took to get to this answer. Give 5
to 10 reasoning steps in bullet point form. Tag each bullet point
step as visual, vocal, and verbal modality from the frames or external
knowledge. Use the format: The correct answer <insert answer>.The
correct answer is <FEW-SHOT RESPONSE WITH ANSWER AND REASONING TRACE>.

Which of these is the correct answer? Output either A, B, C, or D.
<CURRENT QUESTION AND ANSWER OPTIONS> Provide the reasoning steps you
took to get to this answer. Give 5 to 10 reasoning steps in bullet
point form. Tag each bullet point step as visual, vocal, and verbal
modality from the video or external knowledge. Use the format: The
correct answer is <insert answer>.

No Trace: Having a model answer the question with no reasoning trace (remove the “few-shot
examples" for zero-shot experiments at k = 0):

Watch the video and answer questions about social information in the
video, following the format of the examples below.

<FEW-SHOT EXAMPLE with Question and Answer Options>

Which of these is the correct answer? Output either A, B, C, or D. Use
the format: The correct answer <insert answer>.The correct answer is
<FEW-SHOT CORRECT ANSWER, FEW-SHOT REASONING CHAIN>.

Which of these is the correct answer? Output either A, B, C, or
D. <CURRENT QUESTION AND ANSWER OPTIONS> Use the format: The correct
answer is <insert answer>.

Note: For GPT-4o prompts, we found that we needed to replace the word video with frames to
avoid error messages associated with video processing (e.g., “I am unable to view or analyze video
frames directly. However, I can help answer questions based on descriptions or provide general
information. Let me know how I can assist you!"). Other models did not have this issue.

Figure 8: Information on model prompts to obtain reasoning traces and inferences from models.
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or numbering within the response, we would split
this model output by individual sentences (e.g.,
splitting on the "." character).

We, then, parsed through each step and remove
any steps that simply repeated the question or an-
swer choices. We also removed phrases such as
"reasoning step", "reasoning", or "the correct an-
swer", as those phrases were often in steps like
"The correct answer is A." or "Below are the reason-
ing steps:". In addition, during in-context learning
experiments, we found that some model genera-
tions (in particular, GPT) would contain repetitions
of sample chains within the model’s response, lead-
ing the response to contain 2-3 reasoning chains.
We automatically processed these responses by
only taking the final reasoning chain out of these
multiple chains and checking that this final chain
was answering the original question.

Models were tasked with tagging modalities for
each step of their generated reasoning chains. To
validate this process, we automatically checked
whether each step included visual, vocal, verbal or
external knowledge tags. However, models some-
times failed to tag modalities for their chains. To
automatically handle these cases, we employed
GPT-4o-mini (Hurst et al., 2024) to tag modalities.
We note that the models that needed this additional
validation step were VideoChat2, VideoChatGPT,
and LLaVA-Video; generations from these models
did not have any modality tagging for the majority
of their chains. The authors manually inspected a
subset of GPT-generated modality tags for model-
generated reasoning traces to verify accuracy.

C SOCIAL GENOME Model Appendix

C.1 Model Information
Experiments were conducted with multimodal mod-
els that were selected for their SOTA performance
on various video understanding tasks and have
the ability to take a full video as input (2 closed-
source models and 5 open-source models): Gemini
1.5 Flash (Team et al., 2024), GPT-4o (OpenAI),
VideoChat2 (Li et al., 2023a), Video-ChatGPT
(Maaz et al., 2023), LLaVA-Video (Zhang et al.,
2024c), LLaVA-Video-Only (Zhang et al., 2024c),
LongVA (Zhang et al., 2024a). We summarize the
models below, and Appendix Table 2 lists charac-
teristics of these models: context length, tokens
per frame, training max frame, parameter count,
and backbone. Figure 8 describes the prompts
given to models. Our benchmark allows experi-

ments with any model that processes multimodal
language and video input and outputs text, allowing
SOCIAL GENOME to be used as a benchmark over
time to study social reasoning. Experiments were
conducted with one A100 GPU.

VideoChat2 The VideoChat2 model (Li et al.,
2024b) has an architecture with UMT-L vision en-
coder (Li et al., 2023b), QFormer and Vicuna-7B
v0 language model, has 7B parameters, can pro-
cess up to 16 frames, and was trained with instruc-
tion tuning on a collection of 34 tasks spanning
conversations, captions, visual question-answering,
reasoning, and classification.

Video-ChatGPT The VideoChat-GPT model
(Maaz et al., 2023) has an architecture built on
top of LLaVA, with a CLIP vision encoder (Rad-
ford et al., 2021) and a Vicuna-7B v1.1 language
model. The VideoChat-GPT model can process up
to 100 frames, and was trained on video instruction
pairs from the VideoInstruct100K dataset.

LLaVA-Video The LLaVA-Video model
LLaVA-Video-7B-Qwen2 (Zhang et al., 2024c) has
an architecture with a SigLIP SO400M vision
transformer and Qwen2 language model, has 7B
parameters, can process up to 110 frames, and was
trained on mixture of single image, multi-image,
and video tasks from the LLaVA-Video-178K and
LLaVA-OneVision datasets (Li et al., 2024a).

LLaVA-Video-Only The LLaVA-Video-Only
model LLaVA-Video-7B-Qwen2-Video-Only is
identical to the LLaVA-Video model, with the ex-
ception of the training data (Zhang et al., 2024c).
LLaVA-Video-Only was solely trained on the
LLaVA-Video-178K dataset.

LongVA The LongVA model LongVA-7B-DPO
(Zhang et al., 2024a) aligns a unified multimodal
transformer (UMT) with QFormer and aligns
this visual encoder with a Qwen2 7B language
model. LongVA was trained on visual instruction-
following datasets and multimodal document data
and has a context length of over 200,000 visual
tokens; this longer context length was achieved by
extending the context length of the language back-
bone to train on long text samples, before perform-
ing multimodal alignment and additional training
to transfer this ability to the multimodal domain.

GPT-4o The GPT-4o model is a closed-source
model from OpenAI (Hurst et al., 2024). The tech-
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Model Property VideoChat2 Video-ChatGPT LLaVA-Video LLaVA-Video-Only LongVA GPT-4o Gemini 1.5

Context 2K 2K 32K 32K 224K 128K 1M
Max Frames 16 100 110 110 2000 - -
Parameters 7B 7B 7B 7B 7B - -
Backbone Vicuna-v0 Vicuna-1.1 Qwen2 Qwen2 Qwen2-Extended - -

Table 2: Information about models tested on SOCIAL GENOME: VideoChat (Li et al., 2023a), VideoChat-GPT
(Maaz et al., 2023), LLaVA-Video (Zhang et al., 2024b), LLaVA-Video-Only (Zhang et al., 2024b), LongVA (Zhang
et al., 2024a), GPT-4o (OpenAI), Gemini 1.5 Flash (Team et al., 2024). All information is completed based on
current public reports and repositories.

nical report for GPT-4o refers to this model as “om-
nimodal" with the ability to accept inputs from text,
audio, image, and video and generate outputs with
text, audio, and image. The API access to this
model supports video frame inputs and text inputs.

Gemini-1.5-Flash The Gemini-1.5-Flash model
is a closed-source model from Google. The API
access to this model supports video inputs and text
inputs, up to a context length of approximately
1 million tokens. Gemini-1.5-Flash was distilled
from the larger Gemini-1.5-Pro sparse mixture-of-
experts transformer (Team et al., 2024).

C.2 Model Generation Notes
We note observations here on model generations.
VideoChat generations for k ∈ 0, 1, 2, 4 produced
full sentences explaining reasoning traces, how-
ever the generation quality eroded for k ∈ 8, 16.
Several samples from these settings of k were re-
peated words and short phrases (e.g.,“ the the
the...and and and and").

Similarly, VideoChat-GPT generations for k ∈
0, 1, 2, 4 produced full sentences explaining rea-
soning, however the generation quality eroded for
k ∈ 8, 16. Samples from these settings of k were
repeated short words and letters (e.g.,“or or or,
or" and “B ( ( ( ( ( B").

LLaVA-Video generations for k ∈
0, 1, 2, 4, 8, 16 produced full sentences ex-
plaining reasoning, however the generations
as k increased in k ∈ 4, 8, 16 began to answer
fewer questions. LLaVA-Video-Only answered
questions, but did not generate reasoning traces;
this model was discussed in Section 4 solely for
the social inference accuracy metric.

These model generation challenges were not ob-
served for LongVA or Gemini-1.5. GPT-4o initially
generated “I’m sorry, I can’t assist with
that." as one of the reasoning trace steps for sev-
eral questions, before answering the question.

D Auxiliary Experiments

D.1 Social Inference Accuracy and Reasoning
Trace Lengths

We hypothesized that models may perform worse
on inferences that primarily rely on implicit cues
and contextual knowledge. One proxy for this
reliance is the length of a human trace – if hu-
mans perform an inference immediately and only
need to verbalize one reasoning step, that step was
more likely to involve implicit cues with contextual
nuances (e.g., rapidly interpreting body language
based on external knowledge). For samples with
1 reasoning step, 53% referenced external knowl-
edge in this first piece of evidence, in contrast to
33% of samples with 5 reasoning steps and 20% of
samples with 10 reasoning steps.

We examined model social inference perfor-
mance across samples with different lengths of
human reasoning traces, visualized for k = 0 in Fig-
ure 9. Overall, multimodal models social inference
performance was lower for samples with shorter
human reasoning traces and higher for samples
with longer human reasoning traces. This trend
was observed for both larger closed-source mod-
els and smaller open-source models that represent
different training data distributions, architectures,
and training techniques. For example, Gemini-1.5-
Flash and LLaVA-Video achieved accuracies of
70% and 58%, respectively, for samples with the
shortest reasoning traces and both achieved 80% for
samples with the longest reasoning traces. These
results reinforce the perspective that current models
(regardless of size) are not sufficient for strong mul-
timodal social reasoning performance in domains
requiring more contextual understanding.

D.2 Does Chain-of-Thought Prompting Elicit
Multimodal Social Reasoning?

Chain-of-thought (CoT) prompting (Wei et al.,
2022) has been a prevalent approach to elicit model
reasoning abilities in domains such as mathematics
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Table 3: Human evaluation mean annotator scores for reasoning trace samples across models.

Model Shot Fine-Grained Compositional Modality Tags Validity Comprehensive

VideoChat2 0.0 1.50 1.00 0.5 0.0 1.25
1.0 1.00 1.00 1.0 0.0 1.00
4.0 1.00 1.00 1.0 0.0 1.00

16.0 1.00 1.00 1.0 0.0 1.00

Video-ChatGPT 0.0 1.00 1.00 1.0 0.0 1.00
1.0 1.00 1.00 1.0 0.0 1.00
4.0 1.00 1.00 1.0 0.0 1.00

16.0 1.00 1.00 1.0 0.0 1.00

LongVA 0.0 2.75 2.75 1.0 1.0 4.50
1.0 3.00 3.25 1.0 1.0 3.75
4.0 2.25 3.50 1.0 1.0 3.50

16.0 2.25 2.75 1.0 1.0 3.25

LLaVA-Video 0.0 3.00 2.50 1.0 1.0 4.00
1.0 2.00 1.75 1.0 0.5 3.00
4.0 1.00 1.00 1.0 0.0 1.00

16.0 1.00 1.00 1.0 0.0 1.00

GPT-4o 0.0 3.50 3.00 1.0 1.0 5.00
1.0 3.50 3.00 1.0 1.0 5.00
4.0 4.00 3.50 1.0 1.0 4.50

16.0 4.00 4.00 1.0 1.0 4.50

Gemini-1.5-Flash 0.0 4.25 4.25 1.0 1.0 4.75
1.0 4.00 2.50 1.0 1.0 4.75
4.0 3.75 3.75 1.0 1.0 3.00

16.0 4.25 4.25 1.0 1.0 4.50

Figure 9: Social inference accuracy of models (k =
0) across samples with different numbers of human-
annotated reasoning steps (binned into quintile by rea-
soning trace length).

and code generation (Li et al., 2025). We explore
the effectiveness of this technique for multimodal
social reasoning with SOCIAL GENOME. Figure 10
visualizes social inference results for models under
two settings: Trace (models generate step-by-step
CoT traces while answering the question) and No
Trace (models generate only answers and do not
generate "step by step" traces). We test models
with zero-shot and few-shot settings, with k ∈ {0,
1, 2, 4, 8, 16}. Prompts are described in Figure 8.

We find that CoT prompting does not substan-
tially improve the social reasoning performance

Figure 10: Social inference of models that generated rea-
soning traces with answers (Trace) compared to models
that generated solely answers (No Trace), across differ-
ent numbers of few-shot samples k.

of models, with the exception of GPT-4o (using
CoT performs 6-8% higher than without CoT after
k=4). Unlike domains such as mathematics with
more formal step-by-step reasoning paths, social
reasoning often involves interpreting and integrat-
ing ambiguous, context-dependent cues across ac-
tors, modalities, and time (Mathur et al., 2024). So-
cial inference is a form of informal reasoning that
does not often verbalize as a “chain-like" process
(Galotti, 1989). Models with CoT prompting have
been found to rely on task priors from pretraining
distributions (Chochlakis et al., 2024); it is possi-
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ble these priors are less effective to elicit social
reasoning, compared to other forms of reasoning.

E Human Evaluation Details

Trained annotators analyzed 48 samples from all
models at k ∈ 0, 1, 4, 16. The k values and model
identities associated with traces were anonymized
before presenting samples to annotators in a spread-
sheet to rate. For each reasoning trace, annotators
watched the corresponding video, read the ques-
tion, read the answer options, and read the correct
answer, in order to rate the quality of the reasoning
trace. Human evaluation was conducted to assess
reasoning traces along the following dimensions:

Fine-grained: The extent to which reasoning
traces were fine-grained was assessed on a scale of
1 to 5, with 1 for no references to low-level behavior
and 5 for dense references (e.g., references to low-
level behaviors in a majority of steps).

Compositional: Compositionality in reasoning
traces was assessed on a scale of 1 to 5, with 1 for
minimal compositionality (no cross-references of
information across reasoning steps) and 5 for high
compositionality across steps.

Comprehensive: The extent to which reasoning
traces were comprehensive was assessed on a scale
of 1 to 5, with 1 referring to traces missing critical
information (not referencing relevant video con-
tent) and 5 being fully-comprehensive (capturing
all relevant content towards an inference).

Modality Tag Correctness: The accuracy of
modality and external knowledge tags for each of
the reasoning steps within a given trace was as-
sessed with a binary score (1 for correct, 0 for the
presence of any error in the trace).

Validity of Reasoning: The validity of the rea-
soning in a trace, referring to whether or not the
trace represented logical combinations of informa-
tion. It is possible for a reasoning trace to reference
minimal low-level information, yet still represent
valid reasoning (motivating the inclusion of this
dimension). This dimension was given a binary
rating (1 for valid, 0 for invalid).

Raw averages from this human evaluation pro-
cess are presented in Table 3. We discuss findings
from human evaluation in Section 4.2. Annotator
agreement was computed with Cohen’s Kappa κ
(Cohen, 1960). We found strong inter-annotator
agreement in ratings across dimensions: κ = 0.87
for "fine-grained" ratings, κ = 0.92 for "composi-
tional" ratings, κ = 0.94 for "comprehensive" rat-

ings, and κ = 0.94 for "validity of reasoning" rat-
ings. The "modality tag correctness" ratings across
samples was 98% with errors specifically occurring
in modality tags for VideoChat2 traces.

We note that reasoning trace quality for LLaVA-
Video, VideoChat2, and Video-ChatGPT, in par-
ticular, decreased at k = 4. These findings from
human evaluation are aligned with quantitative find-
ings in Section 4 and subjective model generation
observations in Appendix C.2.

Our automated metrics yield similar model rank-
ings to human evaluation and strong correlation
to human judgements, supporting the reliability of
these metrics as proxies for reasoning trace qual-
ity. Gemini-1.5-Flash achieves the highest score
in human judgements for referencing “Low-Level”
behavioral cues and achieves the highest score in
automated metrics such as Accuracy, overall se-
mantic similarity (Similarity-Trace), and step-level
semantic similarity (Similarity-Num Steps). Simi-
larly, GPT-4o and LLaVA-Video, followed closely
by LongVA, score higher than Video-ChatGPT and
VideoChat2 on both automated metrics and human
judgments. This rank-based alignment indicates
that automated proxy metrics can capture reasoning
quality signals that human evaluators identified.

These trends observed from rank-based align-
ment are supported by correlation analyses between
model metrics and human judgments. For Gemini-
1.5-Flash and LLaVA-Video (highest-performing
closed-source model and open-source model), the
Similarity-Trace and Similarity-Step metrics ex-
hibit R2 values of 0.75 and 0.61, respectively,
demonstrating strong alignment with human judg-
ments of how effectively models ground reasoning
in low-level behavioral cues. Strong correlations
indicate that (1) these automated metrics can be
viewed as effective predictors of low-level social
reasoning quality and (2) there is room for future
community research into automated evaluation of
social reasoning quality. SOCIAL GENOME con-
tributes a new benchmark and findings for the com-
munity to study this direction.
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Table 4: Social Inference Accuracy on SOCIAL-GENOME for Models Across Different Numbers of Shots (k)

Model Chain Type k = 0 k = 1 k = 2 k = 4 k = 8 k = 16

VideoChat2 Chain 0.2624 0.2779 0.2746 0.2725 0.0000 0.0000
No Chain 0.2712 0.2793 0.2806 0.2611 0.2483 0.0000

Video-ChatGPT Chain 0.3560 0.2645 0.2550 0.2503 0.0000 0.0000
No Chain 0.3762 0.2544 0.2746 0.2806 0.0000 0.0000

LongVA Chain 0.5828 0.4973 0.5283 0.5451 0.5363 0.5565
No Chain 0.5767 0.5081 0.5424 0.5410 0.5310 0.5686

LLaVA-Video Chain 0.6292 0.5828 0.5875 0.5895 0.5606 0.5592
No Chain 0.6137 0.5767 0.5754 0.5868 0.5518 0.5760

LLaVA-Video-Only Chain 0.5653 0.5047 0.5081 0.5236 0.4791 0.5155
No Chain 0.5491 0.4960 0.4993 0.5121 0.4717 0.4899

GPT-4o Chain 0.7100 0.6292 0.4623 0.6332 0.6669 0.7133
No Chain 0.7207 0.6063 0.5747 0.5713 0.6252 0.6521

Gemini-1.5-Flash Chain 0.7443 0.7026 0.7073 0.7052 0.6393 0.6534
No Chain 0.7564 0.7106 0.7052 0.7046 0.6380 0.6346
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Table 5: Model performance for semantic and structural similarity metrics across different numbers of few-shot
samples k. These are the raw results (metrics visualized in Figure 3 were normalized, as discussed in the metrics
section). * refers to model reasoning traces that were less coherent (Appendix C.2). The highest-performance at
each value of k is bolded.

Metric Model k = 0 k = 1 k = 2 k = 4 k = 8 k = 16

Similariy-Trace VideoChat2 0.4138 0.3954 0.4084 0.4079 0.0734 0.0597
Video-ChatGPT 0.4484 0.4484 0.4533 0.4354 0.0266 0.0760
LongVA 0.4533 0.4865 0.4929 0.4994 0.4994 0.4998
LLaVA-Video 0.4915 0.4193 0.4552 0.4178* 0.4629* 0.4731*
GPT-4o 0.4631 0.4332 0.3437 0.4363 0.4479 0.4648
Gemini-1.5-Flash 0.5157 0.5060 0.5021 0.4891 0.4887 0.4850

Similarity-Step VideoChat 0.3864 0.3804 0.3856 0.3749 0.0909 0.0760
Video-ChatGPT 0.4524 0.4822 0.4836 0.4700 0.0578 0.1059
LongVA 0.3898 0.4148 0.4185 0.4231 0.4297 0.4310
LLaVA-Video 0.4462 0.4090 0.4330 0.4109 0.4641 0.4856
GPT-4o 0.4016 0.3540 0.2943 0.3574 0.3682 0.3837
Gemini-1.5-Flash 0.4340 0.4378 0.4311 0.4234 0.4231 0.4210

Similarity-Num Steps VideoChat2 0.5168 0.4623 0.5983 0.4764 0.0000 0.0000
Video-ChatGPT 0.3267 0.2053 0.2144 0.1989 0.0000 0.0000
LongVA 0.4186 0.4529 0.4246 0.4179 0.4164 0.4181
LLaVA-Video 0.7719 0.6970 0.9205 0.7762* 0.4167* 0.3750*
GPT-4o 0.6226 0.4480 0.3496 0.4575 0.4440 0.4584
Gemini-1.5-Flash 1.0376 0.9144 0.7312 0.6984 0.6436 0.6525

EmotionMetric VideoChat2 0.0754 0.2328 0.2530 0.2322 0.0034 0.0007
Video-ChatGPT 0.2358 0.1713 0.1904 0.0702 0.0000 0.0000
LongVA 0.3345 0.1306 0.3244 0.3075 0.3106 0.3121
LLaVA-Video 0.3579 0.1077 0.1038 0.2168* 0.1667* 0.2500*
GPT-4o 0.6502 0.2005 0.6631 0.6725 0.6577 0.6286
Gemini-1.5-Flash 0.4959 0.1218 0.4152 0.3782 0.3557 0.3755

DifferenceSequenceMetric VideoChat 0.2673 0.2690 0.2838 0.2659 0.2141 0.2144
Video-ChatGPT 0.2508 0.2352 0.2325 0.2335 0.2181 0.2111
LongVA 0.4266 0.4165 0.4102 0.4202 0.4045 0.3750
LLaVA-Video 0.3783 0.4819 0.4845 0.4907* 0.2589* 0.1754*
GPT-4o 0.4582 0.3956 0.3671 0.4167 0.4458 0.4638
Gemini-1.5-Flash 0.4591 0.5301 0.5243 0.5312 0.5240 0.5295
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Table 6: Model Performance for metrics related to step-level evidence from modalities and external knowledge
across different numbers of few-shot samples k. These are the raw results (metrics visualized in Figure 3 were
normalized, as discussed in the metrics section). * refers to reasoning traces that were less coherent (Appendix C.2).
The highest-performance at each value of k is bolded.

Metric Model k = 0 k = 1 k = 2 k = 4 k = 8 k = 16

All Modality Steps VideoChat2 1.2328 1.2436 1.3573 1.1817 0.6357* 0.6184*
Video-ChatGPT 0.8526 0.6801 0.6684 0.6638 0.6289* 0.6519*
LongVA 2.1406 1.7335 1.6669 1.6440 1.5659 1.4525
LLaVA-Video 1.6148 2.2242 2.0526 1.9231* 0.7500* 0.5625*
GPT-4o 2.3245 1.7155 1.4566 1.7536 1.8676 1.9750
Gemini-1.5-Flash 2.4056 2.3806 2.3529 2.3146 2.2811 2.2798

Visual Steps VideoChat2 0.6097 0.4105 0.5821 0.6326 0.0168* 0.0000*
Video-ChatGPT 0.2677 0.0919 0.0774 0.0755 0.0027* 0.0000*
LongVA 1.1299 0.9246 0.8863 0.8883 0.7782 0.7442
LLaVA-Video 1.0301 0.9367 0.9269 0.9580* 0.0000* 0.0000*
GPT-4o 1.5894 1.4196 1.0725 1.4180 1.4922 1.5598
Gemini-1.5-Flash 1.3276 1.2806 1.1860 1.1395 1.0431 1.0513

Verbal Steps VideoChat2 0.8338 0.8836 0.8358 0.8351 0.6316* 0.6184*
Video-ChatGPT 0.6533 0.5831 0.5774 0.5777 0.6030* 0.6519*
LongVA 0.8096 0.5942 0.6528 0.5989 0.6464 0.6988
LLaVA-Video 0.7643 0.7880 0.7487 0.8042* 0.9167* 0.6875*
GPT-4o 0.7249 0.2811 0.3984 0.3057 0.3150 0.3320
Gemini-1.5-Flash 0.9316 0.7728 0.7709 0.7695 0.7360 0.7196

Vocal Steps VideoChat2 0.1810 0.1635 0.2066 0.0740 0.0000* 0.0000*
Video-ChatGPT 0.0578 0.0202 0.0188 0.0117 0.0000* 0.0000*
LongVA 0.5162 0.2288 0.1844 0.1359 0.1365 0.1243
LLaVA-Video 0.2486 0.2375 0.1269 0.0490* 0.0000* 0.0000*
GPT-4o 0.4302 0.1270 0.0589 0.1184 0.1270 0.1413
Gemini-1.5-Flash 0.4357 0.2984 0.2551 0.2291 0.2497 0.2579

External Knowledge Steps VideoChat2 0.0229 0.3546 0.3230 0.2402 0.0054* 0.0000*
Video-ChatGPT 0.0130 0.0000 0.0000 0.0000 0.0232* 0.0000*
LongVA 0.3156 0.5565 0.5175 0.7174 0.6259 0.5044
LLaVA-Video 0.0792 1.4661 1.6128 1.5734* 0.0000* 0.0000*
GPT-4o 0.6199 0.9108 0.7554 1.0402 1.1568 1.2366
Gemini-1.5-Flash 0.9856 1.4901 1.6190 1.6881 1.6854 1.6847

Num Steps VideoChat2 4.9455 4.7840 5.8526 4.7638 3.1158 2.8876
Video-ChatGPT 3.4316 2.8955 2.8985 3.4564 2.8888 3.0443
LongVA 3.4233 2.3573 2.1245 1.9455 1.8689 2.0475
LLaVA-Video 2.5574 4.0755 4.7333 4.4336* 2.2500* 2.5625*
GPT-4o 4.0921 4.0757 3.5935 3.7699 3.7583 3.8039
Gemini-1.5-Flash 5.1060 4.2197 4.4624 3.9747 4.0445 3.6854
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