
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 25071–25094
November 4-9, 2025 ©2025 Association for Computational Linguistics

SMART: Simulated Students Aligned with Item Response Theory for
Question Difficulty Prediction

Alexander Scarlatos1, Nigel Fernandez1, Christopher Ormerod2,
Susan Lottridge2, Andrew Lan1

1University of Massachusetts Amherst, 2Cambium Assessment
{ajscarlatos,nigel,andrewlan}@cs.umass.edu

{christopher.ormerod,susan.lottridge}@cambiumassessment.com

Abstract

Item (question) difficulties play a crucial role
in educational assessments, enabling accurate
and efficient assessment of student abilities and
personalization to maximize learning outcomes.
Traditionally, estimating item difficulties can
be costly, requiring real students to respond
to items, followed by fitting an item response
theory (IRT) model to get difficulty estimates.
This approach cannot be applied to the cold-
start setting for previously unseen items either.
In this work, we present SMART (Simulated
Students Aligned with IRT), a novel method
for aligning simulated students with instructed
ability, which can then be used in simulations
to predict the difficulty of open-ended items.
We achieve this alignment using direct pref-
erence optimization (DPO), where we form
preference pairs based on how likely responses
are under a ground-truth IRT model. We per-
form a simulation by generating thousands of
responses, evaluating them with a large lan-
guage model (LLM)-based scoring model, and
fit the resulting data to an IRT model to ob-
tain item difficulty estimates. Through exten-
sive experiments on two real-world student re-
sponse datasets, we show that SMART outper-
forms other item difficulty prediction methods
by leveraging its improved ability alignment.

1 Introduction

Assessing student knowledge and skill levels, an
important aspect of education, requires carefully
designed assessment items (i.e., questions) with
high quality and validity. According to the Stan-
dards for Educational and Psychological Test-
ing (Eignor, 2013), various factors play a role in
the quality and validity of items, with a crucial
factor being their difficulty, i.e., how challenging
they are to real students. Item difficulties also play
a critical role in learning platforms, enabling per-
sonalized learning through student-tailored item
recommendation (Chen and Duh, 2008; Ueno and

Miyazawa, 2019), item generation (Jiao et al.,
2023; Kurdi et al., 2020; Shimmei and Matsuda,
2022; Ashok Kumar et al., 2023), and curriculum
design (Mehrens and Phillips, 1987; Zhang et al.,
2024) to maximize learning outcomes.

Since new items are constantly developed and
used in practice, estimating their difficulty be-
fore assigning them to students is crucial. Tra-
ditionally, estimating item difficulties can be costly
and time-consuming (AlKhuzaey et al., 2024):
we need (possibly a large number of) real stu-
dents to respond to them, and then fit an item
response theory (IRT) model on their responses
to get item difficulty estimates. In contrast, re-
cent work has estimated item difficulties from
their (mostly textual) content (Tack et al., 2024;
Gombert et al., 2024; Benedetto, 2023; Huang et al.,
2017a), with some methods leveraging large lan-
guage models (LLMs) (He-Yueya et al., 2024; Due-
nas et al., 2024). This approach works well for
many items, especially multiple-choice questions
(MCQs). Among them, an interesting approach is
to use simulated students (He-Yueya et al., 2024;
Feng et al., 2025; Maeda, 2025) to generate re-
sponses to new items at scale, to estimate their
difficulties. Initial work in this direction uses simu-
lated students to model student responses to MCQs,
followed by aggregating their predicted responses
and obtaining item difficulty estimates.

Among different item types, open-ended items
require students to write short answers, and are
common in many domains including math, pro-
gramming, and particularly in reading comprehen-
sion assessment; see Table 3 for an example. Since
these items require a student to construct an en-
tire answer, they may reveal deeper insights into
student knowledge (Brown and Burton, 1978; Feld-
man et al., 2018; Smith III et al., 1994; Ander-
son and Jeffries, 1985) than other item types, such
as MCQs. However, estimating the difficulties of
open-ended items can be more challenging, since

25071

Student
Simulator Scoring Model IRT ModelOpen-Ended Item

Ability
Distribution

Student
Population

~ Scores Responses

Our planet ...
Plants are ...

Life on ... 1

0
2

Predicted Item Difficulty

Figure 1: Our three-stage pipeline for item difficulty prediction: simulate open-ended responses for students with
different abilities, score them, and fit an IRT model on the scores to obtain difficulty estimates.

scoring open-ended responses accurately at scale is
not as easy as for MCQs. Moreover, there is consid-
erable diversity in terms of both response content
and style among real students, which means that
it can be difficult to simulate student responses to
these items (Sonkar et al., 2024).

1.1 Contributions

In this paper, we present SMART (Simulated Stu-
dents Aligned with Item Response Theory), a
pipeline for training LLMs as simulated students
that generate open-ended responses, aligning them
with an instructed ability level and item difficulty.

First, SMART leverages generative LLMs as
the student simulator to synthesize a distribution
of student responses to open-ended items. These
responses provide valuable interpretability in the
difficulty estimation process. We use direct prefer-
ence optimization (DPO) to train our student simu-
lator, using a novel method to form preference pairs.
We prefer student responses with higher likelihood
under an IRT model, thus aligning the generated re-
sponses with both student ability and item difficulty.
Second, we use an LLM-based scoring model to
score the generated responses. Finally, we train
an IRT model on the scored student responses to
obtain item difficulty estimates.

We conduct extensive quantitative experiments
on two real-world datasets, one with 49 short-
answer reading comprehension items and another
with 50 Java coding items. We find that SMART, by
simulating IRT-aligned responses to unseen items
from a population of students with different abili-
ties, outperforms state-of-the-art item difficulty pre-
diction methods, even in the low-resource setting
with few training items. We analyze the simulated
student responses and find that SMART responses
correlate strongly with their instructed ability, and
that the feature distributions of its responses match
closely with the ground-truth. We also qualitatively
compare simulated student responses across meth-

ods, perform a failure pattern analysis, and suggest
directions for future work.

2 Background: Item Response Theory

Item response theory (IRT) (Rasch, 1993) is a
framework for jointly estimating scalar-valued abil-
ities of students and parameters of “items” (or ques-
tions), mainly difficulty and discrimination, from
student responses to items. In the simplest case,
each student is represented by a single scalar ability
θj ∈ R, each item is represented by a single scalar
difficulty bi ∈ R, and each score yij is binary, i.e,
0 (incorrect) or 1 (correct). This simple model
is known as the 1-parameter logistic (1PL) model
(Rasch, 1993), and uses the following formulation:

P 1PL
i (yij |θj) = σ(θj − bi). (1)

In practice, θj and bi are assumed to be drawn
from a standard normal, with implementations us-
ing expectation maximization or variational infer-
ence (Lalor et al., 2019) to enforce standard normal
priors on these variables.

In our setting, we study short-answer questions
where the response is open-ended. We assume that
students can receive partial credit on responses,
leading to ordinal or continuous scores. For ordinal
response data, we use the generalized partial credit
model (GPCM) (Muraki, 1992), which adds a “step”
parameter for each of the C total score categories:

PGPCM
i (yij |θj) =

e
∑yij

y=0 ai(θj−bi+diy)

∑C−1
c=0 e

∑c
y=0 ai(θj−bi+diy)

,

(2)

where the response yij ∈ {0, . . . , C − 1}, diy is
the step parameter for item i for score y, and ai
is the discrimination parameter for item i. GPCM
smoothly adjusts the probability of different ordi-
nal scores according to student ability and item
difficulty, with step parameters determining where

25072

the probability mass shifts from one score to the
next.

We also handle continuous scores, i.e., yij ∈
[0, 1], where the student’s response lies on a spec-
trum between incorrect and correct. In this setting,
we model correctness probability using a continu-
ous Bernoulli distribution (Loaiza-Ganem and Cun-
ningham, 2019):

PBern.
i (yij |θj) =P 1PL

i (Y = 1|θj)yij · (3)

P 1PL
i (Y = 0|θj)(1−yij).

3 Problem Formulation

We assume that we have access to a real-world
dataset of human-scored student responses to open-
ended short-answer items. Each item, indexed by i,
is associated with 1) a short question text qi, 2) (op-
tional) meta data mi, e.g., a passage text for reading
comprehension items, 3) (optional) a scoring rubric
wi, and 4) a set of human-scored student responses
denoted by Di = {rij , yij}. An IRT model is fit to
this data to get ground-truth estimates of each stu-
dent ability θj and item difficulty bi. Our goal is to
predict the item difficulty parameters of previously
unseen test items before students respond to them.

4 Methodology

Our approach, SMART, illustrated in Figure 1, uses
a novel, three-stage pipeline, which simulates stu-
dent responses to short-answer, open-ended items,
to help estimate their difficulty. First, SMART
leverages human-scored responses by real students
to open-ended items to learn a student response sim-
ulator, S(·), parameterized by a generative LLM.
The simulator S(·) generates a distribution of stu-
dent responses to unseen open-ended items. Sec-
ond, an LLM-based scoring model, R(·), scores
these generated responses. Third, an IRT model,
I(·), is trained on the scored student responses to
estimate item difficulties.

4.1 LLM-based Student Response Simulation
We first detail our LLM finetuning method for stu-
dent simulation, resulting in a model we denote as
S(·). We combine the question text qi, the meta
data text mi, and the student ability θj in our in-
put prompt, and train the LLM using supervised
finetuning (SFT) to maximize the likelihood of the
ground-truth student response rij as output. We
convert θj to a string after rounding to 4 decimal
places, which we find works better than binning

Response with
Score

Response with
Score

Student j
with Ability

Student k
with Ability

Open-Ended
Item with
Difficulty

Figure 2: Our novel preference pair creation method
through comparing response likelihood under IRT.

values into descriptive buckets; we leave an ex-
ploration of more advanced methods for numeric
inputs to LLMs, such as weighting model parame-
ters (Wang et al., 2024), for future work. See the
exact prompt format in Appendix F.

4.2 SMART: Ability Alignment in Response
Simulation via Preference Optimization

We now motivate and detail SMART, our novel
method aligning simulated student responses with
their given ability and the expected difficulty of the
given item. Even though the LLM-based student
simulator S(·) is finetuned to maximize the like-
lihood of the textual content of student responses,
we observe that the responses it generates do not
always align well with the prompted ability value,
likely because the SFT objective treats all output se-
quences equally without any special attention paid
to the prompted ability.

To address this limitation, we propose the fol-
lowing idea: to incorporate information on the IRT
likelihoods of student responses, in addition to their
textual content. The intuition is that generating re-
sponses with high likelihoods under the IRT model
should lead to better alignment between the IRT pa-
rameters and response content, which should bene-
fit the downstream task of item difficulty prediction.
To achieve this alignment, we use DPO (Rafailov
et al., 2023) to prefer responses with scores hav-
ing a higher IRT likelihood with the input student
ability and item difficulty.

Preference Pair Creation. Our novel preference
pair creation method is illustrated in Figure 2.
Given an item’s question text qi, meta data mi,
and a student’s ability θj , we compare two possi-
ble responses: one with a higher IRT likelihood,
rwij , which is preferred to another with a lower IRT

25073

likelihood rℓij , thereby forming a preference pair.
We find such preference pairs among the human-
scored real student responses. For each real student
response rij , we construct a set of possible negative
candidates,Rij , which are other responses to item
i that a student with ability θj would be less likely
to write, according to the IRT model. Formally:

Rij = {rik : Pi(yij |θj)− Pi(yik|θj) > ϵ} , (4)

where Pi is either PGPCM
i (Eq. 2) if the scores

are ordinal or PBern.
i (Eq. 3) if the scores are con-

tinuous. The hyperparameter ϵ ∈ [0, 1) sets the
threshold for how much more likely a response
must be than another to form a preference pair,
which is needed to reduce noisy preference pairs.
In summary, for some student that responds with
rij , for every other possible response, we ask the
question: how likely is it for the same student to
write response rik? We randomly select m nega-
tive candidates from Rij for training, creating m
preference pairs where the ground-truth response,
rwij = rij , is preferred over each sampled response,
rℓij = rik. We note that Rij could be empty in
some cases, for instance, if the ground-truth stu-
dent response is unlikely for the corresponding θj .

4.3 Scoring Model for Open-ended Responses
Given a distribution of varied generated student
responses to items, we need to score them before
fitting an IRT model to estimate item difficulties.
This scoring task is challenging since it requires
scoring synthetic responses to items not seen during
training. We parameterize our scoring model R(·)
by finetuning a generative LLM, given its ability
to handle long-context inputs, to discern complex
(partial) scoring criteria, optionally from a rubric,
and to generalize to scoring responses to new items
in the test set. We combine the question text qi,
the meta data mi, the scoring rubric wi, and the
student response text rij into a prompt xij , and
instruct the LLM to only output a single integer for
the score label yij ∈ {0, . . . , C − 1}. For ordinal
scores, we produce an estimate score ŷij via greedy
decoding from R(·|xij). For continuous scores,
following (Scarlatos et al., 2025a), we smoothly
interpolate between the token logits corresponding
to fully correct and incorrect scores:

ŷij =
eR(1|xij)

eR(0|xij) + eR(1|xij)
, (5)

where R(y|xij) is the output logit value for token
y returned by R(·|xij), and we train using binary

cross-entropy loss. See the exact prompt we use
for our scoring model in Appendix F.

4.4 Simulation-Based Difficulty Prediction
We now detail how to use our ability-controlled
student simulator and automated scoring model to
predict item difficulties. First, we create a popula-
tion of n simulated students such that their abilities
match the training distribution: we create a 50-
bucket histogram of abilities in the train set, propor-
tionally draw n samples from the resulting distribu-
tion, and convert each sample to a random uniform
value in the corresponding bin. Second, we per-
form the student simulation: for each drawn ability
and item in the test set, we prompt the simulated
student model S(·) to generate a corresponding re-
sponse using nucleus sampling. Third, we score
each generated response using the automated scor-
ing model R(·). Finally, we re-fit the IRT model
I(·) using the new set of scored responses. For
each generated response, we assign a student ID by
rounding the ability to the nearest decimal place,
which we find to be crucial in preventing overfit-
ting by reducing the number of ability parameters
significantly. We provide additional details on IRT
fitting in Appendix A.4. We take the difficulty es-
timates under this IRT model for the new, unseen
items as our final predictions.

5 Experimental Evaluation

We now detail experiments that we conduct to vali-
date our approach on real student response datasets.

5.1 Datasets
We conduct our experiments on two real-world
open-ended student response datasets, each con-
taining around 50 items and thousands of student
responses.

Smarter Balanced. We first use a private real-
world dataset, provided to us by Smarter Balanced1.
The dataset contains student responses to open-
ended short answer items administered to students
in the United States, containing around 85K re-
sponses to 49 items from around 63K students.
These open-ended items assess reading comprehen-
sion skills including argumentation, explanation,
and narration, at the grade 6 level with the average
length of student responses being 92 tokens. Each
response is manually scored by a trained human
scorer, using a rubric with detailed scoring criteria,

1https://smarterbalanced.org/

25074

https://smarterbalanced.org/

with scores in the set {0, 1, 2}. The meta data for
each item includes a passage that the student must
read before answering the question. Our trained
3B parameter scoring model achieves a quadratic
weighted kappa (QWK) of 0.616 on this dataset, in-
dicating moderate-to-high agreement with ground-
truth scores, which is competitive with unseen item
open-ended response scoring on other datasets2.
We show example items in Tables 3 and 4.

CodeWorkout. We additionally use the publicly
available CodeWorkout dataset (DataShop, 2021),
originally used for the 2nd CSEDM Data Chal-
lenge (Organizers, 2021). The dataset, commonly
used for student modeling in open-ended program-
ming tasks (Liu et al., 2022; Duan et al., 2025),
contains 50 Java coding problems in a first year col-
lege programming course, with student solutions
across 2 semesters. Students can attempt a problem
multiple times after receiving compiler feedback,
so we only consider the first attempt for a prob-
lem for each student, resulting in 10,834 responses
from 246 students. Each response is scored with
a continuous value between 0 and 1, representing
the portion of test cases that passed; the test cases
themselves are not made available. To ensure that
models understand how to correctly solve the prob-
lems, we include 2 LLM-generated solutions in
each item’s meta data, using the method described
in (Duan et al., 2025). Our trained 3B parameter
scoring model achieves a Pearson’s correlation co-
efficient (PCC) of 0.849 on this dataset, indicating
high agreement with ground-truth scores. We show
an example item in Table 5.

We split each dataset into 5 cross-validation
folds, with each fold split 60/20/20 item-wise for
train/validation/test, respectively. We ensure that
difficulties of items across all splits and folds are
roughly even. We fit IRT models (PGPCM for
Smarter Balanced and PBern. for CodeWorkout)
on each fold to estimate ground-truth student abil-
ity and item parameters. For each fold, to ensure
no information from unseen items is leaked at train
time, we fit three separate IRT models, one on
train data, one on train plus validation data, and
one on all data. We use the estimated parameters
from the three models to train our student simulator,
and to perform validation and test-time evaluation,
respectively. We provide further details on IRT

2Best QWK on unseen items in NAEP Reading Auto-
mated Scoring Challenge was 0.528: https://github.com/
NAEP-AS-Challenge/reading-prediction/blob/main/
results.md

fitting in Appendix A.4 and dataset processing in
Appendix B.

5.2 Metrics

Item Difficulty Prediction. Following prior
work in item difficulty prediction (Huang et al.,
2017a; He-Yueya et al., 2024), we use the widely
adopted Pearson Correlation Coefficient (PCC) to
measure the linear correlation between predicted
and ground-truth item difficulties, Spearman Rank
Correlation Coefficient (SCC) to measure the corre-
lation between ranks of predicted and ground-truth
item difficulties, and Root Mean Squared Error
(RMSE) for a precision comparison between pre-
dicted and ground-truth item difficulties.

Student Simulation. We additionally propose
metrics to investigate how faithful the generated
responses are to real student ones. Since we
model students at a population level, reference-
based metrics such as ROUGE-L (Lin, 2004) and
BERTScore (Zhang et al., 2020) are not suitable.
Therefore, following prior work in population sim-
ulation (Bui et al., 2025; Yu et al., 2023), we re-
port distribution-level metrics comparing the gen-
erated and ground-truth response distributions in
a latent embedding space. We first extract em-
beddings for all responses using a sentence en-
coder (Reimers and Gurevych, 2019), specifically
multi-qa-mpnet-base-dot-v1. We then com-
pute the Fréchet Inception Distance (FID) (Heusel
et al., 2017), which is common for evaluating
generated images but has recently been adapted
to text (Yue et al., 2023; Bui et al., 2025), and
MAUVE (Pillutla et al., 2021), which measures
the similarity of cluster distributions in the embed-
ding space, to evaluate the alignment between the
predicted and ground-truth student response dis-
tributions. Following (Bui et al., 2025), we also
measure the similarity in diversity distribution by
computing Div. KL, the KL divergence between
the histograms of pairwise response cosine similar-
ity across all ground-truth responses and across all
simulated responses. Finally, we compute θ-Align,
the Spearman correlation between input student
ability and the predicted score of the corresponding
generated response, measuring how well simulated
students align with their prompted abilities.

5.3 Baselines

We compare our approach, SMART, to state-of-the-
art item difficulty prediction approaches as well

25075

https://github.com/NAEP-AS-Challenge/reading-prediction/blob/main/results.md
https://github.com/NAEP-AS-Challenge/reading-prediction/blob/main/results.md
https://github.com/NAEP-AS-Challenge/reading-prediction/blob/main/results.md

as to several strong novel baselines adapted to our
setting. These approaches fall into two categories:
predicting difficulties 1) directly from item text,
and 2) via student simulation.

Direct Difficulty Prediction Baselines. Follow-
ing prior work (AlKhuzaey et al., 2024; Benedetto,
2023; Benedetto et al., 2023; Kapoor et al., 2025a;
North and Ormerod, 2025), we adopt a strong fine-
tuning baseline, Diff SFT, which finetunes a recent
and capable encoder-based language model, specif-
ically ModernBERT-base (Warner et al., 2024). We
use a regression setup, minimizing mean squared
error loss, to directly predict item difficulties
given the item’s question text and meta data. We
also adopt a Random Forest baseline, which
is common for difficulty prediction (AlKhuzaey
et al., 2024; Gombert et al., 2024), where we en-
code the item’s question text and meta data us-
ing the multi-qa-mpnet-base-dot-v1 SBERT
model (Reimers and Gurevych, 2019), and use the
resulting embeddings as input features to fit a ran-
dom forest regressor to item difficulty.

Since our set of items is small, we also intro-
duce several baselines that do not require train-
ing. We use a simple yet strong baseline, kNN
Mean, that retrieves the k items in the train set
with the highest SBERT embedding cosine similar-
ity, and takes their mean difficulty as the predicted
test item difficulty. Similar methods have been
used in automated scoring (Bin et al., 2008; Go-
maa and Fahmy, 2012). We search over k ∈ [1, 5]
and select the best performing value on the val-
idation set, selecting k = 1 for Smarter Bal-
anced and k = 5 for CodeWorkout. Finally, we
adopt two LLM prompting baselines leveraging
in-context learning (ICL) (Brown et al., 2020),
ICL Random and ICL kNN, where we prompt
Llama-3.1-70B-Instruct with k in-context ex-
amples of items retrieved from the train set at ran-
dom or using k-Nearest Neighbors (kNN) (Feng
et al., 2024), respectively. We ask the model to first
reason about the question’s difficulty in a chain-
of-thought manner before generating a numeric
difficulty prediction. For kNN retrieval, we use
the same SBERT model as above, and perform a
similar hyperparameter search, selecting k = 4 for
Smarter Balanced and k = 2 for CodeWorkout.

Student Simulation-based Difficulty Prediction
Baselines. We compare SMART to other student
simulation-based approaches for item difficulty pre-
diction. For a fair comparison, we use the same

base model and prompt template as SMART for
the following methods, allowing these baselines
to also serve as ablations. First, we employ Re-
sponse Gen ZS, where we prompt an LLM in a
zero-shot (ZS) manner to generate a student re-
sponse given the item and ability. Since the model
has not been trained on the distribution of numeric
student abilities, we convert abilities to correspond-
ing labels from 10 descriptive buckets shown in
Appendix A.2, ranging from “minimal” to “mas-
tery”, with descriptions obtained by prompting
Claude 3.5 Sonnet (Anthropic, 2024). This method
is similar to the persona-based prompting method
in (He-Yueya et al., 2024), where we use ability in-
stead of student demographics. Second, we employ
Response Gen SFT, as explained in Section 4.1,
which finetunes the LLM on ground-truth student
responses given the item and ability. Prior works
that finetune simulated students generally include
prior student responses in the prompt (He-Yueya
et al., 2024; Zelikman et al., 2023); we use the
student’s ability as a proxy for this information.

5.4 Experimental Setup
We use Llama-3.2-Instruct (Grattafiori et al.,
2024) from HuggingFace (Wolf et al., 2020) as
the base model for our simulated student and auto-
mated scoring models. We perform all experiments
with both the 1B and 3B parameter versions to ex-
amine how our methods scale across model sizes.
We use the 1B automated scoring model to score
responses from the 1B simulated student model,
and do the same for 3B. We load base models with
NF4 quantization (Dettmers et al., 2023) and fine-
tune using LoRA (Hu et al., 2022). We provide
further experimental details, including all hyperpa-
rameters, in Appendix A.1.

6 Results, Analysis, and Discussion

We now detail our quantitative results on item dif-
ficulty prediction and student response simulation,
and qualitatively analyze the simulated student re-
sponses and SMART’s strengths and weaknesses.

6.1 Quantitative Results
SMART outperforms other methods on item
difficulty prediction. We report the average per-
formance across all test items and cross-validation
folds for both datasets in Table 1. Our approach,
SMART, outperforms all direct prediction methods
on all metrics, even largely maintaining this advan-
tage when using the small 1B base LLM. It also

25076

Model
Smarter Balanced CodeWorkout

PCC ↑ SCC ↑ RMSE ↓ PCC ↑ SCC ↑ RMSE ↓
Direct Item Difficulty Prediction Methods

Diff SFT (ModernBERT) 0.4937 0.3188 0.7627 −0.0425 −0.0036 0.7714
Random Forest (SBERT) 0.4021 0.3115 0.8623 0.1846 0.1418 0.6783
kNN Mean (SBERT) 0.5959 0.5219 0.6806 0.1949 0.2415 0.6701
ICL Random (Llama-3.1-70B) 0.1215 0.0348 1.0426 0.2487 0.1806 0.6462
ICL kNN (Llama-3.1-70B) 0.5273 0.4717 0.7634 0.0209 0.0821 0.7397

Student Simulation-based Item Difficulty Prediction Methods (Llama-3.2-1B)
Response Gen ZS 0.2651 0.2436 0.9088 0.0733 0.0812 0.7226
Response Gen SFT 0.5621 0.4254 0.7174 0.2475 0.2388 0.6487
SMART (ours) 0.6490 0.4861 0.6699 0.3082 0.3188 0.6225

Student Simulation-based Item Difficulty Prediction Methods (Llama-3.2-3B)
Response Gen ZS 0.3446 0.3963 0.8568 0.1487 0.1636 0.6912
Response Gen SFT 0.6069 0.5830 0.6905 0.4256 0.3648 0.5627
SMART (ours) 0.6737 0.5661 0.6197 0.3929 0.4230 0.5890

Table 1: Performance on question difficulty prediction. Best performance is in bold and second best is underlined.
SMART outperforms all direct prediction methods and generally outperforms other simulation-based methods.

outperforms all other student simulation methods,
with the exception of SFT when using 3B mod-
els; in these cases, SMART outperforms SFT by
wide margins on some metrics while it is closely
behind on others. These results indicate that both
methods are powerful predictors of item difficulty,
although there is high variability due to the small
number of items in each dataset; larger test sets
may be required to more clearly show SMART’s
advantage. We also observe that CodeWorkout is a
more challenging dataset, with most methods per-
forming worse than they do on Smarter Balance in
terms of PCC and SCC. Still, the fact that SMART
consistently outperforms baselines on both datasets
shows that it can generalize across educational do-
mains and student populations.

Student simulation is key when working with
few training items. We observe that direct pre-
diction baselines significantly underperform stu-
dent simulation methods on both datasets. Diff SFT,
which follows the approach of existing state-of-the-
art methods (AlKhuzaey et al., 2024; Benedetto,
2023; Benedetto et al., 2023), performs moderately
well on Smarter Balanced but poorly on CodeWork-
out. This result is perhaps not surprising, since Diff
SFT’s training signal completely comes from given
item difficulties, and thus can only work when a
large number of training items are available. Di-
rect difficulty prediction baselines that require no
training also follow a similar pattern: kNN Mean
and ICL kNN perform moderately on Smarter Bal-
anced, likely because reading comprehension ques-
tions with similar semantic features are likely to
pose similar tasks to the student and thus have sim-

ilar difficulties. However, since this heuristic does
not apply to coding questions, these baselines do
not generalize across datasets. The poor perfor-
mance of ICL Random also shows that powerful
LLMs do not perform well on the difficulty pre-
diction task without careful calibration. In our low
resource setting with few items to train with, stu-
dent simulation is key: student ability and item
difficulty are only related via the response score
when training an IRT model, but our student simula-
tor can effectively couple IRT training with textual
student responses and a scoring model. As a re-
sult, this extra information helps us to calibrate the
IRT model better, making it easier to generalize to
previously unseen items.

Ablation study. We compare the performance
of Response Gen ZS, Response Gen SFT, and
SMART, with all models parameterized with the
same base LLM and prompts, serving as an abla-
tion study. Response Gen SFT significantly out-
performs Response Gen ZS, which suggests that
finetuning is required for the LLM to adapt to
the response distribution of real student responses.
With the exception of some metrics when using 3B
models, SMART outperforms Response Gen SFT,
which validates our hypothesis that preferring re-
sponses with high IRT likelihoods in DPO training
helps in the difficulty prediction task by calibrat-
ing the model in the context of student ability and
implicit item difficulty.

SMART simulated student responses are
aligned with abilities and diverse. Table 2 com-
pares the student simulation methods on metrics

25077

Model
Smarter Balanced CodeWorkout

MAUVE ↑ FID ↓ Div. KL ↓ θ-Align ↑ MAUVE ↑ FID ↓ Div. KL ↓ θ-Align ↑
Student Simulation-based Item Difficulty Prediction Methods (Llama-3.2-1B)

Response Gen ZS 0.0058 0.2713 0.2535 0.0399 0.0196 0.0747 0.0714 −0.0014
Response Gen SFT 0.1483 0.0847 0.0215 0.4481 0.1777 0.0269 0.0315 0.1730
SMART (ours) 0.1315 0.0918 0.0482 0.7338 0.1931 0.0267 0.0284 0.5895

Student Simulation-based Item Difficulty Prediction Methods (Llama-3.2-3B)
Response Gen ZS 0.0052 0.3386 0.4032 0.0211 0.0042 0.1284 0.2779 −0.0101
Response Gen SFT 0.1858 0.0757 0.0137 0.5158 0.1426 0.0333 0.0515 0.2226
SMART (ours) 0.1713 0.0785 0.0279 0.7655 0.1479 0.0303 0.0335 0.5582

Table 2: Performance on student simulation metrics. Best performance is in bold and second best is underlined.
SMART significantly outperforms other methods on ability following.

regarding the quality and faithfulness of simulated
responses. We see that SMART outperforms other
methods by a wide margin on the θ-Align metric,
which measures the correlation between the desired
input ability and inferred ability by scoring the gen-
erated responses. This observation shows that DPO
training leads to a strong preference for the model
to follow the input ability, resulting in a faithful
student simulator. We also compare the simulated
student methods on distribution similarity metrics,
measuring how closely their generated responses
align with ground-truth ones. Response Gen ZS
performs poorly, which emphasizes the need for
finetuning or DPO training, over simple prompt-
ing, to align the LLM with diverse responses by
real students. Interestingly, Response Gen SFT is
marginally better than SMART on these metrics
on Smarter Balance, while SMART is better on
CodeWorkout. This observation highlights the fact
that DPO training prioritizes the IRT likelihoods,
which may or may not align with how realistic the
generated responses appear. We also observe that
1B models outperform 3B models on these metrics
on CodeWorkout, perhaps due to the lower coding
ability of the 1B model, therefore aligning better
with code written by novice coders (students).

6.2 Qualitative Evaluation
To further understand the strengths and weaknesses
of our method, we perform a qualitative analysis,
where we examine patterns in items and generated
responses that affect difficulty prediction accuracy.

Models Reflect Ability-Specific Features in Stu-
dent Responses. Tables 3 and 4 show examples
of generated responses to Smarter Balanced items
for students with varying ability levels. Compared
to SFT, SMART more clearly reflects realistic pat-
terns based on ability. Broadly speaking, students
with low ability have short one-sentence responses,

spelling mistakes, poor grammar, and incorrect
punctuation. High-ability students, on the other
hand, have longer responses with complex sen-
tence structures and strong vocabulary, and make
an effort to answer all aspects of the question to
receive full credit. SMART also captures student
response diversity, especially for medium-ability
students, whose responses usually contain simple
words, but differ in length, coherence, and score
obtained by the trained scoring model. Our prefer-
ence pair creation encourages this diversity since
varied responses can be preferred as long as they
are sufficiently likely under the IRT model.

Table 5 shows examples of real and generated
responses to a CodeWorkout item. SMART’s diffi-
culty prediction is much more accurate than SFT’s
on this item, primarily due to the diversity of gener-
ated responses; the SFT responses are semantically
similar and receive similar scores across ability lev-
els, while for SMART, low ability students score
poorly while medium and high ability students
score highly. Additionally, SMART more faith-
fully reflects semantic patterns in the student code,
such as medium ability responses being longer and
high ability responses being more concise and us-
ing more clear coding constructs.

Performance is Item-dependent. For Smarter
Balanced items, we find that SMART’s perfor-
mance is highly dependent on the type of reading
comprehension task (argumentation, narration, ex-
planation, among others) in the item. In particular,
difficulty estimates are accurate for items that re-
quire information recall or those that add narrative
elements to a story. On the other hand, estimates
are less accurate for items requiring higher order
thinking (Lewis and Smith, 1993), such as sum-
marizing the main idea of a passage, or writing an
introduction to a paragraph that includes a “thesis”

25078

or a “main controlling idea”. For these items, we
find that SMART tends to overestimate their diffi-
culty. We see that even for high input ability values,
SMART tends to generate incomplete responses
that only state facts from the passage, rather than
summarizing it. Such responses receive only partial
credit and thus lead to high difficulty values under
IRT. Future work can attempt to augment the train-
ing data with synthetic responses with higher-order
thinking to aid simulation for high-ability students.

Outlier Generated Responses. We observe that
SMART occasionally generates outlier responses
with fidelity issues, with failure patterns including
1) repeating the passage, 2) not being relevant to
the item, and 3) being highly repetitive. These
outlier responses are often inaccurately scored by
the scoring model, affecting downstream item dif-
ficulty prediction. A possible solution is to use a
fidelity checking model to filter out such outlier
responses and re-generate when it happens.

7 Related Work

Direct Item Difficulty Prediction Item difficulty
prediction has been widely studied (AlKhuzaey
et al., 2024), particularly in the context of multiple-
choice questions (MCQs) (Yaneva et al., 2024;
Feng et al., 2025; Reyes et al., 2023). It is com-
mon to train regression models using handcrafted
features (Byrd and Srivastava, 2022; Tack et al.,
2024; Kapoor et al., 2025b; Gombert et al., 2024),
although finetuning language models such as BERT
has proven to be highly effective (Gombert et al.,
2024; Zhou and Tao, 2020; Loginova et al., 2021;
Benedetto et al., 2021). Custom architectures, such
as TACNN, have also been proposed for this task
(Huang et al., 2017b).

Simulation-Based Difficulty Prediction An in-
creasing body of research uses simulated students
to estimate item difficulty. They follow a similar
pipeline to our work, where they overgenerate a
large set of responses using AI models, and then fit
an IRT model to these responses to recover the item
difficulty. Such methods have prompted ensembles
of pre-trained language models to answer the items
(Liu et al., 2025; Uto et al., 2024), finetuned lan-
guage models to predict student responses given
prior responses (Zelikman et al., 2023), and trained
LSTMs with varying proportions of incorrect la-
bels (Lalor et al., 2019). He-Yueya et al. (2024)
experiment with LLM ensembles, finetuning, and

persona-based prompting, finding that the most ef-
fective method depends on the dataset.

Our approach builds on this line of work but in-
troduces several key innovations. First, we explic-
itly train simulated students to follow a prompted
ability level, allowing the simulated students to
align with the underlying IRT distribution. Sec-
ond, we focus on open-ended responses, which
are not handled by most finetuned or feature-based
methods. Third, our system is designed to operate
effectively on small item sets, where feature-based
and BERT-based methods typically underperform.

8 Conclusions and Future Work

In this paper, we presented SMART, a novel
method for aligning LLM-based simulated students
with a prompted ability and implicit item difficulty
via DPO training. The key is to form preference
pairs where preferred responses are more likely un-
der an IRT model. We perform a large-scale simula-
tion with the resulting student model, automatically
scoring generated responses with a trained LLM,
and fit the resulting data with IRT to estimate the
difficulties of unseen items. Through extensive ex-
periments on a real-world student response dataset,
we show that SMART outperforms other item dif-
ficulty prediction methods by capturing response
patterns in the data that reflect the diverse abilities
of the students and the difficulties of the items.

There are many avenues for future work. First,
we can include generated student responses in
the pool of candidates for DPO (Parikh et al.,
2025), which may help to explicitly disprefer out-
lier responses that are not aligned with real student
data. Second, we can explore the applicability of
SMART in other domains such as programming,
math, and in non question-response settings such
as dialogues (Scarlatos et al., 2025b). Finally, we
can extend SMART’s student representation to go
beyond simple scalar-valued student abilities and
into more descriptive personas (Wu et al., 2025).

Acknowledgments

We thank Smarter Balanced for providing the pri-
vate dataset used in our experiments. We also thank
Joseph Di Garbo, Frank Rijmen, Suhwa Han, Ben-
jamin Godek, Bokhee Yoon, Zhangqi Duan, and
Jacqueline Scarlatos for helpful discussions around
this work. This work is partially funded by the NSF
under grants 2237676 and 2418657.

25079

Limitations

There are several practical limitations to our work.
First, while we experiment on two datasets across
educational domains and student populations, there
are limitations to these datasets. The Smarter Bal-
anced dataset is not publicly available, and the
CodeWorkout data takes place over the course of
two semesters, making static ability modeling chal-
lenging. Additionally, the small number of items
in each dataset makes reliable evaluation challeng-
ing. To the best of our knowledge, there are no
other suitable publicly available open-ended testing
datasets. Second, we restrict our student simulation
to models no larger than 3B parameters, which is
relatively small. While our methods are effective
at this size, it would be helpful to see if scaling to
larger sizes is worth the cost. Third, we find that the
textual distribution of our generated responses does
not always match the ground-truth responses, and
that generated responses are occasionally degener-
ate. As a result, the pool of simulated responses
may not look realistic from a human perspective.
This limitation restricts our method’s usefulness as
a more generic student simulator, although it could
be addressed by improvements to the method in
future work.

Ethical Considerations

There are several potential societal benefits to our
work. Primarily, accurate automated difficulty pre-
diction can greatly benefit educational assessment:
it can reduce the cost of pre-testing to calibrate
item difficulties, it can reduce the risk of sensitive
items being leaked from pre-tests, and it can enable
calibrating difficulty for AI-generated personalized
items, enabling more accessibility in assessments.
There are several potential risks to our work as
well. Incorrectly calibrated items could lead to
unfair educational assessments if the calibrations
are overfitted to a specific demographic. As bias
is common in AI systems, simulated students may
not sufficiently represent minority or non-English
speaking students, thus leading to calibration errors
for these populations. Future work should study
these effects before deploying any such simulation-
based difficulty prediction system.

References
Samah AlKhuzaey, Floriana Grasso, Terry R Payne,

and Valentina Tamma. 2024. Text-based question

difficulty prediction: A systematic review of auto-
matic approaches. International Journal of Artificial
Intelligence in Education, 34(3):862–914.

John R Anderson and Robin Jeffries. 1985. Novice lisp
errors: Undetected losses of information from work-
ing memory. Human–Computer Interact., 1(2):107–
131.

Anthropic. 2024. Claude 3.5 sonnet. https://www.
anthropic.com/news/claude-3-5-sonnet. Ac-
cessed: 2025-05-19.

Nischal Ashok Kumar, Nigel Fernandez, Zichao Wang,
and Andrew Lan. 2023. Improving reading compre-
hension question generation with data augmentation
and overgenerate-and-rank. In Proceedings of the
18th Workshop on Innovative Use of NLP for Build-
ing Educational Applications (BEA 2023), pages 247–
259, Toronto, Canada. Association for Computational
Linguistics.

Luca Benedetto. 2023. A quantitative study of nlp ap-
proaches to question difficulty estimation. In Inter-
national Conference on Artificial Intelligence in Edu-
cation, pages 428–434. Springer.

Luca Benedetto, Giovanni Aradelli, Paolo Cremonesi,
Andrea Cappelli, Andrea Giussani, and Roberto Tur-
rin. 2021. On the application of transformers for
estimating the difficulty of multiple-choice questions
from text. In Proceedings of the 16th Workshop on
Innovative Use of NLP for Building Educational Ap-
plications, pages 147–157, Online. Association for
Computational Linguistics.

Luca Benedetto, Paolo Cremonesi, Andrew Caines,
Paula Buttery, Andrea Cappelli, Andrea Giussani,
and Roberto Turrin. 2023. A survey on recent ap-
proaches to question difficulty estimation from text.
ACM Computing Surveys, 55(9):1–37.

Li Bin, Lu Jun, Yao Jian-Min, and Zhu Qiao-Ming.
2008. Automated essay scoring using the knn algo-
rithm. In 2008 International Conference on Com-
puter Science and Software Engineering, volume 1,
pages 735–738.

John Seely Brown and Richard R Burton. 1978. Diag-
nostic models for procedural bugs in basic mathemat-
ical skills. Cogn. sci., 2(2):155–192.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 12 others. 2020. Language models are
few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc.

Jason Brownlee. 2019. How to implement the frechet in-
ception distance (fid) for evaluating gans. Accessed:
2025-05-19.

25080

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://doi.org/10.18653/v1/2023.bea-1.22
https://doi.org/10.18653/v1/2023.bea-1.22
https://doi.org/10.18653/v1/2023.bea-1.22
https://aclanthology.org/2021.bea-1.16/
https://aclanthology.org/2021.bea-1.16/
https://aclanthology.org/2021.bea-1.16/
https://doi.org/10.1109/CSSE.2008.623
https://doi.org/10.1109/CSSE.2008.623
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch/
https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch/

Ngoc Bui, Hieu Trung Nguyen, Shantanu Kumar, Ju-
lian Theodore, Weikang Qiu, Viet Anh Nguyen,
and Rex Ying. 2025. Mixture-of-personas lan-
guage models for population simulation. Preprint,
arXiv:2504.05019.

Matthew Byrd and Shashank Srivastava. 2022. Predict-
ing difficulty and discrimination of natural language
questions. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 119–130, Dublin,
Ireland. Association for Computational Linguistics.

Chih-Ming Chen and Ling-Jiun Duh. 2008. Personal-
ized web-based tutoring system based on fuzzy item
response theory. Expert systems with applications,
34(4):2298–2315.

DataShop. 2021. Dataset: Codeworkout data spring
2019. Online: https://pslcdatashop.web.cmu.
edu/Files?datasetId=3458.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. Advances in neural information
processing systems, 36:10088–10115.

Zhangqi Duan, Nigel Fernandez, Arun Balajiee Lek-
shmi Narayanan, Mohammad Hassany, Rafaella Sam-
paio de Alencar, Peter Brusilovsky, Bita Akram, and
Andrew Lan. 2025. Automated knowledge compo-
nent generation and knowledge tracing for coding
problems. Preprint, arXiv:2502.18632.

George Duenas, Sergio Jimenez, and Geral Ma-
teus Ferro. 2024. UPN-ICC at BEA 2024 shared
task: Leveraging LLMs for multiple-choice ques-
tions difficulty prediction. In Proceedings of the 19th
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications (BEA 2024), pages 542–550,
Mexico City, Mexico. Association for Computational
Linguistics.

Daniel R Eignor. 2013. The standards for educational
and psychological testing. APA handbook of testing
and assessment in psychology, Vol. 1. Test theory and
testing and assessment in industrial and organiza-
tional psychology.

Molly Q Feldman, Ji Yong Cho, Monica Ong, Sumit
Gulwani, Zoran Popović, and Erik Andersen. 2018.
Automatic diagnosis of students’ misconceptions in
K-8 mathematics. In Proc. CHI Conf. Human Fac-
tors Comput. Syst., pages 1–12.

Wanyong Feng, Jaewook Lee, Hunter McNichols,
Alexander Scarlatos, Digory Smith, Simon Wood-
head, Nancy Ornelas, and Andrew Lan. 2024. Ex-
ploring automated distractor generation for math
multiple-choice questions via large language models.
In Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 3067–3082, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Wanyong Feng, Peter Tran, Stephen Sireci, and An-
drew Lan. 2025. Reasoning and sampling-augmented
mcq difficulty prediction via llms. Preprint,
arXiv:2503.08551.

Wael H Gomaa and Aly A Fahmy. 2012. Short answer
grading using string similarity and corpus-based sim-
ilarity. International Journal of Advanced Computer
Science and Applications (IJACSA), 3(11).

Sebastian Gombert, Lukas Menzel, Daniele Di Mitri,
and Hendrik Drachsler. 2024. Predicting item diffi-
culty and item response time with scalar-mixed trans-
former encoder models and rational network regres-
sion heads. In Proceedings of the 19th Workshop on
Innovative Use of NLP for Building Educational Ap-
plications (BEA 2024), pages 483–492, Mexico City,
Mexico. Association for Computational Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Joy He-Yueya, Wanjing Anya Ma, Kanishk Gandhi,
Benjamin W Domingue, Emma Brunskill, and
Noah D Goodman. 2024. Psychometric alignment:
Capturing human knowledge distributions via lan-
guage models. arXiv preprint arXiv:2407.15645.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. 2017. Gans
trained by a two time-scale update rule converge to a
local nash equilibrium. Advances in neural informa-
tion processing systems, 30.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Zhenya Huang, Qi Liu, Enhong Chen, Hongke Zhao,
Mingyong Gao, Si Wei, Yu Su, and Guoping Hu.
2017a. Question difficulty prediction for reading
problems in standard tests. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelli-
gence, AAAI’17, page 1352–1359. AAAI Press.

Zhenya Huang, Qi Liu, Enhong Chen, Hongke Zhao,
Mingyong Gao, Si Wei, Yu Su, and Guoping Hu.
2017b. Question difficulty prediction for reading
problems in standard tests. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelli-
gence, AAAI’17, page 1352–1359. AAAI Press.

Ying Jiao, Kumar Shridhar, Peng Cui, Wangchunshu
Zhou, and Mrinmaya Sachan. 2023. Automatic ed-
ucational question generation with difficulty level
controls. In International Conference on Artificial
Intelligence in Education, pages 476–488. Springer.

Radhika Kapoor, Sang T. Truong, Nick Haber,
Maria Araceli Ruiz-Primo, and Benjamin W.
Domingue. 2025a. Prediction of item difficulty for

25081

https://arxiv.org/abs/2504.05019
https://arxiv.org/abs/2504.05019
https://doi.org/10.18653/v1/2022.acl-short.15
https://doi.org/10.18653/v1/2022.acl-short.15
https://doi.org/10.18653/v1/2022.acl-short.15
https://pslcdatashop.web.cmu.edu/Files?datasetId=3458
https://pslcdatashop.web.cmu.edu/Files?datasetId=3458
https://arxiv.org/abs/2502.18632
https://arxiv.org/abs/2502.18632
https://arxiv.org/abs/2502.18632
https://aclanthology.org/2024.bea-1.47/
https://aclanthology.org/2024.bea-1.47/
https://aclanthology.org/2024.bea-1.47/
https://doi.org/10.18653/v1/2024.findings-naacl.193
https://doi.org/10.18653/v1/2024.findings-naacl.193
https://doi.org/10.18653/v1/2024.findings-naacl.193
https://arxiv.org/abs/2503.08551
https://arxiv.org/abs/2503.08551
https://aclanthology.org/2024.bea-1.40/
https://aclanthology.org/2024.bea-1.40/
https://aclanthology.org/2024.bea-1.40/
https://aclanthology.org/2024.bea-1.40/
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2502.20663

reading comprehension items by creation of anno-
tated item repository. Preprint, arXiv:2502.20663.

Radhika Kapoor, Sang T Truong, Nick Haber,
Maria Araceli Ruiz-Primo, and Benjamin W
Domingue. 2025b. Prediction of item diffi-
culty for reading comprehension items by cre-
ation of annotated item repository. arXiv preprint
arXiv:2502.20663.

Ghader Kurdi, Jared Leo, Bijan Parsia, Uli Sattler, and
Salam Al-Emari. 2020. A systematic review of auto-
matic question generation for educational purposes.
International Journal of Artificial Intelligence in Ed-
ucation, 30:121–204.

John P. Lalor, Hao Wu, and Hong Yu. 2019. Learn-
ing latent parameters without human response pat-
terns: Item response theory with artificial crowds. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4249–
4259, Hong Kong, China. Association for Computa-
tional Linguistics.

Arthur Lewis and David Smith. 1993. Defining higher
order thinking. Theory into practice, 32(3):131–137.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Naiming Liu, Zichao Wang, Richard Baraniuk, and An-
drew Lan. 2022. Open-ended knowledge tracing for
computer science education. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, pages 3849–3862.

Yunting Liu, Shreya Bhandari, and Zachary A. Pardos.
2025. Leveraging llm respondents for item evalua-
tion: A psychometric analysis. British Journal of
Educational Technology, 56(3):1028–1052.

Gabriel Loaiza-Ganem and John P Cunningham. 2019.
The continuous bernoulli: fixing a pervasive error in
variational autoencoders. Advances in Neural Infor-
mation Processing Systems, 32.

Ekaterina Loginova, Luca Benedetto, Dries Benoit, and
Paolo Cremonesi. 2021. Towards the application
of calibrated transformers to the unsupervised es-
timation of question difficulty from text. In Pro-
ceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP
2021), pages 846–855, Held Online. INCOMA Ltd.

Hotaka Maeda. 2025. Field-testing multiple-choice
questions with ai examinees: English grammar
items. Educational and Psychological Measurement,
85(2):221–244.

William A Mehrens and Susan E Phillips. 1987. Sensi-
tivity of item difficulties to curricular validity. Jour-
nal of Educational Measurement, 24(4):357–370.

Eiji Muraki. 1992. A generalized partial credit model:
Application of an em algorithm. Applied psychologi-
cal measurement, 16(2):159–176.

Eiji Muraki. 1993. Information functions of the gen-
eralized partial credit model. ETS Research Report
Series, 1993(1):i–12.

Kai North and Christopher Ormerod. 2025. Cyborg
data: Merging human with ai generated training data.
Preprint, arXiv:2503.22736.

Challenge Organizers. 2021. The 2nd csedm data chal-
lenge. Online: https://sites.google.com/ncsu.
edu/csedm-dc-2021/.

Nisarg Parikh, Alexander Scarlatos, Nigel Fernandez,
Simon Woodhead, and Andrew Lan. 2025. LookA-
like: Consistent distractor generation in math MCQs.
In Proceedings of the 20th Workshop on Innovative
Use of NLP for Building Educational Applications
(BEA 2025), pages 294–311, Vienna, Austria. Asso-
ciation for Computational Linguistics.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. Advances in Neural Information Process-
ing Systems, 34:4816–4828.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Georg Rasch. 1993. Probabilistic models for some in-
telligence and attainment tests. ERIC.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Diego Reyes, Abelino Jimenez, Pablo Dartnell, Séverin
Lions, and Sebastián Ríos. 2023. Multiple-choice
questions difficulty prediction with neural networks.
In International Conference in Methodologies and
intelligent Systems for Techhnology Enhanced Learn-
ing, pages 11–22. Springer.

Alexander Scarlatos, Ryan S. Baker, and Andrew Lan.
2025a. Exploring knowledge tracing in tutor-student
dialogues using llms. In Proceedings of the 15th
Learning Analytics and Knowledge Conference, LAK
2025, Dublin, Ireland, March 3-7, 2025. ACM.

Alexander Scarlatos, Naiming Liu, Jaewook Lee,
Richard Baraniuk, and Andrew Lan. 2025b. Train-
ing llm-based tutors to improve student learning out-
comes in dialogues. In Artificial Intelligence in
Education, pages 251–266, Cham. Springer Nature
Switzerland.

25082

https://arxiv.org/abs/2502.20663
https://arxiv.org/abs/2502.20663
https://doi.org/10.18653/v1/D19-1434
https://doi.org/10.18653/v1/D19-1434
https://doi.org/10.18653/v1/D19-1434
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.1111/bjet.13570
https://doi.org/10.1111/bjet.13570
https://aclanthology.org/2021.ranlp-1.97/
https://aclanthology.org/2021.ranlp-1.97/
https://aclanthology.org/2021.ranlp-1.97/
https://doi.org/10.1177/00131644241281053
https://doi.org/10.1177/00131644241281053
https://doi.org/10.1177/00131644241281053
https://arxiv.org/abs/2503.22736
https://arxiv.org/abs/2503.22736
https://sites.google.com/ncsu.edu/csedm-dc-2021/
https://sites.google.com/ncsu.edu/csedm-dc-2021/
https://doi.org/10.18653/v1/2025.bea-1.23
https://doi.org/10.18653/v1/2025.bea-1.23
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

Machi Shimmei and Noboru Matsuda. 2022. Automatic
question generation for evidence-based online course-
ware engineering. In iTextbooks@ AIED, pages 18–
25.

John P Smith III, Andrea A DiSessa, and Jeremy
Roschelle. 1994. Misconceptions reconceived: A
constructivist analysis of knowledge in transition. j.
learn. sci., 3(2):115–163.

Shashank Sonkar, Naiming Liu, and Richard Baraniuk.
2024. Student data paradox and curious case of sin-
gle student-tutor model: Regressive side effects of
training LLMs for personalized learning. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2024, pages 15543–15553, Miami, Florida,
USA. Association for Computational Linguistics.

Anaïs Tack, Siem Buseyne, Changsheng Chen, Robbe
D’hondt, Michiel De Vrindt, Alireza Gharahighehi,
Sameh Metwaly, Felipe Kenji Nakano, and Ann-
Sophie Noreillie. 2024. ITEC at BEA 2024 shared
task: Predicting difficulty and response time of medi-
cal exam questions with statistical, machine learning,
and language models. In Proceedings of the 19th
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications (BEA 2024), pages 512–521,
Mexico City, Mexico. Association for Computational
Linguistics.

Maomi Ueno and Yoshimitsu Miyazawa. 2019. Uni-
form adaptive testing using maximum clique algo-
rithm. In Artificial Intelligence in Education: 20th
International Conference, AIED 2019, Chicago, IL,
USA, June 25-29, 2019, Proceedings, Part I, page
482–493, Berlin, Heidelberg. Springer-Verlag.

Masaki Uto, Yuto Tomikawa, and Ayaka Suzuki. 2024.
Question difficulty prediction based on virtual test-
takers and item response theory. Workshop on Auto-
matic Evaluation of Learning and Assessment Con-
tent.

Kaiwen Wang, Rahul Kidambi, Ryan Sullivan, Alekh
Agarwal, Christoph Dann, Andrea Michi, Marco
Gelmi, Yunxuan Li, Raghav Gupta, Kumar Avinava
Dubey, Alexandre Rame, Johan Ferret, Geoffrey
Cideron, Le Hou, Hongkun Yu, Amr Ahmed,
Aranyak Mehta, Leonard Hussenot, Olivier Bachem,
and Edouard Leurent. 2024. Conditional language
policy: A general framework for steerable multi-
objective finetuning. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
2153–2186, Miami, Florida, USA. Association for
Computational Linguistics.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallström, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, Nathan Cooper, Griffin Adams, Jeremy
Howard, and Iacopo Poli. 2024. Smarter, better,
faster, longer: A modern bidirectional encoder for
fast, memory efficient, and long context finetuning
and inference. Preprint, arXiv:2412.13663.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, and 3 others. 2020. Hugging-
face’s transformers: State-of-the-art natural language
processing. Preprint, arXiv:1910.03771.

Tao Wu, Jingyuan Chen, Wang Lin, Mengze Li, Yu-
meng Zhu, Ang Li, Kun Kuang, and Fei Wu. 2025.
Embracing imperfection: Simulating students with
diverse cognitive levels using LLM-based agents. In
Proceedings of the 63rd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 9887–9908, Vienna, Austria.
Association for Computational Linguistics.

Victoria Yaneva, Kai North, Peter Baldwin, Le An Ha,
Saed Rezayi, Yiyun Zhou, Sagnik Ray Choudhury,
Polina Harik, and Brian Clauser. 2024. Findings
from the first shared task on automated prediction
of difficulty and response time for multiple-choice
questions. In Proceedings of the 19th Workshop on
Innovative Use of NLP for Building Educational Ap-
plications (BEA 2024), pages 470–482, Mexico City,
Mexico. Association for Computational Linguistics.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng,
Alexander Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. 2023. Large language model as at-
tributed training data generator: a tale of diversity and
bias. In Proceedings of the 37th International Con-
ference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA. Curran Associates
Inc.

Xiang Yue, Huseyin Inan, Xuechen Li, Girish Kumar,
Julia McAnallen, Hoda Shajari, Huan Sun, David
Levitan, and Robert Sim. 2023. Synthetic text gener-
ation with differential privacy: A simple and practical
recipe. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1321–1342, Toronto,
Canada. Association for Computational Linguistics.

Eric Zelikman, Wanjing Ma, Jasmine Tran, Diyi Yang,
Jason Yeatman, and Nick Haber. 2023. Generating
and evaluating tests for k-12 students with language
model simulations: A case study on sentence reading
efficiency. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2190–2205, Singapore. Association for
Computational Linguistics.

Haotian Zhang, Shuanghong Shen, Bihan Xu, Zhenya
Huang, Jinze Wu, Jing Sha, and Shijin Wang. 2024.
Item-difficulty-aware learning path recommendation:
From a real walking perspective. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 4167–4178.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

25083

https://doi.org/10.18653/v1/2024.findings-emnlp.912
https://doi.org/10.18653/v1/2024.findings-emnlp.912
https://doi.org/10.18653/v1/2024.findings-emnlp.912
https://aclanthology.org/2024.bea-1.43/
https://aclanthology.org/2024.bea-1.43/
https://aclanthology.org/2024.bea-1.43/
https://aclanthology.org/2024.bea-1.43/
https://doi.org/10.1007/978-3-030-23204-7_40
https://doi.org/10.1007/978-3-030-23204-7_40
https://doi.org/10.1007/978-3-030-23204-7_40
https://doi.org/10.18653/v1/2024.findings-emnlp.118
https://doi.org/10.18653/v1/2024.findings-emnlp.118
https://doi.org/10.18653/v1/2024.findings-emnlp.118
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/2025.acl-long.488
https://doi.org/10.18653/v1/2025.acl-long.488
https://aclanthology.org/2024.bea-1.39/
https://aclanthology.org/2024.bea-1.39/
https://aclanthology.org/2024.bea-1.39/
https://aclanthology.org/2024.bea-1.39/
https://doi.org/10.18653/v1/2023.acl-long.74
https://doi.org/10.18653/v1/2023.acl-long.74
https://doi.org/10.18653/v1/2023.acl-long.74
https://doi.org/10.18653/v1/2023.emnlp-main.135
https://doi.org/10.18653/v1/2023.emnlp-main.135
https://doi.org/10.18653/v1/2023.emnlp-main.135
https://doi.org/10.18653/v1/2023.emnlp-main.135

Ya Zhou and Can Tao. 2020. Multi-task bert for prob-
lem difficulty prediction. In 2020 International Con-
ference on Communications, Information System and
Computer Engineering (CISCE), pages 213–216.

A Additional Experimental Details

A.1 Student Simulation Hyperparameters

We perform a preliminary hyperparameter search
on our validation sets. We set LoRA’s rank = 128,
α = 64, and dropout = 0.05. For Smarter Balanced,
for both the scoring model and student model, we
perform SFT for 1 epoch, with learning rate = 1e-4
and linear warmup for 10% of steps, weight decay
= 1e-2, gradient clipping norm = 1.0, and effective
batch size = 64 using gradient accumulation. For
DPO, we set learning rate = 1e-5, β = 0.5, the prob-
ability threshold ϵ = 0.1 (Eq. 4), the number of
negative candidates m = 3, and train on a random
20% subset of the training set to reduce costs. For
CodeWorkout, we use the same hyperparamters
except for the following: for the scoring model
we perform SFT for 5 epochs with learning rate =
5e-5, for the student model we perform SFT for
3 epochs with learning rate = 1e-5, and perform
DPO for 1 epoch with learning rate = 1e-6 on the
full training set. We conduct all experiments on the
Smarter Balanced dataset on NVIDIA A10G GPUs
and all experiments on the CodeWorkout dataset
on NVIDIA A40 GPUs.

At inference time, we sample n = 1, 000 student
abilities for simulation and generate a single re-
sponse for each item/ability pair. We decode up to
500 tokens with nucleus sampling, setting tempera-
ture = 0.7 and p = 0.95. We use an inference-time
batch size of 64 for the simulated student model
and 2 for the scoring model, optimizing for infer-
ence speed.

On the Smarter Balanced dataset, for both SFT
and DPO, training the simulated student model
takes approximately 3 hours on a single GPU for
the 1B model and 6 hours on 2 GPUs for the 3B
model. Training the automated scoring model takes
approximately 4 hours on a single GPU for the 1B
model and 9 hours on 2 GPUs for the 3B model.
Generating 10,000 responses (1,000 abilities over
10 items) takes approximately 1 hour on a single
GPU for the 1B model and 3 hours on a single GPU
for the 3B model. Scoring these responses takes
approximately 15 minutes on a single GPU for the
1B model and 35 minutes on a single GPU for the
3B model.

A.2 Additional Implementation Details

We use multi-qa-mpnet-base-dot-v1 for our
SBERT model since it is the highest performing
model with a 512 token limit, according to the sen-
tence transformers model page3. We also found
that it worked better than all-distilroberta-v1
in preliminary experiments.

We train our random forest baseline using the
RandomForestRegressor class from the sklearn4

library. We additionally restrict max_features to
the size of train set to avoid overfitting, which we
found improves performance.

For our Response Gen ZS student simulation
baseline, we first normalize all train abilities to
[−3, 3] before sampling, and then map abilities to
10 labeled buckets with the following ranges: “Min-
imal”: θ < −2.5, “Emerging”: θ ∈ [−2.5,−2),
“Developing”: θ ∈ [−2,−1.5), “Approaching Pro-
ficiency”: θ ∈ [−1.5,−0.8), “Proficient”: θ ∈
[−0.8, 0), “Competent”: θ ∈ [0, 0.8), “Skilled”:
θ ∈ [0.8, 1.5), “Advanced”: θ ∈ [1.5, 2.0), “Ex-
ceptional”: θ ∈ [2, 2.5), “Mastery”: θ ≥ 2.5.

For computing MAUVE, we use the official im-
plementation5. For computing FID, we adapt the
implementation from (Brownlee, 2019).

A.3 Predicted Difficulty Normalization

For all methods, including baselines, we transform
predicted difficulties to have the same mean and
standard deviation as the ground-truth difficulties
on the train set; doing so improves RMSE when
predicted difficulties are correlated but distribution-
ally shifted from the ground-truth. We perform the
transformation using the following formula:

b̂i ←
σ2
σ1

(b̂i − µ1) + µ2, (6)

where b̂i is the predicted difficulty for item i, µ1

and σ1 are the mean and standard deviation of the
predicted item difficulties, respectively, and µ2 and
σ2 are the mean and standard deviation of the item
difficulties in the train set, respectively.

A.4 IRT Model Fitting

We perform IRT fitting at 2 distinct stages in our
pipeline: 1) when fitting to real student responses to
create the ground-truth ability and item parameters,

3https://sbert.net/docs/sentence_transformer/
pretrained_models.html#original-models

4https://scikit-learn.org/
5https://github.com/krishnap25/mauve

25084

https://doi.org/10.1109/CISCE50729.2020.00048
https://doi.org/10.1109/CISCE50729.2020.00048
https://sbert.net/docs/sentence_transformer/pretrained_models.html#original-models
https://sbert.net/docs/sentence_transformer/pretrained_models.html#original-models
https://scikit-learn.org/
https://github.com/krishnap25/mauve

and 2) when fitting to simulated student responses
to produce difficulty estimates.

The Smarter Balanced dataset does not contain
student identifiers, but rather contains prior ability
estimates based on each student’s responses to a
larger set of questions, including other types such
as multiple choice questions; the 49 short answer
questions we use comprise all short answer items
in the full set. To ensure that other item types and
test set responses do not influence our ability es-
timates, we fit an IRT model from scratch only
on the 49 items used in this study. Since we do
not have access to student identifiers, we use the
prior ability as a proxy. However, the student re-
sponses are very sparse on our set of questions,
with around 63K unique ability values for around
85K responses, leading to a poor fit for the IRT
model. As a solution, we round each prior ability
to a single decimal place (we found this precision to
work best out of several tried) and use the resulting
value as the student identifier. This transformation
leads to a significantly better fit for the ground-
truth IRT model. We note that this process assumes
access to prior estimates of student ability, which
may or may not be available in real-world settings.
However, we note that this a limitation of the data,
rather than our method. Additionally, we note that
this transformation does not unfairly benefit our
method over the baselines, so the comparison be-
tween methods in this work remains fair.

When we fit the IRT model with the simulated
responses, we perform a similar operation for as-
signing identifiers. We round the prompted ability
for each simulated response to one decimal place,
and use this value to form a new identifier for all
simulated responses that result in that rounded abil-
ity. When re-training the IRT model, we include the
ground-truth student responses from the train set
only. While these ground-truth student responses
do not directly interact with the estimated parame-
ters for non-train items or simulated students, we
find their inclusion to improve performance, per-
haps due to their effect on global variables such as
AdamW’s adaptive learning rate.

We implement our IRT models using PyTorch,
using the formulations in Equations 2 and 3 to
compute the probability of a student’s score for
a particular item. For GPCM, following prior
work (Muraki, 1993), we set the first step parame-
ter to di0 = 0, since only C−1 step parameters are
required for C score classes. We also impose the lo-
cation constraint (Muraki, 1993), where all step pa-

rameters for an item sum to 0, i.e.,
∑C−1

y=0 diy = 0,
ensuring that difficulty parameters across items are
on the same scale and are identifiable. We also fix
all discrimination parameters to 1, which improves
model fit. We do not enforce normal priors on
any parameters. We train the model using gradient
descent, using the cross-entropy loss between the
predicted score probabilities and the ground-truth
scores. We train using the AdamW optimizer for
50 epochs with learning rate = 1e-3, weight decay =
0, and batch size = 256; for CodeWorkout, we train
for 200 epochs when fitting the ground-truth data,
which is necessary due to the smaller number of
ground-truth student responses. We reserve a ran-
dom validation set of 20% of all responses to deter-
mine how predictive our ground-truth IRT parame-
ters are, comparing the most likely student scores
predicted by the IRT model and the ground-truth
scores in the validation set. For Smarter Balanced,
we measure performance using QWK since scores
are ordinal, with the IRT model achieving a QWK
of 0.57 on the validation set. For CodeWorkout, we
measure performance using PCC since scores are
continuous, with the IRT model achieving a PCC
of 0.49. These values show moderate predictability,
indicating that while the student scores are difficult
to predict, the parameters are well-calibrated.

B Additional Dataset Details

B.1 Cross-Validation Splitting

We create our cross-validation splits such that 1)
each item appears in train, validation, and test at
least once, and 2) the distribution of item difficul-
ties should be roughly the same across train, val-
idation, and test over all folds. We achieve these
requirements using the following algorithm. First,
we sort all items according to their difficulty. Sec-
ond, we partition all items into 10 difficulty buckets
of up to 5 items each. Third, we sequentially con-
struct a list of items by adding one random item at
a time from each bucket in a round-robin fashion;
the resulting list is striped by difficulty bucket. Fi-
nally, we evenly rotate this list 5 times to form the 5
cross-validation folds, partitioning each rotation at
60% and 80% to create a train/validation/test split.

B.2 Passage Summarization

Several Smarter Balanced questions include
long reading passages, up to 4, 000 tokens
in length, leading to increased memory us-
age and training time; therefore, we prompt

25085

Llama-3.1-70B-Instruct, loaded with NF4
quantization, to summarize these passages while
retaining the main elements and original writing
style. We show this prompt in Appendix F.

C Data Scaling Experiment

Figure 3: Results of data scaling experiment. Even
a small amount of data is sufficient to achieve high
performance. SMART begins to outperform SFT more
significantly when more data is available.

We conduct an experiment where we vary the
amount of data available for training by using ran-
dom subsets of the student responses in the training
set at 0%, 25%, 50%, 75%, and 100%. We re-
train both SFT and SMART using the 1B model
on these subsets, and report the PCC averaged over
all cross-validation test splits on CodeWorkout. To
only examine the impact of training data on the
student model, we use the scoring model trained on
all data, since in reality a stronger scoring model
may be available (such as one that runs test cases
on generated code).

We show the results of this data scaling exper-
iment in Figure 3. We observe that even a small
amount of training data is sufficient to drastically
increase performance from zero-shot (25% of the
training data contains 1,636 responses and 3,027
preference pairs in total). SFT and SMART per-
form similarly until 75%, when SMART begins to
outperform SFT. Surprisingly, performance drops
for both methods from 75% to 100%, indicating
that some training responses may negatively im-
pact performance, such as ones that represent item
types that are not present in the test set. This result
further reflects the challenges of testing on a small
number of items.

D Statement on Scientific Artifacts

Software and Models To the best of our knowl-
edge, all software and models we build our im-
plementation on have open-source licenses or no

available license. Additionally, we are within their
intended terms of use, specifically, scientific re-
search. If we release code, we will ensure the
license and terms reflect the sources we build on.

Dataset The Smarter Balanced dataset contains
proprietary questions and private student data. We
do not examine the data for offensive content or
identifiable information, because 1) the data is pri-
vate and securely stored, 2) all models trained on
the data are securely stored and will not be released,
and 3) the data is very large and would be difficult
to effectively scan for such issues. We do not check
for such issues on CodeWorkout either, because
it is a public and widely used dataset, and such
investigations are beyond the scope of this work.

25086

E Qualitative Examples

Passage Source #1 - Meet the Robots
Robots are not just a thing of the future; they are already doing many jobs today...

Source #2 - Robots That Play Well with Others
Robots are not just for work; they can also play. Some robots can sing, dance, and even play
music...

Source #3 - When the Car Is the Driver
The state of Nevada has finalized new rules that will make it possible for robotic self-driving cars
to receive their own special driving permits...

Question Many robots are designed to do normal tasks that improve people’s lives or jobs. Provide two
pieces of evidence from different sources that support this idea and explain how each example
supports the idea.

Ability Response

SFT

Low The reason why these are good robots is because they can help with anything that you need. They
can help with food, water, and other things that you need. They can also help with work, like
doctors, and other things that you need to do.

Medium In source 1 it talks about a robot named "Gemini Scout" that is a remote controlled robot. It can
also be used for mine, farms, and doctors. It can also help people who are in danger. It can also
help with rescues. In source 2 it talks about...

High A few robots that are designed to do normal tasks that improve people’s lives or jobs are, robots
like the "Gemini-Scout" which can be used to rescue people that are in danger, such as in a mine
or a building. It can also be used to test the air for dangerous gases. The "Gemini-Scout" is very
useful to people because it helps them in many different ways. Another robot that is useful...

SMART (ours)

Low The reason why i think the robots are good is becuase they can help and they are smart.
Medium In source 1 it talks about a robot named "Gemini Scout" that can carry food and water. It can also

collect information about the air that comes out of the vents in the volcano. In source 2 it talks
about...

High A large number of robots are designed to help people with tasks that make their lives easier and
to improve job efficiency. A piece of evidence from "Meet the Robots" is a robot that is used in
mines to help search for lost or injured people. The robot is called the Gemini-Scout, and it is a
remote-controlled robot. This supports the idea because it is helping to rescue people who are
injured or missing...

Table 3: Examples of student responses generated by SFT and SMART for a publicly available Smarter Balanced
item, conditioned on abilities in the low, medium, and high ranges. SMART adapts better to the instructed ability
than SFT. For low ability, SMART introduces a spelling error and poor capitalization, and does not back up its
claim, while SFT does not answer the question correctly but uses better sentence structure. For medium ability,
both methods provide evidence but do not explain how they support the claim. For high ability, SMART produces
structured writing, provides evidence, and explains how its evidence supports the claim, while SFT is less explicit
about how its evidence supports the claim.

25087

Passage Plants need food to survive, just as animals do; but, unlike animals, they do not eat solid foods.
Instead, plants get most of the food they need from the sun through a process called photosynthesis.
Using this process, plants can absorb the sun’s light energy to make their own food. Although
they cannot move around to find food, plants can make their food anywhere as long as they have
three things: carbon dioxide, water, and light...

Question Write an introduction to the report that establishes and introduces a clear claim about how plants
make their own food.

Ability Response

SFT

Low Photosynthesis is the process by which plants make their own food from the sun.
Medium Plants are very important to us because they give us oxygen, that we need to survive. Plants are

very important because they give us oxygen.
High Plants are very important to us. We rely on them for food and for oxygen. Plants make all of this

possible. They take the carbon dioxide, the water, and the light, and turn them into sugar and
oxygen. That is why photosynthesis is so important to animals.

SMART (ours)

Low that the plants are good for us and the world
Medium Plants are one of the most important things on earth, without them we would not be alive today.

Plants are very important to us humans because without them we wouldn’t be able to survive, they
also help us in many ways like we can make food out of them and plants help us by providing
oxygen.

High Photosynthesis is the process by which plants create food. The process of photosynthesis is very
important to all living things, especially because without it, the air we breathe would be filled with
only carbon dioxide, and without oxygen, animals and humans would not be able to survive. In
this report, you will learn more about how plants make their own food.

Table 4: Examples of student responses generated by SFT and SMART for a publicly available Smarter Balanced
item, conditioned on abilities in the low, medium, and high ranges. SMART adapts better to the instructed ability
than SFT. For low ability, SMART uses very simple language and doesn’t discuss how plants make food, while
SFT uses more formal language and does mention how plans make food, which would be atypical for a low ability
student. For medium ability, both methods write a coherent introduction but don’t mention how plants make food;
SMART writes a slightly longer response. For high ability, SMART makes sure to motivate the importance of
photosynthesis as well as directly answer the question by stating how plants make food, while SFT neglects to
mention how plants make food.

25088

Question Return the centered average of an array of ints, which we’ll say is the mean average
of the values, except ignoring the largest and smallest values in the array. If there
are multiple copies of the smallest value, ignore just one copy, and likewise for the
largest value. Use int division to produce the final average. You may assume that the
array has a length of 3 or more.

Ability Response Score

Human Student

Low
public int centeredAverage(int[] nums)
{

int merlin = 0;
int less = nums[0];
int more = nums[0];

for (int i = 0; i < nums.length; i++)
{

merlin = merlin + nums[i];
less = Math.min(less, nums[i]);
more = Math.max(more, nums[i]);

}
return (sum - (min-max)/nums.length);

}

0.0

Medium
public int centeredAverage(int[] nums)
{

int max = 0;
int min = nums[0];

for (int i = 0; i < nums.length; i++)
{

if (nums[i] > max)
{

max = nums[i];
}

else if (nums[i] < min)
{

min = nums[i];
}

}

int sum = 0;
int ct = 0;

for (int n : nums)
{

if (n != min && n != max)
{

sum += n;
ct++;

}
}
return sum/ct;

}

0.67

25089

High
public int centeredAverage(int[] nums)
{

int sum = 0;
int min = nums[0];
int max = nums[0];

for(int i = 0; i < nums.length; i++) {
sum += nums[i];
min = Math.min(min, nums[i]);
max = Math.max(max, nums[i]);

}

return (sum - min - max) / (nums.length - 2);
}

1.0

SFT

Low
public int centeredAverage(int[] nums)
{

int sum = 0;
for (int i = 0; i < nums.length - 2; i++)
{

sum = sum + nums[i];
}
return sum / (nums.length - 2);

}

0.68

Medium
public int centeredAverage(int[] nums)
{

int sum = 0;
for (int i = 0; i < nums.length; i++)
{

sum = sum + nums[i];
}
int avg = sum / (nums.length - 2);
return avg;

}

0.75

High
public int centeredAverage(int[] nums)
{

int sum = 0;

for (int i = 0; i < nums.length; i++) {
if (nums[i]!= Integer.MIN_VALUE && nums[i]!= Integer.MAX_VALUE)

sum += nums[i];
}

return sum / (nums.length - 2);
}

0.73

SMART (ours)

Low
public int centeredAverage(int[] nums)
{

int i = 0;
int sum = 0;
for (int i = 0; i < nums.length; i++)
{

sum = sum + nums[i];
}
return sum / nums.length - 1;

}

0.27

25090

Medium
public int centeredAverage(int[] nums)
{

int sum = 0;
int min = Integer.MAX_VALUE;
int max = Integer.MIN_VALUE;

for (int i = 0; i < nums.length; i++) {
if (nums[i] > max) {

max = nums[i];
}
if (nums[i] < min) {

min = nums[i];
}
sum += nums[i];

}

return (sum - max - min) / (nums.length - 2);
}

0.94

High
public int centeredAverage(int[] nums) {
int min = Integer.MAX_VALUE;
int max = Integer.MIN_VALUE;
int sum = 0;

for(int num : nums) {
if(num < min) min = num;
if(num > max) max = num;
sum += num;

}

sum -= min + max;
return sum / (nums.length - 2);

}

0.98

Table 5: Examples of real student responses and responses generated by SFT and SMART for a CodeWorkout item,
conditioned on abilities in the low, medium, and high ranges. Scores for real students represent the portion of test
cases that passed; scores for simulated students are assigned by our trained scoring model. The true difficulty for
the question is -0.57, the SFT difficulty prediction is 0.22, and the SMART difficulty prediction is -0.41. SMART
responses are much more diverse than SFT responses, likely resulting in the more accurate prediction. To further
demonstrate this, we report the average score for each ability quartile from each source, where real students and
SMART show a gradual increase in score with ability, while SFT does not show any distinction between abilities.
Real students: [0.22, 0.53, 0.71, 0.95], SFT: [0.81, 0.79, 0.82, 0.83], SMART: [0.57, 0.79, 0.85, 0.93].

25091

F Prompts

We show our prompts below for the simulated stu-
dent model (Table 6), the automated scoring model
(Table 7), ICL for difficulty prediction (Table 8),
and summarizing reading passages (Table 9). We
note that because the simulated student and auto-
mated scoring models are finetuned, their system
prompts are much less detailed. Doing so reduces
GPU memory, and is permissible since the mod-
els are able to learn to perform their tasks from
the data, rather than relying on instructions in the
prompt.

25092

System You are a student of {ability_level} ability responding to a stimulus.

User Given the following **Stimulus**, give a response to the **question**:

Stimulus

— for Smarter Balanced —
Passage:
{passage}
——

Question:
{question}

— for CodeWorkout —
Reference Solutions:
{reference solutions}
——

Table 6: Prompt for the simulated student model.

System You are a teacher scoring student responses to open-ended questions.

User Score the student response using the rubric to the question by only outputting a single integer
between 0 and {max_score} inclusive.

— for Smarter Balanced —
Rubric:
{rubric}

Passage:
{passage}
——

Question:
{question}

— for CodeWorkout —
Reference Solutions:
{reference solutions}
——

Student response: {response}

Score:

Table 7: Prompt for the automated scoring model.

25093

System You are an experienced English teacher. Your job is to predict the difficulty of a reading
comprehension short answer question. Please follow these instructions carefully:
- You will be given a question and optionally an associated passage. Use both of these to predict
the question’s difficulty.
- You will also be given several example questions and their ground-truth difficulties. Use these
to calibrate your prediction for the current question.
- Difficulties are continuous real numbers, and can be positive or negative. A higher value means
the question is more difficult.
- First briefly think step-by-step about the question’s difficulty based on its content and the
examples.
- Write your output with the following template: “Thinking: <step-by-step reasoning>\nDifficulty:
<real-valued difficulty prediction>”. Ensure that you only output a number for the difficulty
prediction.

User #### Example 1 ####

— for Smarter Balanced —
Passage:
{passage}
——

Question:
{question}

— for CodeWorkout —
Reference Solutions:
{reference solutions}
——

Difficulty: {difficulty}

Example 2
...

Example 3
...

Current Question

— for Smarter Balanced —
Passage:
{passage}
——

Question:
{question}

— for CodeWorkout —
Reference Solutions:
{reference solutions}
——

Table 8: Prompt for in-context learning difficulty prediction.

System You are an English teacher. You will be given a reading passage. Your job is to rewrite the
passage to make it shorter. Please follow these instructions carefully:
- Your version of the passage should be significantly shorter.
- It should contain all of the main ideas and plot elements of the original passage.
- Do not change the writing style of the passage.
- If the passage contains multiple texts/sources, rewrite all of them in independent paragraphs.
- Do not write an answer to the question.
- Your output will be used as the new passage. Therefore, only output the rewritten passage. Do
not write any explanation of your output at all.

User {passage}

Table 9: Prompt for passage summarization.

25094

