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Abstract
Knowledge graphs (KGs) enable reasoning
tasks such as link prediction, question an-
swering, and knowledge discovery. However,
real-world KGs are often incomplete, mak-
ing link prediction both essential and challeng-
ing. Existing methods, including embedding-
based and path-based approaches, rely on Eu-
clidean embeddings, which struggle to cap-
ture hierarchical structures. GNN-based meth-
ods aggregate information through message
passing in Euclidean space, but they strug-
gle to effectively encode the recursive tree-
like structures that emerge in multi-hop rea-
soning. To address these challenges, instead
of learning static entity and relation embed-
dings, we propose a hyperbolic GNN frame-
work (HYPERKGR) that embeds recursive
learning trees in dynamic query-specific hy-
perbolic space. By incorporating hierarchical
message passing, our method naturally aligns
with reasoning paths and dynamically adapts
to queries, improving prediction accuracy. Un-
like static embedding-based approaches, our
model learns context-aware embeddings tai-
lored to each query. Experiments on multiple
benchmark datasets show that our approach
consistently outperforms state-of-the-art meth-
ods, demonstrating its effectiveness in KG rea-
soning. The code can be found in https:
//github.com/lihuiliullh/HyperKGR

1 Introduction

A knowledge graph (KG) is a structured represen-
tation of information that captures a collection of
facts, where nodes correspond to real-world en-
tities, events, or objects, and edges denote rela-
tionships between these nodes. Knowledge graphs
have been widely applied in diverse domains, such
as natural language understanding (Radford et al.,
2018), question answering (Acharya and Adhikari,
2021) and so on, due to their ability to represent
and query relational data effectively. Since their
formal introduction in 2012,1 various prominent

1https://en.wikipedia.org/wiki/Knowledge_graph

knowledge graphs have been developed, including
Freebase, Yago, and Wikidata, each offering rich
resources for advancing research and applications
in AI and data science.

Knowledge graph reasoning refers to the pro-
cess of deriving new knowledge or insights from
existing knowledge graphs by inferring missing
facts or uncovering hidden patterns. This task is
critical as real-world knowledge graphs are often
large yet highly incomplete, presenting significant
challenges in accurately predicting new facts. A
key subtask within this domain is link prediction,
which focuses on predicting the missing entity (tail
or head) in a relational triple, such as (u, p, ?) or
(?, p, v), where u and v are entities and p repre-
sents their relationship. The ability to infer such
missing entities has vast implications for improv-
ing KG quality and enabling advanced reasoning
in practical applications.

Over the past decade, numerous methods have
been proposed to address knowledge graph reason-
ing. These include embedding-based approaches,
which represent entities and relations as low-
dimensional vectors in Euclidean space (Sun et al.,
2019; Zhang et al., 2019); path reasoning meth-
ods, which explore multi-hop relational paths in
the graph (Yang et al., 2017; Das et al., 2017); and,
more recently, graph neural network (GNN)-based
techniques, which aggregate information from lo-
cal graph neighborhoods to model relational depen-
dencies (Zhang and Yao, 2022; Zhang et al., 2023;
Zhu et al., 2021). However, most existing methods
focus on reasoning in embedding space without
fully exploiting the hierarchical or structural char-
acteristics inherent in many KGs. For hyperbolic
knowledge graph link prediction tasks (Nickel and
Kiela, 2017b; Chami et al., 2020; Balažević et al.,
2019), while current methods embed entire KGs
into hyperbolic space to capture hierarchical struc-
tures, their performance is hindered by the non-
tree-like nature of most KGs and the presence of
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weak or inconsistent hierarchies among entities.
For instance, relations like isFriend are symmet-
ric rather than hierarchical, which introduces noise
into the learned embeddings.

Motivated by the strengths and limitations of
existing approaches, we propose a novel method
(HYPERKGR) that integrates path reasoning into
the architecture of GNN-based KG reasoning mod-
els. Unlike previous hyperbolic embedding meth-
ods, which embed all entities and relations into a
fixed hyperbolic space, our approach embeds the
entire message-passing tree in hyperbolic space
corresponding to a specific query (u, p, ?). This de-
sign enables hierarchical message passing, which
aligns naturally with the tree-like structures often
observed in reasoning paths. Furthermore, instead
of using static entity and relation embeddings, our
model generates query-specific hyperbolic embed-
dings for entities and relations. This means that
for a given query , the embeddings are dynami-
cally computed, adapting to the specific reason-
ing context. Our extensive experiments on var-
ious datasets and scenarios demonstrate that the
proposed method consistently outperforms state-
of-the-art techniques, showcasing its effectiveness
and robustness. More specifically, we make the
following contributions:

1. We introduce a novel hyperbolic GNN-based
framework that embeds hierarchical message-
passing structure into hyperbolic space and
dynamically generates query-specific hyper-
bolic embeddings for entities.

2. We conduct comprehensive experiments on
multiple benchmark datasets, demonstrating
significant performance improvements over
existing methods.

2 Problem Definition and Preliminaries

Problem Definition. A Knowledge Graph (KG) is
a structured representation of knowledge in the
form of entities and relationships. Formally, a
KG is defined as a directed multi-relational graph
G = (V,R,F), where V is the set of entities, R
is the set of relation types, and F ⊆ V × R × V
is the set of facts represented as triples (u, r, v),
where u, v ∈ V and r ∈ R. Given a query in the
form of a triple (u, q, ?) or (?, q, v), the goal of
link prediction is to identify the most likely entity
to complete the query. This task is central to im-
proving the completeness and utility of knowledge

graphs by inferring missing information. In this
work, we aim to learn effective representations of
entities and relations to improve the accuracy and
efficiency of link prediction.

2.1 Preliminaries
Hyperbolic Space. The n-dimensional hyperbolic
space, denoted by Hn, is a Riemannian manifold
with constant negative curvature. It differs funda-
mentally from Euclidean space Rn (zero curvature)
and the hypersphere Sn (positive curvature). Hy-
perbolic space exhibits unique geometric proper-
ties, such as exponential growth of volume and the
absence of global compactness, making it suitable
for modeling hierarchical and tree-like structures.
Hyperbolic space can be represented using various
models, each isometric and describing the same
underlying geometry. In this work, we focus on the
Poincaré ball model, which is particularly useful
for computational purposes.

Poincaré Ball Model. The Poincaré ball model
represents the n-dimensional hyperbolic space as:

Dn = {x ∈ Rn : ∥x∥ < 1},

where ∥x∥ is the Euclidean norm. The Riemannian
metric is given by:

gD(x) = λ2xg
E , λx =

2

1− ∥x∥2 ,

where gE is the Euclidean metric tensor. The
geodesic distance between two points x, y ∈ Dn

is:

dD(x, y) = arccosh(1+ 2
∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2))

This model is commonly used for hyperbolic em-
beddings in machine learning, as it allows for effi-
cient computation and manipulation of hyperbolic
distances.

Hyperbolic Embeddings. Hyperbolic embed-
dings are used to represent data points (such as en-
tities or relationships in a knowledge graph) in hy-
perbolic space. This is particularly useful for tasks
like link prediction, where the underlying graph
exhibits hierarchical or multi-relational structures.
Hyperbolic geometry is well-suited to capture such
structures due to its properties, such as the expo-
nential growth of volume and the ability to model
hierarchical relationships naturally.

Möbius Addition. A fundamental operation in
hyperbolic geometry is Möbius addition, defined
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for points x, y ∈ Dn
c as:

x⊕cy =
(1 + 2c⟨x, y⟩+ c2∥y∥2)x+ (1− c∥x∥2)y

1 + 2c⟨x, y⟩+ c2∥x∥2∥y∥2 .

This operation allows for the combination of points
in hyperbolic space while respecting its curvature,
and is an essential component of hyperbolic em-
bedding techniques.

Exponential and Logarithmic Maps. To
bridge Euclidean and hyperbolic spaces, the ex-
ponential and logarithmic maps are employed. The
exponential map expxc maps a tangent vector v ∈
TxD

n
c to a point in Dn

c :

expxc (v) = x⊕c tanh

(√
c
∥v∥√
c

)
v

∥v∥ .

The logarithmic map logxc provides the inverse op-
eration:

logxc (y) =
2
√
c arctanh(

√
c∥ − x⊕c y∥)

∥ − x⊕c y∥
(−x⊕cy).

In practice, the maps exp0c and log0c are often used
for transitions between Euclidean vectors and the
Poincaré ball representation.

2.2 From Path Learning to GNN

Link prediction is aimed at predicting the existence
of a query relation q between a head entity u and
a tail entity v. Path-based methods (Yang et al.,
2017; Das et al., 2017) solve knowledge graph rea-
soning by looking at the paths between a pair of
entities in a knowledge graph. The idea is that
a local structure is encoded by counting different
types of random walks (paths) from u to v. From a
mathematical perspective, path-based methods aim
to learn a function fq(u, v) to predict the triplet
(u, q, v) based on all paths from entity u to entity
v, which could be summarized as

fq(u, v) =
⊕

P∈Pu,v
fq(P ) (1)

fq(P = (e1, r1, e2...e|P+1|)) =
|P |⊗

i=1

wq(ei, ri, ei+1)

where Pu,v denotes the set of paths from u to v, and
wq(ei, ri, ei+1) is the learning function on triplet
(ei, ri, ei+1) respect to the relation q. The summa-
tion operator

⊕
and multiplication operator

⊗

are generalized operators. They could denote any

reasonable operations or functions, such as summa-
tion, aggregation, matrix multiplication, element
wise product and so on.

However, the problem of path based reasoning
is that given any pair of entities (u, v), we need to
find all paths connected to these two entities, which
is very computationaly expensive. An alternative
approach is to use dynamic programming to accel-
erate the process. The observation is that when
evaluating (ei, ri, ei+1) with different ei ∈ V but
the same query (u, rq, ?), the neighboring edges
Êℓ

u, ℓ = 1, . . . , L of u are shared. Thus, instead of
enumerating each possible path for each (u, q, e?),
the dynamic programming iteratively propagates
the representations of i hops to compute the repre-
sentations of i+ 1 hops, which achieves a polyno-
mial time complexity. Formally, let f (i)q (u, v) be
the representation of i-hops. the i + 1 hop repre-
sentation can be written as:

f i+1
q (u, v) =

⊕

(ei,ri,v)∈Êi+1
u

f iq(u, ei)
⊗

wq(ei, ri, v) (2)

Once the representations of f iq(u, ei) for all the
entities ei ∈ V i

u in the i-th layer are ready, we can
encode f i+1

q (u, v) by combining f iq(u, ei) with the
edges (ei, ri, v) ∈ Êi+1

u in the (i+ 1)-th layer.
Existing methods (e.g., (Zhang and Yao, 2022;

Zhu et al., 2021)) interpret Equation 2 as a graph
neural network (GNN) aggregation layer, where
the general summation

⊕
is approximated by the

GNN aggregation function, and the general multi-
plication

⊗
is approximated by the GNN message-

passing function.

3 Methodology

In the previous section, we introduced the connec-
tion between path-based methods and graph neural
networks. In this section, we present our method
based on this connection. We show here that Equa-
tion 2 is equivalent to a GNN only when the ag-
gregation and message-passing functions satisfy
certain specific properties. Otherwise, substituting
Equation 2 with a GNN introduces noise, which
can degrade the model’s performance or cause it to
fail. This theory inspires the design of our method.

Theorem 1. The dynamic programming update
function in Equation 2 is equivalent to a graph
neural network (GNN) aggregation layer only if the
node ei at the i-th layer receives and aggregates
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Figure 1: An example of answering the query (Tom Hanks, collaborator, ?). (a) The knowledge graph used; (b) The
WL-subtree of the entity ’Steven Spielberg’ without self-loops; (c) The recursive learning process with self-loops,
where the number of entities in the i-th iteration grows dramatically based on the (i-1)-th layer.

information solely from nodes within the (i − 1)-
hop neighborhood of the source node u, rather than
from all neighbors of ei.

Proof. When a graph neural network (GNN) up-
date function learns the embedding for a node v, the
process can be represented as a Weisfeiler-Lehman
(WL) subtree structure, as illustrated in Figure 1
(b). The message-passing function aggregates in-
formation from the (i− 1)-th layer to the i-th layer.
The original path function in Equation 1 describes
all paths between the source node u and the target
node v, represented by the thick red edges in Fig-
ure 1 (b). To ensure that Equation 2 functions
equivalently to the GNN update function, the GNN
must disregard all paths in the WL-subtree that are
not part of the path set Pu,v, which are denoted
as dashed edges. This requirement implies that
when learning the embedding for node ei at the
i-th layer, the GNN must aggregate information
exclusively from the thick paths while ignoring the
dashed edges. Nodes on these thick paths belong
to the intersection of the (i− 1)-hop neighbors of
u and the 1-hop neighbors of ei. Thus, the GNN
aggregation layer must ensure that information is
propagated only through the relevant paths to main-
tain equivalence with Equation 2.

Figure 2: An example of hyperbolic tree embedding
(image adapted from (Balažević et al., 2019)).

Theorem 3 demonstrates the connection between
dynamic programming and graph neural networks.

This suggests that dynamic programming in hy-
perbolic space is also equivalent to graph neural
networks in hyperbolic space. More specifically,
dynamic programming is used to recursively com-
pute embeddings for the i-th neighborhood of the
source node u before proceeding to compute em-
beddings for the (i+ 1)-th neighborhood of u, as
illustrated in Figure 1 (c). However, when the
graph becomes dense, the number of paths between
nodes increases significantly. Consequently, the
i-th layer will involve a large number of results,
causing the number of nodes considered at the i-
th layer to grow exponentially with their distance
from the root of the tree. According to (Silva,
2022), the expected number of nodes within i hops
from a source node u is approximately (n−1)kipi,
where n is the total number of nodes, k denotes the
average degree of nodes, and p is the connection
probability. 2

With the explosion of the number of nodes
needed to learn or update as the layer depth in-
creases, naively using Euclidean embedding could
not effectively distinguish these nodes, since its
ability to model complex patterns is inherently
bounded by the dimensionality of the embedding
space (Nickel and Kiela, 2017a). On the other
hand, hyperbolic space can be thought of as a con-
tinuous version of trees and as such it is naturally
equipped to model hierarchical structures. For in-
stance, it has been shown that any finite tree can be
embedded into a finite hyperbolic space such that
distances are preserved approximately (Nickel and
Kiela, 2017a). See Figure 2 for an example. This
inspires to utilize hyperbolic embedding, instead
of Euclidean embedding, to learn the recursive tree
representation. Thus, we generalize Equation 2 to
hyperbolic space, where ⊞ denotes the aggregation

2For additional details, see https://cs.rice.edu/
~al110/teaching/mlg_s21_notes/lecture_5_network_
science.pdf.
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in the hyperbolic space, and ⊠ denotes the message
passing in the hyperbolic space.

f i+1
q (u, v) = ⊞(ei,ri,v)∈Êi+1

u
f iq(u, ei)⊠wq(ei, ri, v)

(3)

3.1 Hyperbolic Embedding With Learnable
Curvature

To effectively address the exponential growth of
nodes with increasing path length or aggregation
depth while simultaneously capturing hierarchical
information, we employ hyperbolic embeddings
to better encode the propagation tree structure. In
hyperbolic geometry, the curvature c < 0 funda-
mentally influences the rate of expansion, making
it particularly suitable for representing hierarchical
or tree-like structures. By introducing a learnable
curvature c, the embedding space can dynamically
adjust to the graph’s complexity, capturing varying
hierarchical and relational structures. Let hu ∈ Hd

c

denote the embedding of a node in d-dimensional
hyperbolic space with curvature c, and let r ∈ Hd

c

represent a relation vector. The relation transition
(t = h + r) in Euclidean dynamic programming
corresponds to a message-passing process in hyper-
bolic space, where the updated embedding hv is
computed as follows:

hv = projHc (hu ⊕c r)

where ⊕c denotes Möbius addition parameterized
by c, and projHc ensures that the resulting em-
bedding remains within the hyperbolic manifold.
Specifically, in the Poincaré ball model, this pro-
jection is given by:

projHc(x) =

{
x, if ∥x∥ < 1√−c

,
x

∥x∥ · 1√−c
, otherwise.

The curvature c adapts the local geometry of the
hyperbolic space to better fit the graph’s structure.
During training, the learnable curvature interacts
with both the node embeddings and the relational
parameters, allowing the model to optimize the
space’s geometry. This results in better modeling
of complex hierarchical relationships and dynamic
dependencies within the graph.

3.2 Hyperbolic Attention Aggregation
Given a query relation and a pair of enti-
ties, only some of the paths between the en-
tities are important for answering the query.
Consider the example in Figure 1 (a), the

path Tom Hanks
Born_in−−−−→ California

Located_in−−−−−−→
USA

Live_in←−−−− Steven Spielberg cannot determine
whether Steven Spielberg is an answer to (Tom
Hanks, collaborator, ?). On the other hand,
path like Tom Hanks

Cast_in−−−−→ The Post
Director←−−−−

Steven Spielberg is able to predict that (Tom
Hanks, collaborator, Steven Spielberg) is
true. To achieve this, we introduce attention in
hyperbolic space to weight the importance of each
path in the tree. Let hs and hr represent the embed-
dings of the subject entity and the relation in the
hyperbolic space, respectively, and let hqr denote
the embedding of the query relation in the hyper-
bolic space. These embeddings are transformed
into a shared tangent space followed by a linear
transformation:

sT =Wslog
0
c (hs), rT =Wrlog

0
c (hr)

qrT =Wqrlog
0
c (hqr)

where Ws, Wr, and Wqr are the respective linear
transformation. The combined context embedding
is computed as:

CT = ReLU(sT + rT + qrT)

This embedding is then passed through a linear
transformation with a sigmoid activation to obtain
the attention coefficient α: α = σ(w⊤

c CT), where
wc is a learnable weight vector, and σ is the sig-
moid function. The attention coefficient α ∈ (0, 1)
reflects the relevance of the path relation to the
query relation. Finally, the attention coefficient is
used to scale the message from the relation path:

messageu,v = α · projHc (hu ⊕c r)

By weighting the message in this way, the model
prioritizes relation paths that are more relevant to
the query relation, improving its ability to capture
meaningful interactions in reasoning tasks.

3.3 Multi-layer Updating
After obtaining the hyperbolic entity embeddings
for each node in the l-th layer of the learning tree,
the embeddings for nodes in the (l+1)-th layer are
computed recursively using the same mechanism.
However, a critical challenge in multi-layer propa-
gation is the risk of information loss due to succes-
sive transformations, which may lead to forgetting
previously learned representations. To mitigate this
issue and maintain historical information along the
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propagation path, we incorporate a gated update
mechanism using a Gated Recurrent Unit (GRU).
Specifically, after learning the hyperbolic embed-
ding at each layer, the updated entity embeddings
are processed through a GRU-based gating func-
tion. The update process is formulated as follows:

hq(u, v)
(l+1) = GRU(h(l)q (u, v), h

(l)
0 )

where h(l)q (u, v) denotes the entity embedding from
the previous layer, and h(l)0 represents the memory
vector. By leveraging this recurrent mechanism,
the model effectively preserves long-range depen-
dencies and prevents gradient vanishing, ensuring a
more stable and expressive representation learning
process across layers.

3.4 Link Prediction
After L layers’ aggregation, the scoring function
fLq (u, v) can be calculated by

fLq (u, v) = w⊤hLq (u, v)

During the training process, we utilize multi-class
log-loss to optimize the parameters of the model.
The loss function is defined as:

L = −
∑

(u,v)

log

(
exp(fLq (u, v))∑

(u,v′),v′∈V exp(fLq (u, v
′))

)

where the sum runs over all possible (u, v) pairs in
the training set, and the objective is to maximize
the score for correct triples while minimizing the
score for incorrect ones.

3.5 Efficiency Improvement through
Sampling

As shown in Figure 1(C), the recursive tree grows
exponentially with the number of layers. How-
ever, for a given query (u, q, ?), only a subset of
entities in the tree are relevant. To speed up the
training process, an effective approach is to de-
sign a sampling strategy that prunes unnecessary
branches early, improving efficiency. In (Zhang
et al., 2023), a Connection-Preserving Incremental
Sampling method is proposed, as illustrated in Fig-
ure 3. We can incorporate this sampling strategy
into HYPERKGR to further enhance efficiency.

3.6 Time Complexity
One advantage of HYPERKGR is that it has a rela-
tively low time complexity during inference. Con-
sider a scenario where a model is required to in-
fer the score of all possible triplets fq(u, v). We

Figure 3: Connection-Preserving Incremental Sampling
(image adapted from (Zhang et al., 2023)). This sam-
pling method, originally proposed by AdaProp (Zhang
et al., 2023), can be utilized to further enhance the per-
formance of our model.

group triplets with the same condition u, q together,
where each group contains |V | triplets. For all
node v at each group, we can learn their embed-
dings at the same time. Since a small constant num-
ber of iterations L is sufficient for HYPERKGR
to converge, the algorithm has time complexity
of: O(|F|d + |V|d2), where d is the dimension
of representations. Therefore, the amortized time
complexity for a single triplet is: O

(
|F|d+d2

|V|

)

3.7 Theoretical Proof

Theorem 2. The proposed HYPERKGR consis-
tently outperforms or matches models based on
dynamic programming or GNN with Euclidean em-
beddings. (Check Appendix for the formal proof)

Proof. Euclidean embeddings correspond to a spe-
cial case of HYPERKGR where the learned curva-
ture approaches zero. As HYPERKGR generalizes
Euclidean embeddings by allowing variable curva-
ture, it is capable of capturing a broader range of
geometric structures. Consequently, HYPERKGR
consistently matches or surpasses the performance
of models using dynamic programming or GNN
with Euclidean embeddings.

4 Experiments

We evaluate HYPERKGR in two different settings:
the transductive setting and the inductive setting.
In the transductive setting, we use the knowledge
graphs FB15k-237 (Toutanova and Chen, 2015),
WN18RR (Dettmers et al., 2018a), NELL (Xiong
et al., 2017), Family (Kok and Domingos, 2007)
and UMLS (Kok and Domingos, 2007). Follow-
ing the experiment setting of (Zhang and Yao,
2022; Zhu et al., 2021; Zhang et al., 2023), for
the inductive setting, we use the knowledge graphs
FB15k-237, WN18RR, and NELL. We employ the
standard transductive and inductive splits of these
datasets. Detailed statistics of the datasets can be
found in the Appendix.
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Model Family UMLS WN18RR FB15k-237 NELL-995
MRRHit@1Hit@10MRRHit@1Hit@10MRRHit@1Hit@10MRRHit@1Hit@10 MRRHit@1Hit@10

ConvE - - - .94 92. 96. .43 39. 49. .325 23.7 50.1 - - -
RotatE .921 86.6 98.8 .925 86.3 99.3 .477 42.8 57.1 .337 24.1 53.3 .508 44.8 60.8
QuatE .941 89.6 99.1 .944 90.5 99.3 .480 44.0 55.1 .350 25.6 53.8 .533 46.6 64.3
MuRE - - - - - - .475 43.6 55.4 .336 24.5 52.1 - - -
MuRP - - - - - - .481 44.0 56.6 .335 24.3 51.8 - - -
ATTH - - - - - - .466 42.8 55.3 .324 23.6 50.1 - - -
UltraE - - - - - - .488 44.0 55.8 .338 24.7 51.4 - - -

LorentzKG - - - - - - .502 45.6 58.9 .384 28.7 57.9 - - -
MINERVA .885 82.5 96.1 .825 72.8 96.8 .448 41.3 51.3 .293 21.7 45.6 .513 41.3 63.7
Neural LP .924 87.1 99.4 .745 62.7 91.8 .435 37.1 56.6 .252 18.9 37.5 OOM OOM OOM

DRUM .934 88.1 99.6 .813 67.4 97.6 .486 42.5 58.6 .344 25.2 51.6 OOM OOM OOM
RNNLogic - - - .842 77.2 96.5 .483 44.6 55.8 .344 25.2 53.0 - - -
CompGCN .933 88.3 99.1 .927 86.7 99.4 .479 44.3 54.6 .355 26.4 53.5 OOM OOM OOM

NBFNet .989 98.8 98.9 .948 92.0 99.5 .551 49.7 66.6 .415 32.1 59.9 .525 45.1 63.9
RED-GNN .992 98.8 99.7 .964 94.6 99.0 .533 48.5 62.4 .374 28.3 55.8 .540 47.0 64.9
AdaProp .988 98.6 99.0 .969 95.6 99.5 .562 49.9 66.1 .417 33.1 58.5 .542 47.9 64.4

HYPERKGR .992 98.8 99.7 .970 95.7 99.1 .541 49.4 63.1 .366 27.3 55.3 .543 47.6 65.1
HYPERKGR + Sample .990 98.9 99.1 .978 96.5 99.5 .565 51.2 66.6 .417 33.1 58.5 .547 48.2 64.8

Table 1: Transductive reasoning. ‘-’ means unavailable results.

Methods WN18RR FB15k-237 NELL-995
V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4

RuleN 73.0 69.4 40.7 68.1 44.6 59.9 60.0 60.5 76.0 51.4 53.1 48.4
Neural LP 77.2 74.9 47.6 70.6 46.8 58.6 57.1 59.3 87.1 56.4 57.6 53.9
DRUM 77.7 74.7 47.7 70.2 47.4 59.5 57.1 59.3 87.3 54.0 57.7 53.1
GraIL 76.0 77.6 40.9 68.7 42.9 42.4 42.4 38.9 56.5 49.6 51.8 50.6
NBFNet 82.7 79.9 56.3 70.2 51.7 63.9 58.8 55.9 79.5 63.5 60.6 59.1
RED-GNN 79.9 78.0 52.4 72.1 48.1 61.9 60.3 62.1 84.6 60.1 59.4 55.2
AdaProp 85.3 83.6 61.0 74.3 54.6 65.0 62.3 63.4 88.6 62.3 59.7 61.3
HYPERKGR 79.5 78.2 53.1 71.6 48.2 62.1 60.5 61.8 77.6 55.2 58.8 55.4
HYPERKGR + Sample 86.3 84.6 61.1 74.8 54.7 65.8 62.9 63.6 89.3 64.6 61.0 60.8

Table 2: Inductive setting (evaluated with Hit@10).

Baselines. We compare HYPERKGR with path-
based, embedding-based, and GNN-based methods.
In the inductive setting, only path-based methods
and GNNs are considered, as embedding methods
cannot generalize to unseen entities. For the trans-
ductive setting, we compare HYPERKGR with (i)
non-GNN methods, including ConvE (Dettmers
et al., 2018b), QuatE (Zhang et al., 2019), Ro-
tatE (Sun et al., 2019), MINERVA (Das et al.,
2017), DRUM (Sadeghian et al., 2019), and RNN-
Logic (Qu et al., 2020); and (ii) GNN-based meth-
ods, including CompGCN (Vashishth et al., 2020),
NBFNet (Zhu et al., 2021), RED-GNN (Zhang and
Yao, 2022), and AdaProp (Zhang et al., 2023) and
(iii) hyperbolic embedding methods (Balažević
et al., 2019; Chami et al., 2020; Fan et al., 2024;
?). For the inductive setting, we evaluate against
RuleN (Meilicke et al., 2018), Neural LP (Yang
et al., 2017), DRUM, GraIL (Teru et al., 2020),
NBFNet, RED-GNN, and AdaProp. Results for
RED-GNN and AdaProp are obtained using their
official source code, while others are taken from
original papers or reproduced with official imple-
mentations. Following prior work (Zhang et al.,

2023), we evaluate performance using mean re-
ciprocal rank (MRR), Hit@1, and Hit@10, where
higher values indicate better performance.
Hyper-parameters. We tune the learn-
ing rate in [10−4, 10−2], weight decay in
[10−5, 10−2], dropout rate in [0, 0.3], batch size
in {5, 10, 20, 50, 100}, embedding dimension
d in {32, 48, 64, 96}, attention dimension dα
in {3, 5}, number of layers L in {3, 4, 5}, and
activation function δ in {identity, tanh,ReLU}.
Adam (Kingma and Ba, 2017) is used as the
optimizer. The best hyperparameter settings are
selected based on the MRR metric on Tval, with a
maximum of 50 training epochs.

4.1 Transductive Reasoning
Table 1 presents the results for transductive rea-
soning across five benchmark datasets. Among
traditional embedding-based methods, QuatE and
RotatE perform well, particularly on Family and
UMLS, benefiting from their ability to capture re-
lational patterns. Path-based approaches, such as
MINERVA and Neural LP, generally lag behind,
struggling with long-range dependencies, while
DRUM achieves moderate performance. GNN-
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based models, including CompGCN and NBFNet,
demonstrate stronger results by leveraging mes-
sage passing, with NBFNet excelling on WN18RR
and FB15k-237 due to its more effective propa-
gation mechanism. RED-GNN and AdaProp fur-
ther improve performance, with AdaProp achieving
the best results among baselines, particularly on
WN18RR. Our proposed HYPERKGR outperforms
all baselines on NELL-995 and performs compet-
itively on other datasets. When enhanced with
sampling (HYPERKGR + Sample), it achieves the
best overall performance, surpassing all baselines
on UMLS, WN18RR, and FB15k-237.

4.2 Inductive Reasoning

Table 2 presents the Hit@10 results for the induc-
tive setting. Among traditional rule-based meth-
ods, DRUM and Neural LP achieve slightly higher
scores than RuleN, demonstrating their effective-
ness in capturing logical patterns. However, these
approaches generally underperform compared to
GNN-based methods, which better leverage struc-
tural information. GraIL, while effective in some
cases, struggles on FB15k-237 and NELL-995 due
to its limited expressiveness in capturing multi-
relational dependencies. NBFNet, RED-GNN, and
AdaProp achieve strong performance across all
datasets, with AdaProp leading among existing
baselines, particularly on WN18RR and NELL-995.
Our proposed HYPERKGR performs competitively
but lags slightly behind AdaProp, highlighting the
challenge of fully leveraging hyperbolic space in
the inductive setting. However, when combined
with the sampling strategy (HYPERKGR + Sam-
ple), our method achieves the best overall results,
outperforming all baselines on every dataset variant
except for V4 in NELL-995.

4.3 Ablation Study

Table 3 presents the performance of different vari-
ants. We examine the effect of removing qr from
the attention mechanism (denoted as Attn-w.o.-qr).
Specifically, we eliminate the attention weight qrT
from the attention process. Since attention is re-
sponsible for identifying important edges, remov-
ing qr reduces the informativeness of the learned
structure, leading to weaker performance.

5 Related work

Embedding-based methods represent entities and
relations as low-dimensional vectors, enabling ef-

WN18RR FB15k-237 NELL
Methods MRRH@10MRRH@10MRRH@10

Attn-w.o.-qr .673 79.1 .279 39.0 .530 74.6
HYPERKGR .701 79.5 .340 48.2 .610 77.6
HYPERKGR+Sp .722 86.3 .317 54.7 .661 89.3

Table 3: Performance comparison of different methods.

ficient reasoning through similarity computations.
Early models, such as TransE (Bordes et al., 2013)
and DistMult (Yang et al., 2014), introduced trans-
lational and bilinear scoring functions, while more
advanced methods like ComplEx (Trouillon et al.,
2016) and TransR (Lin et al., 2015) improved multi-
relational modeling by refining entity-relation inter-
actions. Recent work has explored hyperbolic em-
beddings to better capture hierarchical structures.
Unlike Euclidean spaces, hyperbolic spaces nat-
urally encode tree-like relationships due to their
exponential volume growth. Poincaré embed-
dings (Nickel and Kiela, 2017b) first demonstrated
the effectiveness of hyperbolic geometry, which
was later extended through models like Hyper-
bolic Graph Neural Networks (HGNNs)(Liu et al.,
2019b). In knowledge graphs, MuRP(Balažević
et al., 2019) and AttH (Chami et al., 2020) have
leveraged hyperbolic spaces for improved link pre-
diction, particularly in hierarchical settings.

In contrast, multi-hop reasoning approaches
learn inference rules from relational paths within
the knowledge graph, enabling explicit reasoning
over multi-hop connections. Methods like Neu-
ral LP (Yang et al., 2017), DRUM (Sadeghian
et al., 2019), and path-based techniques (Qu et al.,
2020) generate logical rules from observed patterns.
More recently, graph neural networks (GNNs) have
been applied to multi-hop reasoning, allowing mod-
els like GraIL (Teru et al., 2020) and NBFNet (Zhu
et al., 2021) to leverage structural information for
improved reasoning.

6 Conclusion
In this paper, we introduced a novel hyper-
bolic GNN-based framework for knowledge graph
reasoning, which embeds hierarchical message-
passing structures into hyperbolic space and gen-
erates query-specific embeddings. Our approach
incorporates dynamic, query-driven representa-
tions, which adapt to the specific reasoning con-
text. Extensive experiments demonstrated that our
method consistently outperforms state-of-the-art
techniques in link prediction tasks, showing its ef-
fectiveness in capturing hierarchical dependencies
and improving reasoning accuracy.
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7 Ethical Considerations

We have carefully assessed the potential risks asso-
ciated with our work and do not foresee any signif-
icant ethical concerns. Our framework is designed
with a strong emphasis on usability and ease of
implementation, lowering adoption barriers while
minimizing operational complexities. Additionally,
our research is built upon an open-source dataset,
ensuring transparency, fostering collaboration, and
promoting ethical integrity by providing accessible
and reproducible data.

8 Limitations

Despite its effectiveness, our approach has certain
limitations. First, our training data is limited in
scope, primarily covering specific domains rather
than offering broad generalization across diverse
topics. This constraint may impact the model’s per-
formance when handling queries beyond these pre-
defined areas. Furthermore, while our knowledge
graph provides valuable contextual information, it
remains inherently incomplete. Certain regions
may lack sufficient data or relational links, poten-
tially leading to gaps in the model’s reasoning and
inference capabilities.

References
A Acharya and S Adhikari. 2021. Alexa conversations:

An extensible data-driven approach for building task-
oriented dialogue systems.
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9 Formal Proofs of Theorems

9.1 Theoretical Proof of Theorem 1
Below is the formal proof of Theorem 1.
Theorem 3. The dynamic programming update
function in Equation 2 is equivalent to a graph
neural network (GNN) aggregation layer if and
only if, at the i-th layer, the embedding of node ei
is updated by aggregating information exclusively
from nodes in the set N (ei) ∩ N (i−1)(u), where
N (i−1)(u) denotes the (i−1)-hop neighborhood of
the source node u.

Proof. Let G = (V,E) be a graph with source
node u ∈ V . Define the following:

• N (v): the set of 1-hop neighbors of node
v ∈ V ,

• N (k)(u): the set of nodes at exactly k-hop
distance from u,

• h(l)v : the embedding of node v at layer l,

• P(i)
u,v: the set of paths of length i from u to v.

Dynamic Programming Update (Equation 2).
The dynamic programming update computes the
embedding of node ei at layer i as:

h(i)ei = Ψ




⊕

w∈R(i)
u,ei

Φ
(
h(i−1)
w , h(i−1)

ei

)

 , (4)

where R(i)
u,ei = N (ei) ∩ N (i−1)(u), Φ is a path-

composition function, Ψ is a transformation func-
tion, and

⊕
is a permutation-invariant aggregator.

Standard GNN Aggregation. In contrast, a stan-
dard GNN update takes the form:

h(i)ei = ϕ


h(i−1)

ei ,
⊕

w∈N (ei)

ψ
(
h(i−1)
ei , h(i−1)

w , ewei

)

 ,

(5)
where ϕ and ψ are learnable functions, and ewei

denotes edge features.

Equivalence Condition. For Equation 4 and
Equation 5 to be equivalent, the GNN’s aggregation
must be restricted to the same set R(i)

u,ei . Further-
more, the function ψ, in combination with the edge
features, must be able to simulate the behavior of
Φ. That is,

⊕

w∈N(ei)

ψ
(
h
(i−1)
ei

, h
(i−1)
w , ewei

)
=

⊕

w∈R(i)
u,ei

Φ
′ (
h
(i−1)
w , h

(i−1)
ei

)
,

(6)

where Φ′ is a reformulation of Φ using ψ and edge
features.

Necessity. Assume there exists a node w′ ∈
N (ei) \ N (i−1)(u), i.e., a neighbor of ei that is
not reachable from u within i−1 steps. Then:

d(u,w′) ̸= i− 1⇒ d(u, ei) ≤ d(u,w′) + 1 ̸= i,

which implies that w′ does not lie on any valid
path of length i from u to ei. Aggregating from
such a node violates the fixed-length path structure
enforced by the dynamic programming formula-
tion, making the GNN update incompatible with
Equation 4.

Sufficiency. Now assume aggregation is re-
stricted to R(i)

u,ei = N (ei) ∩ N (i−1)(u). Then for
each w ∈ R(i)

u,ei :

d(u,w) = i− 1and{w, ei} ∈ E ⇒ d(u, ei) = i,

meaning that each w lies on a valid path of length
i from u to ei. Hence, the GNN update overR(i)

u,ei

correctly mirrors the dynamic programming recur-
rence in Equation 4.

Conclusion. The update function in Equation 2
is equivalent to a GNN aggregation layer if and
only if node ei aggregates information solely from
N (ei)∩N (i−1)(u). This constraint ensures that the
GNN captures exactly the same path-based seman-
tics as the dynamic programming formulation.

9.2 Theoretical Proof of Theorem 2
Below is the formal proof of Theorem 2.

Theorem 4. Let G be a class of query-answering
problems defined over graphs, and letMEuc denote
models that perform reasoning using Euclidean
embeddings, including GNN-based and dynamic
programming-based methods in Euclidean space.
Let HYPERKGR denote a model operating in a
Riemannian manifold with learnable curvature c,
such that Hd (hyperbolic space), Ed (Euclidean
space), and Sd (spherical space) are all special
cases.

If HYPERKGR is trained end-to-end with suffi-
cient capacity and optimization, then for all tasks
T ∈ G, the expected generalization performance
of HYPERKGR satisfies:

E[LT (HYPERKGR)] ≤ E[LT (MEuc)],

with equality if and only if the optimal embedding
space for T is Euclidean.
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Proof. The key idea is that HYPERKGR includes
Euclidean models as a special case by allowing
the curvature parameter c → 0. More formally:
(1) Any Euclidean embedding-based method corre-
sponds to setting curvature c = 0 in a Riemannian
manifold. (2) HYPERKGR optimizes c jointly with
the embedding function, allowing it to adapt to the
geometric structure of each task in G.

Hence, HYPERKGR spans a superset of repre-
sentational hypotheses compared to MEuc. Un-
der the assumption of sufficient model capacity
and optimization (e.g., universal approximation in
Riemannian manifolds), HYPERKGR will recover
or exceed the optimal performance achievable by
MEuc, achieving strict improvement unless the tar-
get task inherently favors Euclidean geometry.

Thus, E[LT (HYPERKGR)] ≤ E[LT (MEuc)]
holds, concluding the proof.

10 Dataset

This paper focus on studying knowledge graph rea-
soning which is a special topic in AI (Liu et al.,
2022, 2019a, 2021, 2023, 2024, 2025; Yan et al.,
2021, 2023, 2024). We provide the statistics of
entities, relations and split of triples in Table 4.

Table 4: Dataset statistics, where |V | is the number of
entities, |R| is the number of relations, |F | is the number
of facts, |Tval| is the number of validation triples, and
|Ttst| is the number of test triples.

Dataset |V | |R| |F | |Tval| |Ttst|
Family 3,007 12 23,483 2,038 2,835
UMLS 135 46 5,327 569 633

WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
NELL-995* 74,536 200 149,678 543 2,818

11 Inference Time

Below is a preliminary experiment conducted to
evaluate the inference time. Additional experimen-
tal results will be provided later.

Table 5: Inference running time (in seconds)

Dataset Max Min Average

WN18RR 0.17 0.03 0.05
FB15k-237 0.28 0.04 0.17
NELL-995 0.21 0.04 0.11
YAGO3-10 0.47 0.15 0.37
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