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Abstract

Materials science research requires multi-step
reasoning and precise material informatics re-
trieval, where minor errors can propagate into
significant failures in downstream experiments.
Despite their general success, Large Language
Models (LLMs) often struggle with halluci-
nations, handling domain-specific data effec-
tively (e.g., crystal structures), and integrat-
ing experimental workflows. To address these
challenges, we introduce LLaMP, a hierarchi-
cal multi-agent framework designed to emu-
late the materials science research workflow.
The high-level supervisor agent decomposes
user requests into sub-tasks and coordinates
with specialized assistant agents. These as-
sistant agents handle domain-specific tasks,
such as retrieving and processing data from
the Materials Project (MP) or conducting simu-
lations as needed. This pipeline facilitates iter-
ative refinement of material property retrieval
and enables the simulation of real-world re-
search workflows. To ensure reliability, we
propose a novel metric combining uncertainty
and confidence estimate to evaluate the self-
consistency of responses from LLaMP and
baseline methods. Our experiments demon-
strate LLaMP’s superior performance in ma-
terial property retrieval, crystal structure edit-
ing, and annealing molecular dynamics sim-
ulations using pre-trained interatomic poten-
tials. Unlike prior work focused solely on ma-
terial property prediction or discovery, LLaMP
serves as a foundation for autonomous mate-
rials research by combining grounded infor-
matics and enabling iterative experimental pro-
cesses. Code and live demo are available at
https://github.com/chiang-yuan/1lamp.

1 Introduction

The generation of convincing yet unreliable
information poses a pressing challenge to large
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language models (LLMs), particularly for sci-
entific applications. LLMs are prone to hallu-
cination—providing false information with high
confidence (Xu et al., 2024; Bang et al., 2023).
This issue is especially concerning for knowledge-
intensive tasks, where users rely on Al systems for
accurate guidance (Lewis et al., 2020). LLMs of-
ten lack up-to-date factual knowledge beyond their
training data, requiring verification against trusted
sources (Mallen et al., 2023). In science, the prolif-
eration of generative models may exacerbate mis-
information risks, accentuating the importance of
ensuring reliable information sources.

Current approaches to enhance LLM accuracy
in domain-specific knowledge often involve fine-
tuning pre-trained models (Gupta et al., 2022;
Dagdelen et al., 2024) or prompt engineering (Yang
et al., 2023; Zheng et al., 2023). While easy to
deploy, these models suffer from diminished repro-
ducibility, lack of a memory base, and untraceable
fine-tuning history. Even though fine-tuning can
encode a certain amount of domain-specific knowl-
edge into LLMs, it is constrained by scalability
and intrinsic memory capacity (Morris et al., 2025;
Carlini et al., 2018; Schwarzschild et al., 2024,
Kandpal et al., 2022). Prompt engineering, while
effective, also compromises the generalizability,
limiting the overall flexibility. Therefore, a more
sensible approach involves equipping LLMs with
external data sources, allowing them to generate
holistic responses via few-shot adaptation to factual
information (Lewis et al., 2021) that can reliably
support real-world scientific research and decision-
making.

In this work, we propose LLaMP, a hierarchi-
cal multi-agent framework that leverages Materials
Project (MP), arXiv, Wikipedia, and atomistic sim-
ulation tools. The framework serves as a safeguard
against LLM hallucination by grounding them in
high-fidelity material informatics from large-scale
material database, including computational data
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from quantum-mechanical first-principles calcula-
tions and expert-curated material synthesis recipes,
and further enables the capabilities of complex
downstream tasks. The hierarchical planning of su-
pervisor and assistant agents improves tool-usage
performance and enhances consistency in final re-
sponses with self-correcting mechanism. LLaMP
supports a wide range of advanced capabilities, in-
cluding multi-modal searching, tensor and 3D crys-
tal structure retrieval and operation, and language-
driven simulation. The framework not only can ac-
curately retrieve high-fidelity, higher-order materi-
als data but also can combine different modalities to
perform complex, knowledge-intensive inferences
and operations essential for real-world materials
science applications.

Our contributions are as follows: (1) we intro-
duce a hierarchical agentic framework that enables
LLMs to access high-fidelity materials informatics
and perform complex simulation; (2) we propose a
statistical metric to assess the self-consistency of
LLM responses in high-precision, reproducibility-
critical settings; (3) we evaluate the performance
of LLaMP, standard and specialized LLMs in pre-
dicting material properties, including bulk moduli,
electronic bandgaps, formation energies, and mag-
netic orderings; (4) we demonstrate real-world ap-
plications in materials science, including inorganic
synthesis, crystal structure generation and editing,
and high-throughput atomistic simulations using
pre-trained force fields, highlighting the potential
of language-driven experimentation for automating
and accelerating scientific discovery.

2 Related Work

Materials science databases and benchmarks.
The Materials Project is a multi-institution effort to
explore and compute the properties of all known in-
organic materials (Jain et al., 2013) and molecules
(Spotte-Smith et al., 2023). The initiative leverages
high-throughput electronic structure calculations
(Kresse and Furthmiiller, 1996; Shao et al., 2015)
based on density functional theory (DFT), provid-
ing large-scale open-source database and analy-
sis algorithms, with the goal to drastically reduce
the time and cost required for materials discov-
ery by focusing experiments on the promising can-
didates from computational screening. Most of
the atomic structures are selected from the Inor-
ganic Crystal Structure Database (ICSD) (Zagorac
et al., 2019) and undergo standardized relaxation

procedures, followed by post-processing or addi-
tional calculations for higher-order material proper-
ties such as electron and phonon bandgaps, elastic
tensors, and dielectric tensors. Complementing
MP, the Automatic FLOW for Materials Discov-
ery (AFLOW) provides a database of over 3.5 mil-
lion compounds and extensive computational tools
(Curtarolo et al., 2012b), while the Open Quantum
Materials Database (OQMD) focuses on thermo-
dynamic and structural properties (Kirklin et al.,
2015a), and the Novel Materials Discovery (NO-
MAD) Laboratory offers a FAIR-compliant plat-
form for managing and sharing materials science
data (Scheidgen et al., 2023b). Despite the value of
these resources, MP distinguishes itself with its cu-
rated, high-fidelity dataset, which is continuously
updated and vetted by the community, ensuring
reliability and scientific validity for downstream
applications.

Prompting and fine-tuning LLM in science do-
main. Prompt-based methods have been used as
effective tools for automating the data extraction
process from the literature. Polak and Morgan
(2023) employ a prompt workflow to extract the
cooling rates of metallic glasses and yield strengths
of high entropy alloys. Zheng et al. (2023) imple-
ment a ChatGPT metal-organic framework (MOF)
synthesis assistant through embedding and search-
ing on preselected papers. StructChem (Ouyang
et al., 2024) leverages step-by-step reasoning and it-
eratively refines results to solve college-level chem-
istry questions. Yang et al. (2023) use GPT-4 to
extract experimentally measured bandgaps to train
a graph neural network for accurate bandgap pre-
diction from crystal structures. Other works ad-
dress the challenges of extracting complex materi-
als informatics from diverse formats such as tables
and unstructured texts (Hira et al., 2024; Schilling-
Wilhelmi et al., 2024). Despite the success in the
specific data extraction tasks, prompt-based meth-
ods face challenges in reproducibility when the
used prompts are fine-grained to work for specific
edge cases. They are also still prone to halluci-
nation and less generalizable to combine differ-
ent data sources due to the deliberately designed
prompt.

Several other knowledge-grounded, domain-
specific language models lean on the fine-tuning
approach against pre-selected data and literature.
For instance, ChemGPT (Frey et al., 2022) involves
fine-tuning GPT-neo on self-referencing embed-
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ded strings (SELFIES) representations of small
molecules. Jablonka et al. (2024) demonstrated
GPT-3 fine-tuned against online corpora could out-
perform purpose-trained models on classification,
regression, and inverse design of high-entropy al-
loys and molecules. Dagdelen et al. (2024) fine-
tuned GPT-3 on ~500 prompt-completion pairs
to enhance LLM'’s capability to extract useful in-
formation on materials chemistry from text para-
graphs. Cha et al. (2024) further curated instruc-
tion data to fine-tune Llama for material science-
specific tasks. Xie et al. (2023) combines question-
answering fine-tuning with multi-task learning.
However, the fine-tuned models without augmenta-
tion inherently lack awareness of the up-to-date re-
sults, and any data is only available after their train-
ing. Furthermore, these works focus on general
(undergraduate-level) question answering (Zaki
et al., 2023; Song et al., 2023; Wang et al., 2023)
instead of factual grounding on expert-curated
database and downstream experimental workflow.

LLM agent and tool usage. An emerging class
of LLM applications take advantage of LLM text
completion and instruction following capability for
function calling. This approach extends LLMs with
expert-curated tools to improve the quality of con-
trol for downstream applications (Chase, 2022; Qin
et al., 2023; Wang et al., 2024; Shinn et al., 2023;
Du et al., 2024; Lu et al., 2024). In the science
domain, such an approach is widely adopted. Co-
scientist (Boiko et al., 2023) combines tools such as
search engines, Python, and document index for au-
tonomous chemical research. ChemCrow (M. Bran
et al., 2024) gathers multiple molecule and safety
tools to enhance organic chemistry experiments and
molecule design. Ghafarollahi and Buehler (2024)
propose AtomAgents for alloy design and analy-
sis. Zhang et al. (2024) develop a retrieval-based
agent on their curated dataset. However, most prior
works adopt the flat planning strategy, where a sin-
gle agent accesses all the available tools, resulting
in a lack of self-correcting and iterative refinement
capabilities. We mitigate this through hierarchical
structure of multi-agents (see Section 3).

3 Method
3.1 Hierarchical Multi-Agent Planning

Overview. Flat planning, where a single agent
sees all the available tools and related API schemas,
quickly exceeds the context window and incurs
a huge cost for multimodal data processing in

material science. To manage heterogeneous data
sources and diverse queries, we introduce hierar-
chical multi-agent planning, featuring a supervi-
sor agent overseeing multiple specialized assistant
agents (Figure 1). This design offers three ma-
jor advantages over flat planning commonly im-
plemented in previous works (Boiko et al., 2023;
M. Bran et al., 2024): (1) modularity of the sys-
tem ensures that each assistant agent can focus on
domain-specific queries while the supervisor agent
handles higher-level reasoning and task allocation;
(2) the hierarchical structure improves the overall
accuracy and efficiency by minimizing the con-
text window consumption and schema parsing; (3)
the multi-agent collaboration allows the iterative
refinement on multimodal data (Figure A.1) and
long-horizon simulation (Appendix C).

Supervisor agent. The supervisor agent acts as a
router and decision-maker, handling abstract logic
between user requests and assistant agents. Here,
we follow Yao et al. (2023) to augment the agent’s
action space .4 with a language space L to create
an expanded action space of A= AU L on GPT-
4. Instead of executing a direct function call, the
supervisor dynamically delegates queries to assis-
tant agents via natural language, ensuring a human-
interpretable reasoning trace. This approach en-
hances contextual grounding, ensuring that factual
information and numerically accurate simulations.
By modularizing factual grounding and simulation
tasks, the supervisor effectively reduces error prop-
agation where reasoning errors in materials proper-
ties compound across multiple steps.

Assistant agent. One of the critical failures in
the scientific domain (Miret and Krishnan, 2024)
is the LLM-generated hallucinations and incorrect
outputs that mislead downstream experiments. To
mitigate this, each MP assistant agent directly re-
trieves materials informatics from the Materials
Project, ensuring grounded reasoning with expert-
verified data.

Under the modular architecture, we assign a spe-
cialized agent for each specific tool or API end-
point. It reduces context window consumption,
as each agent handles only the relevant schema
for its task, avoiding unnecessary schema parsing.
Additionally, the assistant agents can refine their
API calls based on feedback, significantly improv-
ing task completion rates through the iterative self-
correcting mechanism.

The full list of agents and tools are defined in A.2.
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Figure 1: Hierarchical multi-agent planning in LLaMP. Designed to emulate the materials science research workflow,
LLaMP employs a two-level agentic structure, Supervisor ReAct agent decomposes user queries into sub-tasks and
oversees multiple specialized assistant agents. These assistants retrieve high-fidelity data from the Materials Project
(MP) and perform domain-specific tasks like crystal structure manipulation and molecular dynamics simulations.

For a detailed example, refer to Figure A.1.

Each MP assistant agent employs a self-correcting
mechanism, enabling agents to refine their API
calls and improve task completion rates. The frame-
work’s modularity enables seamless integration of
new assistant agents, allowing for extensibility to
various materials discovery methods and experi-
mental techniques (Zeni et al., 2024; Luo et al.,
2023; Pilania et al., 2017; Wen et al., 2024, 2023).

3.2 Self-Consistency of Response (SCoR)

When LLMs are integrated into scientific work-
flows and deployed in high-stakes settings (i.e. self-
driving labs), it is important for these models to
have consistent and predictable behaviors (Liang
etal., 2023). For numeric knowledge retrieval tasks,
we define the following metrics:

Precision. (sample standard deviation) measures
the uncertainty in the model’s responses where n
is the number of valid responses from /V trials and
& is the standard deviation of a valid response:

Precision = >0

=B

Coefficient of Precision (CoP).
sion to (0, 1]:

maps the preci-

CoP = exp (—Precision) = exp <—U) € (0,1].

vn
Confidence. measures the ratio of generating n
valid responses in N trials:

n
Confid = —.
onfidence = —

Self-consistency of Response (SCoR). is then

defined as
SCoR = CoP x Confidence € [0,1].

The limit of SCoR = 1 is reached when the model
yields the same response to a given query every
time. At the limit of SCoR = 0, the model is either
very inconsistent (with large variance across the
responses) or very reluctant (with low confidence)
to answer the query. Despite the simplicity in defi-
nition, SCoR effectively reflects the reproducibil-
ity and practical usability of the method, which is
important when the method is incorporated into
broader systems where the stable and expected be-
haviors are prioritized. Detailed metric calculation
can be found in Appendix A.3.

4 Experiments

4.1 Material Properties Retrieval

Response quality and consistency. The prior
benchmarks in materials science often focus on
graduate school-level question-answering datasets
(Wang et al., 2023; Zaki et al., 2023) or are lim-
ited to a single data modality (Rubungo et al.,
2024). These approaches overlook the complex-
ity of materials science, which involves reason-
ing across multiple properties and modalities. To
bridge this gap, we benchmark material property
retrieval on bulk modulus, formation energy, and
bandgap for both common and multi-element mate-
rials. We consider four baselines: StructChem with
GPT-4 (prompting-based) (Ouyang et al., 2024),
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Bulk Modulus K (GPa)

Formation Energy AH (eV)

Precision] CoP Confidence SCoRfT MAE| Precision] CoP Confidence SCoRfT MAE|

LLaMP (GPT-4) 2.698 0.900 1.000 0900 14.574 0.006 0.994 0.940 0.934  0.007
LLaMP (Sonnet) 1.816 0.562 1.000 0.562  15.104 0.000 1.000 1.000 1.000 0.000
LLaMP (Gemini) 5.178 0.053 1.000 0.053  16.251 0.076 0.932 0.620 0.576 0.166
LLaMP (Llama3) 12.993 0.036 0.800 0.029  50.308 0.000 1.000 0.250 0.250 1.377
HoneyBee 54.105 0.010 0.900 0.010  110.151 0.132 0.881 0.440 0.430 1.518
StructChem 0.000 1.000 0.200 0.200 41.017 0.000 1.000 0.200 0.200 3.146
Darwin 0.001 0.999 0.500 0.499  156.266 0.003 0.997 1.000 0.997 2.245
GPT-4+Serp 2.221 0.833 0.300 0.433  29.937 0.025 0.977 0.560 0.791 11.669
GPT-4 0.186 0.910 1.000 0.910 41.225 0.000 1.000 0.180 0.200 1.680

Sonnet 0.009 0.992 1.000 0992  41.033 0.022 0.979 1.000 0979  294.360
Gemini-Pro 6.065 0.169 1.000 0.169  43.429 0.467 0.657 1.000 0.657 1412
Llama 3 11.222  0.010 1.000 0.010 41.874 2.346 0.139 0.960 0.137 4.657

Electronic Bandgap E, - Common (eV) Electronic Bandgap E, - Multi-element (eV)

Precision] CoP Confidence SCoRT MAE| Precision] CoP Confidence SCoRfT MAE|
LLaMP (GPT-4) 0.000 1.000 0.800 0.800 0.000 0.047 0.958 0.960 0.918 0.167
LLaMP (Sonnet) 0.145 0.870 0.600 0.522  0.298 0.046 0.962 1.000 0962  0.304
LLaMP (Gemini) 0.627 0.571 0.600 0.343 1.327 0.003 0.997 0.500 0.997 0.637
LLaMP (Llama3) 0.051 0.952 0.800 0.761 1.038 0.169 0.848 0.800 0.678 1.094
HoneyBee 0.249 0.800 1.000 0.800 1.242 0.299 0.779 0.740 0.601 1.640
StructChem 0.017 0.984 1.000 0.984 0.986 0.000 1.000 0.200 0.200 0.973
Darwin 0.002 0.998 1.000 0.998 1.224 0.000 1.000 1.000 1.000 1.951
GPT-4+Serp 0.040 0.963 1.000 0.963 1.012 0.000 1.000 0.660 0.660 0.576

GPT-4 0.032 0.970 1.000 0.970 0.959 - - 0.000 0.000 -

Sonnet 0.000 1.000 1.000 1.000 0.938 0.000 1.000 0.500 1.000 0.644
Gemini-Pro 0.034 0.968 1.000 0.968 0.994 0.168 0.849 0.600 0.509 0.989
Llama 3 0.042 0.960 1.000 0.960 1.053 0.182 0.836 0.860 0.719 1.091

Table 1: Performance metrics of LLaMP and baselines on material properties prediction tasks. The metrics from
left to right are precision (sample standard deviation), coefficient of precision (CoP), confidence, self-consistency of
response (SCoR), and mean absolute error (MAE), with theoretical values computed in the Materials Project taken
as the ground truth. All the values are the average metrics over five runs and the sampled materials. Better method
has high SCoR and MAE simultaneously. Full values across five runs are provided in Figure A.2

HoneyBee (fine-tuned) (Cha et al., 2024), Darwin
(fine-tuned) (Xie et al., 2023), GPT-4 with search
engine tool (RAG), and vanilla LLMs (gpt-4,
1lama3-8b, gemini-1.0-pro). Performance is
assessed through Precision, CoP, SCoR, and MAE
metrics, as defined in Section 3.2. We argue that
any useful LLLM agents to be included in the sci-
entific workflow should have high SCoR and low
error on the material’s properties. Notably, LLaMP
consistently outperforms other models, achieving
the highest SCoR and the lowest errors across ma-
terial properties, making it highly suitable for sci-
entific workflows. Despite employing extensive
prompting strategies, StructChem struggles due
to its lack of domain-specific knowledge, leading
to frequent refusals when it cannot verify outputs.
Similarly, GPT-4 with SerpAPI suffers from noisy
and inconsistent web sources, which degrade preci-
sion.

For bulk modulus prediction, vanilla LLMs,
particularly Llama 3-8b, frequently rely on low-

fidelity online data, leading to significant devia-
tions for elements like Cr, Mn, and Fe, compared
to MP theoretical values. Interestingly, Llama 3-8b
usually cites spurious references in the responses
despite the largest response variance but occasion-
ally agrees with MP values. In contrast, LLaMP
outperforms vanilla LLMs and reduces the MAE
from around 40 to 14.57 GPa.

For formation energy prediction, vanilla LLMs
suffer from low SCoR and high MAE ranging from
1.5 to 5.5 eV, which is impractical for material
discovery requiring meV-level precision. This is
not unexpected, since accurate formation energy
prediction requires the computation of multiple
energetics (energies of the compound itself and its
elemental constituents).

For bandgaps prediction, we query 10 common
compounds and 10 multi-element materials that
are less commonly encountered in the literature.
Vanilla LLMs perform surprisingly well on the
bandgaps of common semiconductors (Table 1),
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with expected systematic deviation from MP val-
ues retrieved by LLaMP!. This is likely due to the
extensive literature on experimental semiconductor
bandgaps. On the contrary, vanilla LLMs lack in-
trinsic knowledge of the bandgaps for the queried
multi-element materials and exhibit low confidence
or refuse to make predictions (Table 1, Table BS.8),
whereas LLaMP retrieves accurate data with high
SCoR and low MAE simultaneously and correctly
identifies the stable polymorph’s bandgap when
multiple forms are present.

Ablation study. Our ablation study evaluates the
impact of factual grounding and function-calling
capabilities on LLaMP’s performance. In Table 1,
we examine three variants: (1) LLaMP; (2) GPT-
4+ReAct with SerpAPI for internet browsing; (3)
vanilla GPT-4. LLaMP achieved the best perfor-
mance when using the complete set of MP tools,
highlighting the importance of grounding in up-
to-date, high-fidelity materials databases. In Sec-
tion 3, we mentioned the importance of hierarchi-
cal planning for robust function calls. Evaluat-
ing several backbone models on bulk moduli, for-
mation energy prediction, and bandgap, we found
LLaMP’s grounding performance correlates with
the function-calling capability of backbone LLM:
Claude-3.5-Sonnet (#1) > Gemini-1.5-Flash (#24)
> and Llama3-8B (#46). The number following
each model refers to its ranking on the Berkeley
Function-Calling Leaderboard at the time of the
experiment (Yan et al., 2024). These results high-
light LLaMP’s robust adaptability across different
LLM backbones, demonstrating that it’s hierarchi-
cal multi-agent planning consistently enhances per-
formance and scale with the function-calling capa-
bility.

High-fidelity and higher-order data retrieval.
To assess LLaMP’s effectiveness in handling large-
scale, complex material properties, we randomly
selected 800 unary, binary, and ternary com-
pounds from the Materials Project (MP). We then
evaluated LLaMP, GPT-3.5, and GPT-4 on mag-
netic ordering classification and total magnetiza-
tion prediction, tasks that are inherently challeng-
ing due to the subtle distinctions between mag-
netic orderings and magnetization units. Our

"Bandgaps calculated from generalized gradient approxi-
mation (GGA) functional are known to underestimate the ex-
perimental values by 40-50% (Borlido et al., 2020). Strategies
to improve bandgap prediction at moderate or low computa-
tional cost will be included in MP in the future.

result indicates that vanilla LLMs suffer from
hallucinations and misclassify the magnetic or-
derings of materials. LLaMP with GPT-4 as
backend counteracts the intrinsic bias of GPT
models, increasing the classification accuracy to
0.98 and R? of magnetization prediction to 0.992
(Table 2). We note that GPT-3.5 as backend
struggles to distinguish total_magnetization
from magnetization_per_formula_unit and of-
ten forgets to normalize the values. In the mag-
netic orderings queries, LLaMP with GPT-3.5 as
backend fails to distinguish ferromagnetic (FM)
and ferrimagnetic (FiM) orderings, while LLaMP
with GPT-4 as backend gracefully separates the two
classes (Figure 2a, d).

Table 2: Retrieval performance of LLaMP, GPT-3.5,
and GPT-4 on magnetic orderings and magnetization.
LLaMP with GPT-4 and GPT-3.5 as backend LLLM are
compared.

Magnetic Ordering  Magnetization

Accuracy F1 MAE R?
LLaMP (GPT-4) 0.98 0.89 0.045 0.992
GPT-4 0.48 026 1.611 -0.201
LLaMP (GPT-3.5) 0.96 0.88  1.896 0.407
GPT-3.5 0.23 0.18  1.988 -0.024

We further test the capability of LLaMP and
LLMs for higher-order data (such as tensors, 3D
crystal structures, curves). As shown in Table B5.2,
GPT-3.5 hallucinates the values for the components
in the elastic tensor of NaCl, with serious erroneous
values such as C'1; = 289.2 GPa—a significant
deviation from DFT-calculated values (76 GPa). It
also omits the values for Cyo, Cs3, Cs5, Cge and
fails to represent the full elastic tensor in a matrix
format, despite the query explicitly requesting the
full elastic tensor. This highlights the limitation of
intrinsic knowledge in LLM:s to recall higher-order,
more complex data.

4.2 Real-World Applications

Inorganic synthesis recipes. Equipped with the
MP synthesis endpoint (Kononova et al., 2019),
LLaMP can extract synthesis recipes and summa-
rize detailed step-by-step procedures grounded on
real experimental papers with associated DOI ref-
erences, as demonstrated in the example queries
(Table B5.9 and B5.10).

Vanilla LLMs often give seemingly correct and
verbose synthesis procedures but pull irrelevant
compounds into the recipes and overlook more
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Figure 2: Prediction of LLaMP, GPT-3.5, and GPT-4 on (a,b,d,e) magnetic orderings and (c,f) total magnetization
per formula unit of randomly selected materials. Confusion matrix presents the number of entries in each class.
Colormap represents the percentage of correct classification. We define FM as ferromagnetic, AFM as antiferromag-

netic, FiM as ferrimagnetic, and NM as nonmagnetic.

Table 3: Positive-unlabeled (PU) classification of
LLaMP and baseline methods on inorganic material
synthesizablity. (*) Evaluations on 352,236 positive and

40,817 unlabeled compounds by Kim et al. (2024).

Accuracy F1  Precision Recall

LLaMP (GPT-4) 0.800 0.773  0.895 0.680
LLaMP (Sonnet) 0.818 0.812  0.848 0.780
GPT-4 0.600 0.649  0.578 0.740
Sonnet 0.530 0.230  0.636 0.140
Llama3 0.480 0.623  0.489 0.860
Gemini 0.590 0.388  0.765 0.260
GPT-4* - - 0.151 0.620
GPT-3.5 (FT)* - - 0.558 0.951
stoi-CGNF* - - 0.541 0.942

optimal or efficient reactions. In the example of
YMnO; (Table B5.9), GPT-3.5 suggests the possi-
ble reaction pathways from two common oxide pre-
cursors (Y,03 and MnO,). However, it pulls irrele-
vant lithium compounds (Li,CO5; and LiOH) into
the recipe and overlooks the fact that metathesis
reactions (Li et al., 2015; Todd et al., 2021) require
less applied energy than high-temperature sintering,

which relies on solid-state diffusion (Maximenko
and Olevsky, 2004). Vanilla LLMs also exhibit
uncertainty about specific synthesis details, such
as heating temperature, duration, cooling rate, efc.
In some edge cases such as LiFePO, presented in
Table B5.10, the cited references are associated
with the real papers but the contents are dissoci-
ated from the cited title and hallucinated from the
pre-training corpus.

We further compare the performance of LLaMP
on synthesizability prediction with stoichiometric
convolutional graph neural fingerprint (stoi-CGNF)
(Jang et al., 2024) and fine-tuned LLMs (Kim et al.,
2024). We follow the positive-unlabeled (PU) clas-
sification task proposed in (Kim et al., 2024) by
randomly selecting a subset of positive (probable)
and unlabeled (unlikely) inorganic compounds and
compare the classification performances of LLaMP
with different backend LLMs and baselines. As
presented in Table 3, LLaMP effectively enhances
the performances of backbone GPT-4 and Sonnet
LLMs by a significant margin of 20%, with the
classification precision of LLaMP (GPT-4) up to
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0.895.

(c) GPT-3.5 (dis-
(b) LLaMP (DC Si  torted Si with Li
with Li hexagonal tetrahedral intersti-
interstitial) tial)

(a) MP ground
truth (DC  Si,
mp-149)

Figure 3: Generation and manipulation of crystal struc-
tures using LLMs to insert an additional lithium atom
at the interstitial site in diamond cubic silicon structure.
Blue: Si. Green: Li. Question-answer pairs are listed in
Table B5.11. Additional atoms extended through bonds
are visualized.

Table 4: Structural parameters of generated crystals
compared with diamond cubic (DC) silicon. Key met-
rics include fractional coordinates of inserted Li atom
(z,vy, z)Li, average Si—Si bond length fg;s;, cell volume
V', and angular parameters (Si—Si—Si and Si—Li—Si).
GPT-4 refuse to respond due to safeguards against in-
complete atomic structure information. Values in paren-
theses indicate the error rate relative to the ground truth.

Method Lsisi (A) V(A% Angles (°)

Si—Si—Si/ Si—Li—Si
(0.5,0.5,0.5)  2.36 (0.0%)  40.33 (0.0%)  109.47 (0.0%) / 62.96
(0.5,0.5,0.5) 2.71 (+15.0%) 67.05 (+66.3%) 98.28 (-10.2%) / 67.69

(2,9, 2)ui

LLaMP
GPT-3.5
GPT-4

DC Si (mp-149) - 2.36 40.33 109.47 /-

RAG-assisted crystal editing. Fine-tuned LLMs
for text-encoded atomistic information have shown
the capability to edit stable crystals under the con-
straints of atomic positions and charges (Gruver
et al., 2023). In this context, we delve into the
examination and comparison of the crystal editing
capabilities between LLaMP and GPT-3.5, without
resorting to fine-tuning or tailored prompt mes-
sages in previous work. Figure 3 showcases the
structures generated by LLaMP and vanilla GPT-
3.5 without RAG, both instructed to insert one
lithium atom at the tetrahedral site of the diamond
cubic silicon structure (Table B5.11). Notably,
both LLaMP and GPT-3.5 place an additional Li
atom at fractional coordinate (0.5, 0.5,0.5). How-
ever, the Si structure retrieved by LLaMP adheres
to the MP convention, positioning two Si bases
at (0.125,0.125,0.125) and (0.875,0.875, 0.875).
This causes the inserted Li atom to be hexagonal
interstitial instead of tetrahedral interstitial.
GPT-3.5 locates the Li atom at the tetrahedral
site given the “luckily chosen” Si bases at (0, 0, 0)
and (0.25,0.25,0.25); however, the resulting cell

volume and shape are highly distorted, and the
Si—Si bond length and Si—Si—Si angle deviate
significantly from the ground truth (Table 4), high-
lighting the limitations in the intrinsic encoding
of LLMs for atomistic information and the chal-
lenges associated with zero-shot generation of crys-
tal structures. In contrast, the LLaMP-retrieved
MP structure serves as a robust prior, anchoring the
lattice parameters of the generated structure to the
correct values.

Language-driven simulation. LLaMP equipped
with Python REPL and atomistic simulation work-
flow package atomate2 performs well out of the
box for complex multi-step simulations using pre-
trained universal interatomic potential MACE-MP-
0 (Batatia et al., 2023) through language instruction.
As demonstrated in Appendix C, LLaMP is able to
follow multi-step instructions to fetch stable crystal
structure from MP, generate a supercell of atomic
structure, and run annealing molecular dynamics
simulation with varying temperatures from 300K
to 800K and back to 300K. After the simulation
is finished, LLaMP can read the simulation trajec-
tories and plot the temperature profile over time
(Appendix C.1).

Failure and safeguard modes. In scientific re-
search, refusing ambiguous or unsupported queries
is critical to ensuring reliability. LLaMP demon-
strates this capability by identifying limitations in
data availability or query specificity and providing
appropriate responses. For instance, when asked
for the bulk modulus of “stainless steel,” LLaMP
points out the ambiguity of the query due to vari-
able compositions. Similarly, it flags unavailable
synthesis recipes or computed properties for spe-
cific materials. Examples of these safeguard modes
can be found in Appendix A.5.

5 Conclusion

We introduce LLaMP, a hierarchical multi-agent
framework that integrates LL.Ms with high-fidelity
material informatics and domain-specific work-
flows for scientific research. By leveraging modu-
lar agents and robust hierarchical planning, LLaMP
bridges the gap between general-purpose LLMs
and complex materials science experimental work-
flows. Our results show that LLaMP consistently
outperforms prior methods and demonstrates broad
capabilities across real-world research tasks, in-
cluding material property retrieval, crystal structure
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editing, and multimodal data analysis. Through
grounding in expert-verified databases and iterative
self-correction, LLaMP mitigates hallucination, en-
hances response consistency, and enables com-
plex experimental simulations. This framework
highlights multi-agent knowledge grounding as a
promising path toward scalable and autonomous
scientific workflow

Limitation We recognize the effectiveness of
LLaMP’s framework relies on backbone LLM’s
function calling and reasoning capabilities. Some-
times LLMs misunderstand the description of
schemas and therefore yield unexpected behaviors.
The correctness of LLaMP is also subject to the
quality of theoretical prediction and the comprehen-
siveness of the data in MP. Other than the underpre-
dicted bandgaps by GGA functional, MP’s ongoing
effort to search all possible spin configurations has
also not been completed. Most of the existing cal-
culations in MP start from high-spin ferromagnetic
configurations, which may overlook many antifer-
romagnetic ground states below the current energy
convex hull. While MP is one of the most compre-
hensive materials databases, the crystal structures
available in MP are not exhaustive but continuously
expanding (Merchant et al., 2023), and would ben-
efit from additional inter-metallic compounds and
high-entropy materials from other databases such
as AFLOW, OQMD, NOMAD, etc. (Curtarolo
et al., 2012a; Kirklin et al., 2015b; Scheidgen et al.,
2023a).
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A Supplementary Information

A.1 Example Workflow

What's the stiffest material with the lowest formation energy in Si-O system?

[ a. User Query

~ b. LLaMP ReAct (Supervisor)

1-Thought: To answer this question, | need to find materials in the Si-O
system with the lowest formation energy and the highest stiffness. | will
use the MPThermoExpert tool to search for materials in the Si-O system
and sort them by formation energy. After finding candidates, | will need
to use the MPElasticityExpert tool to determine the stiffness of these
materials.

2-Action:
""" Jjson
{

"action": "MPThermoExpert",

"action_input": {

"input": "What are the materials with the lowest

formation energy in the Si-O system?"

}
}

9-Thought: ¢
The previous work has identified materials in the Si-O system with the lowest
formation energy. The next step is to determine the stiffness of these materials.

the bulk modulus or Young's modulus) for each of these materials.

1 will use the MPElasticityExpert tool to find the stiffness (typically represented by

10-Action:
" json
{
"action": "MPElasticityExpert",
"action_input": {
"input": "What are the bulk and Young's moduli for

$i205 (mp-862998), Si02 (mp-733790), Si02 (mp-6922),
$i02 (mp-556985), and Si02 (mp-556994)2"
}

14-Thought: <

The output from the MPElasticityExpert tool provides bulk modulus values for

a mismatch between the material IDs requested and the material IDs returned in
the output. The Young's modulus values are not provided, but the bulk modulus
can be a good indicator of stiffness. The material with the highest bulk modulus
would be considered the stiffest.

From the provided output, the SiO2 with material ID mp-9258 has the highest
bulk modulus of 310.27 GPa, which suggests it is the stiffest among the listed

modulus, it is likely to be one of the stiffest materials with low formation energy
in the Si-O system.

15-Answer:

The stiffest material in the Si-O system with low formation energy is likely SiO2
with material ID mp-9258, which has a bulk modulus of 310.27 GPa. The Young's
modulus values were not available, but the bulk modulus is a strong indicator of
stiffness.

the Si-O materials with the lowest formation energy. However, it seems there was

materials. Since this material also belongs to the Si-O system and has a high bulk

~c Specialized ReAct (Assistant)
> 3-Action: MPThermoExpert
json
"action": "search materiasls_thermo_ get",
"action_input": {
"formula": "Si-0",
"sort_fields": "formation_energy per_atom",
"limit": 5,
"fields": "material id,formula pretty,formation energy per atom"
}
}

4-Observation:

Error on search_materials_thermo__get: REST query returned with error status code 400 on URL
https://api.materialsproject.org/materials/thermo/?_fields=material_id... Problem processing one or more
provided formulas.

5-Thought:

The query may be too broad or ambiguous. | will refine the search by specifying the chemical system
more precisely.

6-Action:
""" Jjson
{
"action": "search materials_thermo_ get",
"action_input": {
"chemsys": "Si-0",
"sort_fields": "formation_energy per_ atom",
"limit": 5,
"fields": "material_ id,formula pretty,formation_energy per atom"
}
}

7-Observation:

[{'formula pretty': 'Si205', 'material id': 'mp-862998',
'formation_energy per atom': -2.289431383571429}, {'formula_pretty':
'material_id': 'mp-733790',
8-Answer:

The materials with the lowest formation energy in the Si-O system are: Si205 (mp-862998) with a
formation energy per atom of -2.289 eV/atom, SiO2 (mp-733790) with a formation energy per atom of
-3.039 eV/atom, SiO2 (mp-6922) with a formation energy per atom of -3.037 eV//atom, SiO2 (mp-556985)
with a formation energy per atom of -2.993 eV/atom, and SiO2 (mp-556994) with a formation energy per
atom of -2.958 eV/atom.

'sio2’,

'formation_energy per_ atom': -3.039244523055555}, ...

1

~ d. Specialized ReAct (Assistant)
> 11-Action: MPElasticityExpert
json
{
"action": "search materials_elasticity get",

"action_input": {
"formula": "Si205,8i02,5i02,5i02,8i02",
"material_ id,formula pretty,bulk modulus,young modulus"

12-Observation:

[{'formula pretty': 'Si02', 'material_id': 'mp-1021503', 'elastic_tensor': {
'raw': [[355.5072134787483, 236.22725456386155, 236.22725456386155,
2.081668171172168e-16, 7.771561172376094e-16, 7.771561172376094e-16], ...]

—— 13-Answer:

The bulk and Young's moduli for the requested materials are as follows: Si205 (mp-1021503) - Bulk
modulus: 275.987 GPa, Young's modulus: Not available; SiO2 (mp-11684) - Bulk modulus: 110.695 GPa,
Young's modulus: Not available; SiO2 (mp-2374583) - Bulk modulus: 89.352 GPa, ...

J

Figure A.1: Multimodal retrieval-augmented generation for materials informatics. (a) User query. (b) Supervisor
ReAct agent capable of handling multiple assistant agents and high-level reasoning. (c-d) Assistant ReAct agents
executing function calling and summarization. (c) MPThermoExpert and (d) MPElasticityExpert have access to
the API schemas of thermo and elasticity endpoints on Materials Project, respectively. The selected details are
highlighted in red, demonstrating the capabilities of RAG and ReAct implemented in LLaMP. The blue texts show
LLaMP assistant ReAct agent can handle API calling errors and self-correct the input query accordingly.

A.2 List of Implemented Assistant Agents and Tools

Here we provide the comprehensive list of implemented assistant agents and tools. Notably, MP
Assistants are designed with a highly modular architecture, making it straightforward to extend support
for additional API endpoints from https://api.materialsproject.org/docs.

* MPSummaryExpert: summary provides amalgamated data for a material by combining subsets of
data from many of the other API endpoints.

* MPThermoExpert: thermo provides computed thermodynamic data for a material such as formation

energy and energy above hull.
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MPElasticityExpert: elasticity provides bulk, shear, and Young’s modulus, poisson ratio, and
universal anisotropy index.

MPMagnetismExpert: magnetism provides computed magnetic ordering related data.

MPDielectricExpert: dielectric provides computed dielectric data from density functional per-
turbation theory.

MPPiezoelectricExpert: piezoelectric provides computed piezoelectric data from density func-
tional perturbation theory.

MPElectronicExpert: electronic_structure provides computed electronic structure related data
for a material such as band gap and fermi level. Python objects for line-mode band structures, density
of states, and fermi surfaces are also available.

MPSynthesisExpert: synthesis provides a synthesis recipes for materials extracted from literature
using text mining and natural language processing techniques.

MPStructureRetriever: MaterialsStructureText fetches and saves pymatgen Structure objects
to local JSON files.

MLFFAgent: MLFFMD runs molecular dynamics simulations using pre-trained machine learning force
fields; MLFFElastic calculates the elastic constants of a given material using pre-trained machine
learning force fields.

PythonREPLTool: Python REPL that LL.Ms could run the generated script.
ArxivQueryRun: LangChain built-in tool that LLMs can use to send API request to ArXiv.
WikipediaQueryRun: LangChain built-in tool that LLMs can use to send API reqeust to Wikipedia.

Metric calculation in Table 1 and Figure A.2

The following procedures are adopted to calculate the metrics for material property regression bench-
marks presented in Table 1 and Figure A.2:

1.

2.
3.

Each method was presented with the same query asking for the property of multiple materials. Here
we ask each method for bulk modulus, formation energy, and electronic bandgap of ten materials.
For example, “What are the bulk moduli of the following metals: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn?".

Repeat the same query for five times and collect the responses.

The numerical values are extracted and formatted into 2D arrays with the aid by LLMs. If the range
is provided in the response (e.g. Llama 3), the median value was used.

Calculate Precision, CoP, Confidence, and SCoR for each method across five trials on all materials.
The code is provided and the pseudocode can be written as follows:

Input:arr (2D array of five responses for different materials)

n < count of valid responses (non-NaN values) in each column of arr
nanstd(arr,axis=0)

n
cop +— mean(exp(—prec))

conf <— mean (

prec <

o tras )
# of trials N

if conf = O for all columns
SCor <

cop x conf otherwise
prec < mean(prec)
Output:prec, cop, conf, scor
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Figure A.2: Boxplot of LLaMP RAG responses, baseline methods, and LLM intrinsic knowledge on material
properties. (a) Bulk moduli, K, of 3d transition metals. (b) Formation energies, AHy, of common compounds. (c)
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A.4 Material Property Retrieval Result

A.5 Safeguard or failure modes

* Question: What is the bulk modulus of stainless steel?  ambiguous chemical formula
LLaMP: Stainless steel is an alloy with a composition that can vary widely, including elements
like iron, chromium, nickel, and molybdenum. Because of this variability, it does not have a single
chemical formula or a unique Materials Project ID, and its bulk modulus can significantly vary based
on its exact composition and heat treatment. The Materials Project database, focusing on inorganic
crystalline materials, may not provide specific data on complex alloys like stainless steel. For precise
values of the bulk modulus, consulting specific datasheets or literature on the type of stainless steel
in question is recommended.

* Question: How to synthesize Y2Be2Fe(Si05)2?  data unavailable
LLaMP: Currently, there are no synthesis recipes available in the Materials Project database for
Y2Be2Fe(S105)2.

* Question: What’s the phonon bandgap of Ac2ZHgGe?  computed property unavailable
LLaMP: The material Ac2HgGe, with a Materials Project ID of mp-861872, does not have its
phonon bandgap information directly available through the Materials Project database. For detailed
phonon properties, further analysis using specialized phonon calculation tools or databases would be
necessary.

A.6 Prompt Template

We use the ReAct template hwchasel7/react-multi-input-json  from LangChain Hub

(https://smith.langchain.com/hub/hwchase17/react-json) as follows

~

Answer the following questions as best you can. You have access to the following tools:

{tools}

The way you use the tools is by specifying a JSON blob.

Specifically, this JSON should have an “action™ key (with the name of the tool to use) and an ~
The only values that should be in the "action” field are: {tool_names}

The $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple actions.

181

33

ALWAYS use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action:

$JSON_BLOB

Observation: the result of the action

Thought: I now know the final answer
Final Answer: the final answer to the original input question

Begin! Reminder to always use the exact characters “Final Answer™ when responding.

action_input™ key (with the input to the tool going here).

Here is an example of a valid $JSON_BLOB:

"action”: $TOOL_NAME,
"action_input”: $INPUT

. (this Thought/Action/Observation can repeat N times)
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The above system prompt message is prepended with the following solicitation to guide the supervisor
agent:

7

You name is LLaMP and you are a helpful agent that can consult materials-related data through
Materials Project (MP) database, arXiv, Wikipedia, and run calculations/simulations via a
python REPL and MP atomate2 computational workflow.

If you get an error, debug your code and try again. Only use the output of your code to answer
the question. Ask user to clarify their queries if needed. Please note that you don't have
direct control over MP but through multiple assistant agents to help you. You need to
provide complete context in the input for assistants to do their job. REFINE and CRITQUE the

output of the assistants if needed. You can end the conversation by saying "Bye".

\. 4

B Sample Questions

Table 5: QA comparison between LLaMP and GPT-3.5.

Answer

Question - 1p GPT-3.5

B5.1 | What are | The bulk moduli of the The bulk modulus (K) is a measure of a mate-
the bulk | metals you asked for are | rial’s resistance to uniform compression. It is

moduli as follows (in GPa): - defined as the ratio of the change in pressure
of the | Scandium (Sc): Voigt = to the fractional volume compression. The val-
following | 45.715, Reuss = 45.34, ues for the bulk modulus can vary somewhat
metals: VRH =45.528 - Titanium | depending on the specific conditions and crys-
Sc, Ti, V, | (Ti): Voigt =112.955, tallographic structures of the materials. The

Cr, Mn, | Reuss =112.807, VRH = | values provided here are approximate and given
Fe, Co, | 112.881 - Vanadium (V): | in gigapascals (GPa):

Ni, Cu, | Voigt = 181.232, Reuss = | - Scandium (Sc): 55 GPa - Titanium (Ti): 110
Zn? 181.232, VRH = 181.232 - | GPa - Vanadium (V): 160 GPa - Chromium
Chromium (Cr): Voigt = (Cr): 160 GPa - Manganese (Mn): 120 GPa -
252.155, Reuss = 252.155, | Iron (Fe): 170 GPa - Cobalt (Co): 180 GPa -
VRH = 252.155 - Nickel (Ni): 180 GPa - Copper (Cu): 140 GPa -
Manganese (Mn): Voigt = | Zinc (Zn): 70 GPa

280.959, Reuss = 280.959, | These values represent typical bulk moduli for
VRH = 280.959 - Iron these metals, and actual values may vary de-
(Fe): Voigt =296.003, pending on factors such as temperature and pres-
Reuss =295.207, VRH = | sure.

295.605 - Cobalt (Co):
Voigt = 200.587, Reuss =
200.587, VRH =200.587 -
Nickel (Ni): Voigt =
197.399, Reuss = 197.29,
VRH = 197.345 - Copper
(Cu): Voigt = 151.394,
Reuss = 151.394, VRH =
151.394 - Zinc (Zn): Voigt
=76.283, Reuss = 95.46,
VRH = 85.872

Continued on next page
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Table 5 — continued from previous page

Question Answer
LLaMP GPT-3.5
B5.2 | What is | The elastic tensor for The elastic tensor describes the relationship be-
the full | NaClis available for two | tween stress and strain in a material. It is a 4th-
elastic different entries on rank tensor that characterizes the elastic prop-
tensor of | Materials Project. For erties of a crystal. In the case of NaCl (sodium
NaCl? material_id 'mp-22851°, | chloride), the elastic tensor is typically repre-

the elastic tensor in IEEE
format is [[76.0, 1.0, 1.0,
-0.0, 0.0, -0.01, [1.0, 76.0,
1.0, -0.0, -0.0, 0.0], [1.0,
1.0, 76.0, 0.0, -0.0, -0.0],
[-0.0, -0.0, 0.0, -3.0, -0.0,
-0.0], [0.0, -0.0, -0.0, -0.0,
-3.0, 0.0], [-0.0, 0.0, -0.0,
-0.0, 0.0, -3.0]]. For
material_id *mp-22862°,
the elastic tensor in IEEE
format is [[47.0, 12.0,
12.0, 0.0, -0.0, -0.0], [12.0,
47.0, 12.0, 0.0, -0.0, -0.0],
[12.0, 12.0, 47.0, 0.0, 0.0,
-0.0], [0.0, 0.0, 0.0, 12.0,
-0.0, -0.0], [-0.0, -0.0, 0.0,
-0.0, 12.0, 0.01, [-0.0, -0.0,
-0.0, -0.0, 0.0, 12.0]]

sented by a 6x6 matrix.

The elastic constants of NaCl can vary slightly
depending on the specific conditions and crys-
tallographic orientation. Here is an approximate
form of the elastic tensor for NaCl:

C11 =289.2 GPa C12 =97.8 GPa C44 = 81.6
GPaCl3=Cl4=C15=C16=C23=C24 =
C25=C26=0GPa

Note: The values are given in gigapascals (GPa).
The elastic constants Cij represent the compo-
nents of the elastic tensor. In this case, Cl11,
C12, and C44 are the non-zero elastic constants.
The off-diagonal terms C13, C14, C15, C16,
C23, C24, C25, and C26 are typically zero due
to cubic symmetry.

Keep in mind that these values are approximate,
and there may be slight variations depending
on the source and the specific conditions under
which the measurements were made. Experi-
mental techniques, such as Brillouin scattering
or ultrasonic measurements, are often used to
determine the elastic constants of materials.

Continued on next page
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Table 5 — continued from previous page

Question Answer
LLaMP GPT-3.5
B5.3 | What The ground state As of my last knowledge update in January

are  the | bandgaps for the 2022, I can provide you with approximate val-

bandgaps | requested materials are as | ues for the ground state bandgaps of the materi-

of the | follows: Si: 1.12 eV, Ge: | als you mentioned. Keep in mind that these val-

following | 0.66 eV, GaAs: 1.42 eV, ues can vary depending on factors like temper-

materials: | GaN: 3.28 eV, SiC: 2.36 ature and crystal structure. Additionally, more

Si, Ge, | eV, BN: 6.4 eV, InSe: recent research may have refined these values.

and GaAs, | 1.26 eV, MoS2: 1.29 eV, Here are the approximate ground state bandgaps

GaN, SiC, | BaTiO3: 3.2 eV, CsPbI3: | in electron volts (eV):

BN, InSe, | 1.73 eV. Please note that Silicon (Si): 1.1 eV Germanium (Ge): 0.67 eV

MoS2, these values are typical Gallium Arsenide (GaAs): 1.42 eV Gallium Ni-

BaTiO3, for bulk materials and can | tride (GaN): 3.4 eV Silicon Carbide (SiC): 3.2

CsPbI3? vary depending on the eV (for 4H-SiC) Boron Nitride (BN): 6 eV In-

Only specific structure and dium Selenide (InSe): 1.25 eV Molybdenum

look for | calculation method. Disulfide (Mo0S2): 1.3 eV (indirect bandgap)

ground- Barium Titanate (BaTiO3): 3.2 eV Cesium

state Lead Iodide (CsPbI3): 1.7 eV Please note that

bandgaps. these values are general approximations and
may not represent the specific conditions or vari-
ations in different forms of these materials. For
the most accurate and up-to-date information, I
recommend checking recent scientific literature
or databases.

B5.4 | Give The maximum The decomposition enthalpies (in kJ/mol) of the

me  the | decomposition enthalpies | following materials are:

decom- for the requested materials | Ag203: -335

position are as follows: - Ag203: | MgZn2: -82

enthalpies | 0.2565836414999989 GaAs: -317

of the | eV/atom - MgZn2: 0.1356 | GaN: -505

following | eV/atom - GaAs: 0.075 SiC: -40

materials: | eV/atom - GaN: 0.07162 | BN: -248

Ag203, eV/atom - SiC: -0.172 InSe: -125

MgZn2, eV/atom - BN: -0.358 MoS2: -393

GaAs, eV/atom - InSe: -0.01816 | BaTiO3: -112

GaN, SiC, | eV/atom - MoS2: 0.267 CsPbl3: -153

BN, InSe, | eV/atom - BaTiO3: 3.055

MoS2, eV/atom - CsPbl3:

BaTiO3, 0.017536019000000902

CsPbI3. If | eV/atom Please note that

there are | the values for SiC, BN,

multiple and InSe are negative,

values, indicating that the

please decomposition is

give me | exothermic. All other

the largest | values are positive,

value. indicating endothermic

decompositions.

Continued on next page
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Question Answer
LLaMP GPT-3.5

B5.5 | Give The smallest formation Ag203: -2.63 eV/atom MgZn2: -0.27 eV/atom
me  the | energies of the materials | GaAs: -4.13 eV/atom GaN: -3.51 eV/atom SiC:
formation | you asked for are as -4.98 eV/atom BN: -3.8 eV/atom InSe: -0.89
energies follows: Ag203: -0.3601 | eV/atom MoS2: -3.31 eV/atom BaTiO3: -4.45
of the | eV/atom, MgZn2: eV/atom CsPblI3: -2.32 eV/atom
following | -0.1306 eV/atom, GaAs:
materials: | -0.446 eV/atom, GaN:

Ag203, -0.052 eV/atom, SiC:
MgZn2, -0.204 eV/atom, BN: -1.41
GaAs, eV/atom, InSe:

GaN, SiC, | -0.742582154921875
BN, InSe, | eV/atom, MoS2: -1.202
MoS2, eV/atom, BaTiO3: -3.493
BaTiO3, eV/atom, CsPbl3: -1.296
CsPbI3. If | eV/atom.

there are

multiple

values,

please

give

me  the

smallest

value.

B5.6 | Give The smallest The decomposition enthalpies of the materi-
me  the | decomposition enthalpy als are as follows: - Ag203: -1138.5 kJ/mol
decom- values for the requested - MgZn2: -54.2 kJ/mol - GaAs: -452.2 kJ/mol -
position materials are as follows: GaN: -510.9 kJ/mol - SiC: -2133.6 kJ/mol - BN:
enthalpies | Ag203: -2551.0 kJ/mol - InSe: -209.3 kJ/mol - MoS2: -
of the | 0.019373648083333528 | 739.3 kJ/mol - BaTiO3: -393.5 kJ/mol - CsPbl3:
following | eV/atom, MgZn2: -0.0197 | -65.3 kJ/mol
materials: | eV/atom, GaAs: -0.446
Ag203, eV/atom, GaN: -0.05231
MgZn2, eV/atom, SiC: -0.204
GaAs, eV/atom, BN: -1.41
GaN, SiC, | eV/atom, InSe: -0.06336
BN, InSe, | eV/atom, MoS2: -0.669
MoS2, eV/atom, BaTiO3: -0.063
BaTiO3, eV/atom, CsPbl3:

CsPbI3. If | -0.018602 eV/atom.
there are

multiple

values,

please

give

me  the

smallest

value.

Continued on next page
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Question Answer
LLaMP GPT-3.5

B5.7 | Give me | Here are the lowest The energy above hull values for the given ma-
the energy | energy above hull values | terials are as follows: - Ba2MnSe3: 0.0000
above hull | for the requested eV/atom - KAISiO4: 0.0000 eV/atom - LiCuO:
values materials: Ba2MnSe3: 0.0 | 0.0000 eV/atom - HSC3N20: 0.0000 eV/atom
of the | eV/atom KAISiO4: 0.0 - Dy27ZnS4: 0.0000 eV/atom - Rb2BeF4:
following | eV/atom LiCuO: 0.0 0.0000 eV/atom - K9Fe2S7: 0.0000 eV/atom -
materials: | eV/atom HSC3N20O: Tb2FeC4: 0.0000 eV/atom - ScAlAu: 0.0000
Ba2MnSe3,| 0.0735 eV/atom eV/atom - CaCrO4: 0.0000 eV/atom

KAISiO4, | Dy2ZnS4: 0.00966
LiCuO, eV/atom Rb2BeF4: 0.0
H8C3N20,| eV/atom K9Fe2S7: 0.0
Dy27ZnS4, | eV/atom Tb2FeC4: 0.0
Rb2BeF4, | eV/atom ScAlAu: 0.0
K9Fe2S7, | eV/atom CaCrO4: 0.0
Tb2FeC4, | eV/atom. Please note that
ScAlAu, these are the lowest values
CaCrO4. found in the Materials

If there | Project database and

are multi- | actual values may vary
ple values, | based on different entries.
please
give me
the lowest
one.

Continued on next page

25209




Table 5 — continued from previous page

Question Answer
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B5.8 | What The bandgaps for the I don’t have real-time data access, and my train-
are  the | materials are: ing only includes information available up to
bandgaps | - Ba(PdS2)2: 0.779 eV January 2022. As a result, I may not have spe-
of the | - Most stable FePO4: cific bandgap values for the materials you men-
following | 2.1932 eV tioned. However, I can provide you with general
materials: | - DyBi21O4: 1.367 eV information about some of these materials and
Ba(PdS2)2,| - Most stable NaFe(S04)2: | their known properties up to my last update:
FePO4, 2.094 eV Ba(PdS2)2: I don’t have specific bandgap infor-
DyBi2I04, | - Eu2B5Br0O9: 0.88 eV mation for this compound. The bandgap may
NaFe(SO4)2- Sr5As3H: 0.676 eV depend on factors such as crystal structure and
Eu2B5Br09,- TIGaS2: 1.7885 eV synthesis conditions.
Sr5As3H, | - Most stable AgSbS2: FePO4: Iron(Il) phosphate, known as ferrous
T1GaS2, 1.372 eV phosphate, typically has a bandgap in the range
AgSbS2, |-Pr3S3N: 1.15eV of 2.5-3.0 eV.
Pr3S3N, |- Most stable LiLaO2: DyBi2104: Dysprosium bismuth iodate. I don’t
LiLaO?2. 3.7336 eV have specific bandgap information for this com-
If there | Please note that these pound.
are poly- | values are obtained from | NaFe(SO4)2: Sodium iron sulfate. I don’t
morphs, the Materials Project have specific bandgap information for this com-
give me | database and might be pound.
only the | different in experimental | Eu2B5BrO9: Europium borate bromate. I don’t
bandgap results due to various have specific bandgap information for this com-
of the | factors. pound.
stable Sr5As3H: Strontium arsenide hydride. I don’t
material. have specific bandgap information for this com-

pound.

T1GaS2: Thallium gallium sulfide. I don’t
have specific bandgap information for this com-
pound.

AgSbS2: Silver antimony sulfide. This material
is a semiconductor with a bandgap typically
around 1.5-2.0 eV.

Pr3S3N: Praseodymium sulfide nitride. I don’t
have specific bandgap information for this com-
pound.

LiLaO2: Lithium lanthanum oxide. I don’t
have specific bandgap information for this com-
pound.

The most stable structure for each material can
vary based on synthesis conditions and other fac-
tors. For accurate and up-to-date bandgap val-
ues and structural information, you may want to
consult recent scientific literature or databases
that specialize in material properties.

Continued on next page
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Question Answer
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B5.9 | How To synthesize YMnOs;, a Synthesizing YMnO; (yttrium manganite) typically in-
to syn- | solid-state reaction volves the solid-state reactipn method. Pl'ease note .that
. the details may vary depending on the specific conditions
thesize method can be employed. | ;g equipment available in your laboratory. Here’s a gen-
YMnO;? | Here is a summarized eral procedure:

procedure based on the
synthesis details provided
in the literature with DOLI:
10.1021/ic502027k:

1. Dissolve
Y(NO3)3:6H20,
Mn(NO3)2-4H20, and a
source of [OH-] in water
to create a homogeneous
solution.

2. Add citric acid to the
solution to act as a mixing
media.

3. Heat the mixture at
250°C for 2 hours to
achieve pre-calcination.
4. Finally, heat the
pre-calcined mixture at a
temperature range of
700°C to 930°C for 10 to
18 hours in an air
atmosphere to form
YMnO;.

Materials: Yttrium oxide (Y,0;) Manganese oxide
(MnO, or Mn,0O;) High-purity manganese carbonate
(MnCOs) Lithium carbonate (Li,COj3) or lithium hydrox-
ide (LiOH) Crucible and pestle High-temperature furnace
Mortar and pestle Platinum crucible or alumina crucible
Procedure:

Step 1: Weighing the Precursors

Weigh the appropriate amounts of yttrium
oxide (Y;,03), manganese oxide (MnO, or
Mn,03), and lithium carbonate (Li2CO3) or

lithium hydroxide (LiOH)
chiometric ratio of YMnO3.
Step 2: Mixing the Powders Note: GPT-3.5 starts to fail
numbering correctly in this response. Grind the powders
thoroughly in a mortar and pestle to ensure a homogenous
mixture.

Step 3: Heating 3. Place the mixed powder in a crucible
or alumina crucible.
Heat the mixture in a high-temperature furnace. The spe-
cific temperature and heating rate depend on the exact
synthesis conditions, but a typical range is 800-1100°C.
Step 4: Sintering 5. Hold the mixture at the target tem-
perature for a specific duration (several hours) to allow for
sintering and the formation of YMnOs.

Step 5: Cooling 6. Slowly cool the sample to room
temperature to avoid thermal stress.

Step 6: Characterization 7. Characterize the synthe-
sized YMnOj; using techniques such as X-ray diffraction
(XRD), scanning electron microscopy (SEM), and energy-
dispersive X-ray spectroscopy (EDS) to confirm the de-
sired phase and composition.

according to the stoi-

Notes: The choice of manganese precursor (MnO, or
Mn,03) and lithium source (carbonate or hydroxide) can
impact the synthesis process and may require optimization.
It’s crucial to use high-purity starting materials to avoid
impurities in the final product. The specific temperatures
and times mentioned are general guidelines and may need
to be adjusted based on the equipment and conditions in
your laboratory. Always follow safety protocols when
working with high temperatures and potentially hazardous
materials. This is a simplified overview, and you should
consult relevant literature and adapt the procedure based

on your specific requirements and equipment.

Continued on next page
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Question Answer
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B5.10 | How LiFePO, can be Synthesizing LiFePO, (lithium iron phosphate)
to syn- | synthesized using various | typically involves a solid-state reaction method.
thesize methods. One method Below is a step-by-step procedure for synthesiz-
LiFePO,? | involves a ing LiFePOy,:
Please high-temperature Materials: - Lithium carbonate (Li2CO3) - Iron
provide a | solid-state synthesis using | (II) acetate (Fe(CH;COO),) - Ammonium dihy-
detailed precursors such as Fe,O3, | drogen phosphate (NH4H2PO4) - Phosphoric
step- LiOH, and NH,H,PO,. acid (H3PO4) - Deionized water - Ethanol -
by-step The precursors are mixed | Mortar and pestle - Crucible - Furnace
procedure | and heated at Procedure: 1. Weigh out the appropriate
and the | temperatures up to 850°C | amounts of lithium carbonate (Li2CO3) and
reference. | for several days. Another | iron (II) acetate (Fe(CH;COO),) in a 1:1 mo-

method uses a sol-gel
combustion approach with
precursors like FePO, and
Li,CO;, where the
mixture is calcined at
700°C in a nitrogen
atmosphere. For detailed
procedures, please refer to
the following scientific
literature:

1. High-temperature
solid-state synthesis -
DOI: 10.1021/jp407510h
2. Ion-exchange method -
DOI: 10.1021/cm402617b

3. Solution method - DOI:

10.1021/jp306936t

4. Solid-state reactions -
DOI: 10.1021/cm303259j
5. Sol-gel combustion
method - DOI:
10.1007/s10853-011-
6139-7

lar ratio. For example, if you want to synthe-
size 1 mole of LiFePO,, you would weigh out
74.55 grams of Li,CO; and 173.93 grams of
Fe(CH;COO),.

2. Grind the lithium carbonate and iron (II)
acetate together using a mortar and pestle to
ensure a homogenous mixture.

3. Weigh out the appropriate amount of ammo-
nium dihydrogen phosphate (NH4H2PO4) and
add it to the lithium carbonate and iron (II) ac-
etate mixture in a 1:1 molar ratio. For example,
if you are synthesizing 1 mole of LiFePO,, you
would weigh out 122.00 grams of NH4H2PO4.
4. Add a few drops of phosphoric acid (H3PO4)
to the mixture to adjust the pH to around 7. This
will help in the formation of LiFePO,.

5. Add a small amount of deionized water to the
mixture and mix it thoroughly to form a slurry.
6. Slowly evaporate the water from the slurry
by placing it on a hot plate or in a furnace at a
low temperature.

7. Once the water has evaporated, heat the mix-
ture in a crucible in a furnace at around 600-
700°C for several hours to initiate the solid-state
reaction and form LiFePO,.

8. After the reaction is complete, allow the cru-
cible to cool and collect the LiFePO, powder.
9. Wash the LiFePO, powder with ethanol to
remove any impurities and then dry it in a des-
iccator.

Reference: P. G. Bruce, B. Scrosati, J.-M. Taras-
con, "Nanomaterials for Rechargeable Lithium
Batteries," Angew. Chem. Int. Ed. 2008, 47,
2930-2946. DOI: 10.1002/anie.200702505.

Continued on next page
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Question
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B5.11 | Could you | The final structure after Here’s the JSON string for the most stable dia-
insert one | inserting a Li atom at the | mond cubic Si structure retrieved directly from
Li atom at | tetrahedral interstitial site | MP:
the tetra- | in the diamond cubic Si ***json
. . {'sites': [{'species': [{'element': 'Si', 'occu': 131,
hedral structure is as follows: ‘abe': [0, 0, 01, 'xyz': [0, 0, 0], 'label': 'sii, °
interstitial {'@module': 'pymatgen.core. s -pro'pertl'es': {}),’ vest ,
. . structure'. '@class': ' {'species': [{'element': 'Si', 'occu': 1}],
site n Structure’. 'charge': 0, ' ‘abc': [0.25, ©.25, 0.251, 'xyz': [0.178, 0.178, 0.1781,
. N o '‘label': 'Si', 'properties': {}}1,
diamond %E;tg%ﬁ{ 232”?524639] "lattice': {'matrix’': [[3.866002, @, 2.243049],
cubic Si? [1.111191, 3.142924, [3.866002, 3.866002, 0],
Pull 1.9246397, [0.0, 0.0, '[0‘,. 3.866002,,,2'.24304914,‘.
u out 3.84927877, 'pbe’: [True, 'a': 5.431, 'b': 5.431, 'c': 5.431, ' .
the most True, Truel, 'a': alpha': 109.471219, 'beta': 109.471219, 'gamma':
3.8492784033699095, 'b': ol 109.471219,
stable 3.8492794116013456, 'c': ,volume': 129.584354898), ber': 227
. 3.849278, 'alpha': pyropertlfes : { spa?e_group : {'number": ,
DC Si 60.00001213094421, 'beta’: z;:}gg‘i ';Eg;?}i}
60.00000346645984, 'gamma | ___ » o Fd=
structure ": 60.00001097545789, '
from MP volume': . .
direct] 40.32952684741405}, ' Now, let’s insert one Li atom at the tetrahedral
1rec roperties': {3}, 'sites': . .. . . g . .
. y E{-Zpecies-: Eg-element-: interstitial site in this diamond cubic Si structure
in JSON 'Si' toccu': 131, 'abe's d ) he final
tri [0.675. .875, 0.875, ' and retrieve the fina pymatgen structure as a
strin -875, 0.875, 0.875], .
& xyz': [3.8891685, JSON string:
modify 2.7500584999999997 ,
6.7362365], 'properties': TTTjson
the re- {'magmom' : -0.0}, 'label': {'sites': [{'species': [{'element': 'Si', 'occu': 13}1,
1 'Si'}, {'species': [{' 'abc': [0, 0, 0],
trieved element': 'Si', 'occu': 'xyz': [e, o, o],
structure 131, 'abc': [0.125, 0.125, 'label': 'Si',
. 0.125], 'xyz': [0.5555955, 'properties': {}3},
derCtly, 0.3928655, 0.9623195], ' {'species': [{'element': 'Si', 'occu': 1}],
: properties': {'magmom': ‘abc': [0.25, 0.25, 0.25],
and give 0.0}, 'label’: 'Si'}, {' ‘xyz': [0.178, 0.178, 0.178],
me the species': [{'element': 'Li 'label‘:"si',
', 'occu': 131, 'abc': 'properties': {33},
final [0.5, 0.5, 0.5], 'xyz': {'species': [{'element': 'Li', 'occu': 1}],
[2.222382, 1.571462, 'abc': [0.5, 0.5, 0.5],
pymatgen 1.924639], 'properties': 'xyz': [0.5, 0.5, 0.5],
structure (3, 'label': 'Li'}1} label': °Li‘,
'properties': {}}],
as a JSON 'lattice': {'matrix': [[3.866002, 0, 2.243049],
. [3.866002, 3.866002, 01,
string. [0, 3.866002, 2.2430491],
‘a': 5.431,
‘b': 5.431,
'c': 5.431,
‘alpha': 109.471219,
'beta': 109.471219,
'gamma': 109.471219,
‘volume': 129.584354898},
'properties': {'space_group': {'number': 227,
'source': 'spglib',
'symbol': 'Fd-3m'}}}

Continued on next page
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Question Answer
LLaMP GPT-3.5
B5.12 | What The stable FePO, has a The magnetic ordering of stable FePO, is anti-
is the | ferromagnetic (FM) ferromagnetic. Its material id is mp-5405, and
magnetic | magnetic ordering. Its its space group is Pnma. The magnetization per
ordering material ID is formula unit is 4.14 uB.

of stable | 'mp-753395’, it belongs to
FePO,? the Triclinic crystal

Give system with space group
me its | symbol "P-1" and number
material 2. The total magnetization
id, space | per formula unit is

group, and | 5.00000015 Bohr
magneti- | magnetons.

zation per
formula
unit.

C Other Capabilities
C.1 Automated Computational Workflow

The following example shows how LLaMP uses computational workflow atomate2 and job manager
jobflow to run automated molecular dynamics simulation using foundation machine learning interatomic
potential MACE-MP-0 (Batatia et al., 2023).

r

Query:
I would like you to help me run MD simulation with the follwing steps:

1. Retrieve the stable LiTa03 structure from Materials Project

2. Create a supercell around the size of 100 atoms

3. Use atomate2 with foundation ML forcefield MACE to run Nose-Hoover NVT simulation
for 2 ps with annealing temperature scheduling 300 to 800 back to 300 Kelvin.
Use 2 fs timestep and save the trajectory to a ASE traj file.

4. Read the trajectory file and plot the system temperature vs time

> Entering new AgentExecutor chain...
Thought: Do I need to use a tool? Yes
Action: MPStructureRetriever

Action Input: LiTa03

> Entering new AgentExecutor chain...
Action:
TTTjson
{
"action": "search_materials_structure__get"”,
"action_input”: {
"formula”: "LiTa03",
"limit": 5,
"fields": "material_id,structure”

All retrieved structures are saved as Pymatgen Structure JSON files to the following paths: mp
-3666.json, mp-1105280.json, mp-754345.json, mp-1105216.json, mp-1105326. json

> Finished chain.
{'input': 'LiTa03', 'output': 'All retrieved structures are saved as Pymatgen Structure JSON
files to the following paths: mp-3666.json, mp-1105280. json, mp-754345.json, mp-1105216. json
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, mp-1105326.json'}
Do I need to use a tool? Yes
Action: MPSummaryExpert
Action Input: mp-3666

> Entering new AgentExecutor chain...

Action:

T json

{
" T . "
action”: "search_materials_summary__get"”,

"action_input”: {
"material_ids": "mp-3666"
}
}

“TTError on search_materials_summary__get: ~fields™ must be specified in the query. Please
revise arguments or try smaller request by specifying 'limit' in request.

“json
{
"action": "search_materials_summary__get",
"action_input”: {
"material_ids": "mp-3666",
"fields": "material_id,formula_pretty,composition,nsites,symmetry”
}
}

[{'nsites': 10, 'composition': {'Li': 2.0, 'Ta': 2.0, 'O': 6.0}, 'formula_pretty': 'LiTa03', '
symmetry': {'crystal_system': 'Trigonal', 'symbol': 'R3c', 'number': 161, 'point_group': '3m
', 'symprec': 0.1, 'version': '2.0.2'}, 'material_id': 'mp-3666"'}]

Action:
T json
{
"action”: "Final Answer",

"action_input”: "Material ID mp-3666 corresponds to Lithium Tantalate (LiTa03). It has a
trigonal crystal system with space group R3c (number 161) and point group 3m. The
structure consists of 10 sites, composed of Li, Ta, and 0."

Finished chain.

{'input': 'mp-3666', 'output': 'Material ID mp-3666 corresponds to Lithium Tantalate (LiTa03).
It has a trigonal crystal system with space group R3c (number 161) and point group 3m. The
structure consists of 10 sites, composed of Li, Ta, and 0.'}

Do I need to use a tool? Yes

Action: MPStructureRetriever

Action Input: mp-3666

Entering new AgentExecutor chain...

Action:

T json

{
" T . "
action”: "search_materials_structure__get"”,

"action_input”: {
"material_ids": "mp-3666",
"limit": 1,
"fields"”: "material_id,structure”

b

All retrieved structures are saved as Pymatgen Structure json files to the following paths: mp
-3666. json

Do I need to use a tool? Yes
Action: Python_REPL
Action Input:
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from pymatgen.core import Structure

# Load the structure from the JSON file
structure = Structure.from_file('mp-3666.json")

# Create a supercell to approximately reach 100 atoms

num_atoms = len(structure)

multiplier = int((100 / num_atoms) ** (1/3)) + 1 # Calculate the multiplier for each dimension
supercell = structure * (multiplier, multiplier, multiplier)

# Save the supercell structure to a file and print the number of atoms
supercell.to(fmt="poscar"”, filename="supercell.vasp")
print({"supercell_path": "supercell.vasp”, "num_atoms”: len(supercell)})

{'supercell_path': 'supercell.vasp', 'num_atoms': 270}

Do I need to use a tool? Yes

Action: MLFFMDAgent

Action Input: {"structure_path”: "supercell.vasp”, "forcefield”: "MACE", "simulation_type": "NVT
" "temperature_schedule”: [300, 800, 300], "simulation_time": 2, "timestep”: 2, "
trajectory_file"”: "trajectory.traj"}Do I need to use a tool? Yes

> Entering new AgentExecutor chain...
Action:
TTTjson
{
"action”: "MLFF MD",
"action_input”: {

"run_mode"”: "local”,
"project”: "llamp-atomate2”,
"atom_path_or_dict": "supercell.vasp”,

"force_field_name”: "MLFF.MACE",
"time_step": 2,
"n_steps": 1000,
"ensemble”: "NVT",
"dynamics”: "langevin",
"temperature”: [300, 800, 300],
"traj_file": "trajectory.traj”,
"traj_file_fmt": "ase",
"traj_interval”: 1
}
}

“TAction:

2024-05-12 14:42:31,797 INFO Started executing jobs locally

2024-05-12 14:42:31,837 INFO Starting job - Forcefield MD (040866d1-fbcb-4e0b-9044-0ed3cf9doeef)

Using Materials Project MACE for \texttt{MACECalculator} with /global/homes/c/cyrusyc/.cache/
mace/5yyxdm76

Using \texttt{float32} for \texttt{MACECalculator}, which is faster but less accurate.

Recommended for MD. Use float64 for geometry optimization.
Default dtype float32 does not match model dtype float64, converting models to float32.
2024-05-12 14:43:58,683 INFO Finished job - Forcefield MD (040866d1-fbcb-4e0b-9044-0ed3cf9doeef)
INFO: jobflow.core. job:Finished job - Forcefield MD (040866d1-fbcb-4e0b-9044-0ed3cf9doeef)
2024-05-12 14:43:58,710 INFO Finished executing jobs locally
INFO: jobflow.managers.local:Finished executing jobs locally
{'energy': -2262.60595703125, 'n_steps': 1001}
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Action:

json
{
"action”: "Final Answer”,
"action_input”: "The molecular dynamics simulation was successfully completed. The final energy
of the system after 1001 steps is -2262.60595703125 eV."
}
T TAction:
TTTjson
{
"action”: "Final Answer”,
"action_input”: "The molecular dynamics simulation was successfully completed. The final energy

of the system after 1001 steps is -2262.60595703125 eV."

> Finished chain.

{'input': '{"structure_path”: "supercell.vasp”, "forcefield”: "MACE", "simulation_type"”: "NVT",
"temperature_schedule”: [300, 800, 300], "simulation_time"”: 2, "timestep”: 2, "
trajectory_file”: "trajectory.traj"}', 'output': 'The molecular dynamics simulation was
successfully completed. The final energy of the system after 1001 steps is -2262.60595703125

eV.'}Do I need to use a tool? Yes

Action: Python_REPL

Action Input:

import matplotlib.pyplot as plt
from ase.io import read

# Load the trajectory
trajectory = read('trajectory.traj', index=':")

# Extract temperatures and time steps

temperatures = [step.get_temperature() for step in trajectory]

time_steps = [i * 2 for i in range(len(temperatures))] # Calculate time steps manually since
each step is 2 fs

# Plotting

plt.figure(figsize=(10, 5))

plt.plot(time_steps, temperatures, label='Temperature_(K)', marker='o")
plt.title('Temperature_vs_Time._during_MD_Simulation"')
plt.xlabel('Time_(fs)")

plt.ylabel('Temperature_(K)")

plt.grid(True)

plt.legend()

plt.savefig('temperature_vs_time.png')

plt.show()

print({"temperature_vs_time_plot": "temperature_vs_time.png"})
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Temperature vs Time during MD Simulation
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C.2 Simulation Code Generation and Execution

Below we present how LLaMP can generate, self-correct, and execute ASE simulation code to calculate

the bulk modulus of aluminum.

7

Generate a script and run ASE EMT calculator to relax 2x2x2 Al supercell and calculate its bulk
modulus

# Entering new AgentExecutor chain...

To generate a script and run the ASE (Atomic Simulation Environment) EMT (Effective Medium
Theory) calculator to relax a 2x2x2 Al supercell and calculate its bulk modulus, we need to
write a Python script that uses ASE's functionalities. Here's a step-by-step breakdown of
what the script will do:

Import necessary modules from ASE.

Create an aluminum (Al) supercell.

Set up the EMT calculator.

Relax the structure using the EMT calculator.
Calculate the bulk modulus.

g w N =

Let's write the script:

from ase import Atoms

from ase.build import bulk

from ase.calculators.emt import EMT

from ase.constraints import StrainFilter, ExpCellFilter
from ase.optimize import BFGS

from ase.eos import EquationOfState

# Create an Al supercell
al = bulk('Al', 'fcc', a=4.05, cubic=True)
al = al.repeat((2, 2, 2)) # Repeat the unit cell to create a 2x2x2 supercell

# Set up the EMT calculator
al.set_calculator (EMT())

# Relax the structure
strain_filter = StrainFilter(al)
optimizer = BFGS(strain_filter)
optimizer.run(fmax=0.01)

# Calculate the bulk modulus
volumes = []
energies = []
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for x in [0.98, ©.99, 1.00, 1.01, 1.02]:
al_copy = al.copy()
al_copy.set_calculator(EMT())
cell = al_copy.get_cell()
al_copy.set_cell(cell * x, scale_atoms=True)
volumes.append(al_copy.get_volume())
energies.append(al_copy.get_potential_energy())

eos = EquationOfState(volumes, energies)
vo, ed, B = eos.fit()
eos.plot('al-eos.png')

print(f'Bulk_modulus:_{B./_kJ}_GPa')

Now, let's execute this script using the Python\_REPL tool.

Action: Python\_REPL
Action Input:

from ase import Atoms

from ase.build import bulk

from ase.calculators.emt import EMT

from ase.constraints import StrainFilter, ExpCellFilter
from ase.optimize import BFGS

from ase.eos import EquationOfState

from ase.units import kJ

# Create an Al supercell
al = bulk('Al", 'fcc', a=4.05, cubic=True)
al = al.repeat((2, 2, 2)) # Repeat the unit cell to create a 2x2x2 supercell

# Set up the EMT calculator
al.set_calculator(EMT())

# Relax the structure
strain_filter = StrainFilter(al)
optimizer = BFGS(strain_filter)
optimizer.run(fmax=0.01)

# Calculate the bulk modulus

volumes = []

energies = []

for x in [0.98, ©0.99, 1.00, 1.01, 1.02]:
al_copy = al.copy()
al_copy.set_calculator(EMT())
cell = al_copy.get_cell()
al_copy.set_cell(cell * x, scale_atoms=True)
volumes.append(al_copy.get_volume())
energies.append(al_copy.get_potential_energy())

eos = EquationOfState(volumes, energies)
v0, ed, B = eos.fit()

print(f'Bulk_modulus:_{B./_kJ}_GPa')

Step Time Energy fmax
0 01:37:31 -0.048066 8.967521
1 01:37:31 1.542253 33.456077
2 01:37:31 -0.154186 1.250352
3 01 : -0.156157 0.259261
4 01:37: -0.156246 0.000522

25219



Bulk modulus: 3.923492594026645e-23 GPa

The output of the bulk modulus calculation seems to be incorrect because the value is extremely
small and not in the expected range for aluminum. This is likely due to a unit conversion
error. The ASE package uses eV and Angstroms for energy and length, respectively, and the
bulk modulus should be in units of eV/Angstrom*3, which can be converted to GPa. The
conversion factor from eV/Angstrom*3 to GPa is approximately 160.21766208. Let's correct the

script to include the proper conversion factor and rerun the calculation.

Action: Python\_REPL
Action Input:

from ase import Atoms

from ase.build import bulk

from ase.calculators.emt import EMT

from ase.constraints import StrainFilter, ExpCellFilter
from ase.optimize import BFGS

from ase.eos import EquationOfState
from ase.units import kJ

# Create an Al supercell
al = bulk('Al", 'fcc', a=4.05, cubic=True)
al = al.repeat((2, 2, 2)) # Repeat the unit cell to create a 2x2x2 supercell

# Set up the EMT calculator
al.set_calculator(EMT())

# Relax the structure
strain_filter = StrainFilter(al)
optimizer = BFGS(strain_filter)
optimizer.run(fmax=0.01)

# Calculate the bulk modulus

volumes = []

energies = []

for x in [0.98, 0.99, 1.00, 1.01, 1.02]:
al_copy = al.copy()
al_copy.set_calculator(EMT())
cell = al_copy.get_cell()
al_copy.set_cell(cell * x, scale_atoms=True)
volumes.append(al_copy.get_volume())
energies.append(al_copy.get_potential_energy())

eos = EquationOfState(volumes, energies)
v0, ed, B = eos.fit()

# Convert the bulk modulus from eV/Angstrom”3 to GPa
B_GPa = B *x 160.21766208

print(f'Bulk_modulus: _{B_GPa}_GPa"')

Step Time Energy fmax
BFGS: 0 01:37: -0.048066 8.967521
BFGS: 1 01 : 1.542253 33.456077
BFGS: 2 01:37: -0.154186 1.250352
BFGS: 3 01:37:48 -0.156157 0.259261
BFGS: 4 01:37:48 -0.156246 0.000522
Bulk modulus: 39.23492594026644 GPa
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Do I need to use a tool? No

Final Answer: The corrected bulk modulus of the relaxed 2x2x2 Al supercell calculated using the
ASE EMT calculator is approximately 39.23 GPa.

# Finished chain.

D Experiment Setup and Code Release

All the experiments were running on 1 Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz of with average of
15 to 25 seconds inference time per prompt. Additionally, the total expenditure on API credits for running
these experiments, including those that are not detailed in the paper, amounted to $1,800, supported by
OpenAl

We make the code and data for our analysis available at https://github.com/chiang-yuan/1lamp.
We release both under the BSD 3-Clause License.

E Disclosure of AI Usage

The authors acknowledge the use of artificial intelligence (Al) tools in the preparation of this manuscript.
Specifically, Microsoft Copilot, OpenAl ChatGPT, and Google Gemini Pro were utilized for general
editing and code generation / completion purposes. All generated code and text was verified for correctness
by one or more of the authors.
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