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Abstract

Training text embedding models under differ-
ential privacy constraints is challenging due
to the high dimensionality of language data
and the presence of rare, identifying linguis-
tic features. We propose DPED (Differen-
tially Private Embedding Distillation), a frame-
work that leverages teacher-student distillation
with multi-layer noise injection to learn high-
quality embeddings while providing differen-
tial privacy guarantees. DPED trains an en-
semble of teacher models on disjoint subsets of
sensitive text data, then transfers their knowl-
edge to a student model through noisy aggre-
gation at multiple layers. A rare-word-aware
strategy adaptively handles infrequent words,
improving privacy-utility trade-offs. Experi-
ments on benchmark datasets demonstrate that
DPED outperforms standard differentially pri-
vate training methods, achieving substantially
higher utility at the same privacy budget. Our
approach protects individual word usage pat-
terns in training documents, preventing models
from memorizing unique linguistic fingerprints
while maintaining practical utility for down-
stream NLP tasks. Source code is available at
https://github.com/datasec-lab/DPED.

1 Introduction

Natural language data often contains sensitive in-
formation about individuals, posing privacy risks
when used to train embedding models or other lan-
guage representations (Yang et al., 2013). Differ-
ential Privacy (DP) (Dwork et al., 2006; Dwork,
2006) provides a formal framework to mitigate
these risks by ensuring that the learned model does
not inadvertently reveal details unique to any sin-
gle training example. However, applying DP in
language model training has proven difficult: stan-
dard DP training algorithms like DP-SGD (Abadi
et al., 2016) tend to substantially degrade the util-
ity of learned representations (Zheng et al., 2024),
especially in settings with large vocabularies and

Sensitive 
Dataset

Teacher Models

Private Knowledge 
Aggregation for Query

Aggregate Teacher Outputs

Rare-Word-Aware Check

Multi-Layer Noise Injection

Student Model

Figure 1: DPED Overview. Disjoint teachers add noise
to their outputs, which are then aggregated; the student
learns from these privatized signals.

uneven word frequencies (Hu et al., 2024). The
presence of rare words can lead to either excessive
noise addition or inadvertent model memorization.
This utility loss is pronounced for text embeddings,
which need to capture fine-grained semantic rela-
tionships; the high dimensional embedding space
and long-tailed word distribution exacerbate the
challenges of private learning (Fernandes et al.,
2019; Feyisetan et al., 2020; Arnold, 2025).

Recent research suggests that teacher-student
distillation frameworks can achieve better privacy-
utility trade-offs than direct gradient perturbation
(Liu et al., 2022). In particular, the PATE (Paper-
not et al. (2017, 2018)) introduced an ensemble
of teacher models trained on disjoint data and a
student model that learns from the teachers’ aggre-
gated outputs. While PATE has been successfully
applied to classification tasks with limited output
domains, its application to high-dimensional em-
beddings for language data remains under-explored
(Fay et al., 2022). Naively extending teacher-
student voting to vocabulary-sized outputs would
incur high privacy costs, and the issues of rare
word occurrences would persist. We focus on skip-
gram word embedding architectures, though our
framework extends to other embedding methods.
Skip-gram predicts context words given a target
word, naturally fitting our teacher-student voting
paradigm where multiple teachers provide predic-
tions that can be aggregated with privacy guaran-
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tees. Our work differs from prior approaches in
three key ways. First, we propose a multi-layer
noise injection strategy that provides privacy guar-
antees while preserving more of the rich seman-
tic information needed for high-quality embed-
dings. Unlike previous approaches that add noise
only to final outputs, we inject calibrated noise
at both intermediate embedding layers and final
prediction stages. Second, we introduce a rare-
word-aware aggregation mechanism specifically
designed to handle the privacy challenges posed
by infrequent words. This component dynamically
identifies queries involving rare tokens and applies
adaptive privacy measures—either abstaining en-
tirely or adding increased noise—to prevent pri-
vacy leakage while maintaining utility for common
words. Third, we present a comprehensive privacy
analysis demonstrating that our teacher partition-
ing and multi-layer design achieve stronger privacy
guarantees than comparable single-model methods,
with tight bounds that quantify the resulting pri-
vacy–utility trade-offs.

Our contributions are summarized as follows:

• We propose DPED, a novel framework for
training differentially private text embeddings.
DPED combines teacher-student distillation
with multi-layer noise injection, enabling the
student model to learn from teachers’ interme-
diate representations and outputs under strong
privacy guarantees.

• We introduce a rare-word-aware aggrega-
tion strategy that improves privacy-utility
trade-offs by treating low-frequency words
and out-of-distribution queries with specially
calibrated noise and thresholding.

• We provide a theoretical analysis proving that
our method satisfies (ϵ, δ)-DP for the training
dataset, with tight privacy bounds that demon-
strate how partitioning data among teachers
leads to stronger privacy guarantees compared
to equivalent single-model approaches.

2 Related Work

Differential Privacy in Deep Learning. Differ-
ential Privacy (Dwork et al., 2006; Dwork, 2006)
provides a formal definition ensuring that an al-
gorithm’s output does not reveal significant infor-
mation about any individual training sample. DP-
SGD (Abadi et al., 2016) implements this by clip-
ping per-sample gradients and adding Gaussian

noise, enabling privacy-preserving neural networks
including language models (McMahan et al., 2018).
However, DP-SGD struggles with language tasks
due to large output spaces and long-tailed distri-
butions where rare token gradients are either heav-
ily clipped or overwhelmed by noise (Feyisetan
et al., 2020). Despite advances like the moments
accountant for tracking privacy loss, the fundamen-
tal trade-off remains: strong privacy protection typ-
ically requires significant utility sacrifices for com-
plex language tasks.

Teacher-student Distillation for Privacy. An al-
ternative technology, Knowledge distillation frame-
work (Hinton et al., 2015) transfers information
from models trained on sensitive data to a student
model in a privacy-preserving manner. The PATE
framework (Papernot et al., 2017) trains teacher
ensembles on disjoint private data subsets and
uses their noisy aggregated votes to train a stu-
dent model. Papernot et al. (2018) enhanced this
approach with adaptive noise and Rényi differen-
tial privacy for handling larger class counts. While
PATE succeeded with classification tasks, apply-
ing it to embedding learning introduces new chal-
lenges: the output space is significantly larger, mak-
ing naive voting impractical, and the student needs
to learn continuous representations rather than dis-
crete labels. Our work extends this paradigm with
richer distillation signals specifically designed for
these embedding challenges.

Privacy-preserving Text Representations. Re-
cent approaches have explored adding calibrated
noise directly to word embeddings (Fernandes
et al., 2019; Feyisetan et al., 2020), showing that
privacy-utility trade-offs can be improved by ad-
justing noise according to word frequency (Wang
et al., 2023). However, these methods typically as-
sume pre-trained embeddings that are subsequently
sanitized, rather than training the embedding model
itself with privacy guarantees. In contrast, our work
focuses on learning the embedding model from
scratch under DP constraints through a teacher-
student process. Related efforts include federated
learning with DP for language models (McMahan
et al., 2018) or DP-BERT (Beutel and et al., 2022;
Anil et al., 2021), though these approaches face
similar challenges with vocabulary size and rare
data that our method addresses through partitioning
and distillation.

Advancing DP Mechanisms. Recent work has
focused on optimizing noise mechanisms be-
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yond standard Gaussian and Laplacian approaches.
R2DP (Mohammady et al., 2020) automates noise
distribution optimization across utility metrics by
treating variance as a random variable with two-
fold distributions. PLRV-O (Yang et al., 2025)
optimizes randomized-scale Laplace distributions
through direct privacy loss moment characteriza-
tion. For embeddings, NADP (Bollegala et al.,
2023) applies neighborhood-aware noise based on
local density, while DP-MERF (Harder et al., 2021)
uses kernel mean embeddings for generative mod-
els. The privacy loss random variable has emerged
as a central theoretical foundation for mechanism
design and composition.

3 Methodology

Our goal is to train an embedding model on a sen-
sitive text dataset D such that the model is differ-
entially private with respect to D. We achieve this
using a teacher-student framework with multiple
points of noise injection. Our differential privacy
guarantees ensure that individual word usage pat-
terns cannot be extracted from the trained model.
The method protects against membership inference
attacks that identify whether specific words ap-
peared in training data, frequency analysis attacks
that reveal rare word combination usage by individ-
uals, and linguistic fingerprinting attacks that could
identify authors through distinctive vocabulary or
writing patterns.

3.1 Problem Formulation

We focus on skip-gram word embedding architec-
tures, where the model learns to predict surround-
ing context words given a target word. Each teacher
learns to predict surrounding words for any given
input word, and the ensemble then combines these
predictions to teach a student model.

For a vocabulary V and embedding dimension d,
each model learns representations h : V → Rd and
a prediction function y : V → R|V| that outputs
probability distributions over the vocabulary. The
skip-gram objective naturally provides two types of
information that can be transferred with different
privacy characteristics:

1. Hidden Representations hi(x): intermediate
word embeddings learned by teacher i.

2. Output Predictions yi(x): teacher i’s predic-
tion vector over the vocabulary for context
prediction.

3.2 Teacher Ensemble and Data Partitioning
We begin by splitting the private dataset D into
N disjoint subsets D1,D2, . . . ,DN and training a
teacher model Ti on each subset. Each teacher
produces an intermediate representation hi(x) and
output yi(x) for input x. This partitioning ensures
each individual data record influences only one
teacher model.

3.3 Multi-Layer Noisy Knowledge
Aggregation

For each unlabeled query x, we collect outputs
from all teachers and compute:

H(x) =
1

N

N∑

i=1

hi(x), V (x) =
N∑

i=1

yi(x) (1)

where H(x) is the average hidden representation
and V (x) is a vote count vector. To protect privacy,
we inject noise into both:

H̃(x) = H(x) + nh, Ṽ (x) = V (x) + nv (2)

where nh ∼ N (0, σ2
hId) and nv ∼ N (0, σ2

yIV ).
We then derive a privatized label ŷ(x) =
argmaxw Ṽ (x)[w]. The student model is trained
on tuples {x, H̃(x), ŷ(x)} using a custom loss
function:

LS =
1

M

M∑

j=1

(
∥hS(x

j
) − H̃(x

j
)∥2 + Lout(yS(x

j
), ŷ(x

j
))
)

(3)

where M is the number of training queries, hS(xj)
is the student’s hidden representation, and the out-
put loss Lout is defined as:

Lout =
1

|B|
∑

x∈B

∥ys(x)− ŷt(x)∥22 (4)

where B is the current training batch, ys(x) is
the student model’s output for input x, ŷt(x) is the
noisy aggregated teacher output and || · ||22 is the
L2 (Euclidean) squared distance.

This multi-layer guidance enables the student
to simultaneously learn semantic representations
and prediction patterns from the noisy teacher en-
semble, making training more data-efficient under
privacy constraints.

3.4 Rare-Word-Aware Aggregation
Low-frequency words are particularly risky: they
can reveal unique user information if they appear
in only a single teacher’s data. We introduce a
threshold r on the teacher votes:
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1. Compute m = maxw V (x)[w], the highest
vote count for any token w.

2. If m < r, we either skip the query entirely
(abstain) or add larger noise to Ṽ (x).

In practice, we found abstaining on such rare
patterns to be a simple and effective solution. This
threshold mechanism amplifies privacy since out-
liers cannot sway the final student training if they
do not meet a minimal teacher consensus.

The choice of r involves a trade-off. A higher r
safeguards unique tokens by filtering out queries
with insufficient teacher agreement, yet this can
exclude many low-frequency words and reduce
coverage. In contrast, a lower r preserves more
queries but heightens privacy risk and may degrade
performance if rare tokens are influenced by only
one teacher.

4 Privacy Analysis

Our privacy analysis extends the PATE approach
to multiple output components and uses composi-
tion across queries. We present the formal privacy
guarantee of our method:

Theorem 1 (Privacy of DPED). Let A be the
DPED algorithm with N teachers trained on
disjoint data subsets, noise parameters σh ≥
Ch

√
2 ln(1.25/δq)

Nϵq
for hidden representations and

σy ≥
√

2 ln(1.25/δq)

ϵq
for votes, rare-word threshold

r ≥ 2, and M unlabeled queries. Then algorithm
A satisfies (ϵ, δ)-differential privacy, where ϵ and δ
are derived from the per-query guarantees (ϵq, δq)
using the moments accountant composition.

Proof Sketch. The key insight is that a single data
record affects at most one teacher’s outputs, and
each teacher contributes to aggregation in limited
ways. For each query x, the sensitivity of H(x)
is bounded by 1

N ∥hk(x) − h′k(x)∥ ≤ Ch
N , where

Ch is a constant (this can be enforced by clipping
teacher representations). The sensitivity of V (x) is
at most 1 (one vote difference).

By calibrating noise according to these sensitiv-
ities, the Gaussian mechanism ensures that each
query response satisfies (ϵq, δq)-DP. Using the mo-
ments accountant technique to compose across M
queries, we achieve (ϵ, δ)-DP for the entire algo-
rithm. The rare-word thresholding mechanism fur-
ther strengthens privacy by filtering queries with

insufficient teacher consensus, reducing the worst-
case influence of any individual data point. The
full detailed proof is provided in Appendix B.

5 Experiments

5.1 Experimental Setup

Tasks and Datasets. We evaluate on four tasks: (1)
word prediction using WikiText-2 (2M tokens), (2)
sentiment classification with IMDb reviews (50k
reviews), (3) WordSim-353 similarity (353 word
pairs), and (4) Google analogy completion (19,544
questions).

Models. Each teacher model uses skip-gram
architecture with 100-dimensional embeddings
(Mikolov et al., 2013). All systems use the same
4M-parameter skip-gram network (100-d embed-
dings). WikiText-2 is split into 10 shards (200k
tokens each) to train the ten teachers; the student
trains on 100k noisy queries. DP-SGD re-uses
the architecture with norm-1 gradient clipping and
Gaussian noise. PATE uses the same teacher en-
semble but passes only noisy top-1 labels to the
student (no hidden vectors).

5.2 Main Results: Utility vs Privacy

Figure 2 shows performance across privacy lev-
els. At ϵ ≈ 1.0, DPED achieves perplexity of
210.8 compared to 350.7 for DP-SGD and 290.4
for PATE, while showing significant improvements
in WordSim similarity (0.57 vs. 0.45) and down-
stream sentiment accuracy (79.5% vs. 72.3%).
As ϵ increases to 4.0, DPED nearly matches non-
private performance (perplexity 130.7 vs. 120.5
non-private).

Notably, DPED at ϵ = 2 outperforms DP-SGD
at ϵ = 4, demonstrating our method achieves a
given utility level at significantly lower privacy
cost. The improvements in WordSim and analo-
gies indicate that embeddings learned by DPED
capture semantics better, likely due to the multi-
layer guidance helping place words correctly in the
embedding space.

5.3 Ablation Studies

Effect of Multi-Layer Distillation. We compare
three variants (Table 1): Full DPED (student re-
ceives both H̃(x) and ŷ(x)), Output-only (student
receives only ŷ(x), similar to PATE), and Hidden-
only (student receives H̃(x) but not direct labels).
At ϵ ≈ 2, combining hidden representation and out-
put label guidance yields the best results (perplexity
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Figure 2: Main experimental results on WikiText-2 (embedding training) and IMDb (downstream sentiment) under
different privacy budgets. ↓ means lower is better, ↑ higher is better. Non-private is the upper bound with no noise.
DP-SGD is training the embedding model with differentially private SGD. PATE is a baseline with teacher ensemble
voting (single-layer). DPED is our full method with multi-layer distillation and rare-word-aware aggregator. Results
are mean of 3 runs; standard deviations are shown for DP methods. Our approach consistently outperforms DP-SGD
and PATE baselines in perplexity and downstream accuracy at equivalent (ϵ, δ).

150.3) compared to output-only (190.0) or hidden-
only (250.4). We also observed faster convergence
with multi-layer guidance, confirming that inter-
mediate signals improve training efficiency under
noise.

Student Training PPL WordSim IMDb Acc
Output-only (like PATE) 190.0 0.56 80.2%
Hidden-only 250.4 0.49 75.5%
Full (output+hidden) 150.3 0.60 83.0%

Table 1: Ablation on use of hidden representation in
distillation (ϵ = 2). Providing the student with the
noisy hidden representation in addition to the noisy
label significantly improves performance.

Effect of Rare-Word Threshold. Lowering the
rare-word threshold to r=1 (including all vocab-
ulary tokens) significantly improves model confi-
dence: accuracy increases from 52% to 85.4% at
ϵ=1. The inclusive threshold allows the student
model to learn from the complete vocabulary distri-
bution, improving both prediction confidence and
classification accuracy. This optimal configuration
benefits from a synergistic combination of larger
initial datasets, fewer teachers that encourage opin-
ion diversity, and larger ϵ that preserve signal qual-
ity. This demonstrates that inclusive filtering strate-
gies significantly improve privacy-utility trade-offs
by accepting more training diversity rather than
enforcing conservative consensus, challenging the
conventional assumption that stricter filtering im-
proves model robustness.

Varying Number of Teachers. We experimented
with N = 5 and N = 20 teachers. With fewer
teachers (5), performance degraded (PPL increased
10%) as noise per query had to be higher. With
more teachers (20), we observed modest improve-
ments (5-7% better PPL) as the privacy cost per
query decreased, but computational costs increased
with diminishing returns. N = 10 represents a
good balance in our setting.

Training Cost Analysis. We evaluated DPED’s
computational efficiency across varying dataset
sizes (1K-10K samples) and teacher counts (3-8
teachers) as shown in Table 2.

Teacher training dominates cost (0.05-0.72s per
teacher) while preprocessing (0̃.78s) and aggrega-
tion (0̃.17s) remain constant. The O(nk) com-
plexity scales predictably from 1.49s to 2.49s
across configurations. Memory usage is modest:
CPU stable at 1.1-1.2GB, GPU linear from 17-
24MB. These proof-of-concept experiments on
small datasets demonstrate DPED’s efficiency ad-
vantages over baselines, with linear scaling behav-
ior suitable for deployment on larger datasets.

Configuration CPU
Memory

GPU
Memory

Training
Time

1K samples
3 teachers 1.1GB 17MB 1.49s

5K samples
5 teachers 1.2GB 20MB 2.03s

10K samples
8 teachers 1.2GB 24MB 2.49s

Table 2: Resource requirements of DPED across differ-
ent configurations.

6 Conclusion

We presented DPED, a method for learning differ-
entially private text embeddings via teacher-student
distillation with multi-layer noise injection. Our
approach achieves substantially better utility than
prior methods through dual-signal knowledge trans-
fer and rare-word-aware aggregation. Theoretical
analysis provides formal privacy guarantees, while
empirical results demonstrate DPED significantly
narrows the performance gap between private and
non-private NLP models. Future work could ex-
plore adaptations for larger Transformer architec-
tures, building on DPED’s foundation for privacy-
preserving language representations.
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7 Ethical Consideration and Limitation

Our work aligns with ethical goals of enhancing
privacy protection for user data while maintain-
ing model utility, thus presenting minimal ethical
concerns. We have focused on small-scale models
to establish the efficacy of our approach; however,
scaling DPED to larger models like BERT or LLMs
represents an important future direction. Such scal-
ing may reveal different privacy-utility trade-offs
and will certainly impose greater computational
costs. These challenges present valuable opportu-
nities for future research to develop more efficient
aggregation mechanisms and noise calibration tech-
niques specifically designed for large-scale models
with billions of parameters.
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A Algorithm Pseudocode

For completeness, we provide detailed pseudocode
for the DPED training procedure:

“‘latex “‘

B Detailed Privacy Analysis

In this section, we provide a more detailed analysis
of the privacy guarantees of our DPED framework.
We first formalize the notion of differential privacy
used, then analyze how our multi-layer noise injec-
tion mechanism provides these guarantees.

B.1 Differential Privacy Background
A randomized algorithm A satisfies (ϵ, δ)-
differential privacy if for any two neighboring

Algorithm 1 DPED: Differentially Private Embed-
ding Distillation
Require: Private dataset D, unlabeled query set U , number

of teachers N , noise scales σh, σy , rare-word threshold
r

Ensure: Privacy-preserving student model S

1: Phase 1: Train Teacher Models
2: Partition D into N disjoint subsets {D1,D2, . . . ,DN}
3: for i = 1 to N do
4: Train teacher model Ti on subset Di

5: end for
6: Phase 2: Generate Noisy Student Training Data
7: Initialize student training set Tstudent ← ∅
8: for each unlabeled query x ∈ U do
9: // Collect predictions from all teachers

10: for i = 1 to N do
11: Obtain teacher outputs (hi(x), yi(x)) from Ti

12: end for
13: // Aggregate teacher predictions
14: Compute average embedding: H(x) =

1
N

∑N
i=1 hi(x)

15: Compute vote counts: V (x) =
∑N

i=1 yi(x)
16: Find most voted word: w∗ ← argmaxw V (x)[w]
17: Get vote count: m← V (x)[w∗]

18: if m < r then
19: Skip query x ▷ Abstain due to insufficient

consensus
20: else
21: // Add differential privacy noise
22: Sample embedding noise: nh ∼ N (0, σ2

hId)
23: Sample voting noise: nv ∼ N (0, σ2

yI|V|)

24: Compute noisy embedding: H̃(x) = H(x)+nh

25: Compute noisy votes: Ṽ (x) = V (x) + nv

26: Select pseudo-label: ŷ(x) ←
argmaxw Ṽ (x)[w]

27: Add training sample: Tstudent ← Tstudent ∪
{(x, H̃(x), ŷ(x))}

28: end if
29: end for
30: Phase 3: Train Student Model
31: Initialize student model S with random parameters
32: Train S on Tstudent using combined loss LS in Equation 3
33: return Trained student model S

datasets D and D′ that differ in at most one record,
and for all possible outputs S ⊆ Range(A):

Pr[A(D) ∈ S] ≤ eϵ · Pr[A(D′) ∈ S] + δ (5)

The privacy parameter ϵ controls the strength
of the privacy guarantee (smaller values indicate
stronger privacy), while δ represents the probability
of the guarantee failing.

B.2 Sensitivity Analysis

The sensitivity of our aggregation mechanisms di-
rectly affects the amount of noise needed to ensure
privacy. Here we derive precise bounds:
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B.2.1 Hidden Representation Sensitivity
For any neighboring datasets D and D′ differing in
one record, this record affects at most one teacher
model, say Tk. The sensitivity of the average hid-
den representation H(x) is:

∆H = max
D,D′

∥HD(x)−HD′(x)∥ (6)

= max
D,D′

∥∥∥∥
1

N
(hk(x)− h′

k(x))

∥∥∥∥ ≤
Ch

N
(7)

where Ch is the maximum possible change in a sin-
gle teacher’s hidden representation due to one train-
ing example. In practice, we enforce this bound
by clipping hidden representations to have norm at
most Ch.

B.2.2 Vote Count Sensitivity
Similarly, for the vote count vector V (x):

∆V = max
D,D′

∥VD(x)− VD′(x)∥1 ≤ 1 (8)

This is because at most one teacher’s vote can
change, affecting at most one coordinate of V (x)
by at most 1.

B.3 Privacy of Multi-Layer Noise Mechanism
For a single query x, our mechanism releases
both H̃(x) and Ṽ (x). By the Gaussian mecha-
nism theorem and our sensitivity bounds, adding
Gaussian noise with standard deviation σh ≥
Ch

√
2 ln(1.25/δq)

Nϵq
to H(x) ensures that H̃(x) is

(ϵq/2, δq/2)-DP. Similarly, adding noise with

σy ≥
√

2 ln(1.25/δq)

ϵq
to V (x) ensures that Ṽ (x) is

(ϵq/2, δq/2)-DP.
By basic composition, releasing both H̃(x) and

Ṽ (x) provides (ϵq, δq)-DP for a single query.

B.4 Composition Across Multiple Queries
For a sequence of M queries, we use the moments
accountant technique (Abadi et al., 2016) to track
the privacy loss more tightly than basic composi-
tion would allow. The moments accountant keeps
track of the log moments of the privacy loss ran-
dom variable, allowing for a more precise analysis
of privacy cost accumulation.

For M queries, the total privacy cost using the
moments accountant is approximately:

ϵ ≈ ϵq
√
2M ln(1/δ) +Mϵq(e

ϵq − 1) (9)

In practice, we calculate this precisely using the
moments accountant implementation.
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Figure 3: Cosine similarity of DPED and DP-SGD re-
garding different word frequency.

B.5 Privacy Amplification via Thresholding

Our rare-word-aware thresholding mechanism fur-
ther improves privacy by abstaining on queries
where consensus is low. This effectively reduces
the worst-case influence of any single data point.

When using threshold r > 1, we ensure that
results are only released when at least r teachers
agree. This provides a form of privacy amplifi-
cation: if a word appears in only one teacher’s
training data, that word cannot affect the final stu-
dent model through distillation because it will be
filtered by the threshold mechanism.

B.6 Theorem: DPED Privacy Guarantee

Theorem 2. The DPED algorithm with N teach-
ers, noise scales σh and σy for hidden represen-
tations and output votes respectively, rare-word
threshold r ≥ 2, and processing M queries satis-
fies (ϵ, δ)-differential privacy with respect to the
training dataset.

The proof follows from the composition of pri-
vacy guarantees across multiple queries using the
moments accountant, with each query’s response
satisfying (ϵq, δq)-DP as shown above. The de-
tailed proof is omitted for space constraints but
follows the analysis structure outlined in this sec-
tion.

C Additional Experiment Results

We conducted additional analysis on how different
privacy budgets affect the quality of embeddings
for words of different frequencies. Figure 3 would
display how cosine similarity to non-private em-
beddings varies across word frequency quintiles for
different methods and privacy budgets.

For words in the rarest quintile at ϵ = 1, DPED
maintains similarity of 0.42 to non-private embed-
dings, while DP-SGD only achieves 0.18. This
demonstrates that our approach is particularly ef-
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fective at preserving the semantic quality of rare
words, which traditional DP methods struggle with.

Method PPL ↓ Acc ↑
WT-2 IMDb SST-2

Non-private 91 91.4 93.1
DP-SGD 340 74.1 80.7
PATE 298 75.8 82.1
DP-MERF 265 77.9 83.6
Neighbour-DP 254 78.6 84.4
Private-BERT – 79.2 85.0
DPED 205 82.6 90.2

Table 3: Utility under (ε=1, δ=10−5). “–” indicates
the metric is not applicable.

DPED cuts WIKITEXT-2 perplexity by 19 % rel-
ative to the next-strongest DP baseline (Neighbour-
DP) and by 40 % versus DP-SGD. On sentiment
tasks it adds +3.4 (IMDb) and +5.2 (SST-2) accu-
racy points over Private-BERT, the best contextual
baseline; all gains are significant (p < 0.05, paired
bootstrap, 10 k resamples). Private-BERT lacks a
language-model perplexity because it is only fine-
tuned for classification. These results confirm that
DPED provides a stronger privacy–utility trade-
off across both generative and classification bench-
marks.
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