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Abstract

Establishing shared goals is a fundamental step
in human-AI communication. However, am-
biguities can lead to outputs that seem correct
but fail to reflect the speaker’s intent. In this
paper, we explore this issue with a focus on
the data visualization domain, where ambigui-
ties in natural language impact the generation
of code that visualizes data. The availability
of multiple views on the contextual (e.g. the
intended plot and the code rendering the plot)
allows for a unique and comprehensive analysis
of diverse ambiguity types. We develop a taxon-
omy of types of ambiguity that arise in this task
and propose metrics to quantify them. Using
Matplotlib problems from the DS-1000 dataset,
we demonstrate that our ambiguity metrics bet-
ter correlate with human annotations than un-
certainty baselines. Our work also explores
how multi-turn dialogue can reduce ambiguity,
and therefore, improve code accuracy by better
matching user goals. We evaluate three prag-
matic models to inform our dialogue strategies:
Gricean Cooperativity, Discourse Representa-
tion Theory, and Questions under Discussion.
A simulated user study reveals how pragmatic
dialogues reduce ambiguity and enhance code
accuracy, highlighting the value of multi-turn
exchanges in code generation.

1 Introduction

In human-human interactions, ambiguity resolution
has been explored through various well-established
frameworks in linguistic pragmatics, such as Ra-
tional Speech Act (RSA)(Frank and Goodman,
2012), Discourse Representation Theory (DRT)
(Lascarides and Asher, 2007; Kamp et al., 2010),
and Questions Under Discussion (QUD) (Roberts,
2012). Further, as Clark (1996) argues, success-
ful interactions depend on establishing common

* This author is currently at West Virginia University, but
completed this work at Northeastern University.

Figure 1: This figure summarizes the contributions of
this paper. We formalize and identify ambiguity in
data visualization code, then use pragmatics-inspired
dialogue strategies to interactively resolve ambiguities
in user intents. To this end, we present a multimodal
taxonomy of ambiguity categories, and new metrics
informed by this taxonomy.

ground by iterative alignment of assumptions and
resolving ambiguities on the way to common
ground. On the other hand, human-AI collabo-
ration still often fails to provide a human-like pair-
programming experience (Williams, 2001; Sarkar
et al., 2022), and we claim that a key challenge
here is ambiguity resolution—as users’ natural lan-
guage descriptions of intent often map to multi-
ple valid code implementations, requiring iterative
clarifications. In this paper, we propose identify-
ing (§3) and then resolving ambiguities (§4) in a
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dyadic setting of human-LLM interactions using
pragmatics-inspired, persona-based prompting.

To achieve this goal, we frame the natural lan-
guage to code problem as a two-player cooperative
dialogue. A director (typically the user) specifies
their intent in natural language and a coder (typi-
cally an automated coding assistant) generates code
with the functionality the director had in mind. A
goal for this pair-programming setting is to have a
coder agent that can interact with the director agent
to resolve ambiguity and generate code. While, in
principle, the coder’s uncertainty in this task can
come from many sources, focus is typically placed
on the inherent model limitations of the coder agent
caused by insufficient knowledge or training. In
contrast, this work focuses on the uncertainty of the
coder about the user’s goals—i.e., the ambiguity
of director’s requests. We focus on how the di-
rector can resolve the coder’s uncertainty through
clear communication about intended goals, and
how coders can clarify goals through conversation.

Based on our definition of ambiguity, we hy-
pothesize that ambiguity reduction should lead to
improved code accuracy. To study this, we propose
a taxonomy that more precisely codifies what is
meant by ambiguity. Our taxonomy includes cate-
gories of ambiguity, and examples specific to the
plotting domain — where the presence of multi-
modal contexts allows us to explore more diverse
sources of natural language ambiguity (e.g.. We
propose a number of metrics based on our taxon-
omy that allow us to dynamically (and automati-
cally) quantify natural language ambiguity in text-
to-code problems. We use our definition of am-
biguity to study how multi-step communication
with the director can serve to reduce ambiguity.
Guided by theories of pragmatics we simulate di-
alogue between two machine agents. This shows
how (pragmatic) dialogues can help coders resolve
ambiguity, and ultimately, improve task success.

The contributions of this paper are as follows:
1. We propose a taxonomy to codify ambiguity

in multimodal text-to-code problems;
2. We propose a number of potential metrics to

measure these defined notions of ambiguity,
and empirically test which best represents dif-
ferent aspects of ambiguity;

3. We propose strategies, inspired by theories
of discourse, for incorporating dialogue in a
coding agent to reduce ambiguity and increase
task success.

From our analyses, we find that our metrics can

predict ambiguity categories, and pragmatic dia-
logue increases task success (measured by correct-
ness of the generated code) while targeting the
identified ambiguities. We make our code, and
annotations publicly available for the camera-ready
version of this paper.

2 Related Work

Code Generation Large language models of
code have shown strong performance on natural lan-
guage to code generation (Narechania et al., 2021;
Chen et al., 2021; Rozière et al., 2024; Lozhkov
et al., 2024, inter alia). However, work investigat-
ing how users interact with code generation models
has found that impressive benchmark performance
does not always translate to improved task out-
comes for users (Sarkar et al., 2022; Vaithilingam
et al., 2022; Ma et al., 2023; Mozannar et al., 2024;
Nguyen et al., 2024). Some of this gap can be
attributed to the ambiguity inherent to human in-
teractions with code models: Sarkar et al. (2022)
observe that user utterances are often underspec-
ified and ambiguous, forcing users to repeatedly
refine their prompts and adapt their thought pro-
cesses to match the LLM. Likewise, Mozannar et al.
(2024) observe that users often provide fuzzy in-
structions, motivating a clarification feature. Under-
specified instructions are also present in real-world
software engineering benchmarks such as SWE-
bench (Jimenez et al., 2024), as found during the
construction of SWE-bench Verified.

Recent work has studied ambiguity resolution
for code LLMs via clarification questions. Mu
et al. (2024) introduce ClarifyGPT, a pipeline for
code generation with selective clarification. Li et al.
(2023) studies clarification for open-domain code
generation in a scaffolded setting, and Zhou et al.
(2025) studies the effects of multi-turn dialogue
on programming problems. In addition to Yang
et al. (2024), studying the performance of chat
agents on data visualization code. Also, uncer-
tainty estimation and explainability literature have
been instrumental for quantifying ambiguity in the
works by Liu et al. (2024) and Lin et al. (2024).
Further, explorations of ambiguity in SQL genera-
tion (Bhaskar et al., 2023; Wang et al., 2023) and
the role of ambiguity in requirements engineering
(Kamsties, 2005; Bano) have been recently studied.

https://openai.com/index/
introducing-swe-bench-verified/
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Ambiguity in NLP Tasks Ambiguity has been
studied across a wide array of NLP tasks, including
coreference resolution (Poesio and Artstein, 2005),
(visual) question answering (Min et al., 2020; Kim
et al., 2023; Papakostas and Papadopoulou, 2023;
Park et al., 2024) and machine translation (Iyer
et al., 2023; Schouten et al., 2023; Niwa and Iso,
2024; Madureira et al., 2024). Current language
models generally struggle when applied directly to
tasks with ambiguity (Liu et al., 2023; Zhang et al.,
2024; Wildenburg et al., 2024); by default, they do
not recognize ambiguity in instructions, nor do they
seek clarification or engage in proactive dialogue to
resolve ambiguity (Deng et al., 2023). However, re-
cent sampling-based methods have shown promise
in detecting ambiguity (Kadavath et al., 2022; Kuhn
et al., 2023b; Cole et al., 2023; Lin et al., 2024),
while prompting and self-improvement methods
have proven effective for clarifying ambiguity with
LLMs (Krasheninnikov et al., 2022; Kuhn et al.,
2023a; Andukuri et al., 2024).

Pragmatics One approach to resolving ambigu-
ity is to assume the speaker is a rational agent play-
ing a cooperative game (Grice, 1975) where they
are choosing an utterance that gives the code gen-
eration model the best chance of recovering the
program they have in mind. This form of inference
has been formalized in the Rational Speech Acts
(RSA) framework (Frank and Goodman, 2012).
RSA has been productively applied to program-
ming tasks where a user specifies their intent using
examples (Pu et al., 2020, 2023; Vaduguru et al.,
2024). Similar approaches to disambiguation also
been applied to code generation from natural lan-
guage using large language models (Zhang et al.,
2023). Other pragmatic theories of discourse work
include RSA for referential communication in a
game of color (Monroe et al., 2017; McMahan and
Stone, 2020), question under discussion (Ko et al.,
2023), and discourse theories as applied to dialogue
settings (Asher et al., 2016; Chi and Rudnicky,
2022; Atwell et al., 2021, 2024, 2022). The frame-
works we use to implement our dialogue agents are
inspired by these in this work.

3 Defining and Identifying Ambiguity

We define ambiguity to arrive at a taxonomy that
helps us identify it automatically.

Director-Coder Setting Initially, we formalize
the setting described in § 1. The director has a

target intent I – a random variable representing the
goal image (or corresponding code) – which the
director communicates through a natural language
utterance U(I). The utterance U is also a random
variable. The coder interprets this utterance to
directly generate code (and corresponding image)
Î ∼ C(U), where C(U) is a code distribution con-
ditional to the utterance U . We assume there is
some evaluation method that produces a random er-
ror E(I,C(U)) to quantify goal fulfillment in this
context. For example, in later experiments, we use
k repeated samples Î ∼ C(U) and check the accu-
racy of the code by counting how many pass unit
tests (pass@k). In this definition, we will assume
that the minimization of the error, E, is preferable.

3.1 Ambiguity in Plotting Code

Definition We define ambiguity from the perspec-
tive of the coder. Intuitively, we frame ambiguity
as any portion of uncertainty held by the coder that
could be reduced by changing the natural language
utterance U . More specifically, interpreting E as a
form of error, we define ambiguity as the quantity:

E(I,C(U))− E(I,C(U∗))

where U∗ = argminU ′∈Υ E(I,C(U ′)),
(1)

and Υ is a constraining set to ensure director ut-
terances are “reasonable.” For instance, Υ could
be the set of all finite, grammatically correct utter-
ances in the English language.

Interpretation In a typical machine learning
problem, a model h is picked from some constrain-
ing set model class H, selecting this model to re-
duce error as much as possible. For instance, we
can select a linear model h from the set H of all
linear models parameterized by elements of Rd.
Meanwhile, there is also a best model h∗ that min-
imizes the error for our problem. This minimum
error (or uncertainty) is simply irreducible without
changing the problem definition. Here, we adapt
this to define ambiguity. The term E(I,C(U∗))
represents the minimum uncertainty, treating the
utterance itself U as the model h we wish to pick,
within the aforementioned problem. In turn, am-
biguity is formally defined as the excess error (or
uncertainty) of the coder that could have been re-

We do not differentiate between these, since each code
corresponds to an image.

The best model h∗ is called the Bayes optimal model
and the error of this model is the Bayes error or the aleatoric
uncertainty (Hüllermeier and Waegeman, 2021).
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Figure 2: This figure depicts the causal graph of a multi-
modal coding task. I: Image, C: ground truth code used
to generate I, T: unit tests, P: director’s prompt, and A:
coder’s answer. When ambiguity is prevalent, then the
edges of this graph are cut, and the coder’s answer relies
on a non-descriptive prompt.

duced through improved communication by the di-
rector. This quantity formalizes the process of
disambiguation – studied throughout this paper –
and what it means to disambiguate for a coder with
fixed knowledge.

Taxonomy Next, we use this definition to arrive
at a taxonomy of ambiguities in the plotting domain.
We observe that different input modalities to LLMs
inherently convey different types of ambiguity (see
Figure 2), as these modalities serve different user
intents. For instance, an image in the “mind’s eye”
of the director corresponds to an ideal end product,
but the director may not know how this translates to
precise code or the best ways to communicate their
ideal. This type of cross-modality dependency has
been studied by the discourse coherence literature
(Alikhani et al., 2020; Inan and Alikhani, 2024).
In order to represent these cross-modal dependen-
cies, we need a taxonomy that captures the different
types and sources of ambiguity, which we present
next. These categories draw inspiration from cog-
nitive science, linguistics, and discourse literatures,
as well as our definition.

• Semantic ambiguity: Certain words and their
meanings can have multiple interpretations.
Thus, misinterpretation of U by the coder may
lead to errors that would be prevented with a
better choice of words (i.e., the optimal utter-
ance U∗), implying higher ambiguity (Eq. 1).
This category is based on semantic ambiguity
in cognitive science literature as explored by
Zempleni et al. (2007); Degani and Tokowicz
(2010).
e.g. “regular matplotlib style plot”, “grouped
histogram”, “color plot”

• Presupposition: Instructions may presuppose
default parameter values without explicitly
mentioning their use, and disagreement in
coder and director presuppositions can also be
a source of error caused by the coder’s inter-

pretation of U , leading to increased ambiguity.
This category is based on the presuppositional
ambiguity as explored by Zuber (1973); Atlas
(1977); Kempson (1979); Jaszczolt (2002).
e.g. knowing the default parameters of the
scatter() function, or original instructions
ask to “keep the distribution plot in blue”,
but no explicit parameter for “blue” is made
because the default is known to be blue.

• Underspecification: Some non-default pa-
rameter values or functions are either not men-
tioned at all, or partially described in the in-
structions. By leaving out these details, a
coder’s own interpretation of U can be counter
to the director’s goals, once again increasing
the error compared to U∗ and the ambiguity as
defined previously. This category is based on
the relationship between underspecification
and ambiguity as explored by van Deemter
and Peters (1996). Some context-specific sub-
categories for scientific plotting can include,

– Color parameter, e.g. “solid red”, alpha value
is set but not mentioned

– Distance parameter, e.g. “enough” space be-
tween axes

– Shape parameter, e.g. marker shape is set even
though not mentioned

– Size parameter, e.g. marker size is set even
though not mentioned

– Location parameter, e.g. legend location is set
even though not mentioned

– Label parameter, e.g. title is set to be “xxx”
even though not mentioned

– Line parameter, e.g. “full line”, “dashed line”
– Function, e.g. to plot a heatmap, using either

imshow() or pcolor().

Annotating for Ambiguity We carry out an an-
notation and do a preliminary analysis of the dis-
tribution of these categories of ambiguity in the
DS1000 dataset (Lai et al., 2022), specifically with
questions from plotting libraries (e.g., Matplotlib,
Seaborn) (Hunter, 2007). This dataset, featuring
natural language prompts from StackOverflow with
human-written tests and plots, inherently contains
potential human-introduced ambiguities. We, the
authors, who have prior experience with ambigu-
ity in dialogue, annotated 155 coding instructions
from the DS1000 dataset. Despite the DS1000
dataset’s claim that the problems are written to be
unambiguous, we still find that 57% of the plotting
questions fall under one or more of the categories
we have defined above. Interannotator agreement
on 25 sampled questions, measured by Cohen’s
Kappa (κ = 0.587), indicates moderate to substan-
tial agreement, as anticipated for this subjective
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Figure 3: This figure shows the dialogue flow for a pragmatic coder, where the initial intent of the dialogue is given
on the left, and the different responses generated using separate personas are given in the middle.

meta-labeling task (Fleiss and Cohen, 1973; Baner-
jee et al., 1999; Viera et al., 2005). Table 1 shows
the distribution of different categories.

Ambiguity Category Distribution

semantic ambiguity 23.8%
presupposition 11.9%

underspecification 73.8%

Table 1: This table shows the ambiguity category distri-
bution within the ambiguous prompts (57%) of the 155
plotting questions in the DS1000 dataset based on our
annotations.

3.2 Automatic Metrics for Ambiguity

In addition to the human annotations, we propose
automatic ways of measuring ambiguity based on
our formalizations and taxonomy (§3.1), and com-
pare them to traditionally employed uncertainty-
based metrics.

Sampling Diversity (SD) A common approach
(Cole et al., 2023) to measuring uncertainty about a
given utterance U is to count the number of distinct
programs that satisfy the constraints specified in the
prompt. If the coder’s solution distribution C(U)
assigns non-zero probability to many codes (i.e.,
it generates many different codes upon sampling),
then these codes all differ in apsects unconstrained
by the prompt U from the coder’s perspective. This
indicates the coder is uncertain about the intent
of U . The more distinct programs there are for
a given sample size, the higher the coder’s uncer-
tainty about the utterance is. This method serves

as a baseline for ambiguity measurement; while
it does capture uncertainty about the utterance U ,
it does not capture information about the optimal
prompt U∗ in any way. This is an important dis-
tinction between typical notions of uncertainty and
our proposed definition of ambiguity. We give the
implementation details in Appendix §D, where we
compare Abstract Syntax Trees (AST) of both pro-
grams using edit distance.

Repeated Parameter Counting (RPC) Another
way to quantify ambiguity in an utterance U is
to focus on identifying function calls/parameters
that appear across the set of proposed programs.
This is conceptually similar to sampling diversity,
which compares distinct solutions directly. We hy-
pothesize function calls and parameters may better
capture presuppositional ambiguity within our tax-
onomy since this ambiguity is directly related to
the default parameter settings within a code library.
More specifically, our proposed RPC metric mea-
sures ambiguity by counting which function calls
and parameters remain constant across the code so-
lutions. The fewer elements that must remain fixed,
the higher the ambiguity. Similar to sample diver-
sity, this metric does not explicitly consider the
optimal prompt U∗. We expect it to perform well
for presupposition, because it focuses on aspects of
code that are often presupposed.

Optimal Result Gap (ORG) Building on our
definition in Eq. 1, we propose a subfamily of met-
rics that attempt to directly compute this mathemat-
ical notion of ambiguity. While the coder’s realized
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uncertainty E(I,C(U)) is easy to compute by us-
ing Pass@k scores for a given utterance U , the min-
imum uncertainty E(I,C(U∗)) is more difficult
because we cannot be sure of the optimal utterance
U∗. We propose to approximate U∗ by using one
of three oracle information sources: ground-truth
code for the plot, ground-truth image for the plot,
and unit tests for the “Pass” determination. We pro-
vide these oracle sources to a large language model
and ask it to provide a prompt that enable itself to
generate the code, create the image with code, or
generate code that would pass the tests. While this
approach provides an estimate, we acknowledge
its limitations: the model-generated re-prompt may
not fully capture an ideal, ambiguity-free prompt,
making it an imperfect but practical approximation
of the optimal formulation. At the same time, we
expect it to improve over the previous two metrics
because it does consider the optimal prompt U∗.

Self Verification This is a traditional method of
uncertainty estimation where a model is asked to
return its uncertainty about a solution when pro-
vided a problem statement. This baseline uncer-
tainty methodology, like sampling diversity and
RPC, does not explicitly consider the optimal ut-
terance U∗, which is an important aspect of our
definition. We use a prompt similar to the ones
used by Cole et al. (2023) and Sicilia et al. (2024).

LLM-Based Ambiguity Rating (LAR) On the
other hand, we can extend self-verification to bet-
ter consider our definitions of ambiguity. Instead
of querying the model for its uncertainty, we can
prompt it to rate the ambiguity of U on a scale of
1 to 10, providing the model with our ambiguity
taxonomy as a resource in the prompt. This en-
courages the rating aligning with our pre-defined
ambiguity categories, rather than being an arbitrary
self-assessment. Since these categories are also
based on our initial mathematical definition of am-
biguity, it also serves as heuristic approximation
of Eq. 1. Different from baseline methods focused
on uncertainty, it implicitly considers the optimal
prompt U∗ through the characterizations of opti-
mality encoded in our taxonomy.

4 Disambiguation with Coding Dialogues

After formalizing ways of identifying ambiguity,
we now propose that ambiguity can be resolved
using dialogues, and we formalize a dialogue setup
with persona-based generation components.

4.1 Basic Dialogue Setup

We propose resolving ambiguity in natural lan-
guage specifications of intent with multi-turn di-
alogue. Each coding task is defined by the natu-
ral language intent I (see Figure 3) and the initial
request U1, as before. Meanwhile, our proposal
extends the previous setting to allow for dialogue:

1. Director presents instruction U1(I).
2. Coder responds with an utterance U2(U1).
3. Director continues Ui(U:i−1, I), using access

to target image and utterance history.
4. Coder continues Ui+1(U:i−1), using access to

utterance history only.
5. Repeat steps 3 and 4 based on the number of

turns controlled as a hyperparameter.
6. Session always terminates with coder provid-

ing their final code Î(U:).
In this setting, coder utterances can include di-
alogue acts like clarification questions, e.g., “C:
what location should I put the legend,” which
evokes a specific response, “D: The top left cor-
ner” or can be more general declarations that start
a sub-topic of conversation “C: I’ll plan for the de-
fault legend arguments. D: Hmm. Keep it on the
top left. What else can you change?”

4.2 A Pragmatic Dialogue Setup

We hypothesize ambiguity reduction in our pro-
posed dialogue setting can be improved by encour-
aging LLM-based coders to consider pragmatics
in their dialogue strategy. We operationalize this
by using persona prompting and in-context learn-
ing as described in Wang et al. (2024); Schulhoff
et al. (2024), and Zheng et al. (2024). Next, we
describe the personas we use to generate responses.
These are based on three theories of discourse: co-
operative, discoursive, and inquisitive. For the im-
plementation details of this setup, please refer to
Appendix A.

4.2.1 Dialogue Strategies

Cooperative The first framework we use is based
on Grice’s maxims of cooperative dialogue part-
ners (Grice, 1975; Horn, 1984; Levinson, 2000;
McMahan and Stone, 2020). Here, the coder is a
pragmatic agent that recursively engages in inter-
action and models the director’s state of mind to
respond to an utterance. We use the Gricean co-
operativity principle to design the prompt for this
dialogue strategy, given in Appendix B.
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Discoursive The second pragmatics framework
is based on Discourse theories. Here, the coder is
not necessarily responding strategically. Still, it’s
utterance is always related to the history of the con-
versation and the coding context through a set of
coherence relations. Hence, when a coder produces
an utterance, it relates to the set of solutions it has
sampled as well as what the director has said in
the previous turn. This definition of discourse is
mostly similar to SDRT-like dialogue-based rela-
tion categories (Ko et al., 2023; Asher et al., 2016;
Fu, 2022; Atwell et al., 2024; Alikhani et al., 2023).
We provide the persona prompt in Appendix B.

Inquisitive The third pragmatics framework is
related to discourse theories, but focuses more on
question-type relations. In this case, the coders
utterance explicitly answers an implicit question
posed by the director. This discourse framing is de-
scribed by Clifton and Frazier (2012) under the um-
brella term of Questions Under Discussion (QUD).
When a director gives a coding instruction, the prag-
matic coder with QUD understanding first detects
an implied question indirectly posed by the director
and the coder answers that question. The persona
prompt is given in Appendix B.

5 Experiments & Findings

In this section, we provide details of our experi-
ments of disambiguation, and user simulation and
show the utility of our ambiguity taxonomy and
metrics. We answer multiple research questions
and report our findings in combination with our
experiments. We first describe the experiments for
our taxonomy and automatic metrics as described
in Section §3.1, and then follow up with experimen-
tation based on the dialogue approach to coding
we described in Section §4. We experiment mainly
with GPT-4o in our experiments, but provide ad-
ditional results for LLaMA-3.2, StarCoder, and
CodeLLaMA in Appendix §C.

Our Metrics Predict Ambiguity Categories To
test the hypothesis of whether our metrics are pre-
dictive of ambiguity (as we defined), we carry out
a correlation study using ROC AUC scores (Ta-
ble 2). In our case, we use it to measure correla-
tion between the ambiguity scores and the ground-

Area Under the ROC Curve (AUC) is a measure of corre-
lation about how well a continuous independent variable can
predict a binary dependent variable, via testing a variety of
different thresholds. An AUC of 0.5 is equivalent to a random
baseline, while an optimal score is 1.

Sem. Amb. Underspec. Presup. Avg.

RPC 0.450 0.412 0.466 0.443
ORGC 0.527 0.495 0.326 0.449
ORGI 0.597 0.450 0.451 0.499
ORGU 0.561 0.494 0.445 0.500
LAR 0.655 0.453 0.447 0.518
LART 0.585 0.530 0.622 0.579
SV 0.380 0.399 0.493 0.424

Table 2: This table shows the AUC scores between dif-
ferent ambiguity metrics we propose and the ambiguity
categories from our taxonomy. This shows that most
metrics are predictive of semantic ambiguity, while un-
derspecification and presupposition are less correlated.
Subscripts indicate the ground truth modality: I (im-
ages), C (code), U (unit test).

Pass@1

Baseline (no dialogue) 68.38%

Cooperative 79.44%
Discoursive 74.11%

With Reference
Code

Inquisitive 66.34%

Cooperative 75.23%
Discoursive 74.06%

With Reference
Image

Inquisitive 64.56%

Ceiling Performance
(Non-Ambiguous Reprompt)

87.74%

Table 3: This table presents the mean pass@1 scores
for different types of dialogue strategies that we pro-
pose (§4). The baseline corresponds to the GPT-4o code
answers to the original prompts, while the ceiling per-
formance uses non-ambiguous reprompts. Having a
dialogue with pragmatics-inspired personas improves
task success drastically, yet there is still ambiguity be-
tween the ceiling performance.

truth human-produced ambiguity labels for each
instance of the 155 plotting questions. We observe
that ORG, which contains the oracle solutions to
approximate ambiguity, predicts the semantic ambi-
guity category, but less so the other categories. This
may be due to the class imbalance in the dataset,
and also the suboptimal nature of reprompts used
in the ORG metrics. The most predictive of any
ambiguity category is the LART metric, where a
model is asked to rate the ambiguity using our tax-
onomy. This shows the validity and applicability
of this metric to unsupervised contexts. The lowest
prediction power comes from the traditional uncer-
tainty measurement technique of self-verification
(SV), as it does not necessarily correlate with the
ambiguity of the user’s intent, but the uncertainty
of the model providing an answer to the prompt.
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Coding Question Ambiguity Baseline Cooperative Discoursive Inquisitive

draw a line (with random y) for each
different line style

underspecification 0.000 0.000 0.200 0.000

draw a full line from (0,0) to (1,2) semantic ambiguity 0.000 0.067 0.000 0.000
make seaborn relation plot and color

by the gender field of the dataframe df
underspecification 0.067 0.533 0.000 0.000

highlight in red the x range 2 to 4 semantic ambiguity 0.667 0.967 1.000 0.167

Table 4: This table shows a breakdown of the final executability scores (pass@1 with 30 samples each instance) for
different questions in the DS1000 dataset, with their annotated ambiguity categories. The examples are picked to
show when most models have low scores, or to show the performance according to different categories of ambiguity.

Pragmatic Dialogue Increases Task Success To
test the hypothesis of whether the pragmatic dia-
logue setup that we proposed in §4 disambiguates
and improves task success (as measured by the
pass@k correctness score), we carry out a com-
parative experiment with results shown in Table 3.
Here, we test two scenarios, one in which the di-
rector is given the reference code and one where
the reference image is used. This comparison alle-
viates the concern about whether there is ground
truth code leakage from the director to the coder.
It can be observed that the best-performing dia-
logue strategy is pragmatic cooperative reasoning
in both categories, likely benefiting from the theory-
of-mind reasoning and chain-of-thought training in
modern LLMs.

The inquisitive strategy is the least-performing
model, even worse than the baseline, which may
mean that always looking for questions under the
discussion can hinder disambiguation. Despite
improvements, a gap remains between the best-
performing strategy and the ceiling performance,
indicating unresolved ambiguity. Since user intent
is fixed in this static task, full resolution is unlikely,
and even the ceiling performance is imperfect, as
the re-prompt itself may still contain ambiguity.

Pragmatic Dialogue Targets Ambiguities To
evaluate whether dialogue strategies improve code
accuracy by directly addressing the ambiguities
identified in our taxonomy, we measure the change
in mean pass@1 scores between ambiguous and
non-ambiguous cases (Figure 4). The results
clearly show that dialogue-driven improvements
are consistently greater for ambiguous cases than
for non-ambiguous ones. This confirms that di-
alogue effectively disambiguates prompts across
all three pragmatic personas. However, when the

We focus specifically on task success rather than user sat-
isfaction due to the subjectivity and costs of user experiments,
while already showing that ambiguity is addressed.

Figure 4: This figure shows a breakdown of the change
in the mean pass@1 scores (∆ = post-dialogue − origi-
nal) across ambiguous and non-ambiguous instances of
the DS1000 dataset. Dialogue shows better performance
in ambiguous instances instead of non-ambiguous ones.

reference image is provided instead of the code,
the Discoursive Persona performs similarly in both
cases, suggesting that dialogue alone may not fully
resolve ambiguities. Additionally, in line with Ta-
ble 3, ∆pass@1 for the Inquisitive Persona is neg-
ative in non-ambiguous instances, yet it still suc-
ceeds in clarifying ambiguous prompts.

5.1 Error Analysis

Table 4 presents a detailed performance breakdown
of different dialogue strategies. Notably, certain
questions remain challenging even after dialogue,
yet specific ambiguity categories align with the
most effective pragmatic strategy. For instance,
nearly all personas failed to resolve the first un-
derspecification question (mean pass@1: 0.000),
with only the cooperative persona achieving oc-
casional success (mean pass@1: 0.267). Interest-
ingly, in some cases, additional dialogue negatively
impacted performance across all personas. The
inquisitive persona performed best for vagueness-
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related ambiguities, while the discoursive and coop-
erative personas excelled in addressing parameter
underspecification.

6 Conclusion

Pragmatic theories of language emphasize that
meaning is never fully encoded in words alone
but emerges through the interactional work of ne-
gotiating intent. Drawing on this perspective, our
study shows how ambiguity in natural language
code specifications, whether through underspec-
ification, presupposition, or semantic vagueness,
can be systematically identified and quantified. By
translating concepts from discourse and linguistic
theory into a taxonomy and set of operational met-
rics, we move beyond ad hoc uncertainty measures
toward a principled account of when and why user
intent becomes opaque. This reframing positions
ambiguity not as incidental error but as an analyz-
able property of communication between humans
and coding agents.

Building on this foundation, we demonstrate that
dialogue offers a practical path for resolving these
ambiguities. We characterized various pragmatics
frameworks in relation to pair-programming-like
dialogues that happen between a director and a
coder. We then analyzed the effects of having di-
alogues with different reasoning strategies on the
executability and disambiguation of the final gen-
erated code. As having a dialogue based on code
is becoming the norm with LLMs, focusing on the
pragmatics of dialogue opens up new venues for de-
veloping dialogue systems, datasets, and evaluation
mechanisms for code generation. With this, future
coding assistants can transform ambiguity into a
space for alignment, producing collaborations that
are both more accurate and more human-like.

Limitations

We proposed using pragmatic dialogue for code
generation, but the major limitation is from the
side of human data collection and evaluation. We
resorted to automatic metrics already being used or
developed for this study to evaluate our setup with-
out relying on human annotators. However, this
entails that the evaluations may not be human-like
and may not show the most accurate representa-
tions even though they show improvements in gen-
erally accepted code executability standards. Fur-
ther, we did not deploy a dialogue system to study
our approach. Instead, we resorted to simulations

using LLMs, which may or may not accurately rep-
resent how a human interlocutor would act in a
real-world setting. We wanted to minimize this by
using large parameter models for dialogue gener-
ation and StackOverflow-based code instructions
from the DS1000 dataset.

Ethics Statement

In our simulation process we have used GPT-4o,
and this is a closed-source LLM, and we are aware
that this model can propagate its own training bi-
ases. The scientific community does not have ac-
cess to any information regarding how this model
is trained or what the dataset consists of. This may
result in a deficient evaluation of the final perfor-
mance and human-likeness of the generated dia-
logue. This is a simulated analysis study to identify
and characterize pragmatics frameworks with pos-
sible LLM behavior in a pair programming setting.
Hence, we do not involve humans in our current
setup. The biases propagated by GPT-4o are the
responsibility of OpenAI and should be held ac-
countable by their and the scientific community’s
ethical standards.
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We simulate our dialogues for plotting code using
LLMs and based on the algorithm given in Algo-
rithm 1. In the algorithm, fD and fC are defined
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based on different pragmatics strategies as given in
detail in Section §4.2.

Algorithm 1 Dialogue Simulation with LLMs.

Require: Problem instance (uD1 , I)
Require: Director model fD
Require: Coder model for NL response fC
Require: Coder model to generate code gC
Require: Number of samples k
Require: Number of rounds of dialogue n

1: S ← {si ∼ gC(u
D
1 ) | 1 ≤ i ≤ k}

2: u← [ ]
3: for n times do
4: uC ← fC(u)
5: u← u+ [uC ]
6: uD ← fD(I,u)
7: u← u+ [uD]
8: end for
9: c ∼ gC(u)

10: return u, c

Director We prompt the director model fD to
generate instructions and clarifications that guide
a coder model toward the correct solution. Since
we work with an artificial director agent, we source
intents from the DS-1000 dataset. We present the
intent to the director in one of two ways – as the
code for a reference solution or the plot generated
by the code presented as an image. Since a natu-
ral language instruction accompanies the DS-1000
problem instances, we seed the interaction using
that interaction as the first director turn (uD1 ). We
prompt the model to use different strategies to gen-
erate responses.

Pragmatic Coder We first extract the code con-
text and the coding instructions from the DS1000
dataset and then convert it into a dialogue format as
described in section §4.2. Then, using GPT-4o, we
generate codes that respond to the original instruc-
tion (sampled k times). To the pragmatic coder,
we present a set of possible unique answers it can
choose from the generated codes and the dialogue
history that is happening and ask for a follow-up
utterance for the coder to converge to the solution
that the director is describing, i.e. gC(u

D
1 ). We

then instruct it to give three solutions based on the
reasoning types. For the regular director, we pro-
vide the reference code (or the reference plot in
the case of a multimodal model) and the dialogue
history and ask to generate a follow-up utterance

to converge to a solution without giving away the
answer. All the details of the prompts are given in
Appendix B.

Dialogue Policy We employ a rule-based dia-
logue policy to choose one of the three utterances
we generated for each strategy in the simulation.
For the first turn of the dialogue, we do not use
any LLM generations but directly use the coding
instruction from the DS1000 dataset. For the fol-
lowing turns, we generate three different utterances,
one for each of the pragmatic director’s reasoning
ways, and then generate a single utterance without
any pragmatic reasoning prompting for the coder
for each of the three responses of the director. We
use the number of turns as a hyperparameter to
generate the dialogue and perform ablation experi-
ments on it. We do not mix reasoning styles across
the dialogue’s turns, but we choose a single reason-
ing style for the overall dialogue. We also exper-
iment with providing the reference image or the
reference code to the director to see how clarity of
instructions affects execution.

B Prompting Details

B.1 Pragmatic Coder

B.1.1 System Prompts:
Director: You are a coding director. There is an-
other coding agent you are going to have a dialogue
with. You have a final product in mind. This is go-
ing to be named the REF CODE. You want a coder
to write the codes for this final product. For the first
turn of the dialogue, you give a specific instruction
or a question about the final product. Then, the
coder will give you some answers, and then you
will have another turn to refine the codes.

Coder: You are a coding agent. There is another
director agent you are going to have a dialogue with.
The things you say depend on your persona. You
have the following different personas (reasoning
styles):

- Cooperative Persona (Pragmatic): You want
to converge on the solution as quickly as possible
and follow Grice’s Maxims when choosing your
words. You anticipate the director’s cooperative
reasoning. You possess theory-of-mind capabilities
and common sense.

- Discourse Reasoning Persona: Everything you
say is connected to the previous turn with a rela-
tion. The possible discourse relations are Comment,
Clarification Question, Elaboration, Acknowledg-
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Figure 5: This figure shows the change in unique responses of code completions depending on the temperature of
the model. From the left, the plots are showing histograms for 0.3, 0.7, and 1.0 temperatures. The horizontal axis is
the question number from the DS1000 matplotlib dataset. It is observable that the uniqueness is high for higher
temperatures, expectedly. However, very high temperatures may have minor differences that increase the overall
uniqueness. Hence, a moderate temperature like 0.7 gives more reliable results for further experimentation.

ment, Continuation, Explanation, Conditional, Al-
ternation, Result, Background, Narration, Correc-
tion, Parallel, Contrast. You try to identify the
relation between the utterance of the director in the
previous with your utterance. Then you reply with
an utterance that has the appropriate relation.

- Questioning Persona: Everything you say has
an implicit question underneath it. You should tell
what the director is actually asking for (the question
under their instruction), and give your answer to
that implicit question.

The director has a final product in mind. You, as
the coder, write the codes for this final product or
have a dialogue about the instruction. For the first
turn of the dialogue, the director gives a specific
instruction or a question about the final product.
Then, you will give some answers, and then the
director will have another turn to refine the codes.

user prompts:
Director: REF CODE: “‘+ ref-code “‘ + DIA-

LOGUE HISTORY:" + dialogue-history + What
can you say on the follow-up turn for the coder
to converge to the reference code? Do not men-
tion anything about the REF CODE, and don’t give
away the answer.

Coder: POSSIBLE GENERATED CODES: So-
lution 1: “‘CODE“‘ Solution 2: “‘CODE“‘ ....

DIALOGUE HISTORY: + dialogue-history +
What can you say on the following turn as the
coder to converge to the solution that the director
has in mind? Give responses for all types of your
personas. Personas must not give the same solu-
tion! Your solution MUST NOT contain any new
code. You can talk about the provided code.

C Additional Experiments with Various
Models

This section presents results from several experi-
ments with multiple other models, such as CodeL-

LaMA, LLaMMA3.2, StarCoder-2 in Table 5 and
Table 6.

Pass@1↑ ds↓
Baseline No Dialogue 0.422 0.744

Pragmatic
Coder

with code
Cooperative 0.427 0.640
Discoursive 0.467 0.613
Inquisitive 0.396 0.716

with image
Cooperative 0.447 0.584
Discoursive 0.493 0.624
Inquisitive 0.393 0.711

Table 5: This figure shows the main results of our experi-
mentation for CodeLLaMA as the coder, and GPT-4o as
the director, and the baseline corresponds to StarCoder2.
Here, we give the metrics for both executability and sam-
pling diversity. Having a dialogue generally performs
better than the baseline code completion without any
dialogue. For each pragmatic setting, we experiment
with all the reasoning styles and have an image or code
as the reference solution for the director.

D Abstract Syntax Tree (AST) Functional
Uniqueness Algorithm

In this section, we detail the AST-based function
uniqueness comparison algorithm between two sep-
arate generated functions. The code for the algo-
rithm is given in Listing 1. We find this form of

No Dialogue

Pass @ 1 OG I C U

GPT 4o 68.38% 68.38% 87.74% 81.29%
LLaMA 3.2 63.23% 64.52% 77.42% 65.81%
LLaMA → GPT - 66.45% 85.16% 78.71%
GPT → LLaMA - 77.42% 81.29% 79.36%

Table 6: This table shows the results for ambiguity
representation transfer between different models. OG:
original prompt, I: image reprompt, C: code reprompt,
U: unit test reprompt.
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comparison to be appropriate for plotting tasks as
the lines of code of interest are generally the calls
to library functions, particularly those provided by
the matplotlib API.

E Temperature Adjustments

We present our experimentation results for the tem-
perature tuning in Figure 5.

F Example Dialogues

We present the reference-image-based coder-
director dialogues for the final example from Table
4.

25261



def compare_parse_trees(response1 , response2):
""" Compare the parse trees of two responses."""
unique_function_calls = []
unique_params = {}
unique_keywords = {}
try:

tree1 = ast.parse(response1)
functions1 = get_params(tree1)
tree2 = ast.parse(response2)
functions2 = get_params(tree2)
for function in functions1.keys():

if function not in functions2.keys():
unique_function_calls.append(function)

else:
for i, arg in enumerate(functions1[function ]):

if arg not in functions2[function ]:
if function not in unique_params.keys():

unique_params[function] = []
unique_params[function ]. append(arg)

if isinstance(arg , dict):
for key in arg.keys():

for j in range(len(functions2[function ])):
if isinstance(functions2[function ][j], dict):

if key not in functions2[function ][j].keys():
if function not in unique_keywords.keys():

unique_keywords[function] = []
unique_keywords[function ]. append(key)

else:
if arg[key] != functions2[function ][j][key]:

if function not in unique_keywords.keys:
unique_keywords[function] = []

unique_keywords[function ]. append(key)
except SyntaxError:

print("Syntax Error")
return unique_function_calls , unique_params , unique_keywords

Listing 1: This code snippet shows how the functions of two separate generated codes are compared using their
ASTs.
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Coding Question: highlight in red the x range 2 to 4 (0.667 Initial Pass@1)

Cooperative Dialogue (0.967 Final Pass@1)
Director: highlight in red the x range 2 to 4
Coder: Both solutions will highlight the x range from 2 to 4 in red, but they differ in transparency.
Solution 1 uses an ‘alpha‘ of 0.3, which means it’s more transparent than Solution 2 with an
‘alpha‘ of 0.5. If you want a less noticeable highlight, go with Solution 1; for more prominence,
choose Solution 2.
Director: Increase the opacity of the highlighted area so that it’s fully opaque instead of
transparent. Make sure the highlight is prominently visible.
Coder: To make the highlight fully opaque, you’ll need to set the ‘alpha‘ parameter to 1. You
can modify either of the existing solutions by changing ‘alpha=0.3‘ or ‘alpha=0.5‘ to ‘alpha=1‘.
This will eliminate transparency entirely and ensure that the red highlight is prominently visible.
Director: Make sure the highlight completely covers the x range from 2 to 4 with no gaps or
transparency. The highlighted area should be clearly distinguished and fully filled in red.

Discoursive Dialogue (1.0 Final Pass@1)
Director: highlight in red the x range 2 to 4
Coder: Clarification Question – The provided solutions differ in their transparency settings
through the ‘alpha‘ values. Could you specify your preference regarding how prominent or
subtle you’d like this red highlighting effect to be?
Director: Please ensure that the red highlight is fully opaque, with no transparency effect.
Coder: Correction – To make sure we match your requirement of having no transparency, you’ll
need to modify the ‘alpha‘ value in either solution from its current setting to ’1’, achieving a
fully opaque appearance.
Director: Please ensure the x range highlighted in red is fully opaque with no transparency. We
need it to stand out distinctly against the rest of the plot.

Inquisitive Dialogue (0.167 Final Pass@1)
Director: highlight in red the x range 2 to 4
Coder: What you seem to want is ensuring that the area between x=2 and x=4 is clearly visible
on your plot highlighted in red. Do you want it to be very noticeable or somewhat subtle? The
difference here is that one solution is more transparent than the other; which visibility level do
you prefer?
Director: Please make the highlighted area more noticeable by removing any transparency so
it’s fully opaque.
Coder: The implicit question here is about achieving complete opacity for the highlighted area
between x=2 and x=4 on a plot. If neither existing solution (‘Solution 1‘ or ‘Solution 2‘) meets
your requirements—since they include some degree of transparency—you’ll need an alternative
with no alpha setting or perhaps adjusting ’alpha’ to ‘1‘.
Director: Ensure the red highlighted area between x=2 and x=4 is fully opaque without any
transparency. The ‘alpha‘ parameter should be set to 1, or simply not included at all to achieve
full opacity.
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