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Abstract

This study investigates the feasibility of au-
tomating clinical coding in Russian, a language
with limited biomedical resources. We present
a new dataset for ICD coding, which includes
diagnosis fields from electronic health records
(EHRs) annotated with over 10,000 entities
and more than 1,500 unique ICD codes. This
dataset serves as a benchmark for several state-
of-the-art models, including BERT, LLaMA
with LoRA, and RAG, with additional exper-
iments examining transfer learning across do-
mains (from PubMed abstracts to medical di-
agnosis) and terminologies (from UMLS con-
cepts to ICD codes). We then apply the best-
performing model to label an in-house EHR
dataset containing patient histories from 2017
to 2021. Our experiments, conducted on a care-
fully curated test set, demonstrate that train-
ing with the automated predicted codes leads
to a significant improvement in accuracy com-
pared to manually annotated data from physi-
cians. We believe our findings offer valu-
able insights into the potential for automating
clinical coding in resource-limited languages
like Russian, which could enhance clinical ef-
ficiency and data accuracy in these contexts.
Our code and dataset are available at https:
//github.com/auto-icd-coding/ruccod.

1 Introduction

The explosion of medical data driven by technology
and digitalization presents a unique opportunity
to enhance healthcare quality. With the adoption
and implementation of electronic health records
(EHRs), accurate and timely data utilization is cru-
cial for effective treatment and disease manage-
ment. Central to this process is the assignment
of International Classification of Diseases (ICD)
codes, which is essential for medical documen-
tation, billing (Sonabend et al., 2020), insurance

*These authors contributed equally to this work.

Figure 1: Examples of ICD code assignments by anno-
tators: each entity in green is annotated with its ICD
code above and its English translation (in yellow).

(Park et al., 2000), and research (Bai et al., 2018;
Lu et al., 2022; Shang et al., 2019).

Although ICD code assignment is crucial for
EHRs, it poses significant challenges. Human
coders must navigate a wide array of medical ter-
minology, subjective interpretations, and time pres-
sures, all while staying updated with constantly
changing classification standards (Burns et al.,
2012; O’Malley et al., 2005; Cheng et al., 2009).
Coding errors can lead to misdiagnosis, ineffective
treatment, diminished trust in the healthcare sys-
tem, and negative public health outcomes. Further-
more, errors in manual coding in the ICD system,
result in financial repercussions, accounting for
6.8% of the total payments (Manchikanti, 2002).

Schematic description of the ICD coding and
diagnosis prediction tasks (left panel, blue and yel-
low, respectively), along with a detailed illustration
of the ICD coding pipeline (right panel).

Despite extensive research on ICD coding us-
ing neural networks (Li and Yu, 2020; Zhou et al.,
2021; Yuan et al., 2022a; Baksi et al., 2024; Boyle
et al., 2023; Mullenbach et al., 2018a; Cao et al.,
2020; Yuan et al., 2022a; Yang et al., 2022; Huang
et al., 2022), significant challenges persist for non-
English languages. These include low inter-coder
agreement, limited labeled data, variability in clini-
cal notes, the hierarchy of ICD codes, and reliance
on incomplete input data. In addition, clinical envi-
ronments in low-resource languages exhibit a short-
age of certified medical coders, forcing physicians
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Figure 2: An overview of ICD coding and diagnosis prediction tasks. Diagnosis prediction (left, yellow) is to
predict diagnoses as ICD codes based on prior EHR data and current visit details, excluding a doctor’s conclusion.
Two training label types are compared: (i) original ICD codes (manually assigned by physicians, shown in green)
and (ii) AI ICD codes (automatically generated by our ICD coding pipeline, shown in blue). ICD coding pipeline
(right) extracts and links diseases from a doctor-written conclusion, then assigns the deduplicated codes to an EHR.

to assign ICD codes themselves, leading to incon-
sistencies and low-quality coding. To address these
issues, we introduce a novel dataset for automatic
ICD coding in Russian and explore automated ap-
proaches to assist physicians in the coding process.

Previous studies have primarily focused on
English-language datasets, specifically MIMIC-
III/IV (Goldberger et al., 2000; Johnson et al.,
2023). Despite being one of the top ten languages
in terms of concept name count within the Unified
Medical Language System (UMLS) (Bodenreider,
2004) biomedical metathesaurus, Russian remains
underdeveloped in the clinical domain. The Rus-
sian segment of the UMLS comprises only 1.96%
of the vocabulary and 1.62% of the source counts
found in the English UMLS (NIH). Recent cor-
pora, such as RuCCoN (Nesterov et al., 2022) and
NEREL-BIO (Loukachevitch et al., 2023), focus
on concepts within the Russian UMLS.

In this work, we explore two closely related
tasks: ICD coding and Diagnosis Prediction (DP).
Both tasks are designed to assist physicians by stan-
dardizing and automating the diagnosis process
into ICD codes, especially in low-resource clinical
settings where professional coders are not available.
As seen in Fig. 2, the tasks take non-overlapping
input and complement each other: ICD coding nor-
malizes a free-form doctor’s diagnosis conclusion
into a set of relevant ICD codes while the DP task
is to directly predict ICD-agreed diagnoses from
EHRs in one pass without relying on the doctor’s
textual diagnosis conclusion. Although we formu-
late ICD coding as an entity normalization task

and DP as multilabel classification, both tasks are
sometimes referred to as ICD coding. Unlike prior
classification-based ICD coding research (Li and
Yu, 2020; Vu et al., 2020; Wang et al., 2024), we
explore a more challenging scenario in which a di-
agnostic model, acting as an independent medical
expert, predicts diagnoses from patient data only
without relying on the doctor’s diagnosis conclu-
sion. Thus, we term the classification task diag-
nosis prediction as it better reflect the problem’s
nature and does not create a confusion with linking-
based ICD coding (Lavergne et al., 2016; Névéol
et al., 2017; Coutinho and Martins, 2022).

For ICD coding, we present RuCCoD (Russian
ICD Coding Dataset), a novel dataset in Russian,
labeled by medical professionals based on concepts
from the ICD-10 CM (Clinical Modification) sys-
tem (Sec. 3.1). Second, we establish a compre-
hensive benchmark for state-of-the-art models, in-
cluding a BERT-based (Devlin et al., 2019) pipeline
for information extraction, a LLaMa-based (Tou-
vron et al., 2023) model with Parameter Efficient
Fine-Tuning (PEFT) and with retrieval-augmented
generation (RAG). Furthermore, we evaluate trans-
fer learning of models trained on UMLS concepts
and similar biomedical datasets (PubMed abstracts
(Loukachevitch et al., 2023), clinical notes (Nes-
terov et al., 2022). The results suggest that the
ICD’s fine-grained hierarchical structure hinders
generalization from other clinical sources (Sec. 4).

For diagnosis prediction, we perform a set of
experiments on RuCCoD-DP, a large in-house
dataset of 865k EHRs from 164k patients. When
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training a diagnostic model, we experiment with
ICD codes assigned by doctors during patient ap-
pointments, as well as the AI-assigned ICD codes
(Sec. 5), that is, diagnoses assigned by automat-
ically linking an EHR diagnosis conclusion with
a top-performing ICD coding model on RuCCoD
(see Fig. 2). Our experiments have revealed that
pre-training on automatically assigned ICD codes
gives a huge weighted F1-score growth of 28%
for diagnosis prediction compared to physician-
assigned ICD codes indicating the difficulty of ICD-
guided diagnosis formalization for physicians and
great potential of AI-aided diagnosing. Our work
provides a foundation and guidance for ICD-related
research in low-resource clinical languages.

2 ICD-Related Tasks

Task: ICD coding is akin to Entity Linking (EL),
where the objective is to assign a set of unique ICD
codes to the latest patient appointment based on
textual diagnosis conclusion written by a doctor.
The task aims to help a physician normalize diag-
nosed diseases to a set of codes from the complex
formal ICD hierarchy. We model the ICD Coding
as an information extraction pipeline with three
components: (1) Nested Entity Recognition (NER)
and (2) EL followed by (3) EHR-level code ag-
gregation. Step (3) minimizes NER influence on
pipeline metrics by omitting NER spans. The ap-
proach aligns with real-world ICD applications,
where the primary objective is accurate assignment
of ICD codes (i.e., disease recognition), and impre-
cise NER outputs are not impactful.

ICD Coding: EHR-level Code Aggregation
Given an EHR, we perform EL on NER pre-
dictions. Let Lp = (cp1, c

p
2, . . . , c

p
n) and Lt =

(ct1, c
t
2, . . . , c

t
m) denote the lists of predicted and

ground truth ICD codes, respectively. After a stan-
dard NER+EL pipeline, each list may contain mul-
tiple mentions of the same disease (i.e., cti = ctj for
i ̸= j). The presence of duplicate disease mentions
prevents entity-level metric aggregation, as they
are erroneously counted multiple times, thereby
introducing bias into the performance evaluation.
We remove duplicates from both lists, resulting
in unique code sets Sp and St such that cpi ̸= cpj
and cti ̸= ctj ,∀i ̸= j. Finally, micro-averaged clas-
sification metrics are calculated from True Posi-
tives (TP ), False Positives (FP ) and False Neg-
atives (FN ): TP = Sp ∩ St; FP = Sp \ St;
FN = St \ Sp.

Train Test
# of records 3000 500
# of assigned entities 8769 1557
# of unique ICD codes 1455 548
Avg. # of codes per record 3 3

Table 1: Statistics for the RuCCoD training and testing
sets on ICD coding of diagnosis.

Diagnosis Prediction is a multi-label classifica-
tion task that outputs likely diagnoses (ICD codes)
for the current doctor appointment from a patient’s
past medical history, including complaints, test
and examination results from previous appoint-
ments. In our study, each EHR contains a doc-
tor’s diagnosis conclusion. A major challenge for
ICD-grounded applications is that this conclusion
is a free-form text, and its normalization to ICD
might introduce sensitive errors. Conversely, auto-
matic Diagnosis Prediction is constrained to output
ICD-compliant diagnoses by task design.

ICD Coding vs. Diagnosis Prediction While
ICD Coding only observes the current appoint-
ment’s diagnosis conclusion written by a doctor,
the goal of Diagnosis Prediction is to actually write
the diagnosis conclusion (i.e., make an AI diagno-
sis conclusion). Here, the motivation is to offer a
doctor an independent, AI-driven opinion, poten-
tially beneficial for decision-making in complex
cases. Hence, the two tasks are complementary
by design, using non-overlaping EHR parts: ICD
Coding leverages the latest diagnosis while Diag-
nosis Prediction observes an entire patient’s history
except for the latest diagnosis conclusion.

3 ICD Datasets

3.1 RuCCoD: ICD Coding Dataset

For ICD coding, we release RuCCoD, the first
dataset of Russian EHRs with disease entities man-
ually linked to ICD-10. In this section, we describe
the data collection and annotation pipeline and pro-
vide important statistics.

Data Collection As a source for RuCCoD, we
utilize diagnosis conclusions from the records of a
major European city’s Medical Information System.
Before starting the annotation process, we imple-
mented a meticulous de-identification protocol to
protect data privacy. Medical professionals invited
to annotate the dataset first conducted a comprehen-
sive manual review of all diagnoses. Their task was
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Original Dataset Linked Dataset Common Test Set

Number of records 865539 865539 494
Number of unique patients 164527 164527 450
Number of unique ICD codes 3546 3546 394
Avg. number of ICD codes per patient 3± 2 5± 2 4± 2
Avg. number of EHR records before current appointment (15, 36, 73) (15, 36, 73) (17, 36, 77)
Avg. length of EHR records per one appointment (77, 167, 316) (77, 167, 316) (86, 176, 320)
Patient’s age (59, 67, 74) (59, 67, 74) (60, 67, 75)
Percentage of male patients 69 69 71

Table 2: Statistics for the randomly split training and testing sets of RuCCoD-DP for diagnosis prediction. Values in
brackets show the 25th, 50th, and 75th percentiles.

Figure 3: Distribution of ICD code frequencies in the
RuCCoD train set.

to identify and remove any personal or identifiable
information manually. This thorough process guar-
antees compliance with privacy regulations and
ensures the dataset is suitable for research use.

Annotation Process and Principles The label-
ing team consisted of three highly qualified ex-
perts with advanced education in different fields of
medicine, two of whom hold Ph.D. degrees, with
every annotation further validated by a fourth ex-
pert, a Ph.D. holder in medicine. Grounded in the
ICD-10 CM (Clinical Modification) system, the
team aimed to identify all nosological units in a
diagnosis conclusion and assign the most accurate
ICD code to each. An annotation example is shown
in Fig. 1. The dataset was randomly split into 3,000
training and 500 testing records. Each expert in-
dependently annotated 1,000 training records for
diverse labeling, while all three annotated the same
500 test records for consistency. An ICD code
was accepted if at least two annotators agreed. An-
notation guidelines and details on inter-annotator
agreement are given in Appx. A.

Dataset Statistics Statistics of train and test
splits of the RuCCoD dataset are provided in Tab. 1.

Despite the large number of ICD codes, especially
in the training set, their distribution is uneven.
Fig. 3 shows the distribution of ICD codes within
the RuCCoD train set. While a small number of
codes dominate the dataset, appearing from 50 to
250 occurrences, most codes are rare, with 1,087
codes occurring fewer than 5 times. This stark dis-
parity underscores the challenges of dealing with
real-world medical data, where frequent diagnoses
are well-represented, but rare conditions remain
significantly under-sampled.

3.2 RuCCoD-DP: Diagnosis Prediction
Dataset

To explore AI-guided Diagnosis Prediction, we
collect RuCCoD-DP (RuCCoD for Diagnosis
Prediction), a corpus of real-world EHRs.

Dataset Construction RuCCoD-DP includes
doctor appointments from 2017 to 2021, divided
into four parts: (i) patient complaints and anamne-
sis, (ii) lab test results, (iii) appointment summary
(including assigned ICD codes), and (iv) appoint-
ment history. Although RuCCoD and RuCCoD-DP
share a common source, we ensured that both sets
contain no overlapping patients and, consequently,
no overlapping appointments.

Paired Human-AI ICD Codes ICD has a fine-
grained disease hierarchy introducing a significant
challenge even for a qualified doctor to formal-
ize a correctly diagnosed disease . For instance,
a H10 Conjunctivitis disease group has 8 speci-
fications including: H10.0 mucopurulent, H10.1
acute atopic, H10.2 other acute, and H10.3 unspec-
ified acute conjunctivitis. Thus, doctor-assigned
ICD codes in real-world EHRs can expose substan-
tial errors even if a general disease is diagnosed
correctly. To address the issue, we consider two
ICD code sets for each EHR: (i) real-world ICD
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codes originally written by physicians within the
EHR (doctor-assigned codes); (ii) automatically
assigned ICD codes predicted by a neural model
trained on RuCCoD (AI codes). AI codes (i.e., AI-
assigned diseases) are assigned to an EHR by ap-
plying our top-performing BERT-based NER+EL
ICD Linking pipeline (Tab. 3) to the EHR’s doctor’s
real-world diagnosis conclusion (see Fig. 2). Our
pipeline extracts diseases (NER) and links (EL)
them to ICD codes and then the found diseases are
assigned to the given EHR labels for ICD Coding.
Thus, AI codes are designed to aid in the formal-
ization of the human-written diagnosis to the ICD
code set while relying only on the written conclu-
sion of the physician. Notably, the two coding
types rely on the same underlying free-form diag-
nosis conclusions.

Original and Linked RuCCoD-DP We will re-
fer to RuCCoD-DP variations sharing the same
appointments yet different in ICD code assignment
method (either doctor-assigned or AI-based) as
original and linked datasets, respectively. In other
words, a single textual appointment entry has two
distinct labels sets. To prevent ICD codes distri-
bution shift between original and linked data, we
retained the ICD codes overlapping between these
two sets. For each appointment sample, its textual
input included the concatenation of chronologically
sorted all prior appointments.

Diagnosis Prediction Test Set The collection of
two sets of labels allows exploration of whether
manual or generated ICD labels are more reliable
for model training. For a fair comparison of the la-
beling approaches, we developed a common test set
from a subset of the original appointment dataset’s
test set. We formed it by selecting a subset from the
test part of the original appointment dataset. For an-
notation, we adopted the same annotation method-
ology as for the RuCCoD dataset (Sec. 3.1). The
mean pairwise JSC across annotators was 0.331.
The final statistics for original, linked datasets as
well as for the common test set is summarized in
Tab. 2.

4 ICD Coding Evaluation

For ICD coding experiments, we experiment with
the following approaches: 1) a fine-tuned BERT-
based pipeline for information extraction, 2) a large
language model (LLM) with Parameter-Efficient
Fine-Tuning (PEFT), and 3) LLM with retrieval-

augmented generation (RAG). All three systems
use the same dictionary, with 17,762 pairs of codes
and diagnoses (refered to as ICD dict) compiled
from the Ministry of Health data. In addition, LLM-
based systems used a train set as a dictionary as
well. See the Appx. G for a list of the LLMs used.
See related work in Appx. B.

4.1 Models

BERT-based IE Pipeline Our Information Ex-
traction (IE) pipeline uses sequential NER and EL
modules. The NER module, employing a softmax
layer, extracts relevant entities, and the EL mod-
ule then links these entities to ICD codes based
on semantic similarity with ICD dictionary en-
tries. For NER, we utilize the pre-trained Ru-
BioBERT (Yalunin et al., 2022), and for EL, we
employ the multilingual state-of-the-art models
SapBERT (Liu et al., 2021a,b), CODER (Yuan
et al., 2022b), and BERGAMOT (Sakhovskiy et al.,
2024). In EL, entities and vocabular disease names
are encoded by a BERT-based model with average
pooling, and the top-k concepts are selected for
each entity based on the nearest Euclidean distance.
We fine-tuned models on EL train sets via synonym
marginalization proposed in BioSyn (Sung et al.,
2020). For more details, see Appx G.

LLMs with PEFT We explored the capabilities
of LLMs for clinical coding using PEFT with Low-
Rank Adaptation (LoRA) (Hu et al., 2021). The
pipeline included two steps: NER and EL, fol-
lowing the structure of BERT-based IE pipeline
described earlier. For NER stage, models were
fine-tuned on RuCCoD using task-specific prompts
(Appx. H). The predictions were validated by ex-
act string matching and Levenshtein distance with
a threshold ≤ 2 chosen empirically to optimize
the robustness of the spelling without overcorrect-
ing semantically distinct entities. For EL, a RAG
approach was implemented to link extracted enti-
ties to ICD codes. The retrieval component was
built using three strategies: (1) BGE embeddings
(Chen et al., 2024) on the ICD dict, (2) BGE em-
beddings on the ICD dict combined with RuCCoD
training entities, and (3) BERGAMOT embeddings
(Sakhovskiy et al., 2024) fine-tuned on RuCCoD
with the ICD dict.

We adopted the FAISS index (Douze et al., 2024)
to retrieve the top-15 most similar dictionary en-
tries for each entity extracted in the NER stage. The
final ICD code was assigned using an LLM to se-
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Model Precision Recall F-score Accuracy

Supervised with various corpora for NER and EL

BERT, NER: NEREL-BIO + RuCCoD, EL: RuCCoD 0.512 0.529 0.520 0.352
BERT, NER: RuCCoN + RuCCoD, EL: RuCCoD 0.471 0.543 0.504 0.337
BERT, NER: RuCCoD, EL: RuCCoD 0.510 0.542 0.525 0.356

LLM with RAG (zero-shot with dictionaries)

LLaMA3-8b-Instruct, NEREL-BIO 0.059 0.053 0.056 0.029
LLaMA3-8b-Instruct, RuCCoN 0.164 0.15 0.157 0.085
LLaMA3-8b-Instruct, ICD dict. 0.379 0.363 0.371 0.228
LLaMA3-8b-Instruct, ICD dict. + RuCCoD 0.465 0.451 0.458 0.297

LLM with tuning

Phi3_5_mini, ICD dict. 0.394 0.39 0.392 0.244
Phi3_5_mini, ICD dict. + RuCCoD 0.483 0.477 0.48 0.316
Phi3_5_mini, ICD dict. + BERGAMOT 0.454 0.448 0.451 0.291

Table 3: Entity-level code assignment metrics on RuCCoD’s test set. The best results are highlighted in bold. We
also refer to Appx. D, E, F on more experiments with different LMs, corpora, and terminologies.

lect the closest match from the retrieved candidates
(prompt in Appx. H). To address class imbalance,
diagnosis lists were shuffled during training, forc-
ing models to learn contextual code-discrimination.
Fine-tuning parameters followed standard LoRA
configurations (Tab. 5, Appx. G).

Zero-shot LLM with RAG As an ablation study,
we evaluated the same pipeline as in the PEFT
stage but without fine-tuning to isolate the LLMs’
inherent capabilities. We used only the fine-tuned
BERGAMOT embeddings from strategy (3) for
retrieval, retaining the FAISS index and prompts
(Appx. H). The LLM selected ICD codes from
retrieved candidates if no direct match was found,
replicating the EL process from the PEFT stage.
This setup allowed us to quantify the contribution
of fine-tuning versus zero-shot inference.

4.2 Evaluation Methodology

On RuCCoD, our evaluation includes conventional
NER and EL as well as end-to-end document-level
code assignment with EHR-level code aggregation
(Sec. 2). To recall, document-level metrics is an
entity position-agnostic NER+EL task composition
with explicitly removed EHR-level ICD code dupli-
cates. For instance, a language model successfully
diagnoses a patient by assigning the correct ICD
code when it finds at least one of three mentions of
the corresponding ICD disease within an EHR. For
all three tasks, we report accuracy and the micro-

averaged precision, recall, F1-score.
Following prior research (Phan et al., 2019;

Wright et al., 2019; Liu et al., 2021a; Yuan et al.,
2022b; Sakhovskiy et al., 2024), we use a retrieval-
based EL approach and evaluate retrieval accuracy:
acc@k = 1 if a correct ICD code is retrieved at
rank ≤ k. We consider two evaluation scenarios:
(i) strict score assessing exact match between a pre-
dicted ground truth codes; (ii) relaxed score with
each code being truncated to higher-level disease
group (e.g., H10.0 Mucopurulent conjunctivitis is
truncated to H10 Conjunctivitis).

4.3 Results

4.3.1 Transfer Learning
First, we performed cross-domain experiments on
EL to see how variability in entities and terminol-
ogy affects the performance. Since UMLS includes
the ICD system, we automatically map UMLS
CUIs to ICD codes for evaluation. Cross-domain
transfer results with entity linking models on RuC-
CoD, RuCCoN, NEREL-BIO and their union are
presented in detail in Appx. D. The evaluation has
revealed the following key observations.

Maleficent Cross-Domain Vocabulary Extension
While extension of ICD vocabulary consistently
gives a slightly improved acc@1 in a zero-shot set-
ting, additional synonyms introduce severe noise
in a supervised setting. Specifically, a significant
drop of 8.1%, 8.4%, and 14.3% acc@1 is observed
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for SapBERT, CODER, and BERGAMOT, respec-
tively. Even in an unsupervised setting, vocabulary
extension drops acc@5 by 5.2% and 6.8% for Sap-
BERT and BERGAMOT, respectively. The results
highlight the specifity of ICD terminology within
the medical domain.

Limitations of Cross-Terminology Transfer
Both training on RuCCoN and NEREL-BIO as well
as merge of these corpora with RuCCoD do not
lead to improvement over zero-shot coding (Tab. 7,
Appx. D). Thus, training on other EL corpora nor-
malized to the UMLS vocabulary does not transfer
to our RuCCoD dataset normalized to ICD vocabu-
lary. The finding indicates the specificity and high
complexity of hierarchical ICD coding within the
EL task.

Complexity of Fine-Grained ICD Coding The
15% gap in acc@1 between the strict and relaxed
evaluation (Tab. 7, Appx. D) shows the challeng-
ing nature of semantically similar diseases within
the same therapeutic group. The finding further
illustrates the underlying challenge for human ICD
coders: correct disease specification with an appro-
priate code is a far more complex task than general
disease identification.

Transfer learning for NER is Feasible A NER
model trained on the disease-related entities from
NEREL-BIO gained an F1 score of 0.62 on RuC-
CoD’s test set. The model trained on a combined
dataset of NEREL-BIO and RuCCoD achieved
scores of 0.72. Similar results were observed with
RuCCoN. We also evaluated BINDER, which uses
a RuBioBERT backbone and treats NER as a rep-
resentation learning problem by maximizing simi-
larity between vector representations (Zhang et al.).
However, BINDER’s performance was 1.5% lower
than RuBioBERT’s, which gained the best F1 score
of 0.77 with a softmax classifier. NER transfer for
disease entities is significantly better than for entity
linking (EL), with the best results obtained from
RuCCoD (full results are in Appx. C).

4.3.2 End-to-end ICD coding
In the next experiments, we evaluated an end-to-
end ICD coding quality on raw texts, in which
models were fine-tuned on either RuCCoN or
NEREL-BIO or utilized entity dictionaries from
these datasets, are presented in Tab. 3. As seen
from the results, training on datasets from other do-
mains gives limited performance and the best ICD

Figure 4: Comparison of weighted F1 scores on the
common test set for models trained on original and
linked datasets at different training steps.

coding results are observed for models trained with
ICD data from RuCCoD data on all three set-ups.

Extended RAG results are in Appx. E. Fine-
tuning LLMs improves performance across all
tasks, exceeding LLM + RAG results in zero-shot
settings. Use of RuCCoD significantly enhances
metrics compared to approaches that rely solely on
the ICD dictionary or embeddings. Llama3-Med42-
8B and Phi3_5_mini are the most effective models
after PEFT tuning (see Appx. F).

5 Diagnosis Prediction Evaluation

For the Diagnosis Prediction task, we explore
whether automatic relabeling of ICD codes as-
signed to an EHR increases the robustness and
reliance of a diagnostic model. To address this, we
train two diagnostic models on RuCCoD-DP’s (i)
original and (ii) linked independently. These two
models learn from the same EHRs but use different
target ICD labels (doctor-assigned and AI-based
codes, respectively). Given that both annotation
types are produced from human-written diagno-
sis conclusions, our experimental design compares
two methodologies for formalizing a verbose diag-
nostic conclusion into a set of ICD codes.

5.1 Experimental Set-up
Model We chose the Longformer architec-
ture (Beltagy et al., 2020) due to its strong perfor-
mance in clinical tasks (Edin et al., 2023). Our
Longformer model is initialized from a BERT
model pre-trained using private EHRs from mul-
tiple clinics and further pre-trained on extended
sequences. Training details are in Appx. G.

Evaluation In our experiments, we evaluate the
quality of the models trained on the original and
linked datasets on the common test set. Because
training datasets contain a much larger and more
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Figure 5: F1 score distribution for top and bottom 10%
frequent ICD codes in the common test set.

diverse set of ICD codes than the test set, all evalu-
ation metrics are computed only over the codes in
the test set to ensure a consistent and comparable
label space.

To address the imbalanced long-tail ICD code
distribution in the Diagnosis Prediction task, we
adopt the weighted F1 score for overall evaluation,
a standard choice in prior work on automated ICD
coding (Johnson and Khoshgoftaar, 2019; Blanco
et al., 2020). The weight of each class is calcu-
lated as the proportion of EHRs sharing the given
ICD code in the union of both training datasets.
Per-class F1 scores were also measured to explore
performance variations across frequent and rare
ICD codes.

Beyond the weighted F1, we additionally report
micro-averaged confusion components—True Pos-
itives (TP), False Positives (FP), False Negatives
(FN), and True Negatives (TN). In the multi-label
setting, each (record, code) pair is treated as a bi-
nary outcome, and these components provide a
more granular view of diagnostic sensitivity and
specificity than F1 alone.

5.2 Results

5.2.1 Diagnosis Prediction Learning
To predict ICD codes from doctor’s appointments,
we fine-tuned two Longformer models, one using
the original dataset and the other using the linked
dataset. The weighted F1-scores for the two models
against the training count are shown in Fig. 4.

AI-based ICD Coding Improves Diagnosing
As seen from Fig. 4, the model trained on AI codes
coding (linked data) significantly outperforms the
one trained on manual codes (original data) with
the peak weighted F1-score of 0.48. The latter
quickly reaches its F1-score plateau at 0.2. The

Top 10% codes Bottom 10% codes
Dataset FN FP TN TP FN FP TN TP

Original 194 146 967 175 36 630 1284 26
Linked 118 136 977 251 17 57 1857 45

Table 4: Micro-averaged confusion components on the
common test set for the 10% most frequent (Top) and
10% least frequent (Bottom) ICD codes, depending on
whether the model is trained on original or linked data.

huge performance gap of 0.28 highlights the ef-
fectiveness of automatic data annotation for model
training. The finding reveals the complexity of the
ICD-agreed diagnosis prediction task for profes-
sional physicians, indicating the need for AI-driven
assistance. For instance, an AI diagnosis conclu-
sion can serve as an independent second opinion,
while the final diagnosis should be determined by
a qualified human expert.

5.3 Diagnosing Stability to Disease Frequency

Next, we study the diagnosis prediction model’s
ability to generalize to both frequent and rare dis-
ease when trained on original and linked datasets.

Frequency-Based ICD Test Set Split The test
dataset was split into two parts: the 10% most
frequent ICD codes and the 10% least frequent
ICD codes, with a minimum frequency threshold
of 15 instances in the common test set for the less
frequent group. The stratification approach is de-
signed to align with the distribution of real-world
diagnoses assigned and carefully verified by clini-
cians.

Diagnosing Improvement is Frequency-Robust
Fig. 5 presents the F1 scores spread for individ-
ual ICD codes (diseases) grouped by frequency
groups. The model trained on linked data outper-
forms the one trained on original data for both rare
and frequent codes. The ∼6x median F1 score im-
provement for the bottom 10% codes (0.6 vs. 0.1)
underscores the difficulty of manually assigning
ICD codes for infrequent diseases. For frequent
codes, the training on linked data gives about 0.3
median F1 growth over original data (∼0.7 vs 0.4)
with a significantly lower score deviation (indicated
by smaller interquartile distance). Thus, pretrain-
ing on automatically labeled data enhances diagno-
sis prediction for both rare and common diseases,
reducing variability for the latter.

We further decompose the results into confusion
components to clarify how code re-linking affects
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Figure 6: Dependency between differences in the num-
ber of codes in original and linked train sets and corre-
sponding F1 scores differences on the common test.

Figure 7: The relationship between transitions from
I25.2 and F1 improvements: numbers on the arrows
indicate transition frequency, while node color intensity
represents the magnitude of F1 metric change.

different frequency groups. As seen from Table 4,
training on linked data reduces False Negatives by
40% and improves True Positives by 43% for the
most frequent codes compared with the training on
the original data. For the least frequent codes, we
observe a 53% decrease in False Negatives and a
91% decrease in False Positives, while True Nega-
tives and True Positives increase by 45% and 73%,
respectively. This analysis confirms that the im-
provements from linked training align with the F1
gains, reflecting fewer missed and spurious pre-
dictions and more correct detections across both
frequent and rare codes.

5.4 Disease-Wise Quality Shift Analysis
Linked Data’s Improvement Stability Fig. 6
shows how changes in appointment counts from
original to linked data affect the diagnosing F1
score. Notably, F1 scores generally improved for
the majority of ICD codes regardless of appoint-
ment counts increase or decrease. Although the per-
formance change varies, the observations suggest
the improved class balance. The only exception is

the I25.2 Past myocardial infarction code, which
will be analyzed in detail in the subsequent section.

Case Study: Diagnosing Degradation In Fig. 6,
a sharp F1 score drop is observed for I25.2 Past
myocardial infarction. Apparently, the disease has
been mistakingly re-linked to other errounessly. We
studied the case by analyzing which ICD codes has
I25.2 been replaced with. Fig. 7 shows the most
frequent transition (I25.2 to I11.9, Hypertensive
heart disease) yielded minimal F1 improvement
(0.02), likely due to symptom overlap. E11.9 (Type
2 diabetes mellitus) had the highest gain (0.48)
due to clearer distinctions. I25.1 (Atherosclerotic
heart disease) and I20.9 (Angina pectoris) had sig-
nificant gains (0.38, 0.47), while I67.9 (Unspeci-
fied cerebrovascular disease) had a moderate gain
(0.21). From the results, clearly distinguishable di-
agnoses yield higher F1 scores compared to those
with symptom overlap.

6 Conclusion

In this paper, we presented the first models for
multi-label ICD-10 coding of electronic health
records (EHRs) in Russian. Our study focuses
on two key tasks: information extraction from the
diagnosis field of EHRs and diagnosis prediction
based on a patient’s medical history. The NLP
pipeline developed for the first task was utilized to
re-annotate EHRs in the training set for the second
task. The results demonstrate that fine-tuned LMs
significantly enhance performance in predicting
ICD codes from past medical history. Specifically,
the model trained on automatically linked data ex-
hibited faster learning and better generalization
compared to the original dataset, achieving higher
weighted F1 scores early in training, while the orig-
inal model plateaued with minimal improvements.
Notably, the linked data model consistently outper-
formed the original across both frequent and rare
ICD classes, achieving higher F1 scores together
with improved confusion metrics (TP/FP/FN/TN)
and reduced variability. These results suggest that
the linked dataset enables effective handling of both
common and rare ICD codes. Overall, our findings
highlight the importance of a neural pipeline for au-
tomating ICD coding and improving the accuracy
and informativeness of medical text labeling.

Future research will focus on the integration of
additional external medical sources like knowledge
graphs to improve ICD code prediction. We plan
to study the generalization of LLMs on rare codes.
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Limitations

Other biomedical corpora in Russian The
most relevant corpora to our study are RuC-
CoN (Nesterov et al., 2022) and NEREL-BIO
(Loukachevitch et al., 2023, 2024), which link en-
tities from clinical records or PubMed abstracts to
the Russian part of UMLS. We performed prelimi-
nary transfer learning experiments with these two
corpora, but a thorough analysis of the semantic
differences across all three corpora is future work.

Clinical Diversity Our dataset may not fully cap-
ture the diversity of clinical scenarios and patient
demographics. A more varied dataset could im-
prove the robustness and generalizability of the
models. Clinical language can vary significantly
across different medical specialties and institutions.
This variability may impact the model’s ability to
generalize across various clinical contexts.

Data Imbalance The dataset may suffer from
class imbalance, with certain ICD codes being un-
derrepresented. This could affect a model’s ability
to accurately predict less common diagnoses.

Ethics Statement

No Personal Patient Data in RuCCoD RuC-
CoD does not contain any personally identifiable
patient information. The dataset consists solely
of diagnosis conclusions written by medical pro-
fessionals, which were manually labeled based on
the ICD-10 CM (Clinical Modification) system.
Prior to the annotation process, annotators were
instructed to ensure that no personal information
was included in the conclusions. Their task was
to identify and remove any personal or identifiable
information manually from these texts. No patient-
related information is disclosed in RuCCoD.

Private in-house EHR data in RuCCoD-DP Di-
agnosis prediction leverages prior EHR data along
with details from the current visit. As a source for
RuCCoD-DP, we utilize records from the Medical
Information System of a major European city. All
patients, prior to visiting a doctor, sign a special
consent form for the processing of their data. The
EHR data, which forms the foundation of RuCCoD,
is an in-house dataset that will not be released.

Human Annotations All data annotations in this
paper are newly created. Dataset annotation was
conducted by annotators, and there are no associ-
ated concerns (e.g. regarding compensation). Each

annotator was paid a rate of $12 per hour for their
contributions. An estimated 85 hours of annota-
tion work per expert resulted in a total payment of
$1,020 per annotator. Russia’s full-time monthly
minimum wage is under $200, highlighting the
substantial effort and investment in creating this
high-quality resource. All annotators were aware
of potential annotation usage for research purposes.

Inference Costs Running the complete evalua-
tion experiment on a single V100 GPU takes ap-
proximately 7.5h and 11h for a decoder-only and
encoder-only LM, respectively, while the LLM
with RAG evaluation experiment on a single A100
GPU takes approximately 5.5h.

Potential Misuse The RuCCoD dataset, intended
for ICD coding in Russian, may be misused if not
handled correctly. Potential issues include inac-
curate applications leading to incorrect code as-
signments and overreliance on automated systems
without proper validation. To prevent these prob-
lems, it is crucial to provide clear guidelines and
adequate training for doctors on using AI assis-
tants, ensuring compliance with ethical and legal
standards in research and healthcare.

Transparency The RuCCoD and all associated
annotation materials are being released under the
CC BY 4.0 license. It should be noted that the
dataset contains only diagnosis codes and no medi-
cal histories or personal patient data. Furthermore,
all diagnoses have been rigorously verified to en-
sure complete anonymity, in accordance with the
prevailing norms of open research practice.

Use of AI Assistants We used Grammarly
to proofread the paper, correcting grammatical,
spelling, and stylistic errors, as well as rephrasing
sentences. Consequently, certain sections of our
paper may be identified as AI-generated, AI-edited,
or a combination of human and AI contributions.
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A Appendix: Annotation Details

A.1 Task Overview
The task is to review the diagnoses in the BRAT
markup system, categorize them into separate en-
tities corresponding to individual nosologic units,
and assign each of the selected entities an identifier
in the form of an ICD code from the provided clin-
ical modification of the ICD-10-CM classifier. The
purpose of the annotation is to assign the correct,
most private (to the extent possible from the limited

anamnesis cotext) identifier to each nosologic unit
represented in the diagnosis.

A.2 Data and resources
Data. The documents you will be annotating are
anonymized diagnoses. To facilitate and speed up
the annotation process, most nosologic units are
highlighted and pre-labeled with an ICD code.

Vocabulary. Each phrase identified in the text
as a nosological unit or not highlighted but being
such must be associated with a code from the ICD-
10. This markup will use the clinical modification
of the ICD-10-CM, which includes about 17762
different medical diagnoses.

Additional Resources. Although the markup sys-
tem is already loaded with the ICD-10, you can
use the following additional resources to help you
correctly identify the most appropriate ICD code:

• The ICD Code Clinical Modification Version
10 is a Russian-language web service for
searching and determining the optimal ICD
code, available at: www.mkb-10.com. Regis-
tration is not required to access this resource.

• Google - You can use Google if you are un-
familiar with a clinical diagnosis or if you
encounter a previously unknown abbreviation
or acronym.

• Wikipedia - You can also use Wikipedia to
find additional information.

A.3 Task Description
For each selected or unselected piece of text cor-
responding to a nosological unit, you need to as-
sign an ICD code. Example: “Atopic dermatitis
in partial remission disseminated form”. The se-
lected text fragment “Atopic dermatitis in partial
remission” should be associated with the diagnosis
"Other atopic dermatitis" (L20.8). Make sure that
no text fragment representing a nosological unit is
left without an assigned ICD code, thus ensuring
the completeness of the markup.

However, each nosologic unit should correspond
to only one code. However, in many cases, the se-
lected nosologic units may correspond to more than
one ICD code, in which case you should follow the
following rules:

• 1. Select an ICD code that maximizes the
specificity of the diagnosis up to subsection
X.00.

• 2. If the nosological unit includes modifiers
such as “mild”, “severe”, “acute”, “chronic”,
indication of degree, stage, etc., the modifier
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should be taken into account when searching
for the appropriate ICD code. However, it
is often the case that the classifier will only
have a more general diagnosis that does not
include the above modifier. In this case, se-
lect the optimal ICD code by ignoring the
modifier. However, modifiers that are insepa-
rable in meaning from the underlying concept
should always be considered when selecting
the optimal ICD code (e.g., “Acute myocardial
ischemia”).

The following rules should also be followed
when marking up:

• If the selected nosological unit is written in
the plural and the corresponding ICD code
exists in the classifier in the plural, you should
select it. Otherwise, you should search for the
ICD code in the singular.

• Sometimes in the classifier there are diagnoses
that at first glance seem to be absolutely iden-
tical, which can be differentiated only by the
context of the electronic medical record.

A.4 Annotation Tool
The annotation process is conducted us-
ing a specialized web service called brat
(https://brat.nlplab.org/). You will be provided
with a customized login and password. All
necessary information from clinical diagnoses and
preliminary markup with ICD codes are entered
into the annotation tool. Each document in the brat
web service leads to a separate clinical diagnosis.

Each selected text fragment is a nosological unit
to be associated with the corresponding ICD code.
In order to call the ICD code selection menu, you
need to highlight the section of text you are go-
ing to mark up or double-click on the green label
“icd_code” located above the selected text frag-
ment. If you think that a section of the diagnosis
is selected incorrectly or redundantly, you need to
correct or delete the corresponding selection.

The window may or may not have a pre-selected
ICD code on the Ref line. If specified, compare
the correctness of the ICD code specified in the
“Ref” line with the selected text fragment specified
in the “Text” field. If the ICD code is correct, press
the “OK” button and move to the next selected text
fragment. If the ICD-code is not specified or is
specified incorrectly, double-click the “Ref” line
in the “Normalization” field, and the ICD-code
search window will open. In the opened window
check the correctness of the diagnosis selection for

search in the “Query” line and click on the “Search
ICD_codes” button. The system will search in the
ICD codes classifier and list them. If the system
does not find the codes by the specified text frag-
ment, try to change it.

Select the appropriate ICD code and its decoding
from the list and press the “OK” button (or double-
click on the required ICD code). The system will
save your selection and return to the previous win-
dow, where you should also click on the “OK” but-
ton. The system will remember your selection and
you can proceed to annotate the next selected text
section.

If you did not find a suitable ICD code in the
list of ICD codes found by the system, you can try
to change the search phrase in the “Query” field,
by which the search is performed, and perform the
search again. In most cases, the correct selection
of the search phrase allows one to find the most
appropriate ICD code in the classifier.

If the built-in search system does not yield re-
sults, you can switch to the external directory of
ICD codes specified in A2. To do this, click on
the magnifying glass icon in the “Normalization”
field. You can also go to the Google search engine
and Wikipedia web encyclopedia by clicking on
the corresponding link in the “Search” field.

If even after changing the search phrase and
searching in external resources you cannot find
a suitable ICD code, return to the previous menu
by clicking on the “cancel” button and delete the
identifier located in the ID line in the “Normaliza-
tion” field in the opened window. The same should
be done if a text section that is not a nosological
unit is selected. Deleting the identifier will clear
the “Ref” line; this will serve as an indicator that
the selected text fragment could not be matched
with a suitable ICD code.

A.5 Inter-Annotator Agreement
To assess consistency among experts manual ICD
coding, we first measured Inter-Annotator Agree-
ment (IAA) metric, defined as the ratio of accepted
codes to the total number of unique codes assigned
per record (Luo et al., 2019). The overall IAA
reached 50%, indicating a moderate level of agree-
ment. Such values align with previous reports
on ICD coding, where Kappa coefficients typi-
cally range from 27% to 42% (corresponding to
agreement rates of 29.2%–46.8%) (Stausberg et al.,
2008), and coding accuracy varies widely from
41.8% to 98% depending on domain and code
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granularity (Campbell et al., 2001; Hosseini et al.,
2021). These observations confirm that moderate
agreement is expected given the inherent complex-
ity and subjectivity of assigning fine-grained ICD
codes.

To further ensure the consistency of obtained
annotations and provide an additional comparative
assessment of agreement, we also measured agree-
ment using the Jaccard similarity coefficient (JSC).
This metric captures the ratio of the intersection
to the union of ICD code sets assigned by two an-
notators and is particularly suited for multi-label
settings where overlapping but not identical code
sets are common. The mean pairwise JSC values
were 0.308, 0.336, and 0.366 for annotator pairs
(1–2), (1–3), and (2–3), respectively. These results
are consistent with existing studies on ICD cod-
ing from unstructured clinical text, which report
average Jaccard agreements ranging from 0.179
to 0.345 and, for certain code categories, scores
approaching zero (Xu et al., 2019; Lucas et al.,
2021).

Together, the IAA and JSC analyses indicate that
the observed annotation variability is realistic and
reflects the intrinsic difficulty of achieving high
inter-expert consistency in multi-label ICD coding.

B Related Work

In describing our work, we encountered persistent
terminological ambiguity arising from overlapping
nomenclature for distinct task formulations. For in-
stance, the term “ICD coding” is broadly applied to
both (1) multi-label classification of medical texts
(e.g., assigning ICD codes to discharge summaries)
(Li and Yu, 2020; Vu et al., 2020; Wang et al., 2024)
and (2) entity linking, where discrete clinical di-
agnoses are mapped to specific codes (Lavergne
et al., 2016; Névéol et al., 2017; Coutinho and Mar-
tins, 2022). This conflation obscures fundamental
differences: the former treats coding as document-
level prediction to capture all relevant codes for
a patient’s condition, while the latter focuses on
precise alignment of clinical entities (e.g., distin-
guishing “acute myocardial infarction” from its
subtypes) through semantic matching, addressing
challenges like synonymy or hierarchical code re-
lationships. To resolve this ambiguity, in our work
we propose explicit terminology: “ICD coding”
refers to multi-label classification of medical texts,
whereas “Medical entity linking” denotes entity-
level code assignment.

ICD coding ICD coding has traditionally relied
on established machine learning techniques. Early
approaches employed methods such as Support
Vector Machines (SVM) with TF-IDF features to
represent clinical notes (Perotte et al., 2014). Fea-
ture engineering, including gradient boosting for
large datasets, also played a significant role in en-
hancing ICD coding accuracy (Diao et al., 2021).
Regular expression-based mapping and adaptive
data processing further improved efficiency in spe-
cific healthcare settings (Zhou et al., 2020).

The advent of neural networks marked a
paradigm shift in ICD coding. Recurrent Neural
Networks (RNNs), including LSTMs and GRUs,
were utilized to encode EHR data and capture
temporal dependencies within clinical notes (Choi
et al., 2016; Baumel et al., 2018). Convolutional
Neural Networks (CNNs) offered alternative archi-
tectures for extracting features from clinical text,
with models like CAML demonstrating their effec-
tiveness (Mullenbach et al., 2018b). Subsequent
advancements introduced multi-filter CNNs (Li and
Yu, 2020) and squeeze-and-excitation networks in
CNN (Liu et al., 2021c) to enhance feature extrac-
tion. Addressing the challenge of imbalanced code
distribution, researchers introduced focal loss (Liu
et al., 2021c) and self-distillation mechanisms to
improve prediction accuracy for rare codes (Zhou
et al., 2021). Other models, like HA-GRUs used the
charachter-level information (Baumel et al., 2018).
Ensemble models used CNN, LSTM, and decision
trees to improve accuracy (Xu et al., 2018).

A crucial line of research has focused on inte-
grating external medical knowledge and the in-
herent hierarchical structure of ICD codes. Ap-
proaches have incorporated medical definitions
(Shi et al., 2017), Wikipedia data for rare dis-
eases (Bai and Vucetic, 2019) and medical ontolo-
gies (Bao et al., 2021) to enrich term embeddings.
Tree-of-sequences LSTMs (Xie and Xing, 2018)
and graph neural networks (Cao et al., 2020; Xie
et al., 2019) were developed to capture relation-
ships between codes, either through hierarchical
structures or co-occurrence patterns. Models like
KG-MultiResCNN leveraged external knowledge
for relations understanding (Boukhers et al., 2023).
Weak supervision was used to overcome the lack of
training data (Dong et al., 2021; Gao et al., 2022).
Furthermore, domain-specific pre-trained language
models (PLMs) such as BioBERT (Lee et al., 2019),
ClinicalBERT (Alsentzer et al., 2019), and Pub-
MedBERT (Gu et al., 2021) have shown promise
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in improving performance on various biomedical
tasks. However, adapting these models to the large-
scale, multi-label nature of ICD coding presents
unique challenges, particularly regarding long in-
put sequences (Pascual et al., 2021; Ji et al., 2021).
Recent efforts, such as BERT-XML (Zhang et al.,
2020b), have addressed this through input splitting
and label attention mechanisms. Read, Attend, and
Code (RAC) was proposed by Kim and Ganapathi
(Kim and Ganapathi, 2021) and achieved state-of-
the-art results. Despite these developments, chal-
lenges remain in handling semi-structured text and
variability of notes (Lu et al., 2023).

Recent studies have increasingly focused on
leveraging attention mechanisms and improving
the interaction between clinical note representa-
tions and ICD code representations. Models such
as LAAT (Vu et al., 2020) and EffectiveCAN (Liu
et al., 2021c) have incorporated refined label-aware
attention mechanisms. However, the effective ap-
plication of PLMs to ICD coding requires careful
consideration of input length constraints and the
development of robust mechanisms for capturing
long-range dependencies. Also, the models need to
better understand relationships between different
sections of clinical notes (Lu et al., 2023).

Diagnosis prediction Diagnosis prediction us-
ing structured EHR data has been extensively stud-
ied with deep learning approaches. NECHO (Koo,
2024) improves next-visit diagnosis prediction by
centering learning on medical codes and incorporat-
ing hierarchical regularization to capture structured
dependencies in EHR data. DPSS (Zhang et al.,
2020a) enhances predictive robustness by modeling
patient records as sequences of unordered clinical
events, preserving temporal patterns while mitigat-
ing biases introduced by the artificial ordering of
medical records. The importance of patient history
in EHR-based diagnosis prediction demonstrates
that historical records alone can achieve 76.6% ac-
curacy, which increases to 93.3% when structured
physical examination and laboratory data are inte-
grated (Fukuzawa et al., 2024). At the population
level, applying a Bi-GRU model trained on struc-
tured EHR data with SNOMED embeddings to pre-
dict chronic disease onset demonstrates the utility
of structured clinical histories in early disease iden-
tification (Grout et al., 2024). To optimize the use
of structured medical codes for diagnosis predic-
tion, MERA (Ma et al., 2025) introduces hierarchi-
cal contrastive learning and ranking mechanisms

to refine diagnosis classification within large ICD
code spaces. These studies collectively illustrate
the evolution of EHR-based diagnosis prediction
from sequence modeling to hierarchical represen-
tation learning, highlighting the role of structured
clinical history in improving predictive accuracy.

RAG LLMs face challenges as standalone sys-
tems for high-precision tasks such as ICD-linking,
primarily due to their limited accuracy in extract-
ing detailed, domain-specific information. Ma
et al.(Ma et al., 2023) demonstrated that while
LLMs lag behind fine-tuned SLMs in informa-
tion extraction tasks, they excel in understand-
ing and reorganizing semantic content, making
them effective at reranking retrieved information.
To overcome the limitations of accuracy and do-
main specificity, recent approaches have incorpo-
rated Retrieval-Augmented Generation (RAG) tech-
niques. RAG combines the structured knowledge
of external databases for retrieval with the semantic
reasoning strengths of LLMs for reranking, result-
ing in improved precision and overall task perfor-
mance.

Klang et al. (2024) demonstrated the effective-
ness of RAG in enhancing LLMs for ICD-10-CM
medical coding. Their study revealed that RAG-
enhanced LLMs outperform human coders in ac-
curacy and specificity, emphasizing the potential
of retrieval mechanisms in improving clinical doc-
umentation. Similarly, Kwan (2024) proposed a
two-stage Retrieve-Rank system for medical cod-
ing, achieving a perfect match rate for ICD-10-CM
codes and significantly surpassing vanilla LLMs.
The MedCodER framework (Baksi et al., 2024)
leverages a pipeline of extraction, retrieval, and
reranking, to improve automation and interpretabil-
ity in ICD-10 coding. It demonstrates SOTA per-
formance on ACI-BENCH by integrating LLMs
with semantic search and evidence-based reason-
ing. Boyle et al. (Boyle et al., 2023) presented a
zero-shot ICD coding approach using LLMs and
a tree-search strategy, achieving a SOTA on the
CodiEsp dataset, particularly excelling in rare code
prediction without task-specific training. Abdul-
nazar et al. (Abdulnazar et al., 2024) applied GPT-
4 for clinical text cleansing to enhance MCN. By
combining text standardization with RAG, their
method improved mapping precision to SNOMED
CT in the German language.
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Task Model or Approach LR # Epochs BS Scheduler WD

NER RuBioBERT 1e-5 20 32 Cosine (Loshchilov and Hutter, 2017) 0.01
EL BERGAMOT+BioSyn 2e-5 20 32 Adam (Kingma and Ba, 2015) 0.01

LLM tuning LoRA 5e-5 33 2 Linear with Warmup 0.01
ICD code prediction Longformer 5e-5 2 4 Linear with Warmup 0.01

Table 5: Models and training hyperparameters. LR stands for learning rate, BS for batch size, WD for weight decay

C BERT-based NER Results

Tab. 6 presents evaluation results for NER task on
the RuCCoD dataset. In the context of NER, Ru-
BioBERT employs a softmax activation function
in its output layer. BINDER utilizes RuBioBERT
backbone and approaches NER as a representa-
tion learning problem by maximizing the similar-
ity between the vector representations of an en-
tity mention and its corresponding type (Zhang
et al.). RuBioBERT achieves the highest F1-score
of 0.756 when trained on the RuCCoD, suggest-
ing that this dataset is particularly effective for the
model. BINDER trained on RuCCoD achieves an
F1-score of 0.71, slightly lower than RuBioBERT
trained on the same dataset.

D Entity Linking Results

Since there are many datasets for entity linking
in the biomedical domain, including corpora in
Russian, we explored whether these corpora can
be helpful for ICD coding. Additionally, we at-
tempted to enrich the ICD normalization vocabu-
lary with concept names from the Unified Medical
Language System (UMLS) metathesaurus which
includes the ICD-10 vocabulary. Specifically, for
each ICD code, we find its Concept Unique Identi-
fier (CUI) in UMLS and retrieve all concept names
that share the same CUI but are adopted from the
source vocabularies different from ICD-10. We
employ the following Russian biomedical corpora
for experiments on cross-terminology transfer:

RuCCoN (Nesterov et al., 2022) is a manually an-
notated corpus of clinical records in Russian. It con-
tains 16,028 mentions linked to 2,409 unique con-
cepts from the Russian subset of UMLS metathe-
saurus (Bodenreider, 2004).

NEREL-BIO (Loukachevitch et al., 2023, 2024)
is a corpus of 756 PubMed abstracts in Russian
manually linked to 4,544 unique UMLS concepts.
The corpus is specifically focused on two main
problems: (i) entity nestedness and (ii) cross-
lingual Russian-to-English normalization for the
incomplete Russian UMLS terminology. In to-

tal, NEREL-BIO provides 23,641 entity mentions
manually linked to 4,544 unique UMLS concepts.
4,424 mentions have no concept name representa-
tion in the Russian UMLS subset and are linked
to 1,535 unique concepts present in the English
UMLS only.

We experiment with three state-of-the-art spe-
cialized biomedical entity linking models:

SapBERT is a metric learning framework that
learns from synonymous UMLS concept names by
generating hard triplets for pre-training (Liu et al.,
2021a,b).

CODER is a contrastive learning model inspired
by semantic matching methods that use both syn-
onyms and relations from the UMLS (Yuan et al.,
2022b) to learn concept representations.

BERGAMOT is an extension of SapBERT which
learns concept name-based and graph-based con-
cept representations simultaneously and introduces
a cross-modal alignment loss to transfer knowledge
from a graph encoder to a BERT-based language
encoder (Sakhovskiy et al., 2024). The graph en-
coder is discarded after the pretraining stage and
only a BERT encoder is used for inference.

For supervised entity linking, we adopt
BioSyn (Sung et al., 2020), a BERT-based frame-
work that iteratively updates entity representations
using synonym marginalization. For each dataset,
we trained BioSyn with default hyperparameters
for 20 epochs.

Relaxed EL Evaluation We assess two entity
linking set-ups: (i) strict evaluation which implies
an exact match between predicted and ground truth
codes and (ii) relaxed evaluation with all codes
being truncated to 3-symbols codes (corresponding
to the second level of hierarchy).

The results of cross-terminology entity linking
transfer presented in Tab. 7 and Tab. 9 reveal a few
insightful findings related to linking ICD codes.

Vocabulary Extension is not a Cure While ex-
tension of ICD vocabulary consistently gives a
slightly improved Accuracy@1 in a zero-shot set-
ting, additional synonyms introduce severe noise in
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Model Train Data F1-score Precision Recall

RuBioBERT RuCCoD train 0.756 0.75 0.77
RuBioBERT BIO-NNE train 0.62 0.57 0.67
RuBioBERT RuCCoD + BioNNE train 0.72 0.75 0.70
BINDER + RuBioBERT RuCCoD train 0.71 0.72 0.71

Table 6: Evaluation results for NER task on RuCCoD dataset.

Train set SapBERT CODER BERGAMOT

@1 @5 @1 @5 @1 @5

Zero-shot evaluation, strict

ICD dict 0.3327 0.5712 0.2631 0.4687 0.3495 0.6170
ICD dict+UMLS synonyms 0.3546 0.5197 0.3237 0.4765 0.3559 0.5487

Supervised evaluation, strict

ICD 0.6132 0.8182 0.6202 0.8169 0.6415 0.8459
ICD+UMLS sumonyms 0.5326 0.7382 0.5358 0.7318 0.4984 0.7253
RuCCoN 0.3591 0.5345 0.3598 0.5732 0.3643 0.5313
RuCCoN+ICD 0.3952 0.5732 0.3888 0.6570 0.3817 0.5983
NEREL-BIO 0.3443 0.4913 0.3378 0.5274 0.3353 0.5113
NEREL-BIO+ICD 0.3804 0.5596 0.3804 0.6325 0.3598 0.5525

Zero-shot evaluation, relaxed

ICD dict 0.4842 0.6886 0.3752 0.6190 0.5035 0.7286
ICD dict+UMLS synonyms 0.5551 0.6867 0.5055 0.6293 0.5603 0.7073

Supervised evaluation, relaxed

ICD 0.7763 0.8839 0.7872 0.8743 0.7917 0.8943
ICD+UMLS sumonyms 0.7788 0.8616 0.7714 0.8860 0.7449 0.8738
RuCCoN 0.5235 0.6531 0.5429 0.7208 0.5132 0.6564
RuCCoN+ICD 0.5493 0.6602 0.5770 0.7485 0.5571 0.6873
NEREL-BIO 0.4803 0.6067 0.4958 0.6634 0.4778 0.6170
NEREL-BIO+ICD 0.5455 0.6447 0.5474 0.7292 0.5384 0.6505

Table 7: Cross-domain transfer results for biomedical linking models. Evaluation results for linking models trained
on RuCOD, RuCCoN, NEREL-BIO as well as their union. ICD+UMLS synonyms stands for ICD train set with the
vocabulary enriched with ICD disease name synonyms from the UMLS knowledge base. The best results for each
model and set-up are highlighted in bold.

a supervised setting. Specifically, a significant drop
of 8.1%, 8.4%, 14.3% Accuracy@1 is observed
for SapBERT, CODER, and BERGAMOT, respec-
tively. Even in an unsupervised setting, vocabulary
extension drops Accuracy@5 by 5.2% and 6.8%
for SapBERT and BERGAMOT, respectively.

Complicated Cross-Terminology Transfer
Both training on RuCCoN and NEREL-BIO as
well merge of these corpora with RuCCoD do
not lead to improvement over zero-shot coding.
The finding indicates the specificity and high

complexity of ICD coding within the entity linking
task.

Complexity of Fine-Grained ICD coding The
high gap between the strict and supervised evalu-
ation of around 15% Accuracy@1 indicates that
distinguishing between semantically similar dis-
eases sharing the same therapeutic group is a major
challenge.
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E LLM with RAG results

All LLM with RAG experiments were conducted
with a temperature setting of 0 for all LLMs and
a top-k value of 15 for the number of retrieved en-
tities from similarity search. The LLMs used are
specified in Appx. G. For the embedding model,
we utilized BERGAMOT. To construct the vec-
tor database, we used dictionaries extracted from
NEREL-BIO, RuCCoN, the ICD dictionary, and
the ICD dictionary combined with RuCCoD. The
results are presented in Tables 10 and 11 for strict
evaluation, and in Tables 12 and 13 for relaxed
evaluation.

For the NER task, the ICD dict.+RuCCoD
dataset yielded the best results. The Llama3.1:8b-
instruct-fp16 model achieved the highest F-score
(0.511), precision (0.580), recall (0.456), and ac-
curacy (0.343). Qwen2.5-7B-Instruct and Llama3-
Med42-8B followed with F-scores of 0.495 and
0.491, respectively. In contrast, NEREL-BIO and
RuCCoN datasets showed significantly lower per-
formance, with F-scores below 0.13 and accuracies
under 0.07.

For NER+ICD Linking, the same dataset and
model led again, with Llama3.1:8b-instruct-fp16
achieving an F-score of 0.268 and accuracy of
0.155. Qwen2.5-7B-Instruct and Llama3-Med42-
8B followed closely with F-scores around 0.245.
Performance on NEREL-BIO and RuCCoN was
much lower, with F-scores under 0.022 and accura-
cies below 0.011.

For ICD Code assignment, Llama3.1:8b-instruct-
fp16 also performed best, with an F-score of 0.458
and accuracy of 0.297. Qwen2.5-7B-Instruct and
Llama3-Med42-8B also performed well, with F-
scores of 0.463 and 0.457. Again, NEREL-BIO and
RuCCoN datasets exhibited weaker results, with
F-scores below 0.15 and accuracies under 0.09.

In summary, the ICD dict.+RuCCoD dataset con-
sistently outperformed others with Llama3.1:8b-
instruct-fp16 being the best model. Relaxed evalu-
ation settings produced similar trends.

F LLM with tuning results

The LLM tuning results are in Tab. 8.
For the NER task, Llama3-Med42-8B achieved

the highest F-score of 0.642, which corresponds to
the highest Precision and Recall among the mod-
els. Phi3_5_mini and Mistral-Nemo demonstrated
similar performance (F-scores of 0.627 and 0.614,
respectively), but slightly lag behind the leader.

The Qwen2.5-7B-Instruct model showed the low-
est scores across all metrics, with an F-score of
0.565 and an Accuracy of 0.393.

In the NER + ICD linking task, the use of
the RuCCoD or BERGAMOT approach signifi-
cantly improved the linking performance. For in-
stance, Phi3_5_mini achieved the highest F-score
of 0.333 when using RuCCoD, and Llama3-Med42-
8B reached an F-score of 0.299. Notably, for all
models, the use of RuCCoD proved to be more
beneficial than the BERGAMOT approach.

In the ICD code assignment task, results also
improved significantly with the use of the RuC-
CoD dataset. Once again, Phi3_5_mini emerged
as the top-performing model, attaining an F-score
of 0.480 when using RuCCoD. Llama3-Med42-
8B and Mistral-Nemo also demonstrated strong
results, with F-scores of 0.435 and 0.446, respec-
tively, when using RuCCoD. It is noteworthy that
the inclusion of RuCCoD consistently improved
Precision and Recall across all models.

Based on the presented results, it can be con-
cluded that for all tasks (NER, NER+Linking, and
ICD code assignment), the use of RuCCoD sig-
nificantly enhances model performance compared
to relying solely on the dictionary or embeddings.
The top-performing models across all tasks are
Llama3-Med42-8B and Phi3_5_mini, indicating
their high efficiency in medical tasks following
PEFT tuning.

G Implementation Details

Utilized LLMs:
• Phi-3.5-mini-instruct (Phi)
• Qwen2.5-7B-Instruct (Qwe)
• Llama3-Med42-8B (Med)
• Mistral-Nemo-Instruct-2407 (Mis)
• llama3.1:8b-instruct-fp16 (Lla)

Diagnosis prediction Each Longformer was
trained for two epochs on separate NVidia A100
GPUs, with the fine-tuning process taking approxi-
mately one week per model. We provide hyperpa-
rameters for these models training in Tab. 5.

Hyperparameters A detailed overview, includ-
ing parameter values and configurations, is pro-
vided in Tab. 5.

H Prompts

The original prompts were in Russian. Below are
their translations to English.
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NER prompt

You will be provided with a text contain-
ing diagnoses. Extract the diagnoses from
this text. Do not alter the spelling of the
diagnoses in the text. Respond only in the
format of a list: [’diagnosis1’, ’diagnosis2’,
...] Text: {text}

Diagnosis selection prompt

You will be given a reference diagnosis and
a list of diagnoses from a database. Your
task is to determine which diagnosis from
the database best matches the reference di-
agnosis. Try to select the diagnosis accu-
rately, paying attention to details. Choose
the diagnosis with the highest match in
terms of words and meaning. You can only
choose from the diagnoses in the list. Pay
more attention to the diagnoses at the begin-
ning of the list, as they are more likely to be
a better match. It’s better to choose a shorter
diagnosis than one that includes informa-
tion not present in the reference diagnosis.
In your response, write only the diagnosis
number and nothing else. Reference diag-
nosis: {diagnosis} List of diagnoses from a
database: {list}
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Model Precision Recall F-score Accuracy

NER

Llama3-Med42-8B, RuCCoD 0.642 0.642 0.642 0.473
Qwen2.5-7B-Instruct, RuCCoD 0.567 0.562 0.565 0.393
Phi3_5_mini, RuCCoD 0.632 0.623 0.627 0.457
Mistral-Nemo, RuCCoD 0.631 0.598 0.614 0.443

NER+Linking

Llama3-Med42-8B, ICD dict. 0.149 0.149 0.149 0.08
Llama3-Med42-8B, ICD dict. + RuCCoD 0.299 0.299 0.299 0.176
Llama3-Med42-8B, ICD dict. + BERGAMOT 0.286 0.286 0.286 0.167
Qwen2.5-7B-Instruct, ICD dict. 0.188 0.186 0.187 0.103
Qwen2.5-7B-Instruct, ICD dict. + RuCCoD 0.281 0.279 0.28 0.163
Qwen2.5-7B-Instruct, ICD dict. + BERGAMOT 0.2 0.198 0.199 0.11
Phi3_5_mini, ICD dict. 0.272 0.268 0.27 0.156
Phi3_5_mini, ICD dict. + RuCCoD 0.335 0.33 0.333 0.199
Phi3_5_mini, ICD dict. + BERGAMOT 0.322 0.317 0.32 0.19
Mistral-Nemo, ICD dict. 0.231 0.219 0.224 0.126
Mistral-Nemo, ICD dict. + RuCCoD 0.303 0.287 0.295 0.173
Mistral-Nemo, ICD dict. + BERGAMOT 0.267 0.253 0.26 0.149

Code assignment

Llama3-Med42-8B, ICD dict. 0.229 0.231 0.23 0.13
Llama3-Med42-8B, ICD dict. + RuCCoD 0.434 0.435 0.435 0.278
Llama3-Med42-8B, ICD dict. + BERGAMOT 0.403 0.405 0.404 0.253
Qwen2.5-7B-Instruct, ICD dict. 0.296 0.295 0.295 0.173
Qwen2.5-7B-Instruct, ICD dict. + RuCCoD 0.456 0.449 0.452 0.292
Qwen2.5-7B-Instruct, ICD dict. + BERGAMOT 0.305 0.303 0.304 0.179
Phi3_5_mini, ICD dict. 0.394 0.39 0.392 0.244
Phi3_5_mini, ICD dict. + RuCCoD 0.483 0.477 0.48 0.316
Phi3_5_mini, ICD dict. + BERGAMOT 0.454 0.448 0.451 0.291
Mistral-Nemo, ICD dict. 0.326 0.311 0.319 0.189
Mistral-Nemo, ICD dict. + RuCCoD 0.458 0.435 0.446 0.287
Mistral-Nemo, ICD dict. + BERGAMOT 0.394 0.372 0.383 0.237

Table 8: ICD coding results for finetuned LLMs on RuCCoD. The best results are highlighted in bold.
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Model Precision Recall F-score Accuracy

NER

BioBERT, Biosyn, RuCCoD 0.649 0.655 0.653 0.485
BioBERT, RuCCoD 0.721 0.769 0.744 0.592
BioBERT, NEREL-BIO 0.588 0.675 0.628 0.458
BioBERT, NEREL-BIO, RuCCoD 0.689 0.713 0.701 0.54
BioBERT, RuCCoN 0.637 0.613 0.625 0.454
BioBERT, RuCCoN + RuCCoD 0.609 0.709 0.655 0.487

NER+Linking

BioBERT, Biosyn, RuCCoD 0.392 0.396 0.394 0.245
BioBERT, RuCCoD 0.427 0.455 0.441 0.283
BioBERT, NEREL-BIO 0.353 0.406 0.377 0.233
BioBERT, NEREL-BIO, RuCCoD 0.406 0.42 0.413 0.26
BioBERT, RuCCoN 0.387 0.372 0.379 0.234
BioBERT, RuCCoN + RuCCoD 0.351 0.409 0.378 0.233

Code assignment

BioBERT, Biosyn, RuCCoD 0.507 0.508 0.507 0.340
BioBERT, RuCCoD 0.51 0.542 0.525 0.356
BioBERT, NEREL-BIO 0.466 0.531 0.497 0.33
BioBERT, NEREL-BIO, RuCCoD 0.512 0.529 0.52 0.352
BioBERT, RuCCoN 0.508 0.485 0.496 0.33
BioBERT, RuCCoN + RuCCoD 0.471 0.543 0.504 0.337

Table 9: Evaluation results for entity-level tasks for BERT-based IE pipeline on RuCCoD corpus. The best results
are highlighted in bold.

2581



Model Precision Recall F-score Accuracy

NER: ICD dict.

Llama3.1:8b-instruct 0.208 0.088 0.124 0.066
Llama3-Med42-8B 0.202 0.084 0.118 0.063
Phi-3.5-mini-instruct 0.211 0.093 0.129 0.069
Mistral-Nemo-Instruct-2407 0.198 0.072 0.105 0.055
Qwen2.5-7B-Instruct 0.206 0.087 0.122 0.065

NER: ICD dict. + RuCCoD

Llama3.1:8b-instruct 0.581 0.456 0.511 0.343
Llama3-Med42-8B 0.556 0.441 0.492 0.326
Phi-3.5-mini-instruct 0.543 0.450 0.492 0.326
Mistral-Nemo-Instruct-2407 0.541 0.372 0.441 0.283
Qwen2.5-7B-Instruct 0.566 0.440 0.495 0.329

NER+Linking: ICD dict.

Llama3.1:8b-instruct 0.071 0.067 0.069 0.036
Llama3-Med42-8B 0.058 0.063 0.060 0.031
Phi-3.5-mini-instruct 0.062 0.069 0.065 0.034
Mistral-Nemo-Instruct-2407 0.066 0.056 0.060 0.031
Qwen2.5-7B-Instruct 0.065 0.065 0.065 0.033

NER+Linking: ICD dict. + RuCCoD

Llama3.1:8b-instruct 0.272 0.264 0.268 0.155
Llama3-Med42-8B 0.235 0.261 0.247 0.141
Phi-3.5-mini-instruct 0.228 0.257 0.242 0.137
Mistral-Nemo-Instruct-2407 0.247 0.215 0.230 0.130
Qwen2.5-7B-Instruct 0.244 0.246 0.245 0.140

Code assignment: ICD dict.

Llama3.1:8b-instruct 0.379 0.363 0.371 0.228
Llama3-Med42-8B 0.310 0.345 0.327 0.195
Phi-3.5-mini-instruct 0.260 0.294 0.276 0.160
Mistral-Nemo-Instruct-2407 0.413 0.360 0.385 0.238
Qwen2.5-7B-Instruct 0.401 0.411 0.406 0.255

Code assignment: ICD dict. + RuCCoD

Llama3.1:8b-instruct 0.465 0.451 0.458 0.297
Llama3-Med42-8B 0.434 0.483 0.457 0.296
Phi-3.5-mini-instruct 0.409 0.458 0.432 0.276
Mistral-Nemo-Instruct-2407 0.462 0.401 0.429 0.273
Qwen2.5-7B-Instruct 0.461 0.465 0.463 0.301

Table 10: Evaluation results for NER, Code assignment, and end-to-end entity linking task on RuCCoD for
LLM+RAG pipeline.
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Model Precision Recall F-score Accuracy

NER: NEREL-BIO

Llama3.1:8b-instruct 0.100 0.042 0.059 0.030
Llama3-Med42-8B 0.104 0.043 0.060 0.031
Phi-3.5-mini-instruct 0.098 0.043 0.059 0.031
Mistral-Nemo-Instruct-2407 0.115 0.044 0.063 0.033
Qwen2.5-7B-Instruct 0.099 0.043 0.060 0.031

NER: RuCCoN

Llama3.1:8b-instruct 0.188 0.088 0.120 0.064
Llama3-Med42-8B 0.174 0.079 0.108 0.057
Phi-3.5-mini-instruct 0.172 0.085 0.114 0.060
Mistral-Nemo-Instruct-2407 0.197 0.082 0.116 0.061
Qwen2.5-7B-Instruct 0.185 0.091 0.122 0.065

NER+Linking: NEREL-BIO

Llama3.1:8b-instruct 0.023 0.020 0.021 0.011
Llama3-Med42-8B 0.018 0.019 0.018 0.009
Phi-3.5-mini-instruct 0.019 0.020 0.019 0.010
Mistral-Nemo-Instruct-2407 0.025 0.020 0.022 0.011
Qwen2.5-7B-Instruct 0.021 0.020 0.020 0.010

NER+Linking: RuCCoN

Llama3.1:8b-instruct 0.050 0.046 0.048 0.025
Llama3-Med42-8B 0.042 0.044 0.043 0.022
Phi-3.5-mini-instruct 0.038 0.041 0.040 0.020
Mistral-Nemo-Instruct-2407 0.053 0.044 0.048 0.025
Qwen2.5-7B-Instruct 0.048 0.046 0.047 0.024

Code assignment: NEREL-BIO

Llama3.1:8b-instruct 0.059 0.053 0.056 0.029
Llama3-Med42-8B 0.045 0.047 0.046 0.024
Phi-3.5-mini-instruct 0.046 0.049 0.047 0.024
Mistral-Nemo-Instruct-2407 0.062 0.051 0.056 0.029
Qwen2.5-7B-Instruct 0.058 0.056 0.057 0.029

Code assignment: RuCCoN

Llama3.1:8b-instruct 0.164 0.150 0.157 0.085
Llama3-Med42-8B 0.125 0.131 0.128 0.068
Phi-3.5-mini-instruct 0.125 0.134 0.129 0.069
Mistral-Nemo-Instruct-2407 0.156 0.129 0.141 0.076
Qwen2.5-7B-Instruct 0.156 0.152 0.154 0.084

Table 11: Evaluation results for NER, Code assignment, and end-to-end entity linking task on RuCCoD for
LLM+RAG pipeline using NEREL-BIO and RuCCoN for vectorstore.
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Model Precision Recall F-score Accuracy

NER: ICD dict.

Llama3.1:8b-instruct 0.208 0.088 0.124 0.066
Llama3-Med42-8B 0.202 0.084 0.118 0.063
Phi-3.5-mini-instruct 0.211 0.093 0.129 0.069
Mistral-Nemo-Instruct-2407 0.198 0.072 0.105 0.055
Qwen2.5-7B-Instruct 0.206 0.087 0.122 0.065

NER: ICD dict. + RuCCoD

Llama3.1:8b-instruct 0.581 0.456 0.511 0.343
Llama3-Med42-8B 0.556 0.441 0.492 0.326
Phi-3.5-mini-instruct 0.543 0.450 0.492 0.326
Mistral-Nemo-Instruct-2407 0.541 0.372 0.441 0.283
Qwen2.5-7B-Instruct 0.566 0.440 0.495 0.329

NER+Linking: ICD dict.

Llama3.1:8b-instruct 0.095 0.088 0.091 0.048
Llama3-Med42-8B 0.077 0.083 0.080 0.042
Phi-3.5-mini-instruct 0.083 0.092 0.087 0.046
Mistral-Nemo-Instruct-2407 0.083 0.070 0.076 0.040
Qwen2.5-7B-Instruct 0.087 0.086 0.087 0.045

NER+Linking: ICD dict. + RuCCoD

Llama3.1:8b-instruct 0.378 0.362 0.369 0.227
Llama3-Med42-8B 0.324 0.354 0.338 0.203
Phi-3.5-mini-instruct 0.323 0.357 0.339 0.204
Mistral-Nemo-Instruct-2407 0.342 0.295 0.317 0.188
Qwen2.5-7B-Instruct 0.343 0.340 0.342 0.206

Code assignment: ICD dict.

Llama3.1:8b-instruct 0.575 0.561 0.568 0.396
Llama3-Med42-8B 0.523 0.594 0.556 0.385
Phi-3.5-mini-instruct 0.437 0.510 0.471 0.308
Mistral-Nemo-Instruct-2407 0.598 0.533 0.564 0.392
Qwen2.5-7B-Instruct 0.595 0.618 0.607 0.435

Code assignment: ICD dict. + RuCCoD

Llama3.1:8b-instruct 0.701 0.684 0.692 0.529
Llama3-Med42-8B 0.644 0.720 0.680 0.515
Phi-3.5-mini-instruct 0.627 0.703 0.663 0.496
Mistral-Nemo-Instruct-2407 0.691 0.605 0.645 0.476
Qwen2.5-7B-Instruct 0.700 0.704 0.702 0.541

Table 12: Relaxed evaluation results for NER, Code assignment, and end-to-end entity linking task on RuCCoD for
LLM+RAG pipeline.
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Model Precision Recall F-score Accuracy

NER: NEREL-BIO

Llama3.1:8b-instruct-fp16 0.100 0.042 0.059 0.030
Llama3-Med42-8B 0.104 0.043 0.060 0.031
Phi-3.5-mini-instruct 0.098 0.043 0.059 0.031
Mistral-Nemo-Instruct-2407 0.115 0.044 0.063 0.033
Qwen2.5-7B-Instruct 0.099 0.043 0.060 0.031

NER: RuCCoN

Llama3.1:8b-instruct-fp16 0.188 0.088 0.120 0.064
Llama3-Med42-8B 0.174 0.079 0.108 0.057
Phi-3.5-mini-instruct 0.172 0.085 0.114 0.060
Mistral-Nemo-Instruct-2407 0.197 0.082 0.116 0.061
Qwen2.5-7B-Instruct 0.185 0.091 0.122 0.065

NER+Linking: NEREL-BIO

Llama3.1:8b-instruct 0.033 0.029 0.031 0.016
Llama3-Med42-8B 0.024 0.025 0.025 0.013
Phi-3.5-mini-instruct 0.026 0.028 0.027 0.014
Mistral-Nemo-Instruct-2407 0.033 0.027 0.030 0.015
Qwen2.5-7B-Instruct 0.030 0.029 0.030 0.015

NER+Linking: RuCCoN

Llama3.1:8b-instruct 0.076 0.069 0.072 0.038
Llama3-Med42-8B 0.061 0.063 0.062 0.032
Phi-3.5-mini-instruct 0.060 0.064 0.062 0.032
Mistral-Nemo-Instruct-2407 0.076 0.062 0.068 0.035
Qwen2.5-7B-Instruct 0.073 0.070 0.072 0.037

Code assignment: NEREL-BIO

Llama3.1:8b-instruct 0.114 0.107 0.110 0.058
Llama3-Med42-8B 0.088 0.096 0.092 0.048
Phi-3.5-mini-instruct 0.098 0.110 0.104 0.055
Mistral-Nemo-Instruct-2407 0.121 0.105 0.112 0.059
Qwen2.5-7B-Instruct 0.125 0.126 0.125 0.067

Code assignment: RuCCoN

Llama3.1:8b-instruct 0.295 0.282 0.288 0.168
Llama3-Med42-8B 0.254 0.275 0.264 0.152
Phi-3.5-mini-instruct 0.248 0.273 0.260 0.149
Mistral-Nemo-Instruct-2407 0.284 0.244 0.263 0.151
Qwen2.5-7B-Instruct 0.292 0.294 0.293 0.172

Table 13: Relaxed evaluation results for NER, Code assignment, and end-to-end entity linking task on RuCCoD for
LLM+RAG pipeline using NEREL-BIO and RuCCoN for vectorstore.
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