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Abstract

In recent years, large language models (LLMs)
have revolutionized the field of natural lan-
guage processing. However, they often
suffer from knowledge gaps and hallucina-
tions. Graph retrieval-augmented generation
(GraphRAG) enhances LLM reasoning by in-
tegrating structured knowledge from external
graphs. However, we identify two key chal-
lenges that plague GraphRAG: (1) Retrieving
noisy and irrelevant information can degrade
performance and (2) Excessive reliance on ex-
ternal knowledge suppresses the model’s in-
trinsic reasoning. To address these issues, we
propose GraphRAG-FI (Filtering & Integra-
tion), consisting of GraphRAG-Filtering and
GraphRAG-Integration. GraphRAG-Filtering
employs a two-stage filtering mechanism to
refine retrieved information. GraphRAG-
Integration employs a logits-based selection
strategy to balance external knowledge from
GraphRAG with the LLM’s intrinsic reasoning,
reducing over-reliance on retrievals. Experi-
ments on knowledge graph QA tasks demon-
strate that GraphRAG-FI significantly improves
reasoning performance across multiple back-
bone models, establishing a more reliable and
effective GraphRAG framework.

1 Introduction

Large language models (LLMs) have achieved re-
markable success in NLP tasks, particularly in tasks
that require complex reasoning (Havrilla et al.; Wu
et al., 2023; Hao et al., 2023; Zeng et al., 2025;
Liu et al., 2025). However, despite their strengths,
LLMs are prone to hallucinations, resulting in in-
correct or poor reasoning (Ji et al., 2023; Huang
et al., 2024; Sriramanan et al., 2025). GraphRAG
techniques have emerged as a promising solution to
this problem (Han et al., 2024; Zhang et al., 2025;
He et al., 2025; Mavromatis and Karypis, 2024),
by integrating relevant information from external
graphs. Knowledge graphs, which store facts in

the form of a graph, are commonly used for this
problem. Specifically, relevant facts (i.e., triples) or
paths are extracted from the knowledge graph and
used to enrich the context of the LLMs with struc-
tured and reliable information (Luo et al., 2024;
Li et al., 2025; Ma et al., 2024). This approach
has shown ability to improve the reasoning capa-
bilities and reduce the presence of hallucinations
in LLMs (Sun et al.; Li et al., 2025; Dong et al.,
2024).

To better assess the efficacy of GraphRAG, in
Section 3 we conduct a preliminary study com-
paring its performance with an LLM-only model
(i.e., LLM without GraphRAG). This compari-
son reveals both the advantages and limitations
of GraphRAG. While GraphRAG improved rea-
soning accuracy by correcting some LLM errors,
it also introduces some notable weaknesses. For
example, incorporating external knowledge will
sometimes cause questions that were originally an-
swered correctly by the LLM to be misclassified.
This highlights the dangers of retrieving irrelevant
information. Furthermore, excessive retrieval com-
pounds this issue by introducing both noise and
redundant information, thus further hindering the
reasoning process.

Meanwhile, we find that LLM-only and
GraphRAG can complement one another. Specifi-
cally, GraphRAG can enhance reasoning for those
questions LLMs lack knowledge of; while exces-
sive reliance on external information may cause
the model to overlook internally known correct an-
swers. These findings highlight two key limitations
of existing GraphRAG methods. First, GraphRAG
is highly susceptible to retrieving irrelevant or mis-
leading information. Second, GraphRAG strug-
gles to balance external retrieval with the LLM’s
internal knowledge, often missing parts of the an-
swer that the LLM-only model can provide using
its own knowledge. These challenges differ from
those encountered in standard RAG settings (Wang
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et al., 2023b; Chang et al., 2024); they arise specif-
ically within the graph context. Our focus is the
GraphRAG setting, which involves structured re-
trieval formats such as paths, triples, and sub-
graphs—highly compact yet densely informative
knowledge representations that are inherently more
difficult for LLMs to interpret compared to unstruc-
tured text (Luo et al., 2024; Li et al., 2025). This
leads to several unique limitations: 1) Structured
Noise: Retrieved graph data is often multi-hop and
entangled. Noise manifests not as irrelevant facts,
but as misleading or incomplete reasoning chains
that hinder accurate inference. 2) Multi-Answer
Complexity: Many KGQA queries have multiple
correct answers, requiring the retrieved context to
support all of them. This increases the difficulty of
filtering, as naive top-K selection tends to overlook
less dominant yet still valid answers.

To address these complexities, we introduce a
novel framework tailored to resolve the challenges
inherent in graph-based retrieval. First, we aim
to enhance the retrieval quality to better avoid re-
trieving irrelevant information. Second, we inte-
grate GraphRAG with the intrinsic reasoning abil-
ity of the LLM, thereby leveraging complementary
knowledge sources. In particular, to mitigate the
issue of retrieving irrelevant information, we intro-
duce a two-stage filtering process. Furthermore, to
mitigate GraphRAG from over-relying on retrieved
information while underutilizing the LLM’s inher-
ent reasoning ability, we introduce a logits-based
selection mechanism that dynamically integrates
LLMs’ standalone answers with GraphRAG’s out-
puts. This approach ensures that the final response
effectively balances external knowledge with the
model’s internal reasoning. The main contributions
of our work are summarized as follows:

• We identify two key challenges in GraphRAG:
(1) It is susceptible to errors by retrieving
irrelevant or misleading information. (2)
It overemphasizes the externally retrieved
knowledge, at the expense of the intrinsic rea-
soning capabilities of LLMs.

• We introduce a novel approach that enhances
GraphRAG by incorporating a two-stage filter-
ing mechanism to refine the retrieved knowl-
edge and dynamically integrate this knowl-
edge with a LLMs’ standalone reasoning ca-
pabilities.

• Extensive experiments on knowledge graph

QA demonstrate the effectiveness of our
method across multiple backbone models.

2 Related work

GraphRAG. GraphRAG aims to address halluci-
nations and outdated knowledge in LLMs by in-
corporating additional information retrieved from
external knowledge bases (Sun et al.; Li et al.,
2025; Dong et al., 2024). G-Retriever (He et al.,
2025) identifies relevant nodes and edges for a
given query based on cosine similarity, and then
constructs a subgraph to aid in the generation pro-
cess. Similarly, RoG (Luo et al., 2024) introduces
a planning-retrieval-reasoning framework, where
it retrieves reasoning paths guided by a planning
module and performs reasoning using these paths.
On the other hand, GNN-RAG (Mavromatis and
Karypis, 2024) leverages Graph Neural Networks
(GNNs) (Kipf and Welling, 2016) to process the
intricate graph structures within knowledge graphs,
enabling effective retrieval.

Filter Methods. ChunkRAG (Singh et al., 2024)
tries to improve RAG systems by assessing and fil-
tering retrieved data at the chunk level, with each
"chunk" representing a concise and coherent seg-
ment of a document. Zeng et al. (2024b) introduce
Rep-PCA, which employs representation classifiers
for knowledge filtering. RoK (Wang et al., 2024)
refines the reasoning paths within the subgraph by
computing the average PageRank score for each
path. Similarly, He et al. (2024) use PageRank to
identify the most relevant entities. More details are
presented in Appendix A.1.

3 Preliminary studies

To evaluate the effectiveness of GraphRAG, we
compare the performance with and without re-
trieved external knowledge. Furthermore, we ana-
lyze the attention scores of the LLM to assess its
ability to discern both the relevance and importance
of the retrieved information. Lastly, we evaluate
the performance of internal knowledge filtering.

3.1 Experimental settings

In this section, we aim to study the importance
of retrieving external information when using
GraphRAG for knowledge graph QA. To do so, we
report the QA performance when using: LLM with
GraphRAG and LLM w/o GraphRAG (i.e., LLM-
only). For GraphRAG, we use RoG (Luo et al.,
2024) and GNN-RAG (Mavromatis and Karypis,
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Figure 1: Category A includes cases where both
GraphRAG and the LLM-only model are correct. Cat-
egory B covers instances where GraphRAG outper-
forms the LLM-only model, while Category C includes
cases where the LLM-only model performs better than
GraphRAG. Category D represents cases where both
models fail.

Figure 2: The relationship between path number and
average F1

2024). For the LLM-only experiments, we use
the fine-tuned LLaMA 2-7B model, which is the
same LLM used by RoG. The experiments are con-
ducted on two common datasets the WebQSP (Yih
et al., 2016) and CWQ (Talmor and Berant, 2018)
datasets. In this study, we mainly use the F1 score
to evaluate the performance.

3.2 The Impact of GraphRAG

To understanding the effectiveness of GraphRAG,
we compare prediction outcomes between LLM
with GraphRAG and LLM w/o GraphRAG (i.e.,
LLM-only). We categorize the results into four
groups based on F1 scores, as shown in the Figure 1.
Category A includes cases where both GraphRAG
and the LLM-only model provide correct answers.
Category B consists of instances where GraphRAG
produces a more accurate answer than the LLM-
only model. Category C includes cases where
the LLM-only model outperforms GraphRAG. Fi-
nally, Category D represents instances where both
GraphRAG and the LLM-only model fail to gen-
erate the correct answer. Figure 1 illustrates the
key observations from our experiments. While

GraphRAG enhances certain predictions, it also
introduces notable challenges that require further
investigation.

Positive Impact of GraphRAG GraphRAG can
enhance the LLM’s reasoning capabilities by cor-
recting errors that the standalone model would typ-
ically commit. Notably, in the category B, 45.64%
of previously incorrect responses were successfully
rectified with the integration of GraphRAG. This
highlights the advantage of leveraging structured
knowledge graphs to boost LLM performance.

Limited Impact of GraphRAG Category A con-
tains those answers where both GraphRAG and
LLM-only are correct. This show that GraphRAG
can sometimes preserve the performance of a
LLM when the LLM already possesses the correct
knowledge. Conversely, category D, representing
9.03% of cases, corresponds to those cases where
GraphRAG fails to enhance the model’s accuracy.
For this category, neither the standalone LLM nor
GraphRAG are able to provide the correct answer.
This pattern implies that GraphRAG does not al-
ways access or incorporate sufficiently informative
or relevant knowledge.

Negative Impact of GraphRAG A notable draw-
back of GraphRAG is that will occasionally de-
grade the performance of a standalone LLM. That
is, it will sometimes lead to wrong predictions
for queries that the standalone LLM originally got
right. These instances are represented by category
C and accounts for 16.89% of samples when evalu-
ating via the F1 score. In these cases, GraphRAG
misleads the model rather than improving it. This
suggests that some of the retrieved information may
be incorrect, noisy, or irrelevant, ultimately leading
to poorer predictions. Therefore, in some cases,
LLMs without GraphRAG outperform those with
GraphRAG, because existing works have shown
that LLMs tend to over-rely on external informa-
tion (Ren et al., 2023; Tan et al., 2024; Wang et al.,
2023a; Ni et al., 2024; Zeng et al., 2024a). When
retrieval is insufficient or the quality of retrieved
knowledge is low, this reliance can degrade genera-
tion quality.

3.3 The Impact of the Number of Retrieved
Paths

Due to the structure of knowledge graphs, nodes
with high degrees and numerous relational edges
have a greater likelihood of yielding a large number
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of retrieved paths. In this subsection, we study the
impact of the number of retrieved paths on perfor-
mance. Figure 2 illustrates the relationship between
the number of retrieved paths and the model’s per-
formance. To present the information more clearly
and statistically, we include interval statistics in
Table 10, located in Appendix A.10. Interestingly,
as indicated by the smoothed line (blue), incorpo-
rating a moderate amount of retrieved information
enhances performance. However, increasing the
number of retrieved paths ultimately leads to a
decline in performance. This trend (green line)
suggests that retrieving too much information will
introduce noise, making it harder for the model
to use the correct and relevant knowledge for the
task. This phenomenon thus highlights an impor-
tant insight – more information does not neces-
sarily indicate better performance. Instead, an
overabundance of retrieved data can overwhelm
the model with irrelevant details. This observa-
tion underscores the necessity for effective filtering
mechanisms that can prioritize high-quality, rel-
evant knowledge while discarding extraneous or
misleading information.

3.4 Attention Reflects the Importance of
Retrieved Information

Figure 3: Attention Scores for Retrieved Information
With/Without Ground Truth

In this subsection, we analyze the ability of the
LLM to distinguish the importance of retrieved ex-
ternal knowledge. The attention scores of a LLM
can provide a natural indicator of the relevance
and significance of the retrieved knowledge (Yang
et al., 2024; Ben-Artzy and Schwartz, 2024). The
attention scores, derived from the model’s internal
mechanisms, effectively capture which pieces of in-
formation are most influential in reaching the final
decision. Inspired by recent work (Chuang et al.,
2023; Halawi et al., 2023), which suggests that
attention scores in the middle layers are more effec-
tive. We examine the attention scores of the (mid-

dle + 2)-th layer in the LLM for each retrieved path.
We obtain the attention scores for all retrieved paths
and categorize them into two groups: (1) paths that
contain the ground truth and (2) paths that do not.
We then compute the average attention score for
each group and present the results in Figure 3. As
demonstrated in Figure 3, there is a clear alignment
between the attention scores and the ground truth
labels, suggesting that these scores can be used to
assess the relevance of retrieved information.

This observation inspires a key insight: The
attention scores highlight the most significant re-
trieved information, suggesting their potential use
in filtering out noisy or irrelevant knowledge. Since
retrieved information with lower attention scores
contribute minimally to the final output, they can be
pruned to streamline retrieval and enhance overall
performance.

3.5 Internal Knowledge Filtering

Large language models (LLMs) generate responses
that may contain both correct and incorrect infor-
mation. To assess the reliability of these responses,
we analyze the associated logits, which represent
the model’s confidence in its predictions. Typically,
higher confidence correlates with correctness (Ma
et al., 2025; Virk et al., 2024). Leveraging this
property, we implement “Internal Knowledge Fil-
tering”, which uses the logits to help refine the
answer selection.The logits of answer can be di-
rectly obtained from the LLM’s output. Formally,
let AL denote the sets of answer candidates from
the LLM model. Furthermore, let it’s correspond-
ing logits after softmax function be given by ℓL(a).
The filtering step is given by the following:

Afiltered
L = {a ∈ AL | ℓL(a) ≥ τL}, (1)

where τL = 1, a represents a specific candidate
answer and is an element of AL. This allows us
to filter out the responses that the LLM has low-
confidence in. The experimental results are shown
in Table 1. We can clearly see that that leveraging
logits to filter out low-confidence responses has a
large positive effect on performance. In this way,
we can reconsider intrinsic knowledge and apply
this approach to GraphRAG to better balance inter-
nal and external knowledge base on logits. Further-
more, we provide an experimental analysis compar-
ing our method with naive answer merging without
using logit threshold τL = 1 in Appendix A.5.
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Methods WebQSP CWQ

Hit F1 Hit F1

LLM 66.15 49.97 40.27 34.17
LLM with Logits 84.17 76.74 61.83 58.19

Table 1: Impact of logits on LLM performance

3.6 Discussions

In this subsection, we summarize the key findings
and discussions from our preliminary study. The
performance issues observed in GraphRAG primar-
ily arise from two key factors. (1) Noisy or Irrele-
vant Retrieval: Some retrieved paths contain irrel-
evant or misleading information. This negatively
impacts the model’s ability to properly answer the
query. Furthermore, this noise can introduce con-
flicting or unnecessary information that hinders
the decision-making process rather than improving
it. (2) Lack of Consideration for LLM’s Own
Knowledge: GraphRAG does not always take into
account the inherent reasoning ability of the LLM
itself. In some cases, the retrieved information
overrides the LLM’s correct predictions, leading to
performance degradation rather than enhancement.
A more adaptive approach is needed to balance ex-
ternal knowledge retrieval with the model’s internal
knowledge.

4 Method

Based on our analysis, we propose a new frame-
work to address the identified challenges, guided
by two key insights: (1) Filtering retrieved informa-
tion: Given the tendency of GraphRAG to retrieve
irrelevant or incorrect retrieved information, it is
essential to refine the retrieved knowledge. (2)
Properly leveraging the LLMs standalone capabil-
ities: The LLM itself can often correctly answer
some questions. It’s thus necessary to effectively
integrate and use the inherent reasoning ability of
LLMs along with GraphRAG.

An overview of our framework GraphRAG-FI
is given in Figure 4. It consists of two core com-
ponents: GraphRAG-Filtering and GraphRAG-
Integration. GraphRAG-Filtering first refines the
retrieved information by removing irrelevant or
misleading knowledge. GraphRAG-Integration
module balances the retrieved knowledge with the
LLM’s inherent reasoning ability, thereby mitigat-
ing the overuse of retrieved information that can
negatively impact performance. In the following
subsections, we will introduce each component of

our framework in detail.

4.1 GraphRAG-Filtering
Let P = {p1, p2, . . . , pN} denote the set of N
retrieved paths or triplets, where each path pi is
assigned an attention score âi. Then we design
filtering via the following two stages.

Stage 1: Coarse Filtering using Attention: In
the first stage, we perform a coarse filtering by
retaining only those paths whose attention scores
exceeds a threshold τ . This is given formally by:

Pcoarse = {pi ∈ P | âi ≥ τ}. (2)

where âi denotes the attention score of path pi. The
detailed procedure for computing attention scores
is provided in Appendix A.6.

Stage 2: Fine Filtering via LLMs: After the
initial coarse filtering, which significantly reduces
the number of candidate paths, we perform a more
precise evaluation with a LLM on the remaining
subset. This two-stage filtering approach not only
enhances the quality of the retrieved paths but also
greatly reduces the overall cost by limiting the use
of the LLM to only those paths deemed promising
in the first stage. Let f(p) represent the evaluation
score provided by the LLM for a path p, and let
τ ′ be the corresponding threshold. The final set of
filtered paths is then given by:

Pfinal = {p ∈ Pcoarse | f(p) ≥ τ ′}, (3)

where Pcoarse is the set of paths that passed the
coarse filtering stage, τ ′ is not predefined but is
determined by the LLM itself. Specifically, we
prompt the LLM to achieve this goal. The prompt
is presented in Fig 6 in Appendix.

Prompt Construction for Question Answering:
After the two filtering stages, we incorporate the
selected paths and query into the prompt to further
guide the model’s reasoning. The prompt contains
the following two types of retrieved paths:

• High Priority Paths: These are the final fil-
tered paths given by Pfinal, which are consid-
ered the most reliable.

• Additional Paths: We also consider the the
remaining paths included by the coarse filter
but removed via the fine filter, Pcoarse − Pfinal.
We conjecture that while they may not be as
important as those paths in Pfinal, they can still
offer some useful supplementary context.
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Figure 4: An overview of the GraphRAG-FI framework.

The new prompt is then constructed by first in-
serting a header for the high-priority paths, fol-
lowed by each path on a separate line. The same
process is repeated for the additional paths. By
structuring the prompt in this way, we are able to
clearly delineate the paths by their priority. This
ensures that the most critical information (Pfinal)
is emphasized and processed first, while still in-
corporating the supplementary context from the
additional paths. An example prompt is given in
Fig 5 in Appendix A.3. In graph-based retrieval
settings, limitations such as structured noise and
multi-answer complexity are commonly encoun-
tered. To enhance recall and ensure comprehen-
sive answer coverage, it is crucial to incorporate
additional paths beyond the top-ranked evidences.
Accordingly, we conduct an experiment to assess
the impact of these additional paths, as detailed in
Appendix A.11.

4.2 Integration with LLMs’ Internal
Knowledge

As noted in Section 3.2, in addition to ensuring
we only retrieve high-quality information, we also
want to retain internal knowledge of the LLMs. As
such, we want to also integrate the capabilities of
just the LLM into our framework. However, a chal-
lenge is knowing when to defer to which method.
When do we trust the answers given by GraphRAG
and when the standalone LLM? Furthermore, how
do we fuse the answers given by both methods?

To achieve this goal, we need a method to de-
termine which answers produced by both LLM-
only and GraphRAG are actually relevant. In Sec-
tion 3.5, we found that the LLM’s logits can pro-
vide a useful tool to refine the potential answers.
That is, focusing only on those answers that are

given a higher confidence is helpful. This naturally
provides us with an easy way to focus on just the
high-quality information. For both GraphRAG and
the LLM-only model, we filter the answers based
on their logits, ensuring that only high-confidence
responses are retained. After this logits-based fil-
tering, the refined answers from both sources are
combined to produce the final answer, thereby en-
hancing robustness and accuracy.

Formally, let AG and AL denote the sets of an-
swer candidates from GraphRAG and the LLM-
only model, respectively. We further use a to in-
dicate a single candidate answer in either set. Fur-
thermore, let their corresponding logits after the
softmax function be given by ℓG(a) and ℓL(a). The
filtering step is given by the following:

Afiltered
G = {a ∈ AG | ℓG(a) ≥ τG}, (4)

Afiltered
L = {a ∈ AL | ℓL(a) ≥ τL}, (5)

where τG and τL are predefined thresholds, τL is set
to 1. Subsequently, the final answer is determined
by combining the filtered sets:

Afinal = Combine
(
Afiltered

G , Afiltered
L

)
, (6)

where Combine(·) denotes the function that inte-
grates the filtered answers into the final reliable
output.

5 Experiment

In our experiments, we seek to address the follow-
ing research questions: RQ1: How effective is the
proposed method when applied to state-of-the-art
GraphRAG retrievers in the knowledge graph QA
task? RQ2: How does the proposed method com-
pare to other filtering approaches? RQ3: How does
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Type Methods
WebQSP CWQ

Hit F1 Hit F1

LLMs

Alpaca-7B(Taori et al., 2023) 51.8 - 27.4 -
LLaMA2-Chat-7B(Touvron et al., 2023) 64.4 - 34.6 -
ChatGPT 66.8 - 39.9 -
ChatGPT+CoT 75.6 - 48.9 -

LLMs+KGs

ROG 86.73 70.75 61.91 54.95
ROG + Similarity 85.50 69.38 61.62 54.38
ROG + PageRank 85.44 69.60 61.34 54.41
ROG + GraphRAG-Filtering 87.40 73.41 63.86 57.25
ROG + GraphRAG-FI 89.25 73.86 64.82 55.12

GNN-RAG 90.11 73.25 69.10 60.55
GNN-RAG + Similarity 89.68 72.17 68.50 60.26
GNN-RAG + PageRank 89.18 71.92 66.75 58.73
GNN-RAG + GraphRAG-Filtering 91.28 74.74 69.70 60.96
GNN-RAG + GraphRAG-FI 91.89 75.98 71.12 60.34

SubgraphRAG 76.90 64.65 53.87 50.43
SubgraphRAG + Similarity 72.72 59.98 52.05 48.27
SubgraphRAG + PageRank 61.79 50.65 46.75 43.23
SubgraphRAG + GraphRAG-Filtering 81.01 68.40 58.82 54.71
SubgraphRAG + GraphRAG-FI 81.08 68.28 58.96 52.52

Table 2: Performance comparison with different baselines on the two KGQA datasets.

the performance change when more noisy informa-
tion is introduced? and RQ4: What is the impact
of the two modules on performance?

Our code is available at https://github.com/
KaiGuo20/GraphRAG-FI.

5.1 Experiment Settings

Datasets. To assess the effectiveness of our
method, we evaluate it on two widely recognized
KGQA benchmark datasets: WebQSP (Yih et al.,
2016) and CWQ (Talmor and Berant, 2018). We-
bQSP contains 4,737 natural language questions
that require reasoning over paths of up to two hops.
In contrast, CWQ includes 34,699 more complex
questions that necessitate multi-hop reasoning over
up to four hops. Both datasets are built upon Free-
base , which consists of around 88 million enti-
ties, 20 thousand relations, and 126 million triples.
Further details on the datasets are provided in Ap-
pendix A.2.

Retriever Backbones. Our framework adopts
three existing retrieval methods as its backbone:
path-based retrieval (ROG (Luo et al., 2024)),
GNN-based retrieval (GNN-RAG (Mavromatis and
Karypis, 2024)), and subgraph-based retrieval (Sub-
graphRAG (Li et al., 2025)). Path-based retrieval
extracts relevant paths using heuristics or shortest-
path algorithms, while GNN-based retrieval lever-

ages a Graph Neural Network to learn and retrieve
informative paths. In contrast, subgraph-based re-
trieval retrieves relevant subgraphs and encodes
them as triples, enabling fine-grained relational
reasoning. Therefore, both path-based and GNN-
based methods generate paths as input for the LLM.
Lastly, subgraph-based methods decompose the
subgraph into triples—i.e., (h, r, t), which are then
used as input to the LLM. Considering these al-
lows us to test the framework on diverse retrieval
methods.

Filter Baselines. The most commonly used fil-
tering methods for RAG are similarity-based ap-
proaches used in (Gao et al., 2025). Similarity-
based methods evaluate the relevance of retrieved
information by measuring feature similarity. For
retrieval over graphs, PageRank-based filtering is
widely adopted (Wang et al., 2024). PageRank-
based filtering leverages the graph structure to rank
nodes based on their connectivity and importance.
These methods provide a baseline filtering mech-
anism for refining the retrieved results. To evalu-
ate the effectiveness of our method, we compare
it with several filtering and reranking approaches
within the traditional RAG framework, including
FILCO (Wang et al., 2023b), Main-RAG (Chang
et al., 2024), and BGE-Reranker (Chen et al., 2024).
The results are presented in Table 8 in Appendix.
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Implementation and Evaluation Metrics. We
use LLaMA2-Chat-7B from ROG as the LLM
backbone, which is instruction-finetuned on the
training split of WebQSP and CWQ, as well as Free-
base, for three epochs. For the similarity-based fil-
ter, we utilize SentenceTransformer (‘all-MiniLM-
L6-v2’) to generate representations for retrieval.
We evaluate our retrieval methods using both Hit
Rate (Hit) and F1-score (F1). Hit Rate measures the
proportion of relevant items successfully retrieved,
reflecting retrieval effectiveness. F1-score balances
precision and recall, providing a comprehensive as-
sessment of retrieval quality. These metrics ensure
a robust evaluation of retrieval performance. We
adjust the thresholds τ and τG within the ranges
[top 40, top 50] and [0.4, 0.5], respectively.

5.2 Main Results
In this section, we evaluate the performance of
our method with various retrievers and compare it
against baseline filter models.
RQ1: KGQA Performance Comparison. In this
subsection, we apply our method to different re-
trievers, including the path-based retriever, GNN-
based retriever, and subgraph-based retriever. The
results presented in Table 2 demonstrate that our
method consistently improves all retrievers, achiev-
ing an average improvement of 3.81% in Hit and
2.35% in F1 over ROG, 2.46% in Hit and 1.7%
in F1 over GNN-RAG, and significant gains of
7.47% in Hit and 4.88% in F1 over SubgraphRAG
across two datasets. These results demonstrate that
our approach is effective across different retrieval
paradigms, reinforcing its adaptability to various
retrieval strategies in QA tasks. We also evalu-
ate our method on additional models to verify its
effectiveness, with detailed results provided in Ap-
pendix A.8. In addition, we provide some case
studies in Appendix A.9.
RQ2: Comparison with other filter methods.
We compare our method against other filtering
baselines, with the results presented in Table 2.
Our approach consistently outperforms competing
methods across both datasets and retriever types.
Specifically, for ROG, our method can achieve an
average improvement of 4.78% in Hit and 3.95% in
F1 compared to similarity-based filtering on both
datasets. Furthermore, compared to the PageRank-
based filtering method, our approach yields an av-
erage increase of 5.03% in Hit and 3.70% in F1
across both datasets. These results highlight the
superiority of our method in enhancing retrieval

effectiveness and overall performance.

Methods WebQSP CWQ

Hit F1 Hit F1

ROG-original 86.73 70.75 61.91 54.95
ROG* 85.87 68.81 60.49 53.72
ROG* + GraphRAG-Filtering 86.61 73.01 61.91 55.67

Table 3: Performance when adding more noise

5.3 Robustness to Noise

In this subsection, we evaluate robustness of differ-
ent methods to noise. To evaluate the noise resis-
tance of the backbone model and our filter method,
we use GPT to generate 30 additional noise paths
that contain both irrelevant and incorrect informa-
tion. This information is then incorporated into
the retrieved context. We then analyze the impact
of this noise on performance. The experimental
results presented in Table 3, ROG* represents the
cases where noise is introduced. As the noise level
increases, the Hit score decreases by 2.29%, and
the F1 score drops by 2.23% on the CWQ dataset,
highlighting the model’s sensitivity to noise. How-
ever, when applying our method, we observe a
2.23% improvement in Hit and a 3.63% improve-
ment in F1 over ROG* on CWQ. These results
demonstrate the effectiveness of our approach in
mitigating the negative impact of noisy retrieval.

5.4 Ablation Study

We conduct an ablation study to analyze the ef-
fectiveness of the filtering module and integrating
module in GraphRAG-FI. From the results in Ta-
ble 4, we can see that GraphRAG-Filtering is useful
for the ROG retriever, as it improves both the F1
and Hit scores. For example, GraphRAG-Filtering
increases the F1 score by 4.19% and the Hit score
by 3.15% on CWQ dataset. We also see a boost
in performance for GraphRAG-Integration, with a
1.60% and 2.62% increase in F1 and Hit score, re-
spectively, on WebQSP. These results demonstrate
the effectiveness of our two components. In ad-
dition, we conduct a parameter study, with the
results presented in Appendix A.4.

Methods WebQSP CWQ

Hit F1 Hit F1

ROG-original 86.73 70.75 61.91 54.95
ROG + GraphRAG-Filtering 87.40 73.41 63.86 57.25
ROG + GraphRAG-Integration 89.00 71.88 64.25 55.19
ROG + GraphRAG-FI 89.25 73.86 64.82 55.12

Table 4: Ablation study.
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6 Conclusion

In this work, we propose GraphRAG-FI (Fil-
tering & Integration), an enhanced GraphRAG
framework that addresses key challenges in graph
retrieval-augmented generation. By incorporating
GraphRAG-Filtering, which utilizes a two-stage
filtering mechanism to refine retrieved informa-
tion, and GraphRAG-Integration, which employs a
logits-based selection strategy to balance retrieval
and intrinsic reasoning, our approach mitigates the
impact of noisy retrievals and excessive depen-
dence on external knowledge.

Limitations

In this work, we identify two key challenges in
GraphRAG: (1) it is prone to errors due to the
retrieval of irrelevant or misleading information,
and (2) it places excessive emphasis on externally
retrieved knowledge, which can diminish the in-
trinsic reasoning capabilities of LLMs. Future re-
search will first explore a broader range of large
language models to evaluate their effectiveness
within GraphRAG. Additionally, further investi-
gation into diverse filtering methods could enhance
the refinement of retrieved information and reduce
noise. More sophisticated fusion strategies may
also be explored to dynamically balance external
knowledge with the intrinsic reasoning of LLMs,
enabling more effective information integration.
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A Appendix

A.1 Related work

GraphRAG. GraphRAG aims to address halluci-
nations and outdated knowledge in LLMs by in-
corporating additional information retrieved from
external knowledge bases (Sun et al.; Li et al., 2025;
Dong et al., 2024). G-Retriever (He et al., 2025)
identifies relevant nodes and edges for a given
query based on cosine similarity, and then con-
structs a subgraph to aid in the generation pro-
cess. Similarly, RoG (Luo et al., 2024) intro-
duces a planning-retrieval-reasoning framework,
where it retrieves reasoning paths guided by a plan-
ning module and performs reasoning using these
paths. On the other hand, GNN-RAG (Mavromatis
and Karypis, 2024) leverages Graph Neural Net-
works (GNNs) (Kipf and Welling, 2016) to pro-
cess the intricate graph structures within knowledge
graphs, enabling effective retrieval. They also use
retrieval augmentation techniques to enhance diver-
sity. However, the effectiveness of these methods
is heavily dependent on the quality of the retrieved
information, and their performance significantly de-
clines when the retrieved graph data is either noisy
or unrelated to the query (He et al., 2025) .

Filter Methods. Filtering attempts to only
keep those pieces of retrieved information that
are relevant to the given query (Gao et al., 2025).
ChunkRAG (Singh et al., 2024) tries to improve
RAG systems by assessing and filtering retrieved
data at the chunk level, with each "chunk" repre-
senting a concise and coherent segment of a docu-
ment. This method first applies semantic chunking
to partition documents into meaningful sections.
It then leverages LLM-based relevance scoring to
evaluate how well each chunk aligns with the user
query. Zeng et al. (2024b) thoroughly investigate
LLM representation behaviors in relation to RAG,
uncovering distinct patterns between positive and
negative samples in the representation space. This
distinction enables representation-based methods
to achieve significantly better performance for cer-
tain tasks. Building on these insights, they intro-
duce Rep-PCA, which employs representation clas-
sifiers for knowledge filtering. RoK (Wang et al.,
2024) refines the reasoning paths within the sub-
graph by computing the average PageRank score
for each path. Similarly, He et al. (2024) use PageR-
ank to identify the most relevant entities.

Datasets #Train #Test Max #hop
WebQSP 2,826 1,628 2

CWQ 27,639 3,531 4

Table 5: Statistics of datasets.

A.2 Datasets

We utilize two benchmark KGQA datasets, We-
bQSP (Yih et al., 2016) and CWQ (Talmor and
Berant, 2018), as proposed in previous studies. Fol-
lowing ROG, we maintain the same training and
testing splits. The dataset statistics are provided
in Table 5. Each query have one or multiple cor-
rect answers. Specifically, for the WebQSP dataset,
there are 815 queries with a single answer and
813 queries with multiple answers, accounting for
49.94% of the total. For the CWQ dataset, 2676
queries have a single answer, while 855 queries
have multiple answers, representing 24.21% of the
total.

A.3 Prompt example

We provide an example prompt for question answer-
ing in Fig.5, and the prompt used for fine filtering
is shown in Fig.6.

Prompts

Based on the reasoning paths, please an-
swer the given question. Please keep the
answer as simple as possible and return all
the possible answers as a list.
Reasoning Paths:
High Priority Paths:

Northern Colorado Bears football → educa-
tion.educational_institution.sports_teams
→ University of Northern Colorado
Additional Paths:

Northern Colorado Bears football → educa-
tion.educational_institution.sports_teams
→ University of Northern Colorado
Greeley → location.location.containedby
→ United States of America
Greeley → location.location.containedby
→ Greeley Masonic Temple
Question: What educational institution has
a football sports team named Northern Col-
orado Bears is in Greeley, Colorado?

Figure 5: An Example Prompt of Question Answering
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A.4 Parameter study

We conducted an additional parameter study to eval-
uate the robustness of our method under different
hyperparameter settings. We focus on two param-
eters: τG and τ . The performance (Hit and F1
scores) on the WebQSP dataset under varying set-
tings is reported in Table 6: As shown, our model
performs consistently well across different parame-
ter settings, demonstrating that it is robust to mod-
erate changes in both τG and τ .

Hit Score for Parameter Study
τG = 0.4 τG = 0.5

τ = top 40 89.07 89.06
τ = top 50 89.10 89.25

F1 Score for Parameter Study
τG = 0.4 τG = 0.5

τ = top 40 73.84 73.47
τ = top 50 73.73 73.86

Table 6: Performance Metrics for Parameter Study

A.5 Comparison with naively merging
answers

To verify whether the performance gain comes
from our proposed GraphRAG integration rather
than simply increasing the number of candidate an-
swers, we conducted an additional ablation where
we naively merged all answers from the internal
LLM and external retrieved results without any
filtering. The results are shown in Table 7. Al-
though the naive merging strategy collects more
answers through over-coverage, it leads to lower
precision. In contrast, our method achieves signifi-
cantly higher F1 scores, indicating more accurate
and faithful answer selection. This highlights the
effectiveness of our fusion mechanism in balancing
internal and external knowledge, filtering out noise,
and enhancing the overall quality of predictions.

Method WebQSP CWQ
Naively merging 66.07 48.91
GraphRAG-FI 73.86 55.12

Table 7: F1 scores on WebQSP and CWQ datasets com-
paring naive merging and GraphRAG-FI.

A.6 Attention Score for Coarse Filtering.

To get attention scores for coarse filtering, we per-
form the following steps:

1. Target Layer Selection: We extract the at-
tention weights from an intermediate layer of
LLMs.

2. Token Alignment Within Path: For each
path pi, we identify its token span in the seri-
alized prompt by locating the position of each
path in the input string, and using the LLM
tokenizer to obtain the corresponding token
indices.

3. Attention Score Computation: We extract
the attention weights from the last decoding
token (usually corresponding to the genera-
tion of the first output token) to all tokens in
path pi, using the target attention layer. For
each path, we compute an attention-based rel-
evance score as:

âi =
max(att(pi)) + mean(att(pi))

2
(7)

where att(pi) refers to the attention weights from
the decoding token to the token span of path pi.

A.7 Comparison with more baselines

To evaluate the effectiveness of our method, we
compare it with several filtering and reranking
approaches within the traditional RAG frame-
work, including FILCO (Wang et al., 2023b),
Main-RAG (Chang et al., 2024), and BGE-
Reranker (Chen et al., 2024). Specifically, FILCO
is a mutual information-based filtering method,
Main-RAG leverages prompt-based filtering, and
BGE-Reranker utilizes a reranking model for can-
didate selection. The results, presented in Table 8,
show that our method consistently outperforms
these baselines across all metrics and datasets. This
highlights the effectiveness of our framework, par-
ticularly in leveraging graph-structured knowledge.

Method WebQSP CWQ
Hit F1 Hit F1

Main-RAG 82.06 63.67 54.97 48.41
BGE-Reranker 85.93 69.23 61.56 54.95
FILCO 86.67 69.89 61.09 53.89
Our method 89.25 73.86 64.82 55.12

Table 8: Performance comparison between baselines
and our method on WebQSP and CWQ datasets.
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Prompt Template

messages = [
{"role": "system",
"content": "You are a reasoning assistant. Your task is to analyze numbered reasoning paths and
return only the indices of useful paths."},
{"role": "user",
"content": "Question:\n{question}\n\n
Numbered Reasoning Paths:\n{numbered_paths_text} \n\n
Giving question, return only the indices of useful paths as a comma-separated list"}
]

Figure 6: Prompt of Fine Filtering

A.8 Performance on other models

In addition to models like LLaMA2-Chat-7B, we
also tested our method using Qwen2.5-7B and
Llama3.1-70B for question answering. The results
in Table 9 consistently show that our method out-
performs the RoG across different model scales,
demonstrating its effectiveness.

Hit F1
Qwen2.5-7B
RoG 80.96 65.44
Our method 82.50 66.40
Llama3.1-70B
RoG 84.58 71.20
Our method 85.40 77.67

Table 9: Results on WebQSP

A.9 Case study

We provide qualitative case studies to illustrate
the effectiveness of our method. Below in Fig-
ure 7 are two representative examples from the
WebQSP dataset: These examples demonstrate that
our method filters out noisy or irrelevant candidates
and successfully integrates internal and external
knowledge to recover all correct answers with high
precision.

A.10 Statistics of path count intervals

To make the information more clear and statisti-
cally, we provide interval statistics, including the
average F1 scores within each interval and the p-
values from t-tests, as shown in the Table 10. From
the results, we observe an overall decreasing trend
in F1 score as the number of paths increases. In 3

out of 5 cases, the p-values indicate a statistically
significant decrease.

A.11 The importance of additional paths.
To demonstrate the necessity of the additional
paths discussed, we conducted an ablation study
by removing those paths and keeping only the top-
ranked reasoning paths. As shown in Table 11,
removing secondary but informative paths leads
to a significant performance drop, confirming that
these paths are crucial for ensuring complete rea-
soning coverage, recall and improving final predic-
tion quality.
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Example 1
Question: What countries does Greece share borders with?
Ground Truth: Albania, Bulgaria, Republic of Macedonia, Turkey
Method Prediction
LLM-only Bulgaria, Turkey, Republic of Macedonia, Albania
LLM+GraphRAG Turkey, Republic of Macedonia, Albania (Misses Bulgaria)
Our Method Albania, Bulgaria, Turkey, Republic of Macedonia (All correct)

Example 2
Question: What colleges did Harper Lee attend?
Ground Truth: University of Alabama, Huntingdon College, University of Oxford, Uni-

versity of Alabama School of Law
Method Prediction
LLM-only University of Alabama, Huntingdon College, University of Alabama

School of Law, University of Tennessee, Cornell University, Shortridge
High School, Butler University, University of Chicago, Carnegie Mellon
University (includes many irrelevant institutions)

LLM+GraphRAG Huntingdon College, University of Alabama School of Law, University
of Oxford (Misses University of Alabama)

Our Method Huntingdon College, University of Alabama, University of Alabama
School of Law, University of Oxford (All correct)

Figure 7: Comparison of different methods on two example questions

Interval Average F1 (%) Comparison P-value
0-10 74.69
10-40 66.91 0-10 vs 10-40 0.0002
40-70 58.43 10-40 vs 40-70 0.0269
70-100 65.96 40-70 vs 70-100 0.1691

100-130 62.17 70-100 vs 100-130 0.5723
130-160 35.12 100-130 vs 130-160 0.0469

Table 10: Statistics Table of Path Count Intervals

Method WebQSP CWQ
Hit F1 Hit F1

Without additional paths 37.78 34.35 27.27 25.01
Our method 89.25 73.86 64.82 55.12

Table 11: Comparison of hit rates and F1 scores with and without additional paths on WebQSP and CWQ datasets.
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