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Abstract

Learning Japanese vocabulary is a challenge
for learners from Roman alphabet backgrounds
due to script differences. Japanese combines
syllabaries like hiragana with kanji, which are
logographic characters of Chinese origin. Kanji
are also complicated due to their complexity
and volume. Keyword mnemonics are a com-
mon strategy to aid memorization, often using
the compositional structure of kanji to form
vivid associations. Despite recent efforts to use
large language models (LLMs) to assist learn-
ers, existing methods for LLM-based keyword
mnemonic generation function as a black box,
offering limited interpretability. We propose
a generative framework that explicitly models
the mnemonic construction process as driven
by a set of common rules, and learn them using
a novel Expectation-Maximization-type algo-
rithm. Trained on learner-authored mnemonics
from an online platform, our method learns
latent structures and compositional rules, en-
abling interpretable and systematic mnemonics
generation. Experiments show that our method
performs well in the cold-start setting for new
learners while providing insight into the mech-
anisms behind effective mnemonic creation.

1 Introduction

Learning vocabulary in a second language can be a
cognitively demanding task, particularly when the
writing system differs significantly from that of the
learner’s native language. The challenge is espe-
cially pronounced in the context of Japanese, which
employs not only hiragana, a syllabary roughly
equivalent to the English alphabet, but also kanji—
logographic characters of Chinese origin. For learn-
ers whose native languages uses the Roman alpha-
bet, mastering kanji is difficult due to their com-
plexity and volume (Everson, 2011). To ease this
learning burden, keyword mnemonics (Atkinson
and Raugh, 1975) have been widely adopted as
an effective learning approach. These mnemonics

Figure 1: An example of an online platform Koohii
Kanji (2024) for sharing mnemonics is kanji 休. A
learner can type their mnemonic and share it with others.

leverage the compositional structure of kanji; for
example, the character休 (rest) is composed of人
(person) and 木 (tree), prompting the mnemonic
“a person resting by a tree,” and learning plat-
forms support this approach by assigning keywords,
sometimes based on visual resemblance, to kanji
components and offering cues that combine these
keywords into memorable associations (Heisig,
2011; WaniKani, 2024; Kanshudo, 2024).

Recent work has explored automating the gen-
eration of such mnemonics using large language
models (LLMs). Lee and Lan (2023) uses human-
authored keywords in combination with LLMs to
produce verbal cues and employs text-to-image
models for visual aids. Lee et al. (2024) expands
on this by allowing the LLM to generate both key-
words and cues, followed by ranking mechanisms
based on teacher feedback. Balepur et al. (2024)
applies supervised fine-tuning (SFT) and Direct
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Preference Optimization (DPO) to align generated
mnemonics with learner preferences. Kang et al.
(2025) finds keywords in the learner’s first language
by transliterating target-language phonemes into
syllabic approximations, then uses these keywords
with an LLM to generate verbal cues.

While these systems demonstrate the potential
of LLMs to support language learning, they largely
treat cue generation as a black-box process, of-
fering less insight into how associations between
keywords and target word are formed. This is in
part because they rely on prompting or fine-tuning,
which do not make the underlying mechanisms
of cue construction transparent. Moreover, Lee
et al. (2024)’s evaluation with language learners
underscores the importance of accounting for indi-
vidual variation in cue preferences. Learners rated
cues based on imageability and coherence, and al-
though LLM-generated cues scored comparably to
human-authored ones on average, low inter-rater
agreement indicated variability in individual pref-
erences, highlighting the need for personalized cue
generation approaches.

Contributions To address the limited in-
terpretability in existing LLM-based keyword
mnemonic generation methods, we propose a
generative framework that explicitly models the
mnemonic construction process: there are a set
of common rules that learners follow when con-
structing mnemonics, and learners have different
tendencies in using them for each kanji. We learn
these rules and learner tendencies using a novel
Expectation-Maximization (EM)-type algorithm.
Rather than relying solely on LLMs, our approach
learns latent structures and compositional rules
from learner-authored mnemonics, enabling inter-
pretable and systematic generation of mnemonics.

We evaluate our approach using data from an
online language learning platform where learners
share mnemonics for Japanese kanji. Since we
focus on learning common rules among learners,
rather than modeling the preferences of each indi-
vidual learner, we mostly experiment in the cold-
start setting, i.e., generating mnemonics for a new
learner who has not created any mnemonics before.
Results show that our EM-type method sometimes
outperforms baselines, with modest but consistent
gains in terms of generating mnemonics that better
align with actual learner-authored ones. Further-
more, our analysis reveals interpretable rules and
learner usage patterns, offering new insights into
the mechanics of mnemonic generation.

2 Problem Statement

We formally define and model the task of
mnemonic generation, where learners author cues
to help themselves memorize kanji. Assume we
observe mnemonics authored by multiple learners
for multiple kanji, denoted as

D =
{(

ki, bi, {mij}Jj=1

)}I

i=1
, (i, j) ∈ Ω,

where j indexes learners, i indexes kanji, ki de-
notes the ith kanji, and bi = (w(ki), {wi}) denotes
background metadata available to learners. For ex-
ample, in online mnemonic platforms, there is typi-
cally some background on each kanji, such as infor-
mation in language learning textbooks on the mean-
ing and pronunciation of its components. Here,
w(ki) is the English meaning of the kanji, and
{wi} is a set of associated keywords derived from
its components. The set {mij}Jj=1 contains ver-
bal cues authored by different learners for kanji ki.
Since in general, not all learners author mnemonics
for all kanji, Ω ⊆ I × J .

To promote learner participation in mnemonic
authoring, which helps them learn kanji, our goal
is to generate mnemonic cues for entirely new
learners—i.e., a cold-start setting, in which no
learner-specific mnemonics are available at test
time. To model this, we ensure that all cues by
a given learner are placed wholly in either the train-
ing, validation, or test set. Formally, letting U be
the set of learners, we have:

U = Utrain ∪ Uval ∪ Utest.

Our goal is to learn a model that captures common
learner tendencies and preferences from mnemon-
ics authored by learners in Utrain, to generate
mnemonics for learners in the test set Utest, i.e.,

m̂ij ∼ P (mij |ki, bi).

3 Methodology

We utilize an EM-type algorithm to jointly learn
interpretable rules and latent variables that drive
mnemonic generation. Our approach employs two
language models: LM1 as the mnemonic generator
and LM2 as the rule generator. We adopt a balanced
configuration with LM1 as the open-weights, train-
able Llama-3.2 3B-Instruct model (Meta, 2024)
and LM2 as the proprietary GPT-4o (OpenAI,
2024). It is crucial that LM1 is open-weights be-
cause the E-step of our algorithm requires direct
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access to token-level likelihoods (details discussed
below). We draw inspiration from Shashidhar et al.
(2024), who design modular systems where smaller
LMs can be fine-tuned on learner-specific data with-
out modifying the weights of an LLM. Similarly,
our setup decouples mnemonic and rule generation,
enabling lightweight adaptation without requiring
end-to-end fine-tuning of the LLM. We note that
our model choice was guided by capacity rather
than licensing; the proprietary LLM is used solely
to generate candidate rules from mnemonics, a role
that could also be fulfilled by other large open-
weight models.

3.1 Latent Trait Model

We model the process of writing a mnemonic mij

as influenced by two latent variables: a learner-
specific factor hj , which captures individual pref-
erences, memory strategies, or stylistic tendencies;
and a kanji-specific factor gi, which reflects se-
mantic or structural features of the kanji that affect
how keywords are interpreted or combined. We uti-
lize a 1-Parameter Logistic Item Response Theory
(1-PL IRT) model (Rasch, 1993) to estimate the
probability that a mnemonic for kanji ki by learner
j involves rule rk. In contrast to the traditional
IRT formulation where item difficulty is subtracted
from learner ability (i.e., p = σ(θ− β)), we define
the rule activation probability as:

p(zijk = 1) = σ(hjk + gik), (1)

where hjk ∈ R denotes the affinity of learner j for
rule rk, and gik ∈ R denotes the compatibility of
kanji ki with rule rk. Rule activations are given
by zijk ∈ {0, 1}, where zijk = 1 indicates that
rule rk is used in generating mnemonic mij for
kanji ki by learner j. Therefore, in our formulation,
high learner affinity (hjk) indicates a personal ten-
dency to use rule rk; high kanji compatibility (gik)
indicates that rule rk is semantically or visually
suitable for kanji ki.

3.2 Learning Latent Traits via EM

3.2.1 Training
After an initialization step we detail below in Sec-
tion 3.3, we utilize an EM-type algorithm to learn
the latent learner traits hjk and kanji-specific com-
patibilities gik that govern rule activation zijk. The
whole process is summarized in Algorithm 1.

In the E-step, for each kanji-learner pair (i, j),
we need to decide whether a rule rk is utilized

Algorithm 1: Our EM-type algorithm

while not converged do
/* E-step: Rule Assignment */
foreach pair (i, j) do

for k = 1 . . .K do
pk ← PLM1(mij | bi, rk)

Let Tij ← Top-3 indices of {pk};
for k = 1 . . .K do

zijk ← I[k ∈ Tij ]

/* M-step: Update hjk and gik */

L =
∑

i,j,k

BCE (σ(hjk + gik), zijk)

Update {hjk}, {gik} to minimize L;
/* Rule Update via LM2 */
for k = 1 . . .K do
Ek ← Top-N {mij} by pk;
rk ← LM2(Ek, {rk′}k′ ̸=k)

foreach pair (i, j) do
Fine-tune LM1 on
P
(
mij | bi, {rk : zijk = 1}

)

when learner j authors their mnemonic for kanji i.
Therefore, we use the open-source LM1 to compute
the following likelihoods:

pijk ← PLM1(mij | bi, rk), ∀k. (2)

In other words, we evaluate the likelihood that the
learner-authored mnemonic mij is generated by
LM1, while following rule rk. However, we cannot
completely relying on LM1, which may not be fully
calibrated to the mnemonics generation task, to
select which rules are activated. Therefore, to make
this process more robust, we set

zijk ← I[k ∈ Tij ],

where the Tij are indices of the top-3 rules with
highest per-token likelihoods of mij . Alternatively,
one can set a likelihood threshold and select rules
with likelihoods above this threshold; however, in
our experiments, we find that such an approach is
highly sensitive to the threshold parameter and less
robust than taking the top-3, perhaps due to the
high diversity in learner-authored mnemonics.

In the M-step, we perform several different steps:
First, we update the values of the latent variables
{hjk} and {gik}, by minimizing the binary cross-
entropy (BCE) loss between predicted activations
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σ(hjk + gik) and observed values zijk, under the
1-PL IRT model, according to Eq. 1. This step
aligns the learner rule preferences and kanji rule
compatibility with the rule activations zijk.

Second, we update the rules {rk} by retrieving
the most likely mnemonic set Ek under each rule,
by selecting the top-8 mnemonics using previously
computed values, pijk. We choose the number 8
because it falls within the range of the number of
rules used in our later experiments. For rule up-
dates, given Ek and the other rules involved in them
(as decided in the E-step), we prompt LM2 to gen-
erate a rule that is common in Ek, but orthogonal to
{rk′}k′ ̸=k (Supplementary Material Table 6). This
orthogonality encourages each rule to capture dis-
tinct semantic aspects of the mnemonics, reducing
redundancy across the rule set. To promote or-
thogonality, we use updated rules for k′ < k and
previous rules for k′ > k when generating rk, en-
suring that each new rule complements rather than
overlaps with existing ones.

We note that our method does not need a lot
of API calls to the large, proprietary LM2. Our
method requires only K×T+I×J×K calls to the
proprietary LM (T is the number of EM iterations):
K×T during rule updates and I×J×K for generating
initial rule activations. It is a substantial reduction
in proprietary LLM usage compared to fully fine-
tuning LM2, which requires I×J×K×T calls.

Finally, we fine-tune LM1 using the rule ac-
tivations zijk determined in the E-step with the
newly updated {rk}, along with the metadata for
each kanji, bi. Specifically, we maximize the log-
likelihood of all mnemonics according to Eq. 2,
where we replace rk with the set of all rules rele-
vant to the mnemonic, {rk}k∈Tij

. This setup fur-
ther instruction-tune LM1 to generate rules under
instructions given by the updated rules, calibrat-
ing it for the mnemonic generation task. We then
loop back to the E-step, recomputing likelihoods
pk under the newly updated LM1, repeating the
process. This iterative procedure continues until
early stopping is triggered based on validation loss.

3.2.2 Validation and Testing
To support generalization to unseen learners and
kanji in Uval and Utest, we estimate trait values
using population-level statistics derived from the
training data. As we cannot estimate their indi-
vidual traits hjk directly, we use the mean learner
trait vector h̄k computed from training learners as a
proxy. For each kanji ki, if it appears in the training

data, we use its learned trait gik to compute rule
activations using σ(h̄k + gik), and apply a thresh-
old of 0.5 to determine whether each rule is active.
Otherwise, we substitute the average trait ḡk across
all training kanji in place of gik. These activations
guide LM1 in generating or evaluating mnemonics
during validation and testing. We apply early stop-
ping based on validation loss, halting EM iterations
once performance no longer improves.

3.3 Interpretable Rule Initialization

To kick-start the EM algorithm, we need to initial-
ize the rules {rk}Kk=1 and rule activations zijk ∈
{0, 1}. To bootstrap rule discovery, we sample 20
learners and collect their mnemonics to create a set
of mnemonics, ensuring coverage among a diverse
set of learners and kanji. We then utilize the pro-
prietary LLM, LM2, to generate an initial set of
K rules, by summarizing learner behavior when
creating these mnemonics. We find that this step,
despite using only a small set of mnemonics, can
create a meaningful starting point of rules that cor-
respond to broadly applicable mnemonic strategies,
to be further optimized by our EM-type algorithm.

Once the rules {rk} are initialized, we assign
activations zijk for each kanji-learner pair. We
prompt LM2 again to decide if each rule rk applies
to the mnemonic mij . To promote sparsity in rule
usage and avoid inclusion of marginally relevant
rules, we prompt LM2 to select at most three rules
per mnemonic. We then initialize LM1 by fine-
tuning it to maximize the likelihood of mnemonic
mij given the input bi and the selected rules.

4 Experimental Settings

4.1 Dataset

We evaluate our framework using data from Koohii
Kanji (2024), an online platform where Japanese
language learners share mnemonics based on meta-
data from the book Remembering the Kanji (Heisig,
2011). We preprocess the data by selecting learners
who provide mnemonic cues in English, yielding a
dataset of 11,078 learners and 2,200 unique kanji,
totaling 148,411 mnemonics (an average of 13.40
per learner). The book orders kanji by shared com-
ponents (e.g.,集,准,進) and provides two types
of metadata, bi, per kanji: (1) a keyword together
with a mnemonic supplied by the author and (2) a
keyword only. To avoid bias from author-provided
mnemonics, we retain only those kanji entries that
include a keyword but no mnemonic. Finally, we
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filter the dataset using the OpenAI Moderation
API (OpenAI, 2025) to remove toxic content.

Set # Learners # Mnemonics Avg. M/L

Train 323 8,991 27.84
Val 40 1,164 29.10
Test 40 1,156 28.90

Table 1: Dataset split and summary statistics.

We perform dataset splitting as follows: First,
we filter out learners who authored less than five
mnemonics. Then, we sort the remaining learn-
ers by the number of mnemonics they author, in
descending order, and assign them to splits in an
8 : 1 : 1 ratio (train:val:test) using a round-robin
pattern. To control the dataset size, we uniformly
subsample 25% of learners from each split by se-
lecting ones at fixed intervals across the sorted list,
preserving the distributional diversity of the origi-
nal dataset while reducing the volume for computa-
tional efficiency. Since the maximum length of a
mnemonic is 180 tokens, we set maximum number
of new tokens generated by LM1 accordingly.

4.2 Baselines and Metrics

We define three types of baselines: zero-shot (ZS),
supervised fine-tuning (SFT), and in-context learn-
ing (ICL∗

n). In the zero-shot setting, the base model
is provided with metadata and prompted to gener-
ate a mnemonic without prior training. In contrast,
the SFT baseline involves fine-tuning the model
on a training set. The ICL∗

n baselines serve as
oracle comparisons, since they extend SFT by con-
ditioning on n example mnemonics from the same
learner. These examples are not available to our
method in the cold-start scenario, but they provide
important cues about the learner’s preferences and
stylistic tendencies. Thus, ICL∗

n establishes an up-
per bound on what methods like EM can achieve
without access to learner history. We report results
for n ∈ 1, 2, 3.

Our proposed method, EM, uses the same fine-
tuning configuration as the SFT baseline, as de-
scribed in Section 4.3. The baselines use prompts
similar to those in EM but without incorporating
rules (See Supplementary Material Table 10).

4.2.1 Text Similarity Evaluation
To evaluate how similar the generated mnemon-
ics for a new learner is to the ground-truth,
i.e., the mnemonic they author, we utilize
BERTScore (Zhang et al., 2019), ROUGE (Lin,

2004), and LUAR (Soto et al., 2021). BERTScore
measures semantic similarity between model
outputs and human-authored mnemonics, while
ROUGE measures lexical overlap. LUAR serves
as an authorship verification metric, assessing
whether generated cues resemble the writing style
of learners in the test set. We also assess whether
Length of the generated mnemonics matches the
ground-truth, and report the ratio in length.

4.2.2 LLM-as-a-judge Evaluation
We utilize Prometheus evaluation (Kim et al., 2024)
model for a head-to-head evaluation, comparing
the mnemonics generated by our method against
that generated by SFT, which mnemonic is more
similar to the ground-truth, and measure the Win
Rate. The comparison relies on a single in-context
example from the learner’s history to judge which
mnemonic is more likely to have been authored by
the learner (see Supplementary Material Table 11).

We use ICL with one example for judging, for
two key reasons: First, in cold-start cases with no
learner history, even a single example can provide
valuable insight into individual learner preferences.
Second, because kanji are compositional, the previ-
ous kanji a learner wrote a mnemonic for is likely
to share some keywords or components with the
current kanji. Therefore, we use the learner’s most
recent mnemonic, and that kanji’s metadata, as the
ICL example.

4.3 Implementation Details
Each experiment was run using a single NVIDIA
A40 GPU with 48 GB of VRAM. We utilize Low-
Rank Adaptation (LoRA) (Hu et al., 2021) to fine-
tune LM1, using a rank parameter r = 128, scaling
factor α = 256, and dropout rate 0.2. We set the
learning rate to 1× 10−5. We empirically find that
the number of rules to be K = 10 and later ablate
the effect of varying K in Section 5.4.

5 Experimental Results

We now detail both quantitative evaluation results
and qualitatively analyze the learned rules and
learner behavior patterns.

5.1 Overall Cold-start Performance
Table 2 shows the evaluation results, comparing
models on all metrics (when applicable). EM im-
proves upon SFT in most aspects apart from length,
with especially stronger gains on BERTScore and
Win Rate. According to Prometheus evaluation,
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Model BERTScore ROUGE Length LUAR Win RateP R F1 1 2 L CRUD MUD

ZSLM1 -0.119 -0.048 -0.084 0.135 0.017 0.093 ×4.395 - - -
ZSLM2 -0.275 -0.081 -0.180 0.083 0.012 0.061 ×10.08 - - -

SFT 0.212 0.005 0.105 0.249 0.047 0.181 ×0.509 0.482 0.441 Ref
EM 0.240 0.009 0.121 0.251 0.048 0.183 ×0.421 0.487 0.447 0.581
ICL∗

1 0.192 0.066 0.128 0.259 0.051 0.187 ×0.699 0.518 0.478 0.622
ICL∗

2 0.202 0.080 0.140 0.266 0.050 0.191 ×0.696 0.522 0.486 0.637
ICL∗

3 0.207 0.089 0.147 0.274 0.054 0.197 ×0.704 0.527 0.488 0.638

Table 2: Comparison across all methods on all metrics. ICL∗ uses prior mnemonics as in-context examples, thus
establishes a performance upper bound on EM, which operates without having access to learner history.

using LLM-as-a-judge, EM is preferred over SFT
with a win rate of 58.1% vs. 41.9%. EM attains
higher scores while providing greater interpretabil-
ity in mnemonic generation compared to SFT. The
baseline models, ZSLM1 (Llama 3.2B) and ZSLM2

(GPT-4o), are prompted without any fine-tuning.
These models perform poorly, generating outputs
that are significantly longer than the ground-truth
mnemonics. As a result, they receive low semantic
and lexical scores and are excluded from further
evaluation.

Our proposed method, EM, is designed for cold-
start scenarios where no prior learner data is avail-
able. We see that ICL∗

1 slightly outperforms our
method, and the gap between our method and this
oracle is mostly smaller than the gap between our
method and SFT, except for the LUAR metric. The
reason is likely because while EM is designed for
new learners, their style is still likely reflected in
the mnemonics authored by other learners seen in
the training set. Therefore, rules that we can learn
can still anticipate some aspects of common learner
behavior, and get close to the oracle performance.
We prompt GPT-4o to evaluate whether the gen-
erated mnemonics adhere to the learned rules by
identifying which activated rules are correctly ap-
plied. Compliance for each mnemonic is calculated
by dividing the number of satisfied rules by the to-
tal number of applicable rules. Averaging these
values across all examples yields an overall com-
pliance rate of 60.58%, indicating that while the
EM-learned rules capture useful and generalizable
patterns, their application during generation still
leaves room for improvement.

Overall, our method offers a robust solution
for generating high-quality mnemonics in prac-
tical settings, where no learner history is avail-
able. Next, we demonstrate the interpretability of
our method by examining the rules it learns from
learner-authored mnemonics.

5.2 Learner and Kanji Clustering

To better understand how mnemonic rule pref-
erences vary across learners and kanji, we per-
form unsupervised clustering on the learned latent
learner rule affinity and kanji rule relevance param-
eters, hjk and gik. We use Gaussian mixture mod-
els and determine the number of clusters by select-
ing one with the maximum Bayesian information
criterion (Neath and Cavanaugh, 2012). The clus-
tering yields three learner clusters and four kanji
clusters, shown in Figure 2 and Figure 3, respec-
tively. The learner clusters contain 80, 1,711, and
72 learners, while the kanji clusters contain 193,
271, 369, and 178 characters.

Figure 2: PCA plot for three learner clusters.

To identify a representative learner or kanji for
each cluster, we select the member whose rule us-
age vector is closest to the cluster centroid in the
Euclidean space. Learners are grouped into clus-
ters, each with its own centroid, and for each clus-
ter, we select a representative learner as the one
whose rule vector is nearest to that cluster’s cen-
troid. Similarly, kanji are grouped into clusters
with corresponding centroids, and for each kanji
cluster, the representative kanji is chosen as the one
whose vector is closest to the cluster centroid.

We investigate cluster 2’s representative learner
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# Rules

1 Emphasize transformation or conversion, illustrating how one element changes into another to clarify and connect the
keywords with the kanji’s meaning.

2 Utilize simple, direct sentence structures focusing on clear actions or descriptions to establish a strong visual or conceptual
link between the keywords and the kanji’s meaning.

3 Utilize familiar phrases or common knowledge to establish an intuitive and relatable link between the keywords and the
kanji’s meaning.

4 Use logical reasoning or cause-and-effect relationships to connect the keywords with the kanji’s meaning, providing a
rational or explanatory narrative.

5 Utilize cause-and-effect relationships within a single, direct sentence, emphasizing how the keywords lead to an outcome
that encapsulates the kanji’s meaning.

6 Incorporate famous quotes or well-known expressions, either accurately or with a creative twist, to forge a memorable
connection between the keywords and the kanji’s meaning.

7 Employ anthropomorphism, attributing human-like qualities or actions to non-human elements to forge a memorable
connection between the keywords and the kanji’s meaning.

8 Utilize idiomatic or colloquial expressions, simplifying complex ideas into familiar sayings that evoke cultural references
or visual imagery to link the keywords with the kanji’s meaning.

9 Utilize vivid imagery and sensory details to forge a memorable connection between the keywords and the kanji’s meaning,
engaging the reader’s visual or sensory memory.

10 Establish a direct association between the keywords and the kanji’s meaning by framing them within a contextual
scenario where their roles or functions naturally lead to the kanji’s meaning.

Table 3: Top-10 learned mnemonic authoring rules from our EM-type algorithm.

Figure 3: PCA plot for four kanji clusters.

by examining the top three rules they most often
use. First, the learner lean on common knowledge
(Rule 3): for the kanji團 “group” (keywords pent
in + glued), their mnemonic is “A group has to stick
together,” and for the kanji届 “deliver” (keywords
flag + sprout), their mnemonic mirrors the familiar
quest-flag on game maps. Next, they use casual id-
ioms (Rule 8): for the kanji怠 “neglect” (keywords
pedestal + heart), their mnemonic is “If a person
is put on a pedestal, they’ll eventually neglect the
hearts of those who put them there,” tying an ab-
stract idea to a well-known saying. Finally, they
employ anthropomorphism (Rule 7): for the kanji
批 “criticism” (keywords finger + compare), their
mnemonic is “The ring finger got a lot of criticism
from the other fingers,” giving non-human parts
their own voice. These intuitive cues, vivid idioms,
and playful personifications are highly representa-
tive of mnemonic-authoring behavior of learners in

cluster 2. This observation suggests a way to elicit
useful sources for mnemonic generation by using
the rules in reverse, as prompts to uncover the kinds
of associations a learner might naturally make. For
example, Rule 3 (common knowledge) can prompt
the question “What everyday saying does this bring
to mind?”; Rule 8 (casual idioms) might inspire
“What kind of casual phrasing feels natural here?”;
and Rule 7 (anthropomorphism) could lead to “Can
you imagine this as a story with characters?” Such
questions help surface familiar reference points that
guide more personalized mnemonic creation.

Moving on to kanji cluster 3’s representative
kanji,任, along with its top three affinity rules. The
kanji means “responsibility”任 (keywords person +
porter). There are 15 learner authored-mnemonics
with the kanji. By examining the mnemonics, we
can see how Rules 1, 2, and 5 are effectively ap-
plied. One learner uses transformation (Rule 1) by
portraying Jesus as a porter who carries the sins of
humanity, turning that burden into a sacred respon-
sibility. Similarly, another learner presents Han
Solo evolving from a smuggler to a responsible
porter of cargo, reinforcing the meaning through
character transition. A third learner introduces a
moral consequence where the act of impregnation
leads to the birth of a person and, therefore, re-
sponsibility, again showing transformation in ac-
tion. For Rule 2, a learner provides a simple and
direct sentence: “A porter (壬) is a person (人) with
the responsibility to take care of people’s luggage,”
making the kanji’s components and meaning imme-
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diately clear. One learner also uses straightforward
language in depicting a person boldly confronting
a king with the demand for responsibility, while an-
other concisely shifts responsibility from Aragorn
to Frodo, emphasizing clarity. Rule 5 is promi-
nent in another learner’s mnemonic, where Mr. T’s
great power leads him to take on the responsibility
of being a porter, showing a direct cause and ef-
fect. A learner reinforces this logic humorously by
twisting the Spider-Man quote: “With great porter,
comes great responsibility,” illustrating how the
role itself leads to duty. Finally, a learner captures
the same cause-effect relationship, noting that a pi-
lot, by nature of being a “person porter,” inherently
holds responsibility. Altogether, these mnemonics
not only show creativity but also follow structured
memory principles through transformation, clarity,
and logical consequence.

5.3 Qualitative Case Studies
We analyze the top-5 and bottom-5 mnemonic pre-
dictions, ranked by their MUD scores, and try to
gain deeper qualitative insights into how well our
method performs on the mnemonic generation task
(See Supplementary Material Table 12.)

The top-5 cases show two main themes: when
there is strong semantic alignment between the
kanji and the associated keyword, rules are not ac-
tivated; however, when the alignment is weak or
abstract, the rules help bridge the semantic gap. For
example,将 (leader) associated with keywords of
“turtles” and “vultures,” we can easily putting leader
to either one of the animal. Similarly,忌 (mourn-
ing) associated with “snake” and “heart”, where
we can easily get an idea of snake grief on a loss.
When there is a weak connection,仲 (go-between)
consists of “person” and “in” was activated with
familiar phrases or common knowledge, leading
to using reference as “man in black”, “Han and
the Empire”, which is a mix of the movies (“The
man in black was the go-between between Han
and the Empire.”). The ground-truth also uses the
Star wars references, “Anakin, Jedi council” where
it shows the rule can bridge the gap between the
meaning and the keywords (“Anakin was employed
as a go-between between the Jedi council and Pal-
patine.”). Similarly, for袋 (sack), one of the key-
words is “garment.” One of three rules, based on
familiar phrases or common knowledge, leads to a
mnemonic like “A sack is a garment for carrying
things.” The ground truth follows a similar con-
cept, stating, “A sack is a poor substitute for a gar-

Variant LUAR Win RateCRUD MUD

K = 5 0.479 0.441 0.511
K = 15 0.479 0.440 0.569

Random 0.479 0.439 0.548
h̄jk only 0.485 0.443 0.605
gik only 0.487 0.446 0.577

Table 4: Ablation studies on the number of rules and
methods for rule selection.

ment.” Therefore, the rules can help bridge seman-
tic gaps in weakly aligned kanji–keyword pairings,
enabling the prediction of plausible mnemonics.

In contrast, the bottom-5 cases show two main
themes: a few cases correspond to learners have
very distinctive styles. One example is a unique
learner, who often includes additional vocabulary
or grammatical details that are difficult to predict
and now seen in any other learner. Therefore, since
our method learns a certain number of rules that
many learners use when they create mnemonics,
distinct and uncommon styles may not be fully
captured. For instance, in the mnemonic for渡 (to
cross), they add 渡す (わたす, “to hand over”),
which focuses on vocabulary usage rather than the
kanji’s components, a style that is not found among
other learners, complicating the prediction task.

Some low-scoring cases also result from differ-
ent interpretations of keywords. For example,化
(change), made of “person” and “spoon,” leads our
method to generate “The person who changed the
world with his spoon was Jesus.” However, one
learner interprets “spoon” metaphorically, as in the
cuddling position “spooning,” rather than the uten-
sil. This interpretation departs from more literal
or familiar interpretations, such as “Jedi spoon” or
“bent spoon,” and highlights the difficulty of pre-
dicting mnemonics when learners use individual,
unconventional ways to interpret keywords.

5.4 Ablation Studies
We conduct ablation studies on two aspects: (1)
the number of rules and (2) the method for rule
selection. The corresponding results are presented
in the bottom two rows of Table 4.

To assess the impact of the number of rules K,
on mnemonic generation performance, we run the
EM algorithm with 5 and 15 rules, in addition to
10. In both cases, the algorithm also converges
after two iterations. The learned rules are shown
in Supplementary Material Table 13 and Table 14,
respectively. With K = 5, four of the selected rules
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overlap with those in the K = 10 set, except for
the rule concerning the juxtaposition of unrelated
or contrasting keywords. In contrast, the K = 15
setting captures all 10 original rules and further
subdivides them into finer-grained rules. Balancing
performance and computational cost, we find that
using K = 10 offers a favorable trade-off.

To evaluate whether the learned latent variable
generalizes to unseen learners, we modify rule ac-
tivation at test time while keeping EM-learned pa-
rameters fixed. First, we randomly activate three
rules during inference. Second, we activate rules
based solely on h̄jk resulting in only Rule 3 be-
ing used. Lastly, we activate rules using only gik.
While randomly activating results in lower perfor-
mance than activating σ(h̄jk+gik), activating rules
by h̄jk or gik achieves competitive performance.
These findings suggest both h̄jk and gik contribute
meaningfully to rule activation. For future work,
an important avenue is to investigate how to esti-
mate hjk for new learners, possibly by efficiently
updating it from limited examples or preference
surveys before they start authoring mnemonics.

A central feature of our approach is the use of
LM1 within a rule-constrained generation pipeline.
Rather than depending on large, black-box models
for unconstrained generation, we constrain LM1 to
operate under rule guidance. This design enhances
interpretability, enforces structural consistency, and
permits fine-grained control over output. The small
footprint of LM1 also supports iterative updates
across EM, enabling continual refinement of rule
representations without high computational cost.

6 Conclusion and Future Works

In this paper, we explored the use of an Expecta-
tion Maximization-type algorithm to learn latent
structures and compositional rules from learner-
authored mnemonics. In a cold-start scenario with
no learner history, our method sometimes outper-
formed baselines, generating mnemonics that bet-
ter aligned with those authored by actual learners.
We also showed that the learned interpretable rules
and usage patterns revealed new insights into the
mechanics of mnemonic generation.

There are many avenues for future work. First,
in non cold-start settings, we can investigate how to
build the rules we learned into a learner’s persona
(Shashidhar et al., 2024) for better personalization.
Second, we can explore how to leverage not just
information on kanji components, but its structural

information (Yu et al., 2024), and incorporate it
into mnemonic generation. Third, we can explore
creating an interactive learning environment and
use our work to aid learners during mnemonic cre-
ation, in a learner-AI teaming setting.
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Limitations

The study has a few limitations that should be con-
sidered. First, we evaluate mnemonic quality using
a large language model rather than human raters.
While automated evaluations allow for scalable and
consistent comparisons, they may not fully capture
the subjective qualities present in real-world learn-
ing scenarios. Incorporating human evaluations
would provide a more comprehensive assessment.
Second, we explore our method using only the
Llama 3.2-Instruct (3B) model. While this model
offers a strong balance between performance and
efficiency, results may differ with larger models or
with other models of similar parameter size. Ex-
ploring a broader range of models could strengthen
generalizability. Third, our approach is tested pri-
marily on a dataset of learner-authored mnemon-
ics for kanji. While kanji is a natural case study
due to its compositional structure, further work is
needed to assess whether the proposed rule-based
generative framework generalizes to other scripts
or learning domains. Finally, although our model
accounts for variation in mnemonic construction
styles across learners, it assumes that each learner’s
preferences are relatively stable and can be inferred
from their past mnemonics. In practice, learner
behavior may evolve over time or vary by context,
suggesting that future work could explore adaptive
or dynamic personalization strategies.
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Supplementary Material
A Related Work

A.1 Keyword Mnemonics
The application of keyword mnemonic generation using LLMs began with Lee and Lan (2023), which
used human-authored keywords to generate both verbal and visual cues, followed by a human evaluation
to assess how variations in the cues impact learning. This work was extended by Lee et al. (2024), who
employed LLM prompting for both keyword and verbal cue generation, using a ranking system based on
feedback from English teachers on mnemonic quality. Balepur et al. (2024) further advanced the field by
applying supervised fine-tuning and direct preference optimization to align generated mnemonics with
learner preferences. It is worth noting that Lee and Lan (2023) focused on English-to-German mnemonics,
while Lee et al. (2024) and Balepur et al. (2024) targeted English-to-English mnemonics.

A.2 LLM Personalization
In terms of LLM personalization, there are two main approaches: model-centric and data-centric.

A.2.1 Model-Centric
This approach adapts large language models to individual users via parameter updates, including both full
fine-tuning and parameter-efficient tuning using LoRA and adapters. Zhong et al. (2021) uses prefix-tuning
to inject user information, introducing minimal overhead. Zhang et al. (2024) adapts LLMs by injecting
low-rank matrices into the model’s weights, employing a plug-and-play adapter framework that allocates
a small LoRA module for each user. Tan et al. (2024) introduces a collaborative mechanism by sharing
parameter shards across users, enabling the construction of new personalized modules without retraining.
Qi et al. (2024) applies federated learning to maintain privacy, separating global and personal LoRA
modules across devices. Doddapaneni et al. (2024) uses fixed embeddings as a personalization strategy.

A.2.2 Data-Centric
Zhang et al. (2018) provides each dialogue agent with a profile (a “persona”) in natural language.
Conditioning on these profiles makes responses more consistent and engaging, as the chatbot’s outputs
stay aligned with the given persona traits. Modern LLMs extend this idea by allowing a system prompt or
context that lists the user’s preferences, history, or persona traits. Rather than using static profiles, another
input-based method includes personalized exemplars or dialogue history in the prompt. To efficiently
personalize without overloading the prompt, many systems use a retriever to fetch the most relevant pieces
of user data on the fly. In the LaMP benchmark, Salemi et al. (2024) augment user queries with the top-k
retrieved items from that user’s history, such as past posts or interactions, before feeding them into the
LLM. Ning et al. (2024) uses latent embeddings for personalization, constructing dense user vectors by
pretraining on a user’s interaction data, such as movie ratings and review texts, so that the vector encodes
the user’s tastes. Zhang et al. (2024) also explores training persona embeddings or persona memory
networks, which are infused into generation models to modulate their outputs.
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B EM algorithm

B.1 Rule Initialization
Table 5 shows the initial rules generated from randomly sampled 20 learners from Koohii Kanji (2024).
Algorithm 2 presents the procedure for initializing the rules of zijk using LM2, as described in Section 3.3.

# Rules

1 Create vivid stories involving the keywords to form a memorable image associated with the kanji meaning.
2 Use wordplay or puns related to the kanji’s pronunciation to enhance recall.
3 Incorporate familiar cultural references or media to make the mnemonic more relatable and memorable.
4 Leverage the literal and metaphorical meanings of the keywords to construct a logical sequence or scenario.
5 Form associations between the kanji and its meaning by imagining interactions or actions involving the keywords.
6 Use exaggeration or humorous situations to make the mnemonic more engaging and memorable.
7 Identify and emphasize the emotional states or feelings that relate to the kanji’s meaning within the mnemonic.
8 Utilize contrast or unexpected outcomes in the story to create a more striking mental image.
9 Create mnemonics that involve transformation or change related to the keywords to connect with the kanji’s meaning.
10 Incorporate simple, straightforward associations for ease of recall, emphasizing clarity over complexity.

Table 5: Initial rules are generated using the stories from the following username and kanji: theadamie (批),
vvrk79 (蝶), potatochip5 (泡), Joyo1945 (怖), BlackIce (場), danschub (刷), nath04 (允), matthewmuller (憶),
picassoisahack (錮), polysymphonic (誰), strugglebunny (蛇), Tvaw73 (詳), SketchySolid (起), Artemisk (逐),
Bokusenou (萤), Chadokoro_K (記), proagg (規), ragzputin (學), Eklmejlazy (摩), zdude255(進)

Algorithm 2: Rule Initialization

/* Rule Discovery */
Sample M users {j1, . . . , jM};
foreach kanji i do
Ci ← {mi′,jm | i′ ̸= i, jm ∈ {j1, . . . , jM}};

Use LM2 to summarize {Ci} into {rk}Kk=1;

/* Rule Activation */
foreach pair (i, j) do

for k = 1 . . .K do
zijk ← I[LM2 aligns rk with mij given bi];

/* Language Model Conditioning */
foreach pair (i, j) do

Fine-tune LM1 on P (mij | bi, {rk : zijk = 1});
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B.2 Learning Latent Trait via EM
Table 6 shows the prompt for generating orthogonal rules, as described in Section 3.2.

Task
Your task is to generate a new rule based on mnemonic stories written by users.
Focus on identifying common patterns or recurring techniques across multiple stories,
but ensure that the rule you create is orthogonal (i.e., distinct and non-overlapping)
to the existing rules provided below.
Existing Rules
Below are other rules that have already been established:
- Rule 1: (rule here)
- Rule 2: (rule here)
· · ·
New Input Examples
—
Kanji (Meaning): example kanji (example meaning)
Keywords: keyword1, keyword2, keyword3
Story: example mnemonic story here
—
Output Format
Use <thinking></thinking> to explain the common patterns or narrative elements you observed
across the stories. Then, propose a new rule enclosed in <rule></rule> that captures these shared
elements.
The new rule must be one clear, single sentence and must not overlap with the existing rules listed
above.
Output

Table 6: Orthogonal rule generation prompt used in Algorithm 1.
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C Learned Latent Variables

C.1 Heatmap

(a) gik (train) (b) hjk (train) (c) σ(h̄jk + gik) (test)

Figure 4: Training and test heatmaps: the first two plots show the individual components gik and hjk computed
from the training set. The third plot shows the activated rules on the test set using σ(h̄jk + gik), where h̄jk is the
mean of hjk over training, and if the kanji i doesn’t exist in the training we use the average ḡik.

C.2 Cluster

Three learner clusters sizes of 80, 1711 and 72 and four kanji clusters, 193, 271, 369, and 178.

Latent Cluster Rules

1 2 3 4 5 6 7 8 9 10

hjk

1 -2.343 -1.733 -1.691 -2.340 -2.513 -2.533 -0.340 -1.897 -1.393 -0.494
2 -0.251 -0.896 1.140 -0.232 -0.728 0.393 0.519 0.404 0.142 0.116
3 -1.826 -4.195 -0.135 -1.780 -2.794 -0.757 -2.918 -0.928 -1.684 -3.404

gik

1 -0.128 -3.056 -1.237 -0.544 -0.519 -1.214 -2.037 -1.256 -0.970 -2.665
2 -0.344 0.371 -1.639 -1.201 -1.198 -2.113 -1.373 -1.204 -0.875 -1.032
3 0.583 0.613 -0.862 0.155 0.652 -0.621 -0.937 -0.579 0.211 -0.354
4 -1.921 -2.618 -4.361 -2.312 -2.174 -3.861 -4.119 -3.141 -1.778 -2.877

Table 7: Mean rule affinities per cluster and top-3 highest affinities are bolded.
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C.3 Representative of Clusters

Kanji Mnemonic

蛇 Only Snake from MGS3 could survive inside of his cardboard house with nothing but a spoonful of insects.
鮮 The F of Fresh comes from Fish and the SH from Sheep.
団 A group has to stick together.
庁 I imagine that King Bowser’s government office is like a cave with a lot of spikes.
批 Ever since the ring was bestowed on the ring finger, it got a lot of criticism from the other fingers since, compared

to the index finger, the ring finger isn’t very useful.
研 Geodude is a rock Pokémon with two hands that can learn the move “Rock Polish”.
淫 Remember those lewd 80s porn tapes that all start with some porter entering a woman’s room who latches onto

him like a vulture? It all just turns into a wet mess where they’re covered in each other’s fluids.
怠 If a person is put on a pedestal, they’ll eventually neglect the hearts of those who put them there.
冶 They say an advanced method for metallurgy is to use an ice-powered pedestal for the yet un-cooled metal

objects.
法 The water-elbow method (basically crying) during a trial is an effective method to get the crowd on your side;

just a few of those waterworks and poof, your dissenters are all gone.
岩 In The Legend of Zelda: Ocarina of Time, there’s that one giant boulder at the base of Death Mountain that you

need to destroy with bombs.
炭 Right below Mt. Pyre in Pokémon Emerald is the Jagged Pass where you can collect the mountain’s ashes in

your soot sack; the wild Pokémon in this area also have a chance of dropping charcoal.
掌 In the outhouse I manipulate my hand to wipe my second mouth clean. (Forgive me for the inappropriate mental

image.)
波 One reading of this kanji in Japanese is “Nami”, which incidentally is a name of a One Piece character. Nami

always makes sure the ship avoids dangerous waves and also tends to wear many different pelts (if I can stretch
the meaning of pelts a little :P).

婆 Link’s grandma (an old woman from The Wind Waker) always prays for his safety just beyond the waves.
瞬 “When I spotted that cute little birdie downtown, out of her birdcage-like university, I did what any cool guy

would do: I lifted up my sunglasses, stared her right in the eye, and gave her a wink.”
聖 A holy man must listen to God’s words. God’s mouth is above that of the king in his perspective.
覧 In Shin Megami Tensei IV, when the slave-like “casualties” were given literature, they ended up reclining and

reading instead of working. Their perusal angered the luxury class.
尽 Ever heard the sound of a shakuhachi? All you need is an ice-cold drink to go along with it to bring your exhaust

down.
炉 In order to keep the fire in the hearth from engulfing us, please keep the door closed!
届 In games, it’s common to find flags sprouted on your map when receiving delivery quests.
斥 There was a knockout tournament at sports today; the team desperately made appeals for the fouls that they

accuse the other team of, but these were rejected and the club fell in the rankings until eventually they were axed
from the tournaments.

遮 You should watch the road when traveling with a wallet of twenties. Commoners tend to dig in your blind spots
for loot and disappear quickly into their caverns.

捉 Pirates are known for nabbing. When you hear the sound of a wooden leg, don’t tremble with your fingers in
your mouth—flee.

Table 8: Learner cluster 2 representative learner Tactics15 authored mnemonics.
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Username Mnemonic

tedperry52 Ted was the ninja responsible for putting a hat on the samurai壬. ("ninja" implies the
readingニン. Other reading: まか・せる.)責任 (せきにん) duty; responsibility.

Puchatek Mr T scolds an irresponsible porter who lost his luggage, exclaiming, "Where’s your
responsibility, foo? My favourite golden chain was in that luggage you lost!"

elmaestrokgb Han Solo, a smuggler and porter of goods, takes responsibility for the cargo he carries —
hence Jabba’s anger.

dezts Jesus had the enormous responsibility of being a porter for humanity’s sins, dying for
the load he carried.

Asayoru Captain Falcon is tricked by a porter into thinking it’s his own responsibility to carry his
luggage.

idalton Captain Picard assigns Data as a porter to carry gear too heavy for biological lifeforms.
sherefyounan A brave person faces a king, declaring: "It is your responsibility to offer us a better life!"
eboyj A porter (壬) is a person () with the responsibility to care for people’s luggage.
constructionsite Jesus upheld his responsibility as a porter for his flock.
james007123 It is the Sherpa’s responsibility to be the porter and carry everyone’s gear on Everest.
RandomNumber A gentleman must take responsibility for the person born from his drop (see妊 #546).
kariok Aragorn isn’t the right porter for the ring — that responsibility belongs to Frodo.
mrnarse Mr. T, with great power, accepts the responsibility of being a great porter.
cloudstrife543 Mr. T says, “With great porter, comes great responsibility.” RTK II:ニン責任せきに

ん (responsibility).
Alyangele A pilot has the responsibility of being the person porter.

Table 9: Mnemonics authored by learners for Kanji Cluster 3 representative kanji: 任.
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D Prompts

EM

Task Description

Create a single memorable and effective story for
the kanji character below. You must strictly follow
the provided rules when creating the story.
Input Data

Kanji Character:
{kanji}

Meaning of the Character:
{meaning}

Keywords Representing Its Components:
{keywords)}

Rules for Generating the Story:

{rules)}

Output (Story):

Please write a story that incorporates the meaning
of the kanji and its components, and that strictly
adheres to the rules provided above. Do not
include any explanations or additional text.

SFT

Task Description

Create a single memorable and effective story for
the kanji character below. You may use your cre-
ativity freely to generate the story.
Input Data

Kanji Character:
{kanji}

Meaning of the Character:
{meaning}

Keywords Representing Its Components:
{keywords)}

Output (Story):

Please write a story that incorporates the meaning
of the kanji and its components. Do not include
any explanations or additional text.

Table 10: Comparison of the prompt used in our method (left) and the baseline method (right).
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E Evaluation

Task Description
An instruction (might include an Input inside it), two responses to evaluate (denoted as Response A
and Response B), a reference answer, and an evaluation criteria are given.

1. Write a detailed feedback that assesses the quality of the two responses strictly based on the
given evaluation criteria, not evaluating in general.

2. Make comparisons between Response A, Response B, and the Reference Answer. Instead of
examining Response A and Response B separately, go straight to the point and mention the
commonalities and differences between them.

3. After writing the feedback, indicate the better response, either “A” or “B”.

4. The output format should look as follows: Feedback: (write a feedback for criteria)
[RESULT] (Either “A” or “B”)

5. Please do not generate any other opening, closing, and explanations.

Instruction
For the kanji {kanji} meaning {meaning}, which is described by the mnemonic keywords {key-
words}, the user wrote: {ground-truth}.
Now, given the kanji {kanji} meaning {meaning}, which is described by the mnemonic keywords
{keywords}, what is the most likely story the user would write to memorize this kanji?

Response A
{orig_response_A}

Response B
{orig_response_B}

Reference Answer
{orig_reference_answer}

Score Rubric
Which response is more likely to have been written by the user, based on the given history of the
user? Focus on the user’s writing style and sentence structure.

Feedback
Feedback: (write a feedback for criteria) [RESULT] (Either “A” or “B”)

Table 11: Prompt used for the Prometheus LLM-as-a-judge evaluation.
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F Generated Results

Kanji Ground-Truth Prediction

忌 (mourn) The snake mourned over the loss of her
one true love.

The snake is mourning the loss of its
heart.

将 (leader) The turtle leader glued vulture claws to
his shell as a sign of his position.

The vulture leader was so afraid of the
turtle that he glued his legs together.

袋 (sack) A sack is a poor substitute for a gar-
ment.

A sack is a garment for carrying things.

憶 (recollection) Recollection is the state of recalling
ideas from your past.

The recollection of the past is a state of
mind.

仲 (go-between) Anakin was employed as a go-between
between the Jedi council and Palpatine.

The man in black was the go-between
between Han and the Empire.

癖 (mannerism) X (辟) has many mannerisms/habits,
one of them is the “ok”/“precision”
hand gesture. So when more and more
people are dealing with sickness (Covid-
19), X falls on his habit with his “ok”
gesture... “It’s gonna be ok, it’s just
a flu, it’s gonna be better than ok, it’s
gonna be wonderful, it’s gonna disap-
pear like a miracle”癖くせ habit, ten-
dency; 口癖 (くちぐせ) catchphrase,
manner of talking;癖に (くせに) and
yet, though, when, in spite of.

The mannerism of a person with a sick-
ness is to constantly lick ketchup from
their fingers.

描 (sketch) When learning to SKETCH, it can be
good to start with SKETCHing sim-
ple still life. Here someone is hold-
ing out a FINGER (a thumb, as artists
do), to make mental measurements,
while SKETCHing the similarly sized
SAPLING. (The SKETCH itself grows
onto the paper like a FLOWER from
your BRAIN, through your FINGERS
and onto the paper).

A sketch artist is drawing a seedling
with her fingers.

渡 (transit) After getting my (crotch) heated up a
few degrees by the (caverns), I wanted
to look around, then came to this run-
ning water, but the (caverns) clearly con-
tinued on the other side. . . So decided
to transit across the water and see what
was deeper inside. . . Man, that water
must have been at least 40 °C!! 渡る
(わたる) to cross over;渡す (わたす)
to hand over; 見渡す (みわたす) to
look out over;譲渡 (じょうと) trans-
fer, assignment, conveyance;渡航 (と
こう) voyage.

The boatman is the transit from the un-
derworld to the afterlife.

Continued on next page
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Table 12 continued from previous page

Kanji Ground-Truth Prediction

化 (change) When spooning with your significant
other/person, you tend to change posi-
tions with one another to get comfort-
able.

The person who changed the world with
his spoon was Jesus.

叔 (uncle) When you’re SMALL and your UN-
CLEs make more of an impression, they
tower ABOVE you, your full height is
just at their CROTCH (pictograph of
a little figure beside the uncle’s legs).
Note: the SMALL signifies this UN-
CLE is younger than your parent.

The uncle is a bit of a weirdo, but he is
still a cool uncle.

Table 12: Sorted by MUD score for predictions, the Top-5 are OrangeNut, Culden2, Bagua, Bagua, and SwiftyFrisco,
while the Bottom-5 are Seiun, Seiun, Seiun, nisf01, and Seiun.
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G Ablation Studies

G.1 Number of Rules
# Rules

1 A direct cause-and-effect story aligning the kanji’s meaning with its components through logical reasoning or functional
explanation.

2 Juxtaposing unrelated or contrasting keywords to evoke the kanji’s meaning through unexpected connections or contrasts.
3 Forming a straightforward narrative or image that directly associates the keywords with the kanji’s meaning, emphasizing

simplicity and clarity without additional embellishments.
4 Transforming the keywords into a metaphorical scenario or symbolic representation that evokes the kanji’s meaning

through implied transformation or analogy.
5 Using cultural references or idiomatic expressions to leverage shared societal knowledge, enhancing the connection

between the keywords and the kanji’s meaning through familiarity and relatability.

Table 13: K = 5. Learned rules from EM algorithm.

# Rules

1 Directly identifying the kanji’s components as embodying or being synonymous with the kanji’s meaning, enhancing
memorability through intrinsic identity representation.

2 Illustrating a transformation or change from one state to another, where the keywords embody a process leading to the
kanji’s meaning, enhancing memorability through the depiction of transition or evolution.

3 Referencing or adapting familiar phrases, idioms, or sayings in a way that connects the kanji’s components to its meaning,
leveraging linguistic and cultural familiarity to enhance memorability.

4 Structuring the kanji’s keywords into a cause-and-effect relationship where the presence or occurrence of the keywords
naturally or logically results in the kanji’s meaning, enhancing memorability through logical deduction.

5 Crafting a declarative statement that directly asserts the kanji’s meaning through the keywords, enhancing memorability
through the perception of factual or axiomatic truth.

6 Framing the kanji’s components within a universally relatable or anecdotal experience, enhancing memorability through
shared human understanding or common life events.

7 Formulating a straightforward factual assertion that connects the kanji’s components to its meaning through universally
accepted truths or common observations, enhancing memorability through perceived accuracy or realism.

8 Depicting the kanji’s components in a direct, literal enactment or existence that embodies the kanji’s meaning, enhancing
memorability through tangible visualization.

9 Combining the kanji’s components to form a distinct object or artifact that embodies the kanji’s meaning, enhancing
memorability through tangible creation or representation.

10 Aligning the kanji’s keywords with an intuitive or self-evident truth that reflects a clear and straightforward relationship
to the kanji’s meaning, enhancing memorability through direct and obvious association.

11 Linking the kanji’s keywords to its meaning through straightforward, direct statements that emphasize immediate
association or relevance, enhancing memorability through clarity and simplicity.

12 Emphasizing a requirement or essential component necessary for achieving the kanji’s meaning, enhancing memorability
through the depiction of indispensability or necessity.

13 Personifying the kanji’s components, attributing roles or actions to them that naturally express the kanji’s meaning,
enhancing memorability through engaging characterization.

14 Illustrating a natural compatibility or inherent relationship between the kanji’s components that seamlessly embodies the
kanji’s meaning, enhancing memorability through intuitive harmony and cohesion.

15 Constructing a concise narrative that centers around a specific action or outcome involving the kanji’s keywords,
enhancing memorability through vivid scene depiction and interaction.

Table 14: K = 15. Learned rules from EM algorithm.
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