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Abstract

LLMs increasingly engage with psychological
instruments, yet how they represent constructs
internally remains poorly understood. We in-
troduce a novel approach to "fingerprinting"
LLMs through their factor correlation patterns
on standardized psychological assessments to
deepen the understanding of LLMs constructs
representation. Using the Humor Style Ques-
tionnaire as a case study, we analyze how six
LLMs represent and correlate humor-related
constructs to survey participants. Our results
show that they exhibit little similarity to human
response patterns. In contrast, participants’ sub-
samples demonstrate remarkably high internal
consistency. Exploratory graph analysis further
confirms that no LLM successfully recovers
the four constructs of the Humor Style Ques-
tionnaire. These findings suggest that despite
advances in natural language capabilities, cur-
rent LLMs represent psychological constructs
in fundamentally different ways than humans,
questioning the validity of application as hu-
man simulacra.

1 Introduction

As Large Language Models (LLMs) increasingly
engage with human psychological instruments and
assessments (Demszky et al., 2023; Hu et al., 2024),
understanding how these models internally rep-
resent psychological constructs becomes essen-
tial for theoretical and practical reasons. While
LLMs demonstrate remarkable linguistic capabili-
ties (Alayrac et al., 2022), their representation of
human psychological constructs remains largely
unexplored territory. This represents a critical gap
in our understanding of LLM capabilities and limi-
tations, particularly as these models are deployed
in increasingly sensitive contexts involving human
psychology.

Traditional approaches to evaluating LLMs of-
ten focus on output accuracy, faithfulness, or align-
ment with human preferences (Liu et al., 2023).

However, these metrics may not capture fundamen-
tal differences in how models internally represent
and relate psychological constructs compared to
humans. This study introduces a novel methodol-
ogy for "fingerprinting" LLMs through their factor
correlation patterns on standardized psychological
assessments. By examining how different mod-
els represent relationships between psychological
constructs, we can gain insights into their inter-
nal representations that may not be evident from
surface-level outputs alone.

We propose that factor covariance patterns in
responses on a population level to psychological
instruments may serve as more stable and distinc-
tive "fingerprints" than comparing raw results on
an individual level (Abdulhai et al., 2024). These
patterns reveal how models organize relationships
between individual questionnaire items, potentially
offering deeper insights into model capabilities and
limitations than preceding evaluation approaches.
By comparing these patterns across models and
against human baselines, we can assess inter-model
similarities and human-model divergences in psy-
chological construct representation.

1.1 Research Questions
This study addresses two primary research ques-
tions:

RQ1 Do LLMs from the same family/company
show similar factor covariance patterns?

RQ2 How do these LLM patterns compare to
human response patterns?

By addressing these questions, we aim to con-
tribute to the ongoing discussion about the nature
of LLM cognition and the alignment between hu-
man and artificial representations of psychologi-
cal concepts. Our findings imply how researchers
can interpret LLM performance on psychological
assessments, if practitioners should deploy these
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models in psychologically sensitive contexts, and
how developers might approach future model devel-
opment to better align with human psychological
structures.

The following sections detail our methodology,
present our findings on similarities and divergences
between model families and humans, and discuss
the theoretical and practical implications of these
results. We conclude with recommendations for fu-
ture research directions and potential applications
of our fingerprinting approach to other psychologi-
cal domains and model evaluation contexts.

2 Background

As LLMs become increasingly integrated into
human-AI interactions, understanding their rep-
resentation of psychological constructs becomes
more significant. The gap between linguistic com-
petence and psychological understanding repre-
sents a fundamental challenge in AI research (Dun-
can, 2024). While LLMs demonstrate remarkable
language capabilities, their internal representation
of human psychological concepts remains largely
unexplored.

2.1 Construct Representation in AI

Recent advances in LLM capabilities have led to
increased applications in psychological contexts,
from therapeutic chatbots (Pham et al., 2022) to
automated psychological assessments (Hu et al.,
2024). These applications implicitly assume that
LLMs can meaningfully engage with psychologi-
cal constructs in ways that align with human un-
derstanding (Sparrenberg et al., 2024; Ren et al.,
2025). However, this assumption requires empir-
ical testing through methodologies that compare
human and AI representations of psychological
concepts. Whether LLMs truly "understand" psy-
chological constructs in human-like ways extends
beyond philosophical interest to practical concerns
about alignment, safety, and deployment. If LLMs
organize psychological concepts differently than
humans, this could lead to unexpected failures
when encountering novel contexts or deployed in
sensitive settings.

2.2 The Fingerprinting Approach

Previous research on LLM evaluation has typically
focused on output accuracy, faithfulness, or align-
ment with human preferences (Liu et al., 2023).
While these metrics provide valuable insights, they

often fail to capture differences in how models inter-
nally represent and relate concepts. Our fingerprint-
ing methodology addresses this gap by examining
the correlation structure of responses rather than
just their surface content (Abdulhai et al., 2024).
Similar approaches have proven valuable in other
domains, such as neuroscience, where representa-
tional similarity analysis has revealed how differ-
ent brain regions encode information (Kriegeskorte
et al., 2008). By adapting these principles to LLM
evaluation, we can begin to characterize how differ-
ent models organize psychological constructs and
compare these organizations to human patterns.

2.3 Cross-Cultural and Cross-Architectural
Considerations

The diversity of LLM architectures, training
methodologies, and cultural origins raises ques-
tions about how these factors influence psycholog-
ical construct representation (Ryan et al., 2024).
Models developed in different cultural contexts
may encode different assumptions about psycho-
logical phenomena, while architectural differences
may lead to systematic variations in the relation
of concepts. By examining models from different
publishers (Meta AI, Mistral, and Alibaba Cloud)
with varying parameter counts, we can disentan-
gle the effects of these factors on psychological
representation. This comparative approach may
reveal whether specific parameter sizes or training
methodologies produce more human-like psycho-
logical representations than others.

2.4 Implications for Alignment and
Anthropomorphism

The tendency to anthropomorphize AI systems is
recognized as both pervasive and potentially mis-
leading (Salles et al., 2020). By directly comparing
how humans and LLMs organize psychological
constructs, our approach provides an empirical ba-
sis for assessing claims about LLMs’ "understand-
ing" of human psychology. Additionally, the re-
sults may have implications for alignment research,
which often focuses on aligning model outputs with
human preferences. If models fundamentally or-
ganize psychological concepts differently than hu-
mans, alignment techniques may need to address
beyond what models produce and focus on how
they represent the underlying concepts. The Humor
Style Questionnaire (Martin et al., 2003) is an ideal
case study for this investigation, as it measures well-
established psychological constructs with clear fac-
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tor structures in human populations. By examining
how LLMs represent these humor styles compared
to humans, we can gain insights into their handling
of psychological constructs more broadly, with po-
tential implications for how we develop, evaluate,
and deploy these models in psychologically sensi-
tive contexts.

3 Methods

3.1 Humor Style Questionnaire (HSQ)

We utilize the 32-item Humor Style Questionnaire
(HSQ) (Martin et al., 2003) to assess humor styles
across LLMs. The HSQ measures four distinct
dimensions of humor: Affiliative humor (using hu-
mor to enhance social relationships; e.g., "I laugh
and joke a lot with my closest friends."), Self-
enhancing humor (using humor to cope with stress;
e.g., "If I am feeling depressed, I can usually cheer
myself up with humor."), Aggressive humor (using
humor to disparage others; e.g., "If someone makes
a mistake, I will often tease them about it."), and
Self-defeating humor (using humor at one’s own
expense; e.g., "I let people laugh at me or make
fun at my expense more than I should."). The ques-
tionnaire measures each dimension through 8 items
rated on a 5-point Likert scale (1 = "Never or very
rarely true" to 5 = "Very often or always true").
To maintain the questionnaire’s validated structure,
we present the items in the original sequence, cy-
cling through dimensions in the order: affiliative,
self-enhancing, aggressive, self-defeating. For each
LLM, we collect 1000 independent response set as
a synthetic population of participants, resulting in
a dataset of n = 1000 samples per model, each
containing i = 32 response items.

3.2 Language Models Selection

We utilize a diverse range of open-weight LLMs
with parameter sizes from 7B to 123B, ensuring ac-
cessibility for researchers with moderate computa-
tional resources (approximately 80GB VRAM). We
restrict our experiments to these open-weight and
comparatively small models, allowing for easier re-
producibility. Leaving out models from OpenAI or
Anthropic is a limitation. However, the goal of this
study is not to analyze which LLMs are benchmark-
leading but to analyze the general capabilities of
LLMs to align to psychological constructs by exam-
ining their behavior. Thus, we analyse three open-
weight state-of-the-art models: Llama 3.1 8B/70B
(Dubey et al., 2024), Mistral 7B/123B (Jiang et al.,

2023), and Qwen 2.5 7B/72B (Yang et al., 2024).
These models represent different geographic ori-
gins — Llama (Meta AI) from the United States,
Mistral from Europe, and Qwen (Alibaba Cloud)
from China. We compare small and large versions
of each model family to assess if the number of pa-
rameters improves alignment with the correlation
observed in the human data. During the experiment,
we utilize the default hyperparameter configuration
(temperature, repetition penalties) to reflect typical
conditions in the näive application.

3.3 Prompting Technique

We implement a consistent minimal prompting ap-
proach designed to elicit direct responses without
optimization for specific outcomes. Each model re-
ceives the following standardized prompt template:
"For each of the statements below, please indicate
how true each statement is for you. Response op-
tions: Never or very rarely true (1); Rarely true (2);
Sometimes true (3); Often true (4); and Very often
or always true (5). Respond only with the predicted
class [1, 2, 3, 4, 5].". To minimize contextual in-
terference and potential order effects, all 32 items
are presented individually in separate prompting
instances.

We deliberately avoid providing explanatory con-
text about the HSQ’s purpose or the dimensional
structure to prevent priming effects that might arti-
ficially align response patterns. However, to simu-
late the cognitive continuity typically present when
humans complete questionnaires, we implement
a five-question sliding window of previous ques-
tions and responses as conversational history. This
design ensures that models maintain consistency
across related items while preserving question in-
dependence. For response standardization, we in-
corporate structured output formatting techniques
(Sui et al., 2024), forcing the model to produce a
response between 1 and 5.

3.4 Fingerprint Calculation

For each LLM and baseline condition, we construct
a correlation matrix representing the pairwise rela-
tionships between all 32 HSQ items across the col-
lected responses. This matrix serves as the model’s
distinctive "fingerprint" of psychological construct
organization. The matrix X below defines a popu-
lation of n observation, where X⃗ denotes a single
sample consisting of i independent variables x (i.e.,
responses to the 32 HSQ items).
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X = [X⃗1, . . . , X⃗n]
⊺, where X⃗n = [x1, . . . , xi]

We select Pearson’s correlation coefficient (Co-
hen et al., 2009) as our primary measure of associ-
ation, adapted to our population matrix definition
X as follows:

corr(X, i, j) =

n∑
k=1

(Xi,k − X̄i)(Xj,k − X̄j)

√
n∑

k=1

(Xi,k − X̄i)2

√
n∑

k=1

(Xj,k − X̄j)2

Based on the correlation coefficient
corr(X, i, j), we compute the pairwise correlation
for every independent variable combination i, j
on our population dataset X resulting in the
correlation matrix CX. This matrix constitutes
what we define as the fingerprint of an LLM on the
HSQ:

CX =



corr(X, 1, 1) . . . corr(X, 1, j)

...
. . .

...
corr(X, i, 1) . . . corr(X, i, j)




3.5 Similarity Measurement

To compare fingerprints between different LLMs,
we first convert each correlation matrix CX ∈ Ri×i

into a vector C⃗X ∈ Rl. Since correlation matrices
are symmetric with diagonal elements equal to 1,
we only include the upper triangular elements (ex-
cluding the diagonal) in our vectorization process.
This results in a vector of length l = i(i−1)

2 (496
elements for our 32-item HSQ).

C⃗X = vec(CX) = [c1,2, c1,3, . . . , c1,i, c2,3, . . . , ci−1,i]
⊺

Finally, we compute the similarity between two
correlation matrices/fingerprints CX1 and CX2 in
their vectorized form vec(CX) based on the cosine
similarity (Lahitani et al., 2016) to retrieve a score
normalized in [−1,+1].

sim(C⃗X1 , C⃗X2) =

l∑
k=1

C⃗X1kC⃗X2k

√
l∑

k=1

(C⃗X1k)
2

√
l∑

k=1

(C⃗X2k)
2

3.6 Exploratory Graph Analysis

To deepen our understanding of each LLM’s la-
tent psychological constructs, we perform an ex-
ploratory graph analysis (EGA) (Golino and Ep-
skamp, 2017) on the correlation matrices. EGA
identifies communities in networks of psychome-
tric variables, providing an alternative approach
to traditional factor analysis for detecting latent
constructs. The algorithm involves:

1. Estimating a network of partial correlations
using the graphical LASSO algorithm with
EBIC model selection (Friedman et al., 2008)

2. Applying the Walktrap community detection
algorithm to identify clusters of items (Pons
and Latapy, 2005)

3. Determining the number of dimensions (fac-
tors) automatically based on the identified
communities

This approach allows us to compare the factor
structures identified in LLM responses with the
theoretical four-factor structure of the HSQ, pro-
viding insight into how well the models capture
human-like psychological constructs.

3.7 Baseline and Control Conditions

To establish meaningful comparisons, we include
three control conditions and two additional valida-
tion steps. These baselines allow us to contextu-
alize our findings within a spectrum ranging from
completely random (lacking any factor structure)
to human-typical response patterns.

Random We generate 1000 synthetic response
sets with randomly assigned values (1-5) to pro-
vide a lower bound for structural coherence, repre-
senting what would be expected if there were no
systematic patterns between individual items.

Human Full We incorporate a dataset of 1071
human HSQ responses from Martin et al. (2003)
as our primary reference point for human response
patterns. This dataset exhibits the established four-
factor structure validated in prior research, serving
as our gold standard for human-like psychological
construct organization.

Human Items We generate 1,000 synthetic re-
sponse sets that preserve item-level distributional
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Baselines Llama Mistral Qwen
Random Human Items Human Full 3.1 8B 3.3 70B 7B 123B 2.5 7B

Human Items 0.049

Human Full 0.021 -0.075

Llama 3.1 8B 0.028 -0.026 -0.022
3.3 70B -0.032 -0.089 0.006 -0.028

Mistral 7B -0.030 0.085 0.085 -0.036 -0.047
123B 0.006 -0.022 0.130 -0.047 0.054 0.044

Qwen 2.5 7B 0.031 -0.032 0.164 -0.027 0.085 -0.020 0.070
2.5 72B 0.077 0.001 -0.068 0.082 -0.020 0.040 0.053 0.034

Table 1: Results of the sim(C⃗X1 , C⃗X2) for every combination of the three baseline approaches and the model
selection providing the model a 5 item context window of previous answers. The highest similarity for each column
is marked bold.

properties (mean and standard deviation) of hu-
man responses while randomizing inter-item corre-
lations. This control condition maintains human-
like response distributions while disrupting the
underlying factor structure, allowing us to deter-
mine whether LLMs reproduce only surface-level
response tendencies or capture deeper construct
relationships.

LLM w/o History We conduct an additional ab-
lation study (Sec. A) using the same experimental
setup but providing models with no historical con-
text of previous interactions. This control condition
serves as an LLM analog to the item-based sam-
pling baseline, enabling us to quantify the specific
contribution of conversational continuity to con-
struct validity and response coherence.

Cronbach’s Alpha We conduct an additional
validation study (Sec. B) examining the internal
consistency of responses using Cronbach’s alpha
(Cronbach, 1951). This established psychometric
measure allows us to quantify the reliability of each
humor style dimension across all experimental con-
ditions, providing complementary evidence to our
correlation-based fingerprinting approach.

3.8 Technical Implementation

We perform the experiment using a custom Python
framework (Python 3.10.12) utilizing Ollama, run-
ning all models locally. Response processing and
correlation analysis are conducted using NumPy
(2.2.3) (Harris et al., 2020) and Pandas (2.0.0)
(McKinney et al., 2011). EGA is performed
in R using the EGAnet package (Golino and
Epskamp, 2017). The corresponding GitHub
repository is available here https://github.com/

simon-muenker/LLM-Questionnaires and con-
tains the complete code, the raw and aggregated
data.

4 Results

We present our findings on the similarity patterns
between different LLMs and baseline conditions
based on their HSQ response fingerprints. The re-
sults reveal complex patterns of similarity within
model families and across parameter sizes, high-
lighting substantial differences between LLM and
human response patterns.

4.1 Similarity Patterns
Table 1 presents the cosine similarity scores be-
tween the correlation matrices of all LLMs and
baseline conditions. These scores quantify the de-
gree to which different models exhibit similar pat-
terns in their item correlations, with values closer
to 1 indicating higher similarity.

Model Family Similarities We observe moder-
ate similarity scores between models from the same
family, notably Mistral 7B/123B (0.044) and Qwen
2.5 7B/72B (0.034), suggesting that architectural
lineage and training methodology may influence
response patterns. However, cross-family similari-
ties such as those between Qwen 2.5 7B and Llama
3.3 70B (0.085), Qwen 2.5 72B and Llama 3.1 8B
(0.082), and Qwen 2.5 7B and Mistral 123B (0.070)
exceed within-family similarities. This unexpected
finding suggests that factors beyond architectural
lineage may strongly influence how LLMs repre-
sent psychological constructs.

The similarity between Llama and Mistral fam-
ilies is notably lower (averaging -0.019), indicat-
ing potential fundamental differences in how these
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01 02 03 04 05 06 07 08 09

02 0.828
03 0.832 0.886
04 0.853 0.885 0.891
05 0.791 0.836 0.831 0.844
06 0.780 0.833 0.803 0.812 0.820
07 0.776 0.822 0.805 0.798 0.787 0.775
08 0.813 0.853 0.868 0.854 0.823 0.821 0.821
09 0.857 0.851 0.840 0.855 0.788 0.787 0.812 0.808
10 0.831 0.826 0.815 0.824 0.793 0.794 0.824 0.802 0.815

Table 2: Results of the sim(C⃗X1 , C⃗X2) for every combination of 10 distinct samples n = 100 from the original
survey.

model families organize humor-related concepts de-
spite being developed in Western contexts. These
differences may stem from variations in training
data composition, optimization techniques, or ar-
chitectural design choices that influence concept
representation.

Size-Based Similarities Comparing similarity
patterns across model sizes reveals that the sim-
ilarity between smaller models (7/8B parameters)
is significantly lower (averaging -0.027) than the
similarity between larger models (70/123B param-
eters, averaging 0.029). This pattern suggests that
increased parameter count may lead to more consis-
tent psychological construct representation across
different model families. Larger models may con-
verge toward similar representational patterns due
to their enhanced capacity to capture complex sta-
tistical relationships in training data, even when
developed by different organizations with different
training methodologies.

Human vs. LLM Patterns To contextualize
the similarities observed between LLMs, we an-
alyzed the internal consistency of human responses
by comparing 10 different random samples drawn
from the same human dataset. Table 2 shows signif-
icantly higher similarity scores between different
human samples, ranging from 0.776 to 0.891 (av-
eraging 0.823). This strong consistency across hu-
man samples reflects the robust and stable psycho-
logical constructs underlying human humor pref-
erences. When compared to the similarity scores
between LLMs and humans (averaging only 0.026),
the human inter-sample similarities reveal a sub-
stantial representation gap. This gap suggests that
current LLMs, regardless of architecture or param-
eter count, fail to replicate the consistency and co-
herence of human psychological constructs as mea-
sured by the HSQ. The near-orthogonal relation-

ship between human and LLM correlation patterns
implies fundamentally different organizational prin-
ciples for humor-related concepts.

Baseline Comparisons Examining the similarity
scores between LLMs and our control conditions
provides additional insights. LLM fingerprints
show minimal similarity to the random baseline
(averaging 0.018) and Human Items baseline (aver-
aging -0.022), indicating that LLMs are not simply
reproducing random patterns or surface-level re-
sponse distributions. The slightly higher similarity
to the Human Full baseline (averaging 0.049) sug-
gests that LLMs capture some aspects of human
response patterns. However, the magnitude of sim-
ilarity remains far below what would be expected
if LLMs were organizing psychological constructs
in human-like ways.

4.2 Exploratory Graph Analysis Findings

Our EGA analyses (Fig. 1) reveals distinct commu-
nity structures in the response networks of different
LLMs and the human baseline data. The human
baseline data successfully recovers the expected
four-factor structure of the HSQ. In contrast, LLM
responses generally fail to replicate this structure,
instead producing between 2 and 8 communities
that did not clearly align with the theoretical dimen-
sions. LLM response networks featured numerous
unexpected connections between items from dif-
ferent theoretical dimensions, suggesting that the
models do not maintain the same conceptual bound-
aries between humor styles that are observed in
human responses.

5 Discussion

Our findings reveal significant divergence between
how LLMs and humans represent psychological
constructs as measured through the HSQ. These re-

250



AFL1

AFL5

AFL9

AFL13AFL17

AFL21

AFL25

AFL29

SEE2

SEE6

SEE10

SEE14

SEE18

SEE22

SEE26

SEE30

AGE3

AGE7

AGE11

AGE15

AGE19

AGE23

AGE27

SED28

AGE31

SED4

SED8

SED12

SED16

SED20

SED24

SED32
1

2

3

4

(a) Human Baseline

AFL1

SEE2

AGE3

AFL5

AGE7

AGE11

AFL13

SEE14

SED20

AFL21

SEE22

AGE23

SED24

AFL25

SEE26

SED28

SEE30

SED32

SED4

SEE6

SED8

AFL9

SEE10

SED12

AGE15

SED16

AFL17

SEE18

AGE19AGE27

AFL29

AGE31

1

2

(b) Mistral 7B

AFL1

AGE7

SED8
SEE2

AGE3

AFL5

SEE6

AGE15

SED16

SEE18

AGE19

AFL21

SEE30

SED4

AFL9

AFL17

SED20

AGE23

AFL29

AGE31

SEE10

AGE11

SED24 AGE27

SED28

SED12AFL13
SEE14

SEE22

AFL25SEE26

SED32

1

2

3

4

5

6

(c) Mistral 123B

AFL1

SEE2

AGE3

SED4

AFL5

SEE6

AGE7

SED8
AFL9

SEE10

AGE11

SED12

AFL13

SEE14

AFL17

AGE19

SED20

AGE23

SED24
AFL25

SEE26

AGE27

SED28

AGE15

SED16

SEE18

AFL21

SEE22

AFL29

SEE30

AGE31

SED32

1

2

3

4

5

(d) Qwen 7B

AFL1

SEE2

AGE3

SED4

SED8

AFL9

AFL17

AFL21

AGE23

SEE26

AFL5

AGE7

SEE10

AGE11

SED12
SEE14

AGE19

SED20

SED24

AGE27

SEE30

SED32

SEE6

AFL13

AGE15

SED16

SEE18

SEE22

AFL25

SED28

AFL29

AGE31

1

2

3

(e) Qwen 72B

Figure 1: EGA for all models prompted with a 5 item context window, except Llama 7B/70B as both models include
items that observe no standard deviation which is required by the EGAnet R package for every item.

sults have substantial implications for understand-
ing LLM capabilities, limitations, and their appli-
cation in psychology-related contexts.

5.1 Implications for Alignment Research

The substantial difference between LLM and hu-
man factor correlation patterns has direct implica-
tions for alignment research. Current alignment
techniques often focus on aligning model outputs
with human preferences, but our findings suggest
that even when outputs appear aligned, the under-
lying representational structures may remain fun-
damentally different. This representational mis-
alignment could lead to unexpected failures when
models encounter novel scenarios that require a
human-like understanding of psychological con-
structs. Our methodology offers a new lens for
evaluating alignment beyond surface-level behav-
ior, focusing instead on the structural coherence of
internal representations. By examining how factor
correlations in LLM responses compare to human
patterns, researchers can develop more nuanced
metrics for alignment that capture deeper aspects
of psychological construct representation.

5.2 Anthropomorphism and Model
Capabilities

The failure of all tested LLMs to recover the es-
tablished four-factor structure of the HSQ warns
against anthropomorphic interpretations of model
capabilities. Despite their impressive performance
on various natural language tasks, LLMs appear

to organize psychological constructs in fundamen-
tally different ways than humans do. The EGA
results, showing 2 and 8 communities in LLM re-
sponses compared to the clear four-factor structure
in human data, highlight this organizational dif-
ference. This finding suggests that while LLMs
may generate convincing responses to psycholog-
ical assessments, they do not necessarily operate
on the same underlying psychological constructs
as humans. The cross-dimension connections ob-
served in LLM response networks indicate that
models blur boundaries between theoretical dimen-
sions that remain distinct in human cognition. This
blurring may reflect the statistical nature of lan-
guage model training, which captures correlations
between language patterns without necessarily de-
veloping the conceptual boundaries that emerge
from human psychological experience.

5.3 Model Development and Evaluation

Our approach provides a novel method for evalu-
ating and comparing different LLMs beyond tradi-
tional benchmarks. By examining factor correla-
tion patterns as fingerprints, researchers and devel-
opers can identify systematic biases or unwanted
patterns in how models represent psychological
constructs. This evaluation technique could be par-
ticularly valuable for detecting subtle differences
between model versions or identifying cases where
models might be misrepresenting psychological
constructs in potentially harmful ways. The con-
sistently low similarity to human response patterns
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across all tested models suggests that current train-
ing approaches may not adequately capture the psy-
chological structures underlying human responses
to standardized assessments. This indicates a need
for new training methodologies or architectural
innovations specifically designed to better align
with human psychological construct representa-
tions, particularly if models are intended for ap-
plications in psychological assessment or therapy
assistance.

6 Conclusion

Our study set out to investigate two primary re-
search questions: (RQ1) whether LLMs from the
same family/company show similar factor covari-
ance patterns, and (RQ2) how these LLM pat-
terns compare to human response patterns. Our
findings provide clear answers to both questions
while contributing to the broader understanding
of how LLMs internally represent psychological
constructs.

RQ1 Our analysis of the factor correlation matri-
ces or "fingerprints" revealed complex similarity
patterns within and across model families. While
we observed some within-family similarities, we
unexpectedly found higher cross-family similar-
ities, such as between Qwen 2.5 7B and Llama
3.3 70B, and Qwen 2.5 72B and Llama 3.1 8B. It
suggests that factors beyond architectural lineage
significantly influence how LLMs represent psy-
chological constructs. The substantially lower simi-
larity between Llama and Mistral families indicates
fundamental differences in how these Western-
developed model families organize humor-related
concepts.

RQ2 When comparing LLM fingerprints to hu-
man response patterns, we found consistently low
similarity scores across all tested models. Even
the model with the highest similarity to human
patterns showed a relatively low score, indicating
a substantial divergence between how LLMs and
humans organize psychological constructs. This
divergence was further highlighted by our EGA,
which revealed that while human responses recov-
ered the theoretically expected four-factor structure
of the HSQ, LLM responses produced between
2-8 communities that did not align with these the-
oretical dimensions. The gap between human-to-
human similarity and human-to-LLM similarity
underscores that current LLMs, regardless of ar-

chitecture or size, fall far short of replicating the
consistency and coherence of human psychological
constructs. It suggests that despite their impressive
linguistic capabilities, LLMs represent psychologi-
cal concepts in fundamentally different ways than
humans.

6.1 Theoretical and Practical Implications
These findings contribute to the ongoing discus-
sion about the nature of LLM cognition and raise
questions about the alignment between human and
artificial representations of psychological concepts.
The divergence in factor structures suggests that
despite training on human-generated text, LLMs
develop internal representations that organize psy-
chological concepts differently than humans. This
fundamental difference likely stems from distinct
learning mechanisms—humans develop psycho-
logical constructs through lived experience, social
interaction, and cultural context, while LLMs learn
purely through statistical patterns in text.

6.2 General Contributions & Future Work
Beyond our discussed findings on humor styles,
this study introduced a generalizable methodology
for "fingerprinting" LLMs based on their factor cor-
relation patterns. This approach provides several
advantages, including a population-based assess-
ment rather than an individual level, interpretability
supported by established psychometric techniques
(EGA & Cronbach’s Alpha), and efficient dimen-
sionality reduction to singular value instead of a
graphical representation (EGA) or a construct level
assessment (Cronbach’s Alpha).

Future research should extend this fingerprint-
ing methodology to other psychological instru-
ments to determine whether the observed diver-
gence between human and LLM factor structures
generalizes across different psychological domains.
Investigating how different prompt engineering
techniques affect factor correlation patterns could
reveal whether specific approaches yield more
human-like construct representations. Additionally,
longitudinal studies tracking how these patterns
evolve across model generations could provide in-
sights into whether newer architectures are converg-
ing toward or diverging from human psychological
structures.
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Limitations

We acknowledge several limitations in our method-
ology and analysis that should be considered when
interpreting our findings. First, the models may
have been exposed to the HSQ during training, and
thus, their responses might reflect patterns in their
training data rather than intrinsic model proper-
ties. This potential contamination could artificially
inflate or alter the observed factor structures. Fu-
ture work could address this by developing novel
psychological instruments specifically designed to
probe construct representations without training
data contamination.

Second, different API implementations, prompt-
ing strategies, and generation parameter configura-
tions might introduce systematic biases in model
responses. While we standardized our approach
across models, subtle differences in how different
architectures handle identical prompts could af-
fect response patterns. To mitigate these concerns,
we made our code, prompts, and analysis scripts
publicly available to facilitate reproducibility and
critical assessment.

Third, our analysis is based on a single psycho-
logical instrument—the HSQ. Different psycholog-
ical constructs and assessment tools might yield
different patterns of similarity and divergence be-
tween human and LLM responses. The specific
nature of humor as a psychological construct may
present unique challenges for LLMs that might not
generalize to other domains such as personality,
attitudes, or cognitive styles.

Finally, we acknowledge that our sliding window
approach to maintaining conversation history rep-
resents only one possible implementation of con-
textual continuity. Different approaches to main-
taining context across items might yield different
response patterns and potentially alter the resulting
factor structures. Future research could systemati-
cally vary context management strategies to assess
their impact on psychological construct representa-
tion. Despite these limitations, our findings provide
valuable initial insights into how LLMs represent
psychological constructs compared to humans, of-
fering methodological contributions and substan-
tive findings that can inform future research and
applications in this domain.

Ethical Considerations

Our study raises several ethical considerations re-
garding the evaluation and deployment of LLMs
as human simulacra in social science and psycho-
logical contexts. First, our findings of substantial
divergence between LLM and human factor cor-
relation patterns underscore potential risks in de-
ploying these models as replacements for human
participants in social science experiments and psy-
chological assessments. The misalignment in psy-
chological construct representation could lead to
inaccurate assessments or inappropriate interven-
tions if models are naively applied.

Second, we acknowledge the dual-use potential
of our fingerprinting methodology. While designed
as an analytical tool to enhance the understanding
of model limitations, similar techniques could po-
tentially help to identify models or detect manufac-
tured responses in online surveys. We have openly
published our methodology to encourage trans-
parency and further research into these issues while
emphasizing that practical applications should be
approached with appropriate caution and ethical
oversight.

Third, our study deliberately focused on humor
styles as a relatively low-risk psychological con-
struct. We caution that applying similar methods
to more sensitive psychological domains (e.g., psy-
chopathology, trauma, or suicidality) would require
additional ethical safeguards and expert consulta-
tion. The significant divergence between human
and LLM representations suggests greater caution
is warranted for more sensitive applications.

Finally, we recognize the risk of anthropomor-
phizing LLMs based on their performance on
psychological assessments. Our findings caution
against interpreting LLM responses to psychologi-
cal inventories as meaningful reflections of internal
"psychological states" comparable to humans. We
emphasize that even when LLMs produce plausible-
seeming responses to psychological measures, they
organize the underlying constructs in fundamen-
tally different ways that do not align with human
psychological structures. It has significant impli-
cations for how researchers communicate about
LLM capabilities to the public and how practition-
ers might deploy these technologies.
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A Ablation Study: LLMs without context

To isolate the impact of conversational history on
LLMs’ representation of psychological constructs,
we conduct an ablation study where models re-
ceived HSQ items without any context of previ-
ous interactions. This design allows us to evaluate
whether the five-question sliding window imple-
mented in our main experiment contributes signif-
icantly to the coherence and validity of response
patterns.

A.1 Inter-Model Similarity Patterns
Table 3 presents the similarity scores between the
correlation matrices of all LLMs and baseline con-
ditions when tested without conversational context.
The results reveal similar patterns to the context ex-
periment and show decreasing alignment between
models and humans.

Model Family Similarities In contrast to our
main results, we observe higher similarity scores
between models from the same family, like
Llama3.1 8B and Llama3.3 70B show a strong
similarity (0.093). Similarly, Qwen2.5 7B and

Qwen2.5 72B (0.050) demonstrate within-family
similarity. This suggests that architectural charac-
teristics within a model family increase during the
absence of conversational context.

Comparison to Context-Based Results When
comparing these context-free similarity scores to
those obtained with the sliding window approach
(Table 1), we observe an overall reduction in simi-
larity values across most model pairs. For instance,
the similarity between Qwen2.5 7B and Human
Full drops from 0.164 with context to merely 0.004
without context. This systematic reduction sug-
gests that conversational context provides a struc-
tural framework that helps models maintain more
consistent response patterns across related items,
particularly for capturing human-like psychologi-
cal constructs.

Human vs. LLM Patterns The context-free con-
dition further widens the gap between LLM and
human response patterns. Llama3.1 8B shows the
highest similarity to Human Full at only 0.011,
significantly lower than the 0.164 observed for
Qwen2.5 7B with conversational context. This sug-
gests that conversational continuity plays a crucial
role in enabling LLMs to produce more human-like
response patterns on psychological assessments.

A.2 Exploratory Graph Analysis Findings
The EGA results for context-free responses (Fig. 2)
reveal a similiar divergence from the human four-
factor structure compared to the context-based
approach. While human responses consistently
demonstrate four distinct communities correspond-
ing to the theoretical humor styles, LLMs without
context produce more fragmented and theoretically
inconsistent structures. Most notably, Mistral 7B,
Mistral 123B, Llama 8B, and Qwen 7B all exhibit
between 4-7 communities that fail to align with the
theoretical dimensions of the HSQ. The commu-
nity structures appear more arbitrary, with items
from different theoretical dimensions frequently
clustered together.

A.3 Implications for LLM Assessment
This ablation study highlights the critical role of
conversational continuity in enabling LLMs to pro-
duce more coherent and structurally valid response
patterns on psychological assessments. Without ac-
cess to recent interaction history, models generate
responses that exhibit weaker internal consistency
and greater divergence from human psychological
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Baselines Llama Mistral Qwen
Random Human Items Human Full 3.1 8B 3.3 70B 7B 123B 2.5 7B

Human Items 0.033

Human Full -0.045 -0.002

Llama 3.1 8B 0.029 -0.016 0.011
3.3 70B 0.002 -0.004 -0.008 0.093

Mistral 7B -0.021 0.070 -0.014 -0.040 0.014
123B 0.039 -0.001 -0.050 0.038 0.053 -0.044

Qwen 2.5 7B 0.055 -0.032 0.004 -0.054 0.018 0.045 -0.014
2.5 72B 0.042 0.080 -0.068 -0.034 0.035 0.051 -0.069 0.050

Table 3: Results of the sim(C⃗X1 , C⃗X2) for every combination of the three baseline approaches and the model
selection without providing the model a context window of previous answers. The highest similarity for each
column is marked bold.
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Figure 2: EGA for all models prompted without a context window, except Llama 70B and Qwen 72B as both models
include items that observe no standard deviation which is required by the EGAnet R package for every item.

constructs. The improvement in construct validity
with context, while still falling short of human-
level coherence, suggests that current LLMs bene-
fit from local contextual cues but may lack deeper
conceptual frameworks that would allow them to
maintain consistent psychological constructs across
independent interactions. This aligns with our main
findings and reinforces the conclusion that despite
superficial behavioral competence, LLMs represent
psychological constructs in fundamentally different
ways than humans do.

B Cronbach’s Alpha (Cronbach, 1951)

As a complementary validation measure to our fin-
gerprinting methodology described in Section 3,
we calculated Cronbach’s alpha (Cronbach, 1951)
for each humor style dimension. While our pro-

posed fingerprinting approach examines the cor-
relation structure between items to identify rep-
resentational patterns, Cronbach’s alpha provides
an established measure of internal consistency that
helps validate our findings from a psychometric per-
spective. Cronbach’s alpha measures how closely
related a set of items are as a group, providing
insight into whether the items consistently mea-
sure the same underlying construct. Following es-
tablished standards in psychological research, we
adopted the threshold of α ≥ 0.8 for applied re-
search contexts (Nunnally, 1975). Table 4 presents
the Cronbach’s alpha values for all experimental
conditions. The results reveal several findings re-
garding the reliability of responses that align with
the evaluation of our metric:
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Aff. See. Agg. Sed.

Baseline Conditions

Random 0.089 0.134 0.083 0.065
Human Items 0.118 0.105 0.084 0.103
Human Full 0.841 0.820 0.790 0.815

LLMs w/o context window

Llama3.1 8B 0.118 0.081 0.104 0.110
Llama3.3 70B 0.034 0.070 0.024 0.013
Mistral 7B 0.121 0.130 0.089 0.122
Mistral 123B 0.184 0.189 0.177 0.206
Qwen2.5 7B 0.095 0.061 0.116 0.096
Qwen2.5 72B 0.008 0.073 0.103 0.041

LLMs w/ 5-item context window

Llama3.1 8B 0.138 0.091 0.087 0.149
Llama3.3 70B 0.063 0.144 0.087 0.076
Mistral 7B 0.460 0.513 0.514 0.617
Mistral 123B 0.220 0.242 0.157 0.232
Qwen2.5 7B 0.492 0.535 0.551 0.298
Qwen2.5 72B 0.094 0.138 0.084 0.113

Aff.: Affiliative | See.: Self-enhancing
Agg.: Aggressive | Sed.: Self-defeating

Table 4: Cronbach’s Alpha reliability scores
(Cronbach, 1951) for four humor styles (Martin
et al., 2003) across different experimental condi-
tions. The table compares the baseline conditions
with both LLM experiments. Values above 0.8
indicate acceptable reliability for applied research
(Nunnally, 1975). The highest score within each
group-column combination is highlighted in bold.

Human Baseline vs. LLM Responses Human
responses demonstrated strong internal consistency
across all four humor styles (Affiliative: α =
0.841, Self-enhancing: α = 0.820, Aggressive:
α = 0.790, Self-defeating: α = 0.815). In
contrast, all LLM conditions showed substantially
lower reliability values, indicating that LLMs fail
to produce response patterns with the same level of
internal consistency as humans.

Effect of Context Window The introduction of
the 5-item context window substantially improved
reliability scores across most models compared
to the no-context condition. This improvement
was most pronounced in medium-sized models like
Mistral 7B and Qwen 2.5 7B, which showed the
greatest gains in reliability when provided with
conversational history. For instance, Mistral 7B’s
α values increased from a range of 0.089-0.130
without context to 0.460-0.617 with context.

Model Size and Reliability In line with our main
results, larger models do not consistently demon-
strate higher reliability than their smaller counter-
parts within the same family. This finding chal-

lenges the assumption that increasing parameter
count improves psychological construct represen-
tation. For example, Qwen 2.5 7B with context
achieved higher reliability scores (α = 0.492
for Affiliative, α = 0.535 for Self-enhancing,
α = 0.551 for Aggressive) than its larger 72B
counterpart (α = 0.094, α = 0.138, α = 0.084
respectively).
Overall, these reliability findings complement our
fingerprinting approach and correlation matrix anal-
ysis by demonstrating that even when LLMs show
some improvement in their response patterns with
additional context, they still fail to achieve the inter-
nal consistency characteristic of human responses
to psychological assessments.

The consistent alignment between our finger-
printing results and Cronbach’s alpha values pro-
vides methodological triangulation, strengthening
our conclusion that LLMs, despite their linguistic
capabilities, do not organize psychological con-
structs similar to humans. The validation supports
the effectiveness of our proposed metric for evalu-
ating how psychological constructs are represented
across different types of systems.

While Cronbach’s alpha offers valuable insights
into internal consistency within each humor style
dimension independently, our fingerprinting ap-
proach uniquely captures the holistic correlation
structure across all dimensions simultaneously, pro-
viding a more comprehensive measure of how psy-
chological constructs are organized relative to one
another — a critical consideration for understand-
ing representational differences between human
and artificial systems.

C HSQ (Martin et al., 2003)
Question: For each of the statements below, please indicate
how true each statement is for you. Response options: Never
or very rarely true (1); Rarely true (2); Sometimes true (3);
Often true (4); and Very often or always true (5).

1. I usually don’t laugh or joke around much with other
people.

2. If I am feeling depressed, I can usually cheer myself up
with humor.

3. If someone makes a mistake, I will often tease them
about it.

4. I let people laugh at me or make fun at my expense more
than I should.

5. I don’t have to work very hard at making other people
laugh—I seem to be a naturally humorous person.

6. Even when I’m by myself, I’m often amused by the
absurdities of life.

7. People are never offended or hurt by my sense of humor.
8. I will often get carried away in putting myself down if

it makes my family or friends laugh.
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9. I rarely make other people laugh by telling funny stories
about myself.

10. If I am feeling upset or unhappy I usually try to think
of something funny about the situation to make myself
feel better.

11. When telling jokes or saying funny things, I am usually
not very concerned about how other people are taking
it.

12. I often try to make people like or accept me more by say-
ing something funny about my own weaknesses, blun-
ders, or faults.

13. I laugh and joke a lot with my closest friends.
14. My humorous outlook on life keeps me from getting

overly upset or depressed about things.
15. I do not like it when people use humor as a way of

criticizing or putting someone down.
16. I don’t often say funny things to put myself down.
17. I usually don’t like to tell jokes or amuse people.
18. If I’m by myself and I’m feeling unhappy, I make an

effort to think of something funny to cheer myself up.
19. Sometimes I think of something that is so funny that I

can’t stop myself from saying it, even if it is not appro-
priate for the situation.

20. I often go overboard in putting myself down when I am
making jokes or trying to be funny.

21. I enjoy making people laugh.
22. If I am feeling sad or upset, I usually lose my sense of

humor.
23. I never participate in laughing at others even if all my

friends are doing it.
24. When I am with friends or family, I often seem to be the

one that other people make fun of or joke about.
25. I don’t often joke around with my friends.
26. It is my experience that thinking about some amusing

aspect of a situation is often a very effective way of
coping with problems.

27. If I don’t like someone, I often use humor or teasing to
put them down.

28. If I am having problems or feeling unhappy, I often
cover it up by joking around, so that even my closest
friends don’t know how I really feel.

29. I usually can’t think of witty things to say when I’m
with other people.

30. I don’t need to be with other people to feel amused - I
can usually find things to laugh about even when I’m by
myself.

31. Even if something is really funny to me, I will not laugh
or joke about it if someone will be offended.

32. Letting others laugh at me is my way of keeping my
friends and family in good spirits.

Scoring: Average each of the following items to get four
scores corresponding with the four humor styles.

Affiliative: 1, 5, 9, 13, 17, 21, 25, 29
Self-enhancing: 2, 6, 10, 14, 18, 22, 26, 30
Aggressive: 3, 7, 11, 15, 19, 23, 27, 31
Self-defeating: 4, 8, 12, 16, 20, 24, 28, 32
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