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Abstract

Large language models (LLMs) are increas-
ingly used as evaluators in natural language
generation tasks, offering advantages in scala-
bility and interpretability over traditional eval-
uation methods. However, existing LLM-
based evaluations often suffer from biases and
misalignment, particularly in domain-specific
tasks, due to limited functional understand-
ing and knowledge gaps. To address these
challenges, we first investigate the relation-
ship between an LLM-based evaluator’s famil-
iarity with the target task and its evaluation
performance. We then introduce the Co-Eval
framework, which leverages a criteria plan-
ner model and optimized machine metrics to
enhance the scalability and fairness of LLM-
based evaluation. Experimental results on both
general and domain-specific tasks demonstrate
that Co-Eval reduces biases, achieving up to a
0.4903 reduction in self-preference bias, and
improves alignment with human preferences,
with gains of up to 0.324 in Spearman cor-
relation. All data and code are available at
https://github.com/edithwuly/Co-EVAL.

1 Introduction

Evaluating the quality of natural language gener-
ation (NLG) is inherently challenging due to the
subjective nature of such tasks, where the criteria
for high-quality output can vary based on context
and audience. While human evaluation remains a
common method for assessing generated text, it is
also time-consuming. Recently, researchers (Liu
et al., 2023; Chan et al., 2023; Zheng et al., 2023a)
have turned to large language models (LLMs) as
evaluators, noting their impressive alignment with
human preferences in text assessment.

However, studies (Koo et al., 2023; Panickssery
et al., 2024) have revealed that LLMs exhibit biases,
such as a preference for text generated by the mod-
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Figure 1: Machine metrics augment scalability and fair-
ness of LLM-based evaluation.

els themselves. Additionally, factors like presenta-
tion order (Wang et al., 2023) and text length (Hu
et al., 2024) can affect the fairness of LLM evalua-
tions. General-purpose LLMs also tend to under-
perform when evaluating NLG tasks in specialized
domains (Dorner et al., 2025), which can either ex-
acerbate or mitigate biases depending on the task.
These limitations raise concerns about the objectiv-
ity of LLMs, especially when evaluating domain-
specific tasks, where their performance may still
be prone to significant "hallucinations" (Tong and
Zhang, 2024; Davoodi et al., 2025).

To mitigate these issues, prior research has at-
tempted to reduce biases by incorporating reference
points (Jiao et al., 2024; Lu et al., 2023) and enhanc-
ing human evaluation (Xu et al., 2024b) or using
multi-agent systems (Chan et al., 2023). However,
these methods are often too resource-intensive for
real-time applications in online systems.

In this paper, we first investigate how self-
preference, position, verbosity, and format biases
in LLM-based evaluations vary with the model’s fa-
miliarity with the target task. Using translation as a
case study, we reflect an LLM’s familiarity through
its performance in the target language. We then in-
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troduce Co-Eval, a zero-shot reference-free LLM-
based evaluation framework that enhances LLM-
based evaluation through domain-specific machine
metrics. Recognizing that individual metrics of-
ten assess only specific aspects of a task, we fine-
tuned a LLaMA-3.1-8B-Instruct model to serve as
a criteria planner. This planner interprets diverse
task descriptions to establish evaluation criteria,
assign weights, and generate score-level descrip-
tions. Next, we developed a comprehensive ma-
chine metrics library to link relevant metrics to the
generated criteria based on similarity of their de-
scription. The criteria planner is then utilized to re-
fine the machine metric descriptions, ensuring they
align closely with the specified criteria. Finally, the
prompt-based LLM evaluator is used to generate
the final evaluation of each sample, with the overall
score calculated as a weighted sum across criteria.

Extensive experiments conducted across mul-
tiple tasks, including four domain-specific ones,
demonstrate that the Co-Eval framework enhances
LLM-based evaluators. It reduces self-preference
bias by up to 0.4903 and improves agreement with
human preferences by up to 0.324 on domain-
specific tasks.

To summarize, the main contributions of this
paper are as follows:

* We conduct an in-depth study of the biases in
LLM-based evaluators, focusing on how an
LLM’s familiarity with the task being evalu-
ated can influence its judgments, and uncover
several meaningful insights.

¢ We introduce Co-Eval, a novel LLM-based
evaluation framework that enhances scalabil-
ity and fairness in evaluation by incorporat-
ing machine metrics. We also provide a the-
oretical proof and extensive experiments to
demonstrate that our framework reduces bias
in LLM-based evaluations and improves align-
ment with human preferences.

* We present a multi-task supervised fine-tuning
dataset for the criteria planner, along with a
comprehensive machine metric library that
includes approximately 50 machine metrics
with their implementations.

2 Related Work

2.1 Metric-based Evaluation

Formula-based metrics rely on predefined rules
to evaluate the quality of generated responses. Ex-

amples include BLEU (Papineni et al., 2002) and
METEOR (Banerjee and Lavie, 2005) for machine
translation tasks, ROUGE (Lin, 2004) for text
summarization, and Flesch-Kincaid score (Flesch,
1943) for readability in educational content.
Model-based metrics leverage pre-trained neu-
ral networks to assess the quality of generated re-
sponses. For example, BERTScore (Zhang et al.,
2019) computes cosine similarity between BERT
embeddings (Devlin, 2018), while GPTScore (Fu
et al., 2023) utilizes embeddings from GPT (Rad-
ford, 2018). More recently, like UNIEVAL (Zhong
et al., 2022), improve embedding-based evaluation
by incorporating multiple evaluation dimensions.
Both kinds of machine metrics offer reliable and
consistent evaluations but are constrained by their
applicability. When used for inappropriate tasks,
they can introduce significant biases, leading to
misalignment with human preferences.

2.2 LLM-based Evaluation

LLM-based evaluation methods utilize LLMs as
sophisticated judges of text quality, often referred
to as LLMs-as-judges (Ashktorab et al., 2024;
Bavaresco et al., 2024; Tseng et al., 2024).

Prompt-based methods aim to teach LLMs how
to evaluate complex tasks through in-context learn-
ing. This includes providing fine-grained task cri-
teria (Liu et al., 2023; Zhuo, 2024; Yi et al., 2024;
Song et al., 2024a), learning from examples (shot
learning) (Fu et al., 2024; Lin and Chen, 2023;
Zhang et al., 2024; Jain et al., 2023; Song et al.,
2024b), or breaking into multiple iterations (Hasan-
beig et al., 2023; Chiang and Lee, 2023; Liu et al.,
2024b; Xu et al., 2024a; Saha et al., 2024).

Tuning-based methods (Deshwal and Chawla,
2024; Yue et al,, 2023; Ye et al., 2024b; Wang
et al., 2024; He et al., 2024; Kim et al., 2024; Liu
et al., 2024a; Ke et al., 2024), on the other hand, in-
volve training a pre-existing LLM on a specialized
dataset to adapt it to specific judgment tasks.

Unlike single-LLM systems, Multi-LLM evalua-
tion (Liang et al., 2024; Zhao et al., 2024a; Moniri
et al., 2025; Chan et al., 2023) leverages the col-
lective intelligence of multiple LLMs to enhance
evaluation performance.

Despite extensive research, issues such as hallu-
cinations and domain-specific knowledge gaps un-
dermine the robustness of LLLM-based evaluation,
manifesting as biases, including self-preference
bias (Li et al., 2024; Panickssery et al., 2024), po-
sition bias (Shi et al., 2024; Zhao et al., 2024b),
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[ Task: Generate executable Python code for a given requirement. ]

A
Criteria: q§

Robustness (1 points): Does the generated code handle
edge cases and potential errors?

- A float score near 0 (no) means ...

Efficiency (2 points): Is the generated code ...

Multi-task Training

Refined Metric:
Sonar Reliability - ... A lower Sonar Reliability score
suggests that the code is more robust ...

¥

Robustness:

Requirement: decode a hex string '4a4b4c’ to UTF-8.

4

Criteria: Robustness - Does the generated code ... N,

Metric: Sonar Reliability - Assesses the reliability of a software project ...
More bugs and potential issues detected ...

s

Sonar Reliability - Assesses the reliability of a software project ... A lower Sonar Reliability score ... more robust ...

Sample 1: print(4a4btc.decode( utf-8°))
Sonar Reliability Score: 1
Sample 2: ...

Robustness:
Sample 1: 0.8, Sample 2: 0.5 ... +

Efficiency:
Sample 1: 1.2, Sample 2: 1.5 ... +

1 Overall:
Correctness: Sample 1: 8.8
Sample 1: 3.4, Sample 2: 2.8 ... +...=

Sample 2: 6.5

Figure 2: An overview of Co-Eval framework on executable Python code generation task. First, a fine-tuned criteria
planner generates scoring criteria and corresponding weights for evaluating the task. Next, each criterion is matched
with suitable machine metrics from a machine metric library based on semantic similarity between their descriptions.
The chosen machine metrics are then refined by the criteria planner to specify how changes in their scores reflect the
performance of the generated code against the criteria. Finally, the task description, original requirement, generated
code, machine metric descriptions, and scores are input to a prompt-based evaluator to assign scores to each criterion.
These scores are weighted and summed to produce the final evaluation score for each sample.

and verbosity bias (Chen et al., 2024; Zheng et al.,
2023b). Avoiding self-evaluation (Ye et al., 2024a)
and reference-based approaches (Badshah and Saj-
jad, 2024) have proven effective in mitigating
self-preference bias. However, obtaining accu-
rate models and references can be challenging for
open-ended tasks. Additionally, swap-based meth-
ods (Raina et al., 2024; Wang et al., 2023) have
been shown to effectively address position bias.

3 Methodology

To enhance the scalability and fairness of LLM-
based evaluators, we propose the Co-Eval frame-
work, outlined in Figure 2.

3.1 Criteria Planner

The main tasks of the criteria planner are to gener-
ate evaluation criteria and refine the descriptions of
machine metrics.

For the criteria plan task, we recognize that ma-
chine metrics are suited for assessing well-defined
criteria, which improves accuracy but limits scala-
bility. Furthermore, criteria and their weights must
be highly responsive to subtle differences across
tasks, as even slight task variations can result in sig-
nificant shifts in criteria and corresponding weights.
Previous research (Kim et al., 2023) has also shown

that using fine-grained criteria improves the perfor-
mance of LLLM-based evaluators. Therefore, a cri-
teria planner is needed that can break down task cri-
teria into fine-grained machine metrics and score-
level descriptions, adjusting criteria and weights to
capture nuanced task differences effectively.

For the metric refine task, we observe that ma-
chine metric descriptions tend to be straightfor-
ward, focusing mainly on the applicability of each
metric rather than linking scores to criteria perfor-
mance. To address this, we refine the machine
metric descriptions to better reflect their relation-
ship to the criteria being assessed, rather than using
them directly in a prompt-based evaluation setting.

Data Preparation We constructed a multi-task
supervised fine-tuning dataset comprising a total
of 950 samples. For the criteria planning task, we
developed a dataset with 500 task descriptions and
corresponding criteria descriptions. Among these,
250 task descriptions were collected from agent
platforms such as Coze' and GPT-Shop?, while
the remaining 250 were generated by GPT-40 fol-
lowing a consistent format to ensure diversity and
coverage. For the metric refinement task, we used
the 500 criteria produced in the criteria planning

"https://www.coze.com
Zhttps://chatgpt.com/gpts
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task. For 250 of these criteria, we searched a metric
library to identify suitable metrics and had GPT-
40 generate refined metric descriptions. For the
remaining 250 criteria, GPT-40 was tasked with
both generating suitable metrics and refining their
descriptions. To ensure the quality and consistency
of the dataset, we extracted the required informa-
tion from the initial outputs, reorganized them into
a standardized format, and filtered out 50 outputs
with missing key information. The prompt used for
data preparation is detailed in Appendix E.
Training Strategy Our primary objective is to
distill GPT-40’s performance on criteria planning
and metric description refinement tasks, as well as
to correct the output format bias of the Llama-3.1-
8B-Instruct-based planner, enhancing its suitability
for downstream tasks. Given that our training data
consists of no more than 1,000 samples and the
target task aligns closely with the native capabilities
of the Llama-3.1-8B-Instruct model, we employ
LoRA (Hu et al., 2021) as our fine-tuning method.

3.2 Machine Metrics Library

We compiled approximately 50 machine metrics
into a comprehensive library, broadly categorized
into two types. The theoretical justification for our
approach is provided in Appendix D.

Formula-based Metrics rely on deterministic
rules and structured patterns to evaluate specific
criteria in generated outputs. These metrics offer
precise assessments that LLMs may find difficult to
approximate. For instance, a syntax parser can reli-
ably verify whether generated code is syntactically
correct and compilable, an evaluation task that of-
ten exceeds the capabilities of LLMs. Additionally,
formula-based metrics play a crucial role in guid-
ing LLM-based evaluators toward better alignment
with human preferences, which are often embed-
ded in the design of these metrics. For example, in
summarization tasks, an Information Density for-
mula can prioritize brevity and the inclusion of key
information.

Model-based Metrics utilize well-trained deep
neural networks to assess domain-specific evalua-
tion criteria. While LLMs excel at general-purpose
generation, we emphasize smaller, domain-specific
models trained on specialized corpora, which tend
to be more robust in their respective domains. For
instance, a BERT model fine-tuned on a financial
corpus may more accurately assess contextual sim-
ilarity within financial documents than a general-
purpose LLM. As such, these metrics enhance the

Chinese French Spanish  Thai  Ukrainian Vietnamese

Qwen-2.5-72B  0.3125 04601 05144 0.2674  0.3255 0.3767
Qwen-2.5-7B 02366 0.3978 0.4316 0.1884  0.2593 0.2827
Llama-3.1-70B  0.3128 0.5456 0.6252 0.3140  0.4244 0.4843
Llama-3.1-8B 0.1627  0.4041 0.5180 0.0861 0.1435 0.0576

Gemma-2-27B
Gemma-2-9B

0.2827
0.2977

0.3531
0.4533

0.5350
0.4975

0.2718
0.2429

0.3749
0.3206

0.4494
0.3351

Table 1: BLEU Scores for Back-translations.

domain sensitivity of LLM-based evaluators.

These metrics are produced by compact, domain-
specialized neural models. A BERT model fine-
tuned on a financial corpus, for example, can judge
topical coherence in corporate filings more reliably
than a general-purpose LLM.

Since conventional descriptions of machine met-
rics often fail to clarify which aspects of the data
influence score changes, we aim to enhance inter-
pretability by identifying the specific data features
that impact each metric. To this end, we provide
GPT-40 with pairwise evaluation samples for every
metric, enabling it to generate more precise descrip-
tions that reflect the features each metric effectively
captures within context.

3.3 Prompt-based Evaluator

For the final LLM-based evaluator, we adopt the in-
context learning and batchwise evaluation methods
from BATCHEVAL (Yuan et al., 2023), along with
its input and output formatting. To encourage the
LLM to reason based on the provided metric scores,
rather than blindly following them, we include an
explicit instruction in the prompt. The full prompt
template is provided in Appendix E.

4 Experiment

4.1 Experimental Settings

The criteria planner model, based on the Llama-3.1-
8B-Instruct model, was fine-tuned by LoRA (Hu
et al., 2021) for 3 epochs with a learning rate of
1.0e-4, a cosine scheduler, and a warmup ratio of
0.1. We set a total score of 10 with a maximum of
5 evaluation criteria.

In the machine metric search, we select the top
three metrics with embedding similarity scores ex-
ceeding 0.8, where cosine similarity is employed,
averaging scores across five evaluation runs. De-
tailed descriptions of LLMs used as prompt-based
evaluators and baselines are provided in Appendix
A and Appendix B, respectively.

Experiments show that our Co-Eval framework
enhances the scalability and fairness of LLM-based
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Figure 3: Impact of familiarity on four types of bias. In each subfigure, the horizontal axis represents the rank of the
LLM’s familiarity with six different languages. The higher the rank, the lower the model’s familiarity with that
language. For self-preference bias, the vertical axis shows the rate at which the LLM’s own translation is ranked
first compared to the gold reference. For position bias, the vertical axis indicates the rate at which a response is
ranked first when it appears in the first position. For verbosity bias, the vertical axis reflects the rate at which more
verbose responses are ranked first. For format bias, the vertical axis shows the rate at which formatted responses are
ranked first. In each subfigure, solid lines represent results from the larger model in the LLM family, while dashed

lines represent the smaller model.

evaluation, especially in domain-specific tasks. De-
tailed experimental implementation information for
each benchmark is provided in Appendix C.

4.2 Bias with LLM’s Familiarity

At the beginning of our experiment, we aim to in-
vestigate how an LLM’s familiarity with a target
task affects the performance of LLM-based eval-
uators. We choose translation as the target task
because the input remains consistent across dif-
ferent target languages, allowing us to isolate the
LLM’s task familiarity based on its familiarity with
the target language.

For our analysis, we use the FLORES bench-
mark (Costa-jussa et al., 2022) and three state-
of-the-art LLLMs as final prompt-based evalua-

tors: Qwen-2.5-72B, Llama-3.1-70B, and Gemma-
2-27B. These models translate English content
into six target languages: Chinese, Thai, Spanish,
French, Ukrainian, and Vietnamese. To estimate
language familiarity, we follow Zhuo et al. (Zhuo
et al., 2023). Each model performs translation and
back-translation, and we compute BLEU scores
between the original and back-translated English.
Higher scores indicate greater familiarity. We use
the first 100 FLORES samples, and average BLEU
scores are shown in Table 1.

Figure 3 shows how language familiarity relates
to self-preference, position, verbosity, and format
biases. Self-preference bias is measured by how
often the LLM prefers its own output over the gold
reference. Position bias is assessed by rotating the
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Figure 5: Position bias on CoNalLa and MATH benchmarks. To evaluate position bias, we batch the larger LLMs
from three different families and rotate their positions. The red line represents the expected ideal rate, 0.3333, at
which a response in position 1 is ranked first. This assumes that when the same response is randomly placed in

positions 1 to 3, it has an equal probability of being ranked first, regardless of its position.

same responses through positions 1-3 and record-
ing how often each ranks first. Verbosity bias fol-
lows Zheng et al. (Zheng et al., 2023b). GPT-40 is
used to generate extended and shortened versions
of Llama-3.1-70B’s outputs, and we measure pref-
erence for longer responses. Format bias is tested
by applying pre-defined formatting to Llama-3.1-
70B outputs and measuring preference for the for-
matted version.

Analysis The results highlight key patterns in
how model familiarity influences bias. First, as
familiarity with the target language decreases, self-
preference bias declines, while format bias rises.
This suggests that when less confident, LLMs rely
less on their own outputs and more on superficial
cues like layout or structure. In contrast, position
and verbosity biases remain stable, likely stemming
from internal mechanisms such as reading prefer-

ences or decoding behavior that are less affected
by content familiarity.

Second, while both small and large LLMs follow
similar trends in most biases, format bias diverges
sharply. Smaller models behave similarly to each
other, as do larger models, but the two groups differ
in formatting tendencies. This is due to differences
in post-training exposure: larger models typically
undergo more instruction tuning and structured-
output training (e.g., JSON, XML), leading to more
standardized formatting, while smaller models re-
tain more varied styles.

Finally, self-preference bias increases with
model size, reflecting better recognition of self-
generated text and alignment with reward signals.
No clear size-related trends emerge for position,
verbosity, or format bias. Position bias stems from
the transformer’s attention mechanics, verbosity
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Figure 7: Format bias on CoNalLa and MATH benchmarks. To assess format bias, we batch the original responses
generated by Llama-3.1-70B-Instruct together with their formatted counterparts that contain intentional errors.

bias reflects early-learned length-helpfulness asso-
ciations, and format bias is shaped more by fine-
tuning data than model scale.

4.3 Effectiveness on Bias Elimination

We demonstrate the effectiveness of the Co-Eval
framework in mitigating four types of bias—self-
preference bias, position bias, verbosity bias, and
format bias, across four domain-specific tasks:
CoNaLa (Yin et al., 2018) for Python code gen-
eration, MATH for mathematical problem solving,
FIQA for financial question answering, and Health
Counseling for open-ended medical advice and
patient guidance. We employ six state-of-the-art
LLMs to generate responses for each benchmark
and also use them as prompt-based evaluators in
the final assessment.

Self-preference Bias For some domain-specific
tasks, the ground truth may guarantee correctness
but does not necessarily represent the best or most
informative answer. For example, in open-ended
medical consultations, a ground truth response

might list accurate symptoms but omit critical di-
agnostic insights that a more helpful answer would
include. To quantify the tendency of LLM-based
evaluators to favor their own outputs, we define
self-preference bias as the degree to which an
LLM ranks its own responses higher than others
do. Specifically, we measure it using the following
equation:

1 N
Bias(i) = > max(0, Ry (i) — Ra(4)), (1)
=1

where R (4) is the rank assigned by the LLM-based
evaluator to its self-generated result for instance ,
R, (i) is the average rank assigned by other evalua-
tors, IV is the total number of instances.

As shown in the results on the four benchmarks
in Figures 4 and Figure 8, the Co-Eval framework
effectively reduces self-preference bias across all
six LLLM evaluators. Notably, smaller LLMs ex-
hibit more significant shifts when guided by ma-
chine metric scores.
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Human Align

Tokens/items

Method  Model Self-Prefer Position Verbosity Format
p T Input  Output
Standard Llama-3.1-70B 0.223  0.205 0.671 - 0.219 0.338 563 891
Batch Llama-3.1-70B 0.453 0.419 0.489 0.331 0.981 0.797 267 729
CodeLlama-70B 0.259 0.214 - - - - - -
Llama-3.1-70B 0.547 0.492 0.392 0.325 0.143 0.119 604 1208
- Criteria Planner 0.443  0.406 0.402 0.321 0.247 0.318 - -
- Planner Fine-tuning 0.465 0.420 0.431 0.337 0.232 0.194 - -
Co-Eval - Metric Refinement  0.528 0.488 0411 0.330 0.159 0.125 - -
- Metric Library 0.489 0.413 0.476 0.343 0.878 0.691 - -
+ GPT-40 as Planner 0.551 0.521 0.387 0.322 0.148 0.203 - -
+ Random Metric 0.438 0.392 0.463 0.356 0.349 0474 - -

Table 2: Human Alignment and Ablation Study on CoNaLa benchmarks.

Position Bias As shown in Figures 5 and 9, the
Co-Eval framework brings the ranking rate of a
response placed in position 1 much closer to the
ideal expectation. This indicates that the LLM-
based evaluator achieves a more balanced ranking
behavior, allowing the same response to consis-
tently attain the top rank regardless of its position
within the batch.

Verbosity Bias and Format Bias We argue
that simply measuring how often extended or well-
formatted responses are ranked first does not re-
liably indicate bias, since length and format can
sometimes correlate with higher quality. To better
reveal potential bias, we not only extend or refor-
mat responses but also introduce subtle factual or
functional errors into the modified content. In do-
ing so, we uncover the hallucination tendencies of
LLMs during evaluation. As shown in Figures 6,
10, 7, and 11, we observe significant hallucinations
in LL.M-based evaluations. Compared to the stan-
dard method, evaluators using the batch method
show a stronger preference for more verbose re-
sponses, even when these contain functional er-
rors. The Co-Eval framework mitigates this issue
by improving the evaluator’s ability to detect such
errors, resulting in more balanced rankings across
responses of varying verbosity and format.

Based on the results above, the Co-Eval frame-
work demonstrates outstanding effectiveness in mit-
igating self-preference bias, position bias, and ver-
bosity bias. In summary, Co-Eval framework can
significantly improves the fairness and scalability
of LLM-based evaluation.

4.4 Human Alignment and Ablation Study

For human alignment on CoNaLa benchmark, we
recruited three annotators had at least one year of

Python experience. They assessed generated re-
sponses based on correctness, readability, coding
standards, and alignment with task requirements.
They were encouraged to run the code when needed.
Final scores were averaged across three annotators.

As shown in Table 2, Co-Eval outperforms stan-
dard and batch evaluation methods on both the
CoNaLa benchmarks, achieving the highest corre-
lations and with the state-of-the-art model as crite-
ria planner, the performance of Co-Eval framework
can further improvement.

In the ablation study, we find that the effective-
ness of bias reduction primarily arises from the
incorporation of retrieved machine metrics, partic-
ularly functional metrics such as compilers, which
inject domain-specific knowledge into the eval-
uation process and promote consistency across
different LLMs. The observed improvements in
alignment with human preferences are largely at-
tributable to the relevance of the retrieved metrics.
Notably, Co-Eval with retrieved metrics achieves
over a 10-point performance gain compared to us-
ing randomly selected metrics, which can even im-
pair model judgment. Similarly, applying an in-
appropriate evaluation criterion can significantly
degrade performance. A detailed case study is pro-
vided in Appendix G, including a comparison be-
fore and after fine-tuning the criteria planner, an
overview of machine metrics, and error analysis.

4.5 Scalability Analysis

To investigate the scalability of our proposed frame-
work, we simulate a scenario where the evaluation
task is new and lacks comprehensive metrics in the
library. Specifically, we compare the performance
gap of our framework by progressively removing
each retrieved metric when evaluating the CoNaLa
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Self-prefer Position Verbosity ~Format
Co-Eval 0.392 0.325 0.143 0.119
- CodeBERTScore 0.401 0.327 0.195 0.144
- Cyclomatic Complexity 0.422 0.332 0.437 0.198
- Sonar Maintainability 0.414 0.319 0.545 0.427
- Sonar Reliability 0.433 0.328 0.612 0.378
- Python Compiler 0.455 0.351 0.769 0.590
- All Metrics 0.476 0.343 0.878 0.691

Table 3: Evaluation metrics comparison

benchmark.

As shown in Table 3, removing evaluation met-
rics causes a monotonic decline in performance,
slight for Self-prefer and Position, but pronounced
for Verbosity and Format. The removal of Sonar
Reliability and Maintainability also leads to clear
increases in Verbosity and Format gaps, under-
scoring the importance of static-analysis checks
as critical secondary contributors. By contrast, Cy-
clomatic Complexity has only a moderate effect,
suggesting it is helpful but not decisive. Code-
BERTScore removal produces the smallest changes
across axes, indicating that semantic-similarity sig-
nals alone contribute comparatively little to these
dimensions. When all metrics are removed, per-
formance degrades most severely, particularly on
Verbosity and Format. Nonetheless, Self-prefer and
Position remain relatively stable, suggesting that
the framework retains a limited but graceful fall-
back when forced to rely on residual signals such
as LLM self-assessment.

Overall, these findings demonstrate that the
framework scales with metric coverage, especially
those providing executable or static-analysis feed-
back. It shows strong robustness to metric re-
moval in content preference and positioning, but in
style/structural dimensions, comprehensive metric
coverage is essential, omitting key metrics leads to
significant performance degradation.

5 Conclusion

In this paper, we present Co-Eval, a zero-shot LLM-
based evaluation framework that enhances scalabil-
ity and fairness. The Co-Eval framework integrates
machine metrics into the prompt-based evaluator by
utilizing a fine-tuned criteria planner and a compre-
hensive library of metrics. This approach addresses
limitations such as bias and misalignment, which
arise from inaccurate recognition of functional cor-
rectness and gaps in domain-specific knowledge. In
the future, we intend to develop a deeper research
for the mechanisms behind LLM-based evaluation,

aiming to establish clear guidelines that increase in-
terpretability, reliability, and adaptability for a wide
range of automated NLG evaluation applications.

Limitations

Although we demonstrate the effectiveness of our
proposed Co-Eval framework, several limitations
remain:

* While we have collected machine metrics
for natural language generation tasks across
a diverse set of domains, including general,
code, mathematical, health, and financial, it
remains challenging to cover all potential met-
rics. There is considerable room for expand-
ing the range of machine metrics to enhance
coverage.

* Our metric retrieval algorithm currently de-
pends on semantic similarity between criteria
descriptions and metric descriptions. How-
ever, this approach lacks adaptability, and mis-
matches in metric selection may mislead the
LLM-based evaluator.

* The Co-Eval framework is primarily designed
to support LL.M-based evaluation, meaning
its overall effectiveness largely relies on the
capabilities of the LLM, which serves as a
prompt-based evaluator. This factor lies be-
yond the scope of this paper.
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A Large Language Models

GPT Family (Radford, 2018), developed by Ope-
nAl, is a series of large language models designed
to understand and generate human-like text. Built
on transformer architecture and pre-trained on ex-
tensive datasets, these models primarily excel in
natural language generation tasks.

Llama Family (Touvron et al., 2023), developed by
Meta, comprises a series of advanced open-source

language models. Included within this family is
CodeLlama, a domain-specific model focused on
code generation. CodeLlama is trained on a sub-
stantial amount of code data, building on the foun-
dation of the general LLaMA models to enhance
its capabilities in software development tasks.

Qwen Family (Bai et al., 2023), developed by Al-
ibaba Cloud, is distinguished by its targeted op-
timization for conversational Al and information
retrieval. Additionally, it offers the Qwen-Math
series, which enhances the mathematical perfor-
mance of the general Qwen models.

Gemma Family (Team et al., 2024), developed by
EleutherAl, focuses on lightweight, state-of-the-art
open models, with the largest model containing 27
billion parameters.

Mixtral Family (Jiang et al., 2024), developed by
Mistral Al, comprises a series of advanced open-
source language models, with its notable feature
being the implementation of Sparse Mixture of
Experts (SMoE) architecture.

B Baselines

B.1 Formula-based

BLEU (Papineni et al., 2002) is an automated met-
ric for evaluating the quality of machine-translated
text against one or more human reference transla-
tions. In this study, since we focus on zero-shot
reference-free evaluation performance of each base-
line method, we calculate the BLEU score between
the generated response and the source conversation
concatenated with knowledge-based content from
the Topical-Chat benchmark.

ROUGE (Lin, 2004) measures the overlap of n-
grams, word sequences, and word pairs between a
generated summary and reference summaries. Sim-
ilar to BLEU, we calculate the ROUGE-L score
between the generated response and the source con-
versation concatenated with knowledge-based con-
tent from the Topical-Chat benchmark.

B.2 Embedding-based

BERTScore (Zhang et al., 2019) leverages pre-
trained BERT embeddings to capture semantic sim-
ilarity between tokens in the generated and refer-
ence texts. For our evaluation, we use the source
conversation concatenated with knowledge-based
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content as the reference text for each generated
response in the Topical-Chat benchmark.

BARTScore (Yuan et al., 2021) measures the likeli-
hood of a generated text relative to a reference text
using the BART model, treating the evaluation as a
text generation task itself. We also use the source
conversation concatenated with knowledge-based
content as the reference text for each generated
response in the Topical-Chat benchmark.

B.3 Learning-based

USR (Mehri and Eskenazi, 2020) is a reference-
free metric and leverages pre-trained language mod-
els and unsupervised learning techniques to esti-
mate how well a generated response aligns with
context and meets conversational quality standards.

UNIEVAL (Zhong et al., 2022) is a unified,
reference-free evaluation framework designed for
assessing text generation quality. It leverages pre-
trained language models to assess these qualities,
enabling it to handle a diverse range of text genera-
tion tasks with a consistent, robust methodology.

B.4 LLM-based

G-EVAL (Liu et al., 2023) is a generative evalu-
ation framework for assessing the quality of gen-
erated text. It employs LLMs to directly evaluate
generated text based on criteria across a variety of
text generation tasks.

BATCHEVAL (Yuan et al., 2023) is a large-scale,
automated evaluation framework designed to as-
sess the quality of text generation models in batch
settings. It leverages LLMs and customizable eval-
uation criteria, allowing it to assess aspects across
diverse tasks.

C Experimental Implementation

C.1 Topical-Chat

Topical-Chat (Gopalakrishnan et al., 2023) is a
large-scale open-domain conversational benchmark
containing crowd-sourced conversations on diverse
topics, grounded in factual knowledge, and in-
cludes human evaluation scores for generated re-
sponses across five key criteria: naturalness, coher-
ence, engagingness, groundedness, and understand-
ability.

C.2 Flores

Flores (Costa-jussa et al., 2022) is a benchmark de-
signed to provide high-quality human translations
of standardized sentences, enabling the evaluation
of translation accuracy across low-resource and
diverse linguistic settings.

C.3 CoNalLa

CoNal.a (Yin et al., 2018) is a large-scale bench-
mark designed for research in code generation and
understanding from natural language. It includes
manually curated examples of Python code paired
with corresponding natural language intents.

C.4 Mental Health Counseling Conversations

Mental Health Counseling Conversations (Amod,
2024) is a comprehensive collection of conversa-
tional data designed to support research and devel-
opment in the field of mental health counseling. It
consists of real-world dialogues between mental
health professionals and their clients, focusing on
therapeutic interactions aimed at addressing vari-
ous psychological issues.

C.5 MATH

MATH (Hendrycks et al., 2021) is a large-scale
benchmark designed to assess mathematical reason-
ing abilities, featuring problems that span a wide
range of topics from middle school to high school
mathematics, including algebra, geometry, calcu-
lus, and more. Each problem is accompanied by a
detailed step-by-step solution.

C.6 FIQA

FIQA (Yang et al., 2023) is a benchmark designed
for research in financial question-answering tasks.
It contains a collection of financial questions paired
with corresponding answers, covering a wide range
of topics such as stock markets, investments, and
economic policies.

C.7 Summeval

Summeval (Fabbri et al., 2021) is a comprehen-
sive benchmark for evaluating abstractive summa-
rization models, featuring human evaluations of
machine-generated summaries based on four key
criteria: coherence, consistency, fluency, and rele-
vance.
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D Theorem Proof

D.1 Formula-based Metrics

To theoretically validate the utility of formula-
based metrics, consider the following framework.

Let S denote the true human preference score for
an output generated from a prompt X. Define the
baseline evaluator as f(X) = E[S | X]. We pro-
pose to augment this evaluator using an auxiliary
metric

M = M(X,n), wheren~ N(0,1). (2)

The explicit inclusion of noise 7 ensures that, condi-
tioned on X, the random variable M still contains
information about S. If M were fully determinis-
tic in X, the arguments below would collapse into
equalities without meaningful gain.

We define the augmented evaluator as

F(X) =E[S | X, M]. 3)
By the law of total variance,

Var(S | X) =Ey[Var(S | X, M)]
+ Vary (E[S | X, M]) > Vary (f/(X)). @)

The inequality is strict whenever M is not mea-
surable with respect to o (X ); that is, when M pro-
vides information beyond what is already captured
by X.

To operationalize this in practice, define the
residual r = h — f on a calibration set with hu-
man annotations h. We project r onto the one-
dimensional space spanned by M:

F(X) = f(X) + M,
2} B Cov(r, M) )

’)/:&I'gmcinE[(T—CM) = W

Consequently,

E[(h — f)?] = (1= pja) El(h — )7,
pryv = Corr(h, M). (6)

This equality holds under two conditions: (1) the
correction is linear in M, and (2) the coefficient y
is optimal. For arbitrary -, the result becomes an
inequality:

E[(h — )% < (1= pip) El(h = £ (D

D.2 Model-based Metrics
Let D = D(X) denote a model-based metric.

To compare the implied distributions, we use
total variation (TV) distance, which satisfies the
triangle inequality. Suppose

TV(pa,pn) < €1, TV(pp,pis) < €2, (8)

where py, is the empirical distribution of human
annotations, py is the in-domain distribution, and
pp is the distribution induced by D. Then, by the
triangle inequality,

TV(pp,pn) < €1+ €. )

For any bounded function g : [0, 1] — R, it follows
that
[Eps o] = Bplo]] < 2(e1 +22),  (10)
by the standard bound |Ep[g] — Eg[g]| <
2glloe TV(P, Q).
Following the same linear projection logic as
before, define

f"(X)=E[S | X, D],
E((h— f")?] = (1 = pjhp) E[(h — f)?], (11)

where ppp = Corr(h, D) > 0 on the calibration
set. This equality holds only under an optimal lin-
ear projection. Otherwise, it becomes an inequality.

E Prompts
E.1 Criteria Plan

Default for Fine-tuned Criteria Planner

Please provide the evaluation criteria for this
task, including the weight of each criterion. The
total score should be 10 points.

Task: {{task description}}
Default for Data Preparation
Task: {{task description}}

Instruction: Please provide the evaluation cri-
teria for this task, including the weight of each
criterion. The total score should be 10 points, with
no more than 5 criteria in total. Present the infor-
mation in the following format:

No. Criterion Name (Weight in points) - Descrip-
tion of what this criterion evaluates. Provide clear
guidance on how this aspect of the response will
be assessed.
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An Example:

1. Efficiency (2 points): Is the generated code
optimized in terms of time and space complexity?

- A float score near 0 (no) means the code is in-
efficient and has significant room for optimization.

- A float score near 1 (somewhat) means the
code has a moderate level of efficiency but could
be improved.

- A float score near 2 (yes) means the code is
highly optimized in both time and space complexity.

Return the complete list. Note: Efficiency is
included as an example and is not required to be
part of the final list.

E.2 Machine Metric Refinement

Default for Fine-tuned Criteria Planner

Please provide a detailed metric description that
clearly explains how the metric reflects and aligns
with the corresponding criterion.

Criteria: {{criteria name}} - {{criteria descrip-
tion}}

Machine Metric: {{machine metric name}} -
{{machine metric description}}
Default for Data Preparation

Instruction: First, generate the most suitable
machine metric for the given criterion with met-
ric description. Then, provide a detailed metric
description that clearly explains how the metric re-
flects and aligns with the corresponding criterion.

An Example:

Criteria: Coherence — Measures how logically
the summary flows, ensuring clarity and consis-
tency in the ideas presented.

Machine Metric: BERTScore — Evaluates the
semantic similarity between two pieces of text.

Detailed Machine Metric: BERTScore — Evalu-
ates the semantic similarity between two pieces of
text. A higher BERTScore reflects a greater degree
of coherence, indicating that the summary aligns
more closely with the logical flow and meaning of
the original content.

Criteria: {{criteria name}} - {{criteria descrip-
tion}}

Machine Metric: {{machine metric name}} -
{{machine metric description}}

E.3 Evaluation

Example of Standard Individual Evaluation

You will be given a sample, containing a gener-
ated code for given requirement.

Your task is to assign a float score to the response
on one metric.

You should carefully horizontally compare the
given samples in order to assign a suitable float
score to each sample.

Please make sure you read and understand these
instructions carefully. Please keep this document
open while reviewing, and refer to it as needed.

Evaluation Criteria:

Overall (floating point numbers within the inter-
val [1,5]): What is your overall impression of the
quality of the generated code?

- A float score near 1 (very poor): The generated
code is of very low quality. It contains significant
errors or does not run at all, lacks any meaningful
structure, and does not meet the requirements in
any substantial way. The code might be difficult or
impossible to salvage for further use.

- A float score near 2 (poor): The code runs but
is largely incorrect or ineffective. There are numer-
ous logical errors or missing functionality, and it
does not align well with the provided requirements.
The code may also suffer from poor readability
or lack of proper structure, making it difficult to
understand or maintain.

- A float score near 3 (neutral): The code is
functional but unremarkable. It may have some er-
rors or areas for improvement but generally follows
the basic requirements and runs with acceptable
results. The code is neither highly readable nor
efficient, but it’s not overly difficult to understand
or extend.

- A float score near 4 (good): The generated code
is of good quality, meeting most of the requirements
with only minor issues. It runs correctly for the
majority of test cases and is fairly easy to read
and maintain. The code could be improved, but
any changes would be enhancements rather than
necessary fixes.

- A float score near 5 (excellent): The code is
of very high quality, demonstrating strong adher-
ence to all requirements. It is free from significant
errors, highly readable, well-structured, efficient,
and maintainable. The code is clear, concise, and
easy to understand, with well-considered logic and
style. There are no significant flaws or areas for
improvement.

Generated code and given requirement:
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Source: {{requirement source}}
System Response: {{response output}}

Evaluation Form (scores ONLY):

- Overall:

Example of Batch Evaluation

You will be given a batch of 8 samples. Each
sample contains a generated code for given require-
ment.

Your task is to assign a float score to the response
on one metric.

You should carefully horizontally compare the
given samples in order to assign a suitable float
score to each sample.

Please make sure you read and understand these
instructions carefully. Please keep this document
open while reviewing, and refer to it as needed.

Evaluation Criteria:

Overall (floating point numbers within the inter-
val [1,5]): What is your overall impression of the
quality of the generated code?

- A float score near 1 (very poor): The generated
code is of very low quality. It contains significant
errors or does not run at all, lacks any meaningful
structure, and does not meet the requirements in
any substantial way. The code might be difficult or
impossible to salvage for further use.

- A float score near 2 (poor): The code runs but
is largely incorrect or ineffective. There are numer-
ous logical errors or missing functionality, and it
does not align well with the provided requirements.
The code may also suffer from poor readability
or lack of proper structure, making it difficult to
understand or maintain.

- A float score near 3 (neutral): The code is
functional but unremarkable. It may have some er-
rors or areas for improvement but generally follows
the basic requirements and runs with acceptable
results. The code is neither highly readable nor
efficient, but it’s not overly difficult to understand
or extend.

- A float score near 4 (good): The generated code
is of good quality, meeting most of the requirements
with only minor issues. It runs correctly for the
majority of test cases and is fairly easy to read
and maintain. The code could be improved, but
any changes would be enhancements rather than
necessary fixes.

- A float score near 5 (excellent): The code is
of very high quality, demonstrating strong adher-
ence to all requirements. It is free from significant

errors, highly readable, well-structured, efficient,
and maintainable. The code is clear, concise, and
easy to understand, with well-considered logic and
style. There are no significant flaws or areas for
improvement.

Generated code and given requirement:
Source: {{requirement source}}

Sample 1:

System Response: {{sample I response output}}
Sample 2:

System Response: {{sample 2 response output}}

Sample 6:
System Response: {{sample 6 response output}}

Evaluation Form (Answer by starting with "Anal-
ysis:" to analyze the given samples regarding the
evaluation criteria and offer insights derived from
the machine metric scores as concise as possible
(Attention: Don’t give your scores during this step).
After analyzing all the samples, please give all
the float scores in order following the template
"Float Scores: [Samplel:score of Samplel, Sam-
ple2:score of Sample2, Sample3:score of Sample3,
Sampled:score of Sampled, Sample5:score of Sam-
ple5, Sample6:score of Sample6]".

Example of Co-Eval Evaluation

You will be given a batch of 6 samples. Each
sample contains a generated code for given require-
ment.

Your task is to assign a float score to the response
on one metric.

You should carefully horizontally compare the
given samples in order to assign a suitable float
score to each sample.

You can refer to the machine metric scores of
each sample if you are not confidence.

Please make sure you read and understand these
instructions carefully. Please keep this document
open while reviewing, and refer to it as needed.

Evaluation Criteria:

Robustness (floating point numbers within the
interval [0,2]): Does the generated code handle
edge cases and potential errors gracefully?

- A float score near 0 (no) means the code fails
to handle edge cases or crashes on invalid inputs.

- A float score near 1 (somewhat) means the code
handles some edge cases but misses others or lacks
comprehensive error handling.
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- A float score near 2 (yes) means the code effec-
tively handles all edge cases and includes compre-
hensive error handling.

Given Content and potentially useful Machine
Metric Score:

Source: {{requirement source}}

Sonar Reliability - Assesses the robustness and
fault-tolerance of software code, focusing on its
potential to contain bugs or defects that could lead
to malfunctions in production. The lower the nu-
merical score, the better the reliability of the code,
indicating fewer bugs and a lower risk of defects
impacting the software’s functionality.

Sample 1:

System Response: {{sample I response output}}
Score: {{sample I sonar reliability score}}
Sample 2:

System Response: {{sample 2 response output}}
Score: {{sample 2 sonar reliability score}}

Sample 6:
System Response: {{sample 6 response output}}
Score: {{sample 6 sonar reliability score}}

Evaluation Form (Answer by starting with "Anal-
ysis:" to analyze the given samples regarding the
evaluation criteria and offer insights derived from
the machine metric scores as concise as possible
(Attention: Don’t give your scores during this step).
After analyzing all the samples, please give all
the float scores in order following the template
"Float Scores: [Samplel:score of Samplel, Sam-
ple2:score of Sample2, Sample3:score of Sample3,
Sample4:score of Sample4, Sample5:score of Sam-
ple5, Sample6:score of Sample6]".

- Robustness:

F Additional Experiment Results

F.1 More Bias Elimination Effectiveness

We further demonstrate the effectiveness of the Co-
Eval framework in mitigating bias on the FIQA and
Health Counseling Conversations benchmarks, as
shown in Figures 8, 9, 10, and 11.

F.2 Human Alignment on General Task

In our work with the Topical-Chat benchmark, we
adhere to the original six evaluation criteria: un-
derstanding, naturalness, coherence, engagingness,

groundedness, and overall quality. Since Topical-
Chat is a multi-turn conversation benchmark, we
follow previous studies (Liu et al., 2023; Yuan
et al., 2023) and use turn-level correlations, as-
sessing alignment between generated evaluations
and human judgments by computing both Spear-
man (p) and Kendall (7) correlations for each turn
response, then averaging the scores to obtain the
final evaluation. For the first five criteria, we adopt
the descriptions provided by BATCHEVAL (Yuan
et al., 2023) and select relevant metrics from the
machine metric library. To evaluate overall quality,
we implement the full Co-Eval pipeline. Addition-
ally, in our analysis of G-Eval (Liu et al., 2023),
we focus on the zero-shot evaluation capability of
the LLM-based evaluator, conducting assessments
without any pre-existing evaluation samples.

As shown in Table 4, our proposed Co-Eval
framework demonstrates remarkable improvements
in Spearman and Kendall correlations across all
three models and five original criteria. Even for
GPT-40, the use of suitable machine metrics im-
prove groundedness assessment by up to 0.141
compared to BATCHEVAL, while the Co-Eval
framework consistently surpasses baselines in over-
all quality evaluation. Similarly, on the Summeval,
as shown in Table 5.

The results on the Summeval benchmark with
fine-grained labels exhibit a trend similar to that of
the Topical-Chat benchmark. While G-EVAL and
BATCHEVAL outperform in certain criteria, our
proposed Co-Eval framework consistently achieves
the best performance on the "Overall" criteria.

F.3 Impact of Temperature

We evaluate the impact of temperature on self-
preference bias, position bias, verbosity bias and
format bias by testing temperatures of 0.0, 0.3, 0.5,
0.7, and 1.0, and reproducing the experiments for
each type of bias.

As shown in Figure 12, while the effect of tem-
perature on self-preference bias varies across mod-
els, our proposed Co-Eval framework consistently
enables the LLM-based evaluator to achieve the
lowest self-preference bias.

G Detailed Case Study

We further analyze the cases throughout the entire
process:

Case 1: As shown in Figure 13, compared to
the original LLaMA-3.1-8B-Instruct model, the
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Figure 8: Self-preference bias on FIQA and Mental Health Counseling Conversations benchmarks.

-- Best (0.3333)

05 Batch
Co-EVAL
0.4
«
©
&
03
S
3
o 0.2
0.1
0.0
N Q Q Q QL
oS (b\‘b Pe & ’L’rﬂ o
&,5'5' g @Qﬂ/ 4@‘\» @6\'5 @‘(@
@ )
N N o 54 [° )
(a) FIQA

-~ Threshold (0.3333)
Batch
Co-EVAL

1N
~

o
w

o
[N}

Position Bias

0.1

0.0

Q 2 Q0 Q Q Q0
N %\
& o & o o &
& <€ & & & &
R Ng ot (e 1 IS
(b) Health

Figure 9: Position bias on FIQA and Mental Health Counseling Conversations.

fine-tuned planner provides more detailed criteria
descriptions and assigns weights more aligned with
human preferences. Simple errors, such as incor-
rect total scores, are also corrected. Additionally,
the fine-tuned planner better captures subtle feature
differences between tasks. For instance, it identi-
fies "Structure” as essential criteria for "structured
outline" task, but not for "summarization" task.

Case 2:

We present a subset of the machine metrics used
in our experiments, as summarized in Table 6.
These metrics span a range of tasks, including code
generation, financial reasoning, mathematical prob-
lem solving, and empathetic dialogue, and include
both semantic similarity measures and rule-based
functional evaluations. Among them, functional
metrics derived from rule-based tools, such as com-
pilers and static analyzers, are particularly effec-
tive in mitigating hallucinations produced by LLM-
based evaluators and in improving consistency both
within a single LLM and across different LLMs.

Case 3: For some long-tail tasks, the generaliza-
tion ability of the fine-tuned criteria planner is in-
sufficient to generate a comprehensive set of evalu-

ation criteria. For example, consider the task: Gen-
erate architectural drawings for a supermarket. The
fine-tuned criteria planner accounts for the follow-
ing aspects: Accuracy of Store Layout, Adherence
to Building Codes and Regulations, Effective Use
of Space, Aesthetic Appeal and Brand Identity, and
Technical Quality and Presentation. However, all
five criteria are equally weighted, each contributing
2 points to the total 10-point score. In contrast, hu-
man preferences suggest that Regulations and Store
Layout should carry the most weight, making the
evaluation misaligned with human judgment. Addi-
tionally, compared to the GPT-40, budget consider-
ations and branding alignment, both critical factors
in supermarket architectural design, are missing
from the criteria set. This gap further highlights the
planner’s limitations in capturing human-centric
evaluation priorities.

Case 4: For some criteria descriptions, the ma-
chine metric with the highest semantic similarity
score does not necessarily align best with human
preferences. For example, in the Fluency crite-
rion of the SummEval benchmark, perplexity is the
machine metric whose description is most semanti-
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Figure 11: Format bias on FIQA and Mental Health Counseling Conversations.

cally similar to the criterion description. However,
BARTScore exhibits a significantly higher Spear-
man correlation with human judgment. This mis-
alignment leads to lower performance when Llama-
3.1-70B-Instruct serves as the final prompt-based
evaluator within the Co-Eval framework. The mis-
take arises despite regenerating machine metric de-
scriptions via sampling to better reflect the specific
aspects each metric evaluates. However, human
evaluation does not always have clearly defined
boundaries between different criteria—especially
for closely related aspects. As a result, scores for
Coherence can inadvertently influence the evalua-
tion of Fluency, leading to discrepancies in align-
ment.

Case 5: For some general tasks, the machine
metric score is less aligned with human preferences
than the LLM itself. For example, as shown in the
results in Table 4 and 5, LLM-based evaluation
achieves the highest scores in some criteria using
the batch method, even when the standard method
is used without a machine metric. This is true
even when the reference machine metric is suitable,
particularly for criteria that are more subjective

and dependent on the evaluator. In such cases,
the machine metric may interfere with the prompt-
based evaluator to some extent.

Case 6: The prompt-based evaluator demon-
strates critical thinking when assessing the refer-
ence machine metric score. For example, "Upon re-
viewing the samples, it is evident that the machine
metric scores do not directly reflect the readabil-
ity of the code... However, analyzing the samples
based on readability, we find that..." This capabil-
ity strengthens the robustness of our proposed Co-
Eval framework against unsuitable machine metric
scores. However, it also introduces the possibility
that the prompt-based evaluator may resist follow-
ing the instructions of the augmented machine met-
ric. As shown in the experiment on verbosity bias,
an 8% extended response containing error informa-
tion still achieved the highest score, even though
the machine metric detected the error.

Case 7: Some LLMs, particularly smaller mod-
els, exhibit weak format-following capabilities. For
example, when LLaMA-3.1-8B-Instruct is used as
the final prompt-based evaluator, it may present
scores in inconsistent formats such as: "Float

25773



Understand  Natural  Coherence Engaging Grounded Overall

Metrics Model
p T p T p T p T p T p T

Formula-based Evaluators
BLEU-4 - .033  .025 .130 .100 .277 219 .386 316 .446 396 .280 .223
ROUGE-L - 052 .040 .132 095 .206 .163 .321 .267 .461 405 .249 .193
Embedding-based Evaluators
BERTScore - 105 .080 .140 .101 .228 .184 .334 275 450 .395 267 213
BARTScore - .061 .039 .158 .124 232 188 .300 .237 .489 422 272 215
Learning-based Evaluators
USR - 322 266 346 280 .354 299 392 330 551 476 438 365
UNIEVAL - 467 360 513 373 612 465 .608 458 574 451 .662 486
LLM-based Evaluators

GPT-40 679 598 618 535 570 484 707 .602 726 .650 .692 .596
G-EVAL Llama-3.1-70B 472 404 .535 .443 515 431 .615 .521 .628 .553 .650 .559

Qwen-2.5-72B 571 486 .618 .531 .590 .505 .744 .663 .696 .621 .689 .592
GPT-40 680 591 664 562 .601 514 704 .607 595 .525 .736 .651

BATCHEVAL Llama-3.1-70B .502 433 466 .391 438 .376 .593 .499 595 .522 .532 .450
Qwen-2.5-72B 500 434 488 409 455 390 .662 .569 530 .459 551 474

GPT-40 683 594 673 579 .628 .547 .708 .607 .736 .656 .745 .650
Co-Eval Llama-3.1-70B .598 .508 530 .437 .602 .512 .617 .522 .733 .646 .694 .593
Qwen-2.5-72B  .594 510 .622 523 .616 .532 .660 .572 .722 .642 .698 .609

Table 4: Turn-level Spearman (p) and Kendall (7) correlations on Topical-Chat benchmark. The bold scores
represent the highest score generated by each LLM as the final prompt-based evaluator, while the grey scores
indicate the highest score across the entire column.

Scores: Samplel: [3], Sample2: [2], Sample3:
[3], Sample4: [4]" and "Float Scores: [4.5: Sam-
plel, 2: Sample2, 4: Sample3, 4.5: Sample4]",
whereas the expected standard format is: "Float
Scores: [Samplel: 2.5, Sample2: 2.5, Sample3: 4,
Sample4: 4]". These inconsistencies complicate
score parsing and may lead to misinterpretations of
evaluation results.

Case 8: Compared to the diversity of tasks, the
coverage of machine metrics is limited. As a result,
some criteria lack suitable machine metrics, such
as the "Completeness" criteria in the MATH bench-
mark. Determining whether a solution step is both
complete and reasonable remains an open question.
In our experiment, we design a metric to evaluate
completeness using the BERTScore between con-
secutive steps in a solution. A higher average score
across all solution steps indicates a more complete
and detailed response. Additionally, the Co-Eval
framework makes it easy to incorporate new and
useful machine metrics into the evaluation process,
improving adaptability and coverage.
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Metrics

Coherence Consistency  Fluency Relevance

Model

Overall

p T p T p T p T

G-EVAL

Llama-3.1-70B
Qwen-2.5-72B

542 454 550 .486 423 366 395 338
509 425 624 563 529 469 413 349

517
474

423
399

Llama-3.1-70B 444 366 .547 483 427 372 421 354

BATCHEVAL

Qwen-2.5-72B  .514 424 552 497 430 373 407 .343

510
532

422
448

Co-Eval

Llama-3.1-70B
Qwen-2.5-72B

548 502 452 413 391 355 464 427
483 415 592 544 558 511 457 391

525
552

448
465

Table 5: Spearman (p) and Kendall (7) correlations on Summeval benchmark.

Metric Name Description Task Usage
COMET Evaluates translation quality by comparing semantic similarity between generated texts using multilingual embeddings... Higher scores indicate ... ~Flores
Grammarly Assesses grammar, clarity, and fluency by detecting language issues... Higher scores reflect cleaner, more polished writing. Flores
codeBERTScore Measures semantic similarity of code using CodeBERT embeddings... Higher scores indicate better alignment with reference code. CoNaLa
Cyclomatic Complexity —Calculates the number of independent paths in code... Higher scores suggest greater complexity and lower maintainability. CoNaLa
Sonar Maintainability Evaluates maintainability via code duplication, complexity, and smells... Lower scores indicate cleaner and easier-to-maintain code. CoNaLa
Sonar Reliability Identifies potential bugs and risky patterns... Higher scores signal more reliability issues. CoNaLa
Python Compiler Checks if Python code compiles correctly... A score of 1 means success; 0 indicates syntax errors. CoNaLa
finBERTScore Evaluates financial text similarity or sentiment using FinBERT embeddings... Higher scores indicate stronger semantic or sentiment alignment. FIQA
Perplexity Measures how well a language model predicts the text... Lower scores indicate higher fluency and coherence. FIQA, Health
FactCC Checks factual consistency between a statement and its context... Higher scores reflect greater factual accuracy. FIQA
mathBERTScore Evaluates relevance of mathematical expressions using MathBERT... Higher scores indicate stronger semantic similarity. MATH
Completeness Assesses coherence in multi-step reasoning by comparing step-wise similarity... Higher scores suggest more logically complete responses. MATH
Calculator Verifies arithmetic correctness... A score of 1 means exact match; 0 indicates a mismatch. MATH
Sentiment Analysis Evaluates emotional tone by estimating sentiment polarity... Higher scores imply more positive or emotionally aligned content. Health
Empathy Assesses empathetic expression via emotional and relational cues... Higher scores indicate stronger empathetic resonance. Health
Table 6: Part of Descriptions of Evaluation Metrics
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Figure 12: Impact of temperature on four kinds of bias.
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1. Accuracy (3 points): Does the summarization capture the

essential information and key findings? 1. Accuracy (4 points): Does the summary capture the main
2. Completeness (2 points): Are all the relevant topics and ideas and key details of the original content?
material included in the summarization? 2. Clarity (2 points): Is the summary written in a clear, coherent,
Generate a summarization 3. Clarity (2 points): Is the language simple and easy to and easily understandable manner?
for a given content. understand? 3. Brevity (2 points): Does the summary condense the content
4. Organization (2 points): Are the main ideas and supporting while maintaining all essential information?
details presented in a logical order? 4. Relevance (2 points): Does the summary focus only on the

5. Brevity (1 points): Is the summary free from redundancy and most important points and avoid unnecessary tangents?
unnecessary information?

Task LLaMA-3.1-8B-Instruct Fine-tuned Criteria Planner
1. Content Coverage (2 points): Comprehensively cover the
given content, addressing all key points and subtopics. 1. Structure (4 points): Does the outline follow a clear, logical
2. Organization and Hierarchy (2 points): Have a clear, logical progression of ideas?
Create a structured outline  Structure, with suitable headings, subheadings, and bullet points. 2. Comprehensiveness (3 points): Does the outline cover all the
o e GERlEE 3. Relevance and Clarity (2 points): Be easy to follow, with key points and important sections of the content?
concise and non-ambiguous headings and subheadings. 3. Clarity (2 points): Is the outline clear and easy to understand,
4. Mechanics and Consistency (2 points): Follow a consistent with appropriate labeling of sections and subsections?
structure, and use proper grammar and punctuation. 4. Brevity (1 points): Is the outline concise, without including
5. Adaptability to Content Requirements (4 points): Be unnecessary details or extraneous information?

adaptable to the specific requirements of the content.

Figure 13: Case study for the fine-tuned criteria planner.
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