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Abstract

Dense video captioning aims to temporally lo-
calize events in video and generate captions
for each event. While recent works propose
end-to-end models, they suffer from two lim-
itations: (1) applying timestamp supervision
only to text while treating all video frames
equally, and (2) retrieving captions from fixed-
size video chunks, overlooking scene transi-
tions. To address these, we propose Sali4Vid, a
simple yet effective saliency-aware framework.
We introduce Saliency-aware Video Reweight-
ing, which converts timestamp annotations into
sigmoid-based frame importance weights, and
Semantic-based Adaptive Caption Retrieval,
which segments videos by frame similarity to
capture scene transitions and improve caption
retrieval. Sali4Vid achieves state-of-the-art re-
sults on YouCook2 and ViTT, demonstrating
the benefit of jointly improving video weight-
ing and retrieval for dense video captioning.1

1 Introduction

The dense video captioning (DVC) task (Li et al.,
2018; Wei et al., 2023; Duan et al., 2018; Zhou
et al., 2018b; Krishna et al., 2017a; Mkhallati
et al., 2023) aims to localize multiple events in
untrimmed videos and generate descriptive cap-
tions for each. Unlike standard video captioning
(VC) (Gao et al., 2017; Chen et al., 2017; Wang
et al., 2018; Seo et al., 2022; Zhao et al., 2023;
Lee et al., 2024; Kim et al., 2024a), which gener-
ates a single caption for a short and trimmed clip,
DVC generates multiple temporally localized de-
scriptions from long video streams, which is more
challenging.

To effectively handle both localization and cap-
tion generation, prior works have proposed end-
to-end modeling (Wang et al., 2021; Zhou et al.,
2024). For instance, Vid2Seq (Yang et al., 2023)
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1Code: https://github.com/forminju/Sali4Vid
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Figure 1: (a) Previous works incorporate timestamps
only on the textual side, treating all video features with
uniform features. (b) We propose Sali4Vid, a simple
yet effective saliency-aware framework by leveraging
sigmoid-based soft reweighting.

formulates DVC as a sequence-to-sequence task,
adding time tokens to the text for timestamp su-
pervision. More recently, CM2 (Kim et al., 2024b)
and HiCM2 (Kim et al., 2025a) further extend this
direction by retrieving auxiliary captions from an
external datastore using video features as queries.

Despite these advances, existing methods still
suffer from two key limitations. First, although
fully-supervised timestamp annotations are avail-
able in training, previous work leverages them only
on the textual side, while treating the video fea-
tures as uniformly important across time as shown
in Figure 1 (a). Second, recent caption retrieval
methods (Kim et al., 2024b, 2025a) adopt fixed-
size clip-level retrieval for auxiliary captions. How-
ever, this strategy overlooks semantic transitions
and scene changes within the video, which can lead
to misaligned or redundant caption retrieval. For
example, as illustrated in Figure 2 (Left), unrelated
actions like preheat grill and remove squid may
be grouped into the same chunk, resulting in re-
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Figure 2: (Left) The previous caption retrieval approach overlooks the scene transition, leading to redundant or
misaligned captions that may not adequately reflect meaningful changes in the video content. (Right) Sali4Vid
adaptively segments frames based on similarity difference, enabling more contextually aligned and diverse caption
retrieval for meaningful segments.

trieved captions that may not accurately describe
each event.

To address these limitations, we propose
Sali4Vid, a simple yet effective saliency-aware
framework that explicitly applies temporal saliency
cues to enhance video features during training and
adaptively retrieves captions based on semantic
transitions, providing more accurate event captions.

Specifically, we enhance video features by
saliency reweighting based on timestamps, which
emphasizes frames around annotated start and end
points. This approach enables the model to directly
utilize temporal supervision on the video side. Con-
sequently, the model effectively focuses on salient
visual regions, as demonstrated in Figure 1 (b). In
addition, we calculate frame-to-frame similarity to
find semantic transitions and segment the video
adaptively, avoiding fixed-size clip-level retrieval
that may group unrelated actions into the same
chunk. This enables the retrieval of captions that
are better aligned with each meaningful segment,
as illustrated in Figure 2 (Right).

Our model contains two main key components:
Saliency-aware Video Reweighting and Semantic-
based Adaptive Caption Retrieval. First, dur-
ing the training phase, the Saliency-aware Video
Reweighting provides timestamp supervision to the
visual side through sigmoid-based weights, allow-
ing the model to continuously focus on salient
video frames. Second, the Semantic-based Adap-
tive Caption Retrieval segments the video based
on frame-to-frame similarity differences, finding
meaningful semantic changes, and retrieves cap-

tions aligned with these semantically adaptive seg-
ments.

Empirically, our framework achieves state-of-
the-art results with a CIDEr score of 75.80 on
YouCook2 and 53.32 on ViTT, outperforming the
previous state-of-the-art by +3.96 on YouCook2
and +2.58 on ViTT.

We summarize our contributions as follows:

• We propose Sali4Vid, a saliency-aware frame-
work that enhances video features by applying
sigmoid-based reweighting with timestamp su-
pervision, focusing on more salient features
in the training phase.

• We introduce a semantic-based adaptive cap-
tion retrieval strategy that segments videos
based on frame-level similarity differences,
enabling the retrieval of more contextually
aligned captions for each semantic segment.

• We validate our method on YouCook2 and
ViTT, achieving state-of-the-art results in both
the localization and captioning tasks.

2 Related Work

2.1 Dense Video Captioning

Dense Video Captioning (DVC) aims to tempo-
rally localize events within untrimmed videos and
generate captions for each event (Krishna et al.,
2017b). Early approaches typically have adopted a
two-stage "localize-and-describe" pipeline (Iashin
and Rahtu, 2020a,b). However, this separation be-
tween localization and captioning often overlooks
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the interaction between the two subtasks, leading
to suboptimal performance. To address this, re-
cent works have explored end-to-end frameworks
that jointly model event localization and captioning.
PDVC (Wang et al., 2021) reformulates DVC as a
set prediction problem using a DETR-style trans-
former (Carion et al., 2020), enabling parallel pre-
diction of temporal segments and captions without
relying on intermediate proposals. More recently,
Vid2Seq (Yang et al., 2023) formulates dense video
captioning as a sequence-to-sequence task, generat-
ing both timestamp tokens and captions in a unified
output while leveraging large-scale speech tran-
scriptions. Building on this, Streaming V2S (Zhou
et al., 2024) introduces streaming decoding with vi-
sual memory for online captioning, and DIBS (Wu
et al., 2024) proposes scalable pretraining with
pseudo-labeled segments. CM2 (Kim et al., 2024b)
and HICM2 (Kim et al., 2025a) further extend this
line of work by integrating retrieval-augmented
generation using external caption memories. Un-
like previous methods that apply timestamp super-
vision only to text, overlooking video-side temporal
modeling, our Sali4Vid explicitly leverages times-
tamp annotations to reweight video features and
adaptively retrieves segment-level captions based
on semantic transitions.

3 Proposed Method

Recent work in dense video captioning (Kim et al.,
2025a; Wu et al., 2024; Yang et al., 2023; Zhou
et al., 2024) often utilizes timestamp annotations
only on the text side, while treating all video frames
as equally important. To address these limitations,
we propose Sali4Vid, a framework that explicitly
models frame-level importance through two com-
plementary strategies, as illustrated in Figure 3.

First, Sali4Vid applies sigmoid-based time
stamp-guided weighting to highlight salient frames,
providing explicit temporal supervision on the vi-
sual side during training. Second, our model cap-
tures semantic transitions by measuring frame-to-
frame similarity, enabling adaptive segmentation
for retrieving captions that better align with mean-
ingful video segments. Together, these strategies
improve event localization and caption generation
by focusing on important visual content and re-
trieving contextually relevant captions. We detail
these components in Section 3.1 for saliency-aware
video reweighting and Section 3.2 for semantic-
based adaptive caption retrieval.

Preliminaries. We build on the structure of the
Vid2Seq (Yang et al., 2023), fine-tuning a model
pre-trained on 1.8 million videos. Given an in-
put video, we extract frame-level features xspat =
{xspat

i }Ti=1 using CLIP ViT-L/14 (Radford et al.,
2021; Dosovitskiy et al., 2020). Spatial features
xspat are processed by a temporal transformer to
obtain context-aware video features x = {xi}Ti=1.

The goal is to predict a set of event segments
and corresponding captions (tsn, t

e
n, Cn)

N
n=1, where

tsn and ten denote the start and end timestamps, and
Cn is the generated caption. Timestamps are nor-
malized over the video duration d.

During training, we use ground-truth annotations
(tsn, t

e
n, Cn) and speech transcripts features y. Dur-

ing inference, the model predicts event boundaries
and captions without ground-truth timestamps, re-
lying on video features x and transcript features y,
following the Vid2Seq setup.

3.1 Saliency-aware Video Reweighting

Building on the observation that prior works (Yang
et al., 2023; Kim et al., 2025a) treat video frames
uniformly despite having timestamp annotations,
we propose a Saliency-Aware Video Reweighting
method that directly leverages these annotations to
compute frame-level importance scores as contin-
uous, fully-supervised weights. Unlike methods
that rely solely on textual cues (Wu et al., 2024;
Zhou et al., 2024) or require additional modules to
infer saliency score (Ge et al., 2025), our approach
makes direct use of ground-truth event boundaries
to provide continuous, fine-grained frame weight-
ing in the training phase.

Specifically, we assign continuous sigmoid-
based weights to each frame, as illustrated in Fig-
ure 3. For each annotated event n with start and
end times (tsn, t

e
n), we define the sigmoid-based

importance weight for frame i as follows:

WL
n (i) = Sigmoid

(
α ·

(
i

T
− tsn

d

))
, (1)

WR
n (i) = Sigmoid

(
α ·

(
ten
d
− i

T

))
, (2)

Wn(i) = WL
n (i)×WR

n (i), (3)

where α controls the sharpness of the sigmoid
curve, and tsn

d , ten
d denote the normalized start and

end of the n-th event.
If multiple events exist, the final importance

weight is computed as:
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Figure 3: Overview of our Sali4Vid framework for dense video captioning. Sali4Vid enhances dense video captioning
by combining Saliency-Aware Video Reweighting with Semantic-based Adaptive Caption Retrieval. Specifically, we
utilize timestamp supervision to softly reweight video features in the training phase and retrieve relevant captions
by clustering semantically similar video frames. The reweighted video features x̂, segment-level retrieved caption
features r̃, and speech features y are then concatenated and passed through the cross-attention layer of the text
decoder, enabling the model to better localize events and generate accurate event captions.

W (i) = max
n

Wn(i). (4)

The frame feature xi is then reweighted by the
importance score as follows:

x̂i = xi ·W (i), (5)

resulting in reweighted video features x̂ =
{x̂i}Ti=1 used for decoding.

Our sigmoid-based reweighting strategy enables
the model to effectively highlight salient event re-
gions by assigning continuous importance scores
to each frame, capturing both central areas and tem-
poral boundaries. By providing smooth and fully
supervised temporal guidance, it allows the model
to focus on salient visual features, leading to im-
proved caption generation and event localization,
as illustrated in Figure 4.

3.2 Semantic-based Adaptive Caption
Retrieval

Recent studies (Kim et al., 2024b, 2025a) suggest
that auxiliary captions from an external datastore
can provide useful semantic context for dense video
captioning. However, these methods typically re-
trieve captions based on fixed-sized clip-level video

features, overlooking the dynamic scene transitions
within the video. When fixed-size clip-level video
features are used as queries, multiple events may
be mixed within a single clip. This makes it chal-
lenging to retrieve accurate captions that correctly
match the target event. To address this limitation,
we propose a Semantic-based Adaptive Caption
Retrieval that adaptively finds semantic segments
and retrieves relevant captions for each segment.
Frame Difference Calculation. We first com-
pute frame-to-frame feature similarity differences
to capture the semantic transitions. Given frame-
level spatial features {xspat

i }Ti=1, we calculate the
cosine difference between consecutive frames as:

D(i) = 1− sim
(
xspat
i ,xspat

i+1

)
, (6)

where sim(·, ·) denotes cosine similarity. A large
value of D(i) signals a strong semantic change.
Adaptive Segment Construction. After calcu-
lating the frame-level semantic difference D(i),
we segment the video based on D(i). A straight-
forward method is to set a boundary whenever
D(i) exceeds a fixed threshold τfixed. How-
ever, this frame-wise segmentation is sensitive to
small changes and noise, which can result in over-
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segmentation by splitting stable scenes into exces-
sively short segments.

To address this issue, we adopt a momentum-
based accumulation strategy that continuously ag-
gregates frame differences and captures boundaries
only when a sustained change is observed. This
approach reduces sensitivity to small variations and
improves boundary detection by considering the
accumulated difference shift across frames, as in-
spired by (Kordopatis-Zilos et al., 2019).

We first define the adaptive threshold τadap using
the mean µ and standard deviation σ of {D(i)}T−1

i=1

as τadap = µ + β · σ, where β is a scaling factor.
Starting from the first frame indexed by scur = 1,
we initialize the running segment feature with the
first frame feature as zcur = xspat

1 . We iteratively
grow a segment by tracking zcur. For each sub-
sequent frame i + 1, we compute the semantic
difference between the current segment feature and
the incoming frame:

D′(i) = 1− zcur · xspat
i+1 , (7)

where xspat
i+1 is the spatial feature of frame i+ 1.

We apply the following decision rule: If D′(i) >
τadap, the current segment is ended at i, a new
segment starts at i+ 1, and the segment feature is
reset to zcur = xspat

i+1 .
Otherwise, we include frame index i+ 1 in the

current segment and update the segment feature by
computing the moving average as:

zcur ←
|Scur| · zcur + xspat

i+1

|Scur|+ 1
, (8)

where |Scur| is the number of frames in the current
segment. This process continues until all frames are
processed, yielding segments {S1,S2, . . . ,Sm},
where each segment is defined as the set of consecu-
tive frame indices as Sm = {sm, sm+1, . . . , em},
with sm and em denoting the start and end frame in-
dices of the segment. Each corresponding segment
is computed as the average of the frame features

within the segment as zSm =
∑em

j=sm
xspat
j

|Sm| , which
serves representation for retrieving semantically
aligned auxiliary captions.
Segment-level Caption Retrieval. After segment-
ing the video into {Sm}Mm=1, where M is the to-
tal number of adaptively captured segments, we
retrieve semantically aligned captions for each seg-
ment using its feature representation zSm , provid-
ing localized textual guidance to each segment.

Given the segment-level feature zSm , we com-
pute similarity scores against the external caption
datastore R = {rr}NR

r=1 and retrieve the Top-k se-
mantically aligned captions as:

RSm = Top-k
rr∈R

(sim(rr, zSm)) , (9)

where sim(·, ·) denotes cosine similarity, and
RSm ∈ Rk×D represents the Top-k retrieved cap-
tion embeddings for Sm. We then aggregate these
retrieved caption embeddings by average pooling
to obtain a single caption guidance vector:

r̃Sm =
1

k

∑

r∈RSm

r, (10)

where r̃Sm ∈ RD is the averaged embedding rep-
resenting the external semantic guidance for Sm.
We repeat this process for all segments, result-
ing in a set of segment-wise caption embeddings
r̃ = {r̃Sm}Mm=1 that is used in decoding to provide
textual guidance aligned with each segment.

3.3 Model Training and Inference

Our model integrates reweighted video features
x̂, segment-level retrieved caption features r̃, and
speech transcripts features y to improve event
localization and caption generation. We extract
frame features {xspat

i }Ti=1, and perform segment-
wise retrieval of Top-k caption embeddings r̃Sm

from an external datastore for each segment. The
reweighted video features x̂ are obtained as de-
scribed in Section 3.1. Speech transcripts are en-
coded using a transformer-based text encoder with
time tokens to obtain y.

We train the model using a cross-entropy loss
conditioned on x̂, r̃, y to predict the target se-
quence o:

Lθ = CE(o | x̂, r̃,y), (11)

where θ denotes model parameters. During infer-
ence, the model generates event-aware captions
based on the video features, transcript features, and
segment-level retrieved caption features. Unlike
training, where annotated timestamps are used to
apply importance weights, we perform inference
without timestamp supervision and do not apply
any weighting to the video features.
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Method PT YouCook2 (val) ViTT (test)

CIDEr METEOR SODA_c BLEU4 CIDEr METEOR SODA_c BLEU4

PDVC ICCV21 ✗ 29.69 5.56 4.92 1.40 - - - -
CM2

CVPR24 ✗ 31.66 6.08 5.34 1.63 - - - -

Streaming V2S CVPR24 ✓ 32.90 7.10 6.00 - 25.20 5.80 10.00 -
DIBS CVPR24 ✓ 44.44 7.51 6.39 - - - - -
Vid2Seq† CVPR23 ✓ 66.29 12.41 9.87 5.64 48.84 9.51 14.99 0.71
HiCM2

AAAI25 ✓ 71.84 12.80 10.73 6.11 51.29 9.66 15.07 0.86
Ours ✓ 75.80 13.54 10.28 6.35 53.87 10.05 15.08 0.91

Table 1: Comparison with state-of-the-art methods on YouCook2 validation and ViTT test sets. PT indicates whether
the model is pretrained. Bold and underline denote the best and second-best scores, respectively. "-" indicates
unavailable results. † denotes results reproduced from official implementations. Our method achieves state-of-the-art
performance in most of the metrics.

Method PT YouCook2 (val) ViTT (test)

F1 Recall Precision F1 Recall Precision

PDVC ✗ 26.81 22.89 32.37 - - -
CM2 ✗ 28.43 24.76 33.38 - - -

Streaming V2S ✓ 24.10 - - 35.40 - -
DIBS ✓ 31.43 26.24 39.81 - - -
Vid2Seq† ✓ 31.08 30.38 31.81 46.21 45.89 46.53
HiCM2 ✓ 32.51 32.51 32.51 45.98 45.00 47.00
Ours ✓ 33.61 31.11 36.57 46.58 44.31 49.10

Table 2: Localization results on YouCook2 validation
and ViTT test sets. Bold denotes the best performance,
and underline denotes the second-best performance. “-”
result is unavailable.

4 Experiment

4.1 Experimental Settings

Datasets. YouCook2 (Zhou et al., 2018a) con-
sists of 2,000 untrimmed videos. On average,
320 seconds and 7.7 localized sentences per
video. ViTT (Huang et al., 2020) includes 8,000
untrimmed instructional videos averaging 250 sec-
onds and annotated with 7.1 localized short tags.
Evaluation Metrics. We evaluate our method on
two sub-tasks in DVC. By using the official evalua-
tion tool (Wang et al., 2020), we use CIDEr (Vedan-
tam et al., 2015), BLEU4 (Papineni et al., 2002),
and METEOR (Banerjee and Lavie, 2005) met-
rics, which compare the generated captions to the
ground truth across IoU thresholds of (0.3, 0.5, 0.7,
0.9). Additionally, to assess storytelling ability, we
use the SODA_c metric (Fujita et al., 2020). For
event localization, we calculate the average preci-
sion, average recall, and F1 score, averaging these
metrics over IoU thresholds of (0.3, 0.5, 0.7, 0.9).
Implementation Details. Following previous
works (Yang et al., 2023; Kim et al., 2025a), we
build upon the Vid2Seq model that is pre-trained on
1.8M videos, which uses the T5-Base model (Raf-
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Figure 4: Comparison of different weights with
multiple-timestamps. Unlike Gaussian or binary, our
sigmoid-based weight provides continuous importance
weights while preserving the start and end boundaries.

fel et al., 2020) as both the text encoder and de-
coder. Video frames are extracted at 1 FPS and
sub-sampled or padded to a fixed length T = 100.
The model is first trained for 10 epochs following
Vid2Seq with a learning rate of 3e-4, then fine-
tuned for 10 more epochs with our method using
a learning rate of 1e-6, linearly warmed up over
the first 10% of steps and decayed to 0 via a cosine
schedule. Training is performed on a single A6000
GPU with batch size 8, taking approximately 1h
20m total (4m 20s/epoch). We set α = 10.0 for
sigmoid reweighting and β = 1.0 for adaptive seg-
mentation. Hyperparameter details are provided in
the supplementary. The caption retrieval datastore
is constructed from the training captions only.
Comparison with State-of-the-Arts. Table 1 and
Table 2 summarize the results on YouCook2 and
ViTT. Our Sali4Vid achieves the best overall per-
formance in both captioning and localization tasks.
Specifically, in Table 1, our method achieves a
CIDEr of 75.80 on YouCook2 and 53.87 on ViTT,
outperforming prior state-of-the-art methods such
as HiCM2 (Kim et al., 2025a) and Vid2Seq (Yang
et al., 2023) across most metrics. This improve-
ment stems largely from our use of sigmoid-based
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Method Captioning Localization

CIDEr METEOR SODA_c BLEU4 F1 Recall Precision

Baseline 66.29 12.41 9.87 5.64 31.08 30.38 31.81

Different Design of Saliency-Weights
Hard binary mask 68.85 12.53 10.25 5.95 32.53 33.06 32.03
Gaussian weights 68.66 12.49 10.30 5.93 32.25 32.81 31.72
Sigmoid weights 74.72 13.43 10.35 6.01 33.34 31.24 35.76

Different Segment Feature Design for Caption Retrieval
Mean-Pool 75.80 13.54 10.28 6.35 33.61 31.11 36.57
Max-Pool 75.02 13.48 10.22 6.23 33.01 30.37 36.17
Key-Frame 74.87 13.41 10.16 6.26 33.12 30.42 36.34

Table 3: Component-wise results on the YouCook2 validation set for both captioning and localization tasks. Sigmoid-
based weights achieve the best performance among reweighting strategies, while mean-pooling caption retrieval
shows the best results among the retrieval designs.

Mask Design YouCook2
C M S_c F1

Baseline 66.29 12.41 9.87 31.08

Start skew 67.45 12.44 10.29 32.22
End skew 67.54 12.47 10.31 32.22
Random skew 67.06 12.27 10.27 32.61
Center skew (Ours) 75.80 13.54 10.28 33.61

Table 4: Ablation study of various mask designs in
sigmoid-based importance modeling with adaptive cap-
tion retrieval.

video reweighting and semantic-based adaptive
caption retrieval, which allows the model to gen-
erate more accurate and semantically aligned cap-
tions for each localized region.

In Table 2, Sali4Vid achieves the highest F1
scores of 33.61 on YouCook2 and 46.58 on ViTT.
We also observe an improvement in precision over
the baseline, +4.76 on YouCook2 and +2.57 on
ViTT, demonstrating the effectiveness of applying
supervision directly to video features during train-
ing via our saliency-aware reweighting strategy.

4.2 Ablation Study

We conduct ablation studies on the YouCook2 vali-
dation set to analyze the contributions of each pro-
posed component, including saliency-aware video
reweighting, semantic-based adaptive caption re-
trieval, and their combined impact on performance.
Saliency-aware Video Reweighting. In Table 3,
we compare different importance weighting strate-
gies. Sigmoid-based weighting achieves the best

Retrieval Design YouCook2
C M S_c F1

Baseline 66.29 12.41 9.87 31.08
Fixed-size Clip-level 63.96 12.14 9.93 32.24

τfixed + w/o MMT 66.05 12.33 10.23 32.73
τfixed + MMT 66.87 12.26 10.32 32.49
τadap + w/o MMT 66.65 12.44 10.20 32.76
τadap + MMT (Ours) 68.63 12.61 10.33 32.79

Table 5: Ablation study on different designs for caption
retrieval without video reweighting. MMT denotes the
momentum-based accumulation strategy. For the fixed-
size setting, we set the window size to 10. C, M, and S_c
denote CIDEr, METEOR, and SODA_c, respectively.

performance with a 74.72 CIDEr, significantly out-
performing binary (68.85) and Gaussian (68.66)
approaches and yielding a +8.43 CIDEr improve-
ment over the baseline. We hypothesize that the sig-
moid’s smooth transitions around annotated event
boundaries are particularly effective in our fully
supervised setting. This property also substan-
tially improves precision to 35.76 (vs. 32.03 for bi-
nary) by reducing false positives from overly sharp
boundary decisions, as shown in Figure 4.

We further investigate sigmoid mask designs in
Table 4, comparing our proposed center-skew de-
sign against variants that emphasize the start, end,
or random regions of an event. The center-skew
mask consistently outperformed others, demon-
strating that emphasizing the central region while
preserving boundary information is most aligned
with the structure of instructional videos.
Semantic-based Adaptive Caption Retrieval. Ta-
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k Retrieved YouCook2
Captions C M S_c F1

5 75.22 13.50 10.39 33.51
10 75.80 13.54 10.28 33.61
20 75.51 13.52 10.26 33.58
30 75.52 13.52 10.29 33.65

Table 6: Ablation study on different numbers of captions
used for caption retrieval.

Data Stores YouCook2
C M S_c F1

COCO (2014) 75.51 13.54 10.44 33.59
CC3M (2021) 75.33 13.51 10.38 33.53
Hierarchical (2025a) 76.77 13.38 10.57 32.92
In-domain 75.80 13.54 10.28 33.61

Table 7: Ablation study on different datastores used for
caption retrieval.

ble 3 shows that mean-pooling performs best
among aggregation strategies, improving CIDEr to
75.80 and F1 to 33.61. Table 5 further demonstrates
the effectiveness of our momentum-based accumu-
lation combined with adaptive thresholding without
video reweighting, achieving the highest perfor-
mance with a CIDEr of 68.63 and an F1 of 32.79.
In contrast, the fixed-size setting shows slightly
lower performance and needs extensive window
tuning across datasets. Our semantic-based adap-
tive retrieval alleviates this by using an adaptive
thresholding strategy with a single scaling factor β.

We also analyze the number of retrieved features
in Table 6, where retrieving 10 captions per seg-
ment performs best. Additionally, Table 7 shows
that our approach is robust across datastores, while
in-domain captions yield the highest F1 score, out-
of-domain datastores like COCO (Lin et al., 2014)
and CC3M (Changpinyo et al., 2021) produce com-
parable results, and hierarchical memory (Kim
et al., 2025a) boosts both CIDEr and SODA_c.
Component Ablation. In Table 8, we analyze the
contribution of each component. We observe that
applying adaptive caption retrieval alone improves
CIDEr by +2.34 and F1 by +1.71, showing that
adaptive caption retrieval is beneficial to both cap-
tioning and localization. Saliency-aware reweight-
ing alone improves CIDEr by +8.43 and F1 by
+2.26 compared to baseline, confirming the impor-
tance of focusing on informative frames. Combin-
ing both achieves the best performance, improving
all metrics. These results show that the two compo-

Reweight Cap YouCook2
C M S_c F1

✗ ✗ 66.29 12.41 9.87 31.08
✗ ✓ 68.63 12.61 10.33 32.79
✓ ✗ 74.72 12.49 10.35 33.34
✓ ✓ 75.80 13.54 10.28 33.61

Table 8: Ablation study on our key components on
YouCook2. Reweight denotes saliency-aware video
reweighting, and Cap denotes semantic-based adaptive
caption retrieval. Applying both components achieves
the best performance.

Method Positive (↑) Negative (↓) IoU@0.1 (↑)
Baseline (2023) 0.23 0.21 0.038
Ours 0.25 0.20 0.049

Table 9: Attention score and IoU comparison during
inference. Positive and Negative denote the average at-
tention within and outside ground-truth segments, while
IoU@0.1 measures overlap between the top-10% atten-
tion regions and ground truth.

nents are complementary and most effective when
applied together.
Efficiency of Caption Retrieval. Table 10 presents
the efficiency-performance trade-off under differ-
ent retrieval subset sizes. Notably, even a small
subset achieves comparable performance to the full
set, while reducing retrieval cost to around 2 ms
per video. In addition, segmentation requires about
16 ms per video, which is not negligible but per-
formed only once using a lightweight, model-free
clustering algorithm based on frame similarity. We
will revise our manuscript to include this segmenta-
tion time report, further demonstrating the overall
efficiency of our retrieval strategy.
Analysis of Train-Test Mismatch Setting. Dur-
ing training, our saliency-aware video reweight-
ing leverages timestamp supervision to guide the
model, but not at test time. We regard this pro-
cess as representation learning: with stronger su-
pervision during training, the model learns more
informative features and thus performs better at in-
ference without extra components. To validate this,
we compare attention maps from the last layer of
the temporal encoder between Baseline (Yang et al.,
2023) and our method in Table 9. The results show
that our training strategy improves temporal focus,
supporting accurate captioning during inference.
Qualitative Results. Figure 5 shows examples
from the YouCook2 validation set. Our Sali4Vid
predicts event boundaries and captions that align
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Ground-Truth (GT)

combine mayonnaise 

and dijon mustard 

and add the spread 

to the bread

top the bread 

with ham and 

add grated 

guerrier cheese

and sprinkle 

little pepper  and 

top with another 

bread

combine egg and milk soak the sandwich 

arrin it and put it on hot skillet and fry 

until golden brown

Combine mayonnaise 

and dijon mustard on 

a piece of bread and 

spread the sauce on 

the bread.

Top four pieces 

of bread with 

ham and add 

gruyere cheese.

Sprinkle each 

sandwich 

with pepper 

and top with 

the bread.

Mix egg substitute 

with milk and 

dredge each 

sandwich in the 

egg wash.

Place the sandwich on a 

hot skillet and cook the 

sandwiches on each side 

until golden 

brown. Ours

Video ID: YX6v3tY7OPg

Figure 5: A qualitative result from YouCook2 validation
set.

Subset # Caps Segment Search C S_c F1

0% 0 - - 74.72 10.35 33.34
10% 0.96K 16.02 2.07 74.92 10.17 33.27
30% 2.8K 16.02 2.09 75.67 10.25 33.62
100% 9.6K 16.02 2.11 75.80 10.28 33.61

Table 10: Efficiency-performance trade-off under vary-
ing relevant caption subset sizes (ms/vid).

well with the video content. For instance, it sepa-
rates two closely occurring events (67–98s; yellow
arrow) into distinct segments, illustrating its ability
to capture detailed event transitions.
Hyperparameter Choice. We conducted ablation
studies on two key parameters: the sharpness factor
α for the sigmoid curve and the scaling factor β
that controls τadap. Figure 6 presents CIDEr and
METEOR scores across different values of α and
β, while Figure 7 reports the corresponding F1
and Precision for localization. In all cases, our
method maintains performance above the previous
state-of-the-art (Kim et al., 2025a), demonstrating
robustness to hyperparameter variation. We adopt
α = 10 and β = 1.0, which yield the best results.

5 Conclusion

We propose Sali4Vid, a framework that incorpo-
rates saliency-aware modeling via two complemen-
tary strategies. It consists of two key components:
(1) saliency-aware video reweighting, which lever-
ages timestamp annotations to compute continu-
ous frame-level saliency weights, and (2) semantic-
based adaptive caption retrieval, which captures
meaningful scene transitions and retrieves more
accurate captions aligned with these segments, sup-
pressing irrelevant information. Extensive exper-
iments on YouCook2 and ViTT demonstrate that
Sali4Vid achieves state-of-the-art performance in
both captioning and event localization. Moreover,
this framework can be readily extended to a wide

2.5 5.0 7.5 10.0 12.5 15.0

72

73

74

75

CI
D

Er

0.6 0.8 1.0 1.2 1.4

72.0

73.5

75.0

CI
D

Er

HiCM2
CIDEr

HiCM2
METEOR

12.8

13.2

13.6

14.0

M
ET

EO
R

12.8

13.2

13.6

14.0

M
ET

EO
R

METEOR and CIDEr Scores

Figure 6: Impact of hyper-parameter α for video
reweighting and β for semantic-based caption retrieval
on captioning performance.
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Figure 7: Impact of hyper-parameter α for video
reweighting and β for semantic-based caption retrieval
on localization performance.

range of vision-language modeling tasks (Oh et al.,
2024; Kim et al., 2025b; Cha et al., 2025; Kim
et al., 2025d,c) beyond video captioning.

6 Limitation

Our model, Sali4Vid, achieves state-of-the-art
performance on dense video captioning through
annotation-based video reweighting and semantic
difference-based adaptive caption retrieval. How-
ever, some limitations remain. The reweighting
strategy relies on timestamp annotation, reducing
applicability to weakly supervised or annotation-
free settings. Moreover, as shown in Figure A.1 of
the supplementary, the adaptive retrieval module
may still yield noisy segments. In future work, we
plan to explore supervision-free reweighting and
enhance robustness of adaptive retrieval.
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Appendix

In this Appendix, we provide additional details and
qualitative results to support our findings. Specifi-
cally, §A offers an analysis of the semantic-based
caption retrieval, and §B showcases further qualita-
tive results of our model.

A More Analysis for Semantic-based
Caption Retrieval

Figure A.1 provides examples of how our semantic-
based adaptive thresholding identifies meaning-
ful segment boundaries based on semantic differ-
ences across frames. In the first example (Video
id: igC0oJ48gxg), our method successfully de-
tects segment transitions that align well with visual
changes in the cooking process, such as moving
from chopping vegetables to frying. The detected
peaks match the ground-truth timestamps, show-
ing that the adaptive threshold (0.10) effectively
captures event boundaries. In the second example
(Video id: _XxXWiOoYhY), although some frames
exhibit high semantic differences, our method cor-
rectly filters out false positives (red cross) that do
not correspond to meaningful scene changes. The
adaptive threshold (0.18) helps to focus on truly
significant transitions, avoiding over-segmentation.
These results demonstrate that our adaptive thresh-
olding method dynamically adjusts to video con-
tent, effectively balancing sensitivity and precision
in segment detection.

B More Qualitative Results.

We provide additional qualitative results in Fig-
ure A.2 to further illustrate the effectiveness of our
method.
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Figure A.1: Analysis for Semantic-Based Caption Retrieval.
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Figure A.2: More Qualitative Results for Sali4Vid.
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