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Abstract

Interpreting Noun-Noun Compounds remains a
persistent challenge for Large Language Mod-
els (LLMs) because the semantic relation be-
tween the modifier and the head is rarely stated
explicitly. Recent benchmarks frame Noun-
Noun Compound Interpretation as a multiple-
choice question. While this setting allows
LLMs to produce more controlled results, it
still faces two key limitations: vague relation
descriptions as options and the inability to han-
dle polysemous compounds. We introduce
a dual-faceted textual enrichment framework
that augments prompts. Description enrich-
ment paraphrases relations into event-oriented
descriptions instantiated with the target com-
pound to explicitly surface the hidden event
connecting head and modifier. Conditioned
context enrichment identifies polysemous com-
pounds leveraging qualia-role binding and as-
signs each compound with condition cues for
disambiguation. Our method yields consis-
tently higher accuracy across three LLM fam-
ilies. These gains suggest that surfacing la-
tent compositional structure and contextual con-
straint is a promising path toward deeper se-
mantic understanding in language models. 1

1 Introduction

Noun-Noun Compounds (NNCs) such as “olive oil”
and “court approval” are ubiquitous in English
and many other languages. Despite their surface
brevity, they encode rich semantic relations. Olive
is an ingredient of oil; a court may either grant
an approval or be the purpose for which approval
is sought. Automatic Noun-Noun Compound In-
terpretation (NNI) is crucial for downstream tasks
such as information extraction, coreference resolu-
tion and question answering (Nakov, 2008; Dima
and Hinrichs, 2015; Lang et al., 2022).

1The source code and dataset is available at https://
github.com/brandeis-llc/NNC-Enrichment.

Interpreting NNCs presents a challenge for
Large Language Models (LLMs), particularly
when it comes to pinpointing the underlying re-
lationship between the head noun and the modifier.
For example, given an NNC “carrot cake”, the
model is asked to provide a paraphrased descrip-
tion “a cake made of carrots”, making the semantic
relation between the head cake and modifier car-
rot explicit. A recent benchmark (Rambelli et al.,
2024) recasts NNI as a nine-way multiple-choice
task in which each relation is rendered by a fixed
template to reduce the variability of the generated
descriptions. Example (1) shows the template for
relation Comp(osition)-R(eversed). An instanti-
ated description with the target compound “olive
oil” is oil is composed of olive.

(1) Comp-R → n2 is composed of n1

LLMs reach respectable performance in this set-
ting, attaining up to nearly 60% accuracy (Rambelli
et al., 2024). However, closer inspection reveals
two fundamental bottlenecks:

Description Vagueness The template-based rela-
tion descriptions overlook the eventive connection
between modifier and head, which is vital for accu-
rate reasoning (Downing, 1977; Levi, 1978). The
paraphrases either miss a verb connecting the mod-
ifier and head, or the verb is too generic and can be
interpreted in many ways, which makes it challeng-
ing for LLMs to understand the relation correctly.

Polysemy Roughly 55% of the compounds in the
benchmark admit more than one plausible reading
(e.g. court approval). Without contextual con-
straints, both humans and models struggle to com-
mit to a single label, causing noisy supervision and
artificially capping performance.

We argue that these obstacles stem not from
model capacity but from underspecified inputs. We
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therefore propose a textual enrichment framework
that injects the missing semantic and pragmatic in-
formation directly into the prompt, requiring no
parameter updates. Our framework enhances NNI
from two facets. The first one is relation description
enrichment. Building on the NNC relation taxon-
omy from Tratz (2011), we use an LLM to compose
the relation definition with the target compound,
producing a concrete, event-oriented description as
the candidate options for the multiple-choice task.
The enriched descriptions reduce the vagueness in
the original ones due to lack of an accurate even-
tive connection and help models better interpret the
NNC relations.

The second facet is conditioned context enrich-
ment, which addresses polysemy. Building on Gen-
erative Lexicon (GL) theory (Pustejovsky, 1995),
we treat a noun’s meaning as structured by four
qualia roles: Formal, Constitutive, Agentive, and
Telic. In GL, the composition of a compound arises
when open roles in the qualia structure of one noun
are filled, or bound, by the other noun, produc-
ing a coherent meaning. Polysemy occurs when
different bindings yield multiple plausible inter-
pretations of a compound. To capture this, our
framework first detects candidate polysemous com-
pounds through qualia-role binding. For each pos-
sible reading, we then introduce a condition cue—a
minimal state variable that distinguishes one inter-
pretation from another (e.g., TRASH_IN_BAG
= yes/no for the compound trash bag). Finally, we
generate a short context sentence that makes the
condition explicit (e.g., “The hospital construction
cannot proceed without court approval” instantiates
the cue COURT_ALREADY_EXISTS = yes).
These cues supply mutually exclusive contextual
constraints, enabling models to choose the appro-
priate relation and improving performance further
when paired with context sentences.

Our contributions are threefold: 1) We propose
a textual enrichment framework that refines rela-
tion descriptions and conditions on contextual con-
straints. 2) We create a dataset that consists of both
monosemous and polysemous NNCs with explicit
condition cues, filling a gap in existing resources.
3) Empirical results show consistent improvements
using both facets of the textual enrichment frame-
work across open and closed LLMs.

The remainder of the paper is organized as fol-
lows: §2 surveys related work on compound inter-
pretation and textual prompt engineering; §3 de-
scribes the benchmark we work on; §4 details the

first facet of the framework for relation description
paraphrasing; §5 introduces the second part of the
framework for identifying polysemous compounds
and generating condition cues based on the reading.
Finally §6 concludes.

2 Related Work

2.1 Noun-Noun Compound Interpretation

NNI has traditionally been approached as a clas-
sification task, where compounds are assigned to
predefined semantic relations (Kim and Baldwin,
2005; Tratz and Hovy, 2010). However, such clas-
sification frameworks are inherently limited due
to their coarse granularity and inability to account
for compound interpretations that require sophis-
ticated explanations beyond short relation labels
or N-grams patterns (Shwartz and Dagan, 2018).
To address these limitations, recent work adopts
paraphrase-based formulations, where the goal is to
generate natural language paraphrases that explain
the relation between the compound constituents
(Hendrickx et al., 2013; Shwartz and Waterson,
2018). This shift not only enhances interpretability
but also aligns with the broader trend toward tex-
tual enrichment and the goal of this paper, where
models generate contextually rich, semantically
grounded explanations beyond rigid label sets.

The recent development of language models has
led to zero-shot and few-shot interpretations for
NNCs. Ponkiya et al. (2020) shows that T5-based
models have encoded the relevant knowledge to
NNC during pre-training. Coil and Shwartz (2023)
demonstrates that GPT-3 models reach near-perfect
performance on existing benchmarks. Nonethe-
less, further analysis revealed that current large
language models often rely on memorized patterns
from training corpora, limiting their generalization
to novel or ambiguous compounds (Rambelli et al.,
2024). In this work, we investigate whether linguis-
tically textual enrichment can boost LLMs’ seman-
tic comprehension capability on NNC, especially
the ones with competing readings and novel com-
pounds. To the best of our knowledge, this is the
first attempt of modeling human-like interpretation
on polysemous NNCs.

Psycholinguistic work (Schmidtke et al., 2016)
shows that readers often default to a dominant in-
terpretation of ambiguous compounds, with lower
relational entropy leading to faster recognition.
While this highlights human biases in compound
processing, our focus is different: we make com-
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Relation Count

COMP(OSITION)-R(EVERSED) 85
CONT(AINMENT)-R(EVERSED) 54
LOCATION 107
PARTONOMY 16
PROD(UCTION)-R(EVERSED) 13
PRODUCTION 47
PURPOSE 270
TOPIC-R(EVERSED) 66
US(A)G(E)-R(EVERSED) 10

Table 1: Counts of each relation in LEXICALIZED.

peting readings explicit and test whether LLMs can
disambiguate them when given contextual cues.

2.2 Textual Enrichment

Textual enrichment methods such as paraphrasing
and contextual sentence generation have been used
to improve model performance across NLP tasks
such as classification, semantic similarity, and ques-
tion answering (Choi et al., 2021; Elazar et al.,
2022; Tu et al., 2022, 2024c). Classic methods
range from heuristic-based lexical substitutions
to back-translation. Wieting et al. (2017) back-
translates paraphrase pairs for training sentence
embeddings, enabling effective textual enrichment
through diverse rephrasings. Wei and Zou (2019)
proposes a set of simple augmentation techniques
such as synonym replacement and random inser-
tion to enrich text to improve model robustness.
More recently, Choi et al. (2021) defines the task of
sentence decontextualization that enables sentence
understanding with enriched context from gener-
ative language models. Tu et al. (2023, 2024b)
introduce the dense paraphrasing method, which
makes hidden semantic information explicit across
both textual and multimodal contexts. Zhao et al.
(2025) leverages LLMs to enrich event mentions
into full sentences, facilitating the annotation pro-
cess for constructing the event coreference dataset.
We are the first to apply textual enrichment to NNI
by explicitly surfacing event structure and adding
contextual constraints in the LLM prompt.

3 Data

We use the LEXICALIZED and NOVEL NNC
datasets (Rambelli et al., 2024) to evaluate the
effectiveness of our textual enrichment methods
for NNI. LEXICALIZED set includes 668 NNCs
that span over nine relations. We show the rela-
tion inventories and statistics of the set in Table
1. NOVEL set includes a set of 124 novel NNCs

that can be used to examine the models’ generaliz-
ability on semantic relations. Compounds from the
NOVEL set are derived from the existing NNCs by
replacing the head or the modifier with one of its
hypernyms using WordNet 3.0 (Fellbaum, 2010).
The interpretation of each NNC is formulated as
a multiple-choice classification task. Each rela-
tion is paraphrased into a single, tightly controlled
sentence description as the option. The LLMs are
prompted to select the most appropriate description
for each compound.

4 Enriching NNC Relation Descriptions

The original LEXICALIZED and NOVEL datasets
adopt a semantic relation template (Pepper, 2020)
to paraphrase compound relations into short de-
scriptions, allowing for more controlled evaluation
of NNI. Although these descriptions are designed
to generalize across a wide range of compounds,
their broadness often makes it difficult for both
humans and models to accurately identify the in-
tended relation.

Building on the findings from Rim et al. (2023)
that implicit predicates introduce crucial seman-
tics, we recast broad relations into verb-centered
paraphrases for clearer NNC interpretation. Con-
sider the compounds and relations in example (2).
The descriptions of relation TOPIC-R for com-
pound art class and PURPOSE for travel agency
are vague and too generalized, and are challenging
for models to interpret.

(2) TOPIC-R: a class that is about art.
PURPOSE: an agency intended for travel.

To alleviate the confusions stemming from
the template-based relation descriptions, our
enrichment strategy operationalizes the “verb-
composition” theory from Downing (1977) and
Levi (1978) by paraphrasing each multiple-choice
option into an event-explicit description, reinstat-
ing the hidden verb and clarifying the relation.

4.1 Methodology
We frame the enrichment of NNC and its relation
into a paraphrasing task, prompting LLMs to select
the most appropriate event verb(s) based on the
head and modifier types and relation definition,
and generate the corresponding enriched relation
description .

We ask the OpenAI o3 model to paraphrase the
relation based on a more well-defined relation tax-
onomy (Tratz, 2011) because it has a more concrete
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Relation Definition (Topic-R)
a n2 that discusses, depicts, expresses, explains,
teaches, symbolizes, praises, celebrates, and/or
contains info/data related to the activity related

to n1

Example
(n1 = art, n2 = class)

a class that teaches art.

Figure 1: Topic-R relation definition from Tratz (2011)
and an example instantiation.

explanation for each relation and each definition
contains a list of verb candidates. Since Rambelli
et al. (2024) has already generated a mapping from
their nine-way relation inventory to the relation
taxonomy, we directly retrieve the relation defini-
tions and include them in the context of prompt
instruction.

Figure 1 illustrates the definition of relation
TOPIC-R instantiated with the target compound
art class. The relation definition provides candidate
event verbs which implicitly allow the composition
of the compound. Compared to the original de-
scription “a class that is about art”, the enriched
one for compound art class highlights the concrete
event teach, and makes it clearer that the TOPIC-R
relation pertains more to engaging in conveying
information related to art, which facilitates models
to predict it as the desired option. LLM prompts
are detailed in Appendix A.2

4.2 Experiments
We evaluate the enriched relation descriptions
on both LEXICALIZED and NOVEL sets. Fol-
lowing the experimental settings in Rambelli
et al. (2024), we formulate the NNI task as a
multiple-choice classification problem and use
the same prompt for the in-context learning
with LLMs. During inference, the order of
the multiple-choice options is randomized. We
adopt two open LLMs (Llama-2-7B-chat-hf
and Mistral-7B-Instruct-v0.2) and one closed
LLM (GPT-4o) in the experiment. We retain the
hyper-parameter configuration of Rambelli et al.
(2024) and treat their original, template-based
prompt as our baseline.

4.3 Results
We compare the accuracy of the same model in
selecting the correct relation from the original de-

scriptions versus the newly enriched descriptions
to assess the impact of the enrichment. Exper-
iment results in Table 2 show that relation de-
scription enrichment leads to a substantial im-
provement in identifying the correct relation on
LEXICALIZED on all models. Both GPT-4o and
Mistral outperform Llama-2 by a large margin
with GPT-4o reaching the top score. Notably, each
model reaches its peak in the 1-shot setting, which
is in line with the results in baseline. This interest-
ing finding suggests that adding extra in-context
examples could bring noise and hurt model perfor-
mance.

0-shot 1-shot 3-shot
Model Base. Enr. Base. Enr. Base. Enr.
Llama-2 12.7 24.7 19.6 30.5 19.5 29.9
Mistral 59.1 70.8 59.1 72.8 56.5 70.1
GPT-4o 69.6 74.4 65.8 73.7 65.0 70.8

Table 2: Accuracy on LEXICALIZED set with baseline
(Base.) and enriched descriptions (Enr.) as options.

The results in Table 3 and 4 show improvements
on all models on NOVEL set, demonstrating that
our method can generalize well on novel com-
pounds. Models all achieve best results in 3-shot
setting, illustrating that in-context examples are im-
portant for models to understand compounds that
they might have not seen before.

0-shot 1-shot 3-shot
Model Base. Enr. Base. Enr. Base. Enr.
Llama-2 12.6 22.3 15.6 32.9 16.5 34.1
Mistral 34.5 40.2 58.0 60.7 53.4 62.6
GPT-4o 59.6 63.1 60.2 64.7 61.3 66.4

Table 3: Accuracy on NOVEL set with the same head.

0-shot 1-shot 3-shot
Model Base. Enr. Base. Enr. Base. Enr.
Llama-2 10.3 22.3 14.6 30.8 21.2 31.5
Mistral 30.1 34.2 47.9 50.6 30.5 51.3
GPT-4o 51.4 55.7 52.0 57.8 52.8 58.3

Table 4: Accuracy on NOVEL set with the same modi-
fier.

4.4 Analysis

We report the per relation F1 scores on Mistral
with 1-shot example in Table 5. The largest gains
appear for PURPOSE and TOPIC-R, whose base-
line descriptions are especially underspecified be-
cause they omit the implicit event. Importantly,
the labels most frequently mistaken for these two,

25899



approval;(head noun)

FORMAL: [permission, ...]
CONSTITUTIVE: [legal_document, ...]
AGENTIVE: grant(y, x)
TELIC: permit(x, z)

court (modifier noun)

court approval
“approval granted by a court”

court approval
“approval for building a court”

binds y

binds AGENTIVE

binds z

binds TELIC

Figure 2: Multiple bindings for the compound court approval. The qualia structure of the head noun approval
contains two unsaturated roles: AGENTIVE grant(y, x) and TELIC permit(x, z). The modifier noun court can
saturate either argument (y or z), producing two context-dependent readings.

Relation Base. Enr.

COMP-R 74.9 81.6
CONT-R 43.0 48.9
PRODUCTION 62.5 62.7
PROD-R 35.2 46.5
LOCATION 65.0 66.1
USG-R 24.3 28.8
PURPOSE 54.6 72.3
TOPIC-R 62.7 74.3
PARTONOMY 50.0 55.1

Table 5: Per–relation F1 scores (%) of description en-
richment on Mistral with 1-shot prompting.

i.e., PROD-R and CONT-R, also register size-
able improvements, indicating that enrichment re-
duces cross-class ambiguity rather than merely re-
distributing errors. The performance boost demon-
strates that making the covert events overt aligns
the prompt with long-standing linguistic theory and,
as our experiments show, equips LLMs with the
crucial semantic scaffold needed for accurate inter-
pretation.

5 Enriching NNC Conditioned Contexts

We further discuss how textual enrichment handles
polysemous NNCs which can admit more than one
plausible reading through contextual constraints.
In §4, we show that the NNC enriched descriptions
lead to improvements on NNI. However, the task
still suffers from inherent semantic ambiguity. The
relationship between the head and modifier noun is
often implicit and underspecified, allowing multi-
ple plausible interpretations depending on context.
Example (3) shows the two plausible readings of

“trash bag”, the readings pivots on whether the bag
is currently filled with trash or merely intended for
that purpose.

(3) a. CONT-R: a bag that contains trash.
b. PURPOSE: a bag designed to hold trash.

Current NNC datasets usually assume a single
correct semantic relation per compound. This
simplification is flagged by the authors them-
selves as problematic because many compounds
attract competing relational readings (Benjamin
and Schmidtke, 2023; Rambelli et al., 2024). This
observation motivates us to bridge the gap in cur-
rent NNC datasets and address the issue of poly-
semy. We propose a conditioned context enrich-
ment framework to detect NNCs that have more
than one reading due to semantic ambiguity. We de-
fine a condition cue as a minimal, relation-agnostic
state variable that distinguishes two plausible read-
ings of a compound without encoding relation la-
bels. And we provide condition cues to anchor com-
pounds to these readings and thus guide the model
toward the context-appropriate relations. Further-
more, context sentences are built upon these con-
ditions to help models interpret different senses of
the compounds.

5.1 Qualia Structure Binding for NNCs

The major challenge in interpreting polysemous
NNCs comes from the identification of the im-
plicit ambiguous relation between the modifier
and the head. To understand the implicit rela-
tional composition of NNC, we leverage the qualia
roles from Generative Lexicon (GL) theory (Puste-
jovsky, 1995), which has informed prior annotation
schemes for compounds (Bouillon et al., 2012) and
studies of semantic relation reliability (Yadav et al.,
2017). GL is a lexical framework that treats a
noun’s meaning as a structured bundle of qualia
roles, including TELIC, CONSTITUTIVE, AGEN-
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Qualia role Explanation Example

FORMAL What is it? What category does it belong to? container
CONSTITUTIVE What is it made of? What parts or materials compose it? plastic film, fabric
AGENTIVE How does it come into being? Who/what creates it? make(x), sew(x)

TELIC What is it for? What function or purpose does it serve? contain(x, y)

Table 6: The four qualia roles that structure lexical meaning, illustrated with the noun bag.

TIVE, and FORMAL. Table 6 shows the definition
of qualia structure and its instantiation for word
bag.

In GL, the composition of words is the combi-
nation of their qualia structures through the act of
“binding”. Binding occurs when an open variable
(i.e., an unsatisfied slot) in one noun’s qualia struc-
ture is filled by another noun. It is the mechanism
that links the internal semantic requirements of one
constituent to the referential content of the other,
producing a coherent composite meaning. We as-
sume that the semantic ambiguity in an NNC arises
because different qualia roles of the head and the
modifier are simultaneously compatible and can
bind through different roles thus enabling more
than one plausible semantic interpretations.

In Figure 2, the qualia structure of the head
noun approval contains two independent vari-
ables that can be filled by the same modifier,
thereby licensing two distinct bindings and, con-
sequently, two readings. Its AGENTIVE role en-
codes the event grant(y, approval), whose open
slot y denotes the agent that issues the approval;
its TELIC role encodes the purpose-oriented event
permit(approval, z), whose slot z denotes the ob-
ject or activity for which the approval is sought.
The noun court is semantically compatible with
both variables: as an institution, it can act as the
granting agent (approval granted by a court), and
as a facility, it can be the very object requiring per-
mission (approval for building a court). Because
each binding completes a different event template
in the qualia structure, the compound simultane-
ously supports an PRODUCTION interpretation
and a PURPOSE interpretation. This dual satis-
fiability explains the compound’s polysemy and
illustrates how multiple open roles in a head noun,
when matchable by the same modifier, naturally
give rise to more than one relational reading.

5.2 Polyemous NNC Detection

We detect polysemous NNCs through an automatic
enrichment framework powered by LLMs. We in-

struct the models to identify semantic ambiguity in
NNCs through binding the generated qualia struc-
tures. We adopt the o3 model using OpenAI API
in the framework. We describe each step below.

Qualia Structure Generation We use the
datasets in Rambelli et al. (2024) (LEXICALIZED

and NOVEL sets) as the source datasets. Inspired
by Tu et al. (2024a)’s automatic pipeline for aug-
menting meaning representations with sub-event
structure, we cast this task as a structured enrich-
ment problem: we generate qualia structures for
heads/modifiers and apply qualia binding to expose
and disambiguate their composition. Given a head
or modifier of a compound, we generate its qualia
structures. By the definitions of the qualia roles, the
values for FORMAL and CONSTITUTIVE roles are
a list of nominals while the values of AGENTIVE

and TELIC are a list of verb phrases.

Relation Detection Given the generated qualia
structures of the modifier m and head h, we instruct
the model to follow the binding heuristics in Table
7 to automatically detect the composition relation.
We prompt the OpenAI o3 model to automatically
detect the composition relation of compounds using
qualia binding. Binding-based relation detection
proceeds by first retrieving or automatically induc-
ing the qualia structures of the modifier m and head
h and then testing which binding heuristic in Ta-
ble 7 is satisfied. For each compound we examine
the qualia roles of both nouns and ask whether the
modifier can fill one of the open slots of the head
(or vice-versa) under the conditions listed in the
rightmost column. ⊗ denotes successful binding.

For example, if m itself occurs in h.C, which is
a list of constituents of h or is semantically simi-
lar to a constituent of h above a threshold τ , we
register the binding m ⊗ h.C and label the com-
pound COMP-R. Consider the compound chicken
soup. The head noun soup has a CONSTITUTIVE
role listing its possible ingredients (e.g., vegeta-
bles, meat, broth). The modifier chicken directly
matches one of these constituents. Formally, we
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Relation Binding Role Qualia Binding

COMP-R m⊗ h.C m ∈ h.C ∨ sim(m,x)>τ, x ∈ h.C

CONT-R m⊗ h.T ∃v ∈ h.T : fills
(
m, ρ(v)

)
, ρ ∈ {Theme,Patient}, v ∈ CONTAIN

LOCATION h.F⊗m.F m.F ∩ PLACE ∧ located_at /∈ h.F

PARTONOMY h⊗m.C h ∈ n.C ∨ sim(h, x)>τ, x ∈ m.C

PRODUCTION h⊗m.A ∃v ∈ m.A : fills
(
h, agent(v)

)

PROD-R m⊗ h.A ∃v ∈ h.A : fills
(
m, agent(v)

)

PURPOSE m⊗ h.T ∃v ∈ h.T : fills
(
m, ρ(v)

)

TOPIC-R m⊗ h.T ∃v ∈ h.T : fills
(
m, ρ(v)

)
, ρ = Topic

USG-R m⊗ h.T ∃v ∈ h.T : fills
(
m, ρ(v)

)
, ρ = Instrument

Table 7: Compound relations and the corresponding binding types used to detect each relation. h refers to head, m
refers to modifier. F, C, T, A refer to FORMAL, CONSTITUTIVE, TELIC, AGENTIVE roles respectively. m⊗ h.C
means the modifier binds to the CONSTITUTIVE role of the head.

detect that m = chicken h.C = {vegetables,
meat, broth, . . . }, satisfying the binding condition
m⊗ h.C. This triggers the COMP-R label, since
the modifier specifies what the head is composed
of. Intuitively, the meaning is “soup composed
of chicken.” If we find a containment verb v in
h.T such that v assigns the modifier to a Theme
or Patient role, we assign CONT-R relation. LO-
CATION is detected when the Formal role of the
head denotes a PLACE and the modifier is situ-
ated at that location, while PARTONOMY is trig-
gered when h is part of the m.C or highly similar
to one of its parts. If an event in h.A takes m
as its agent, we obtain PRODUCTION, whereas
the reverse binding yields PROD-R. PURPOSE-
, TOPIC-, and USAGE-oriented relations are all
variations of m binds to h.T , differentiated by the
thematic role that the modifier fills.

By iterating over these binding tests and return-
ing the satisfied binding results, the system maps
qualia evidence to a single compound relation; if
multiple bindings fire, the compound is flagged as
polysemous. We limit the number of plausible read-
ings to two as there is no compound that can admit
more than two readings in the working dataset.

Condition Cues To anchor the compound to a
concrete condition and thus guide the model to-
ward the context-appropriate relation, we enrich
the dataset by providing a semantic condition for
each reading of the compound. Given an NNC
together with its annotated relation(s), we instruct
the LLM to propose a set of condition cues. A
condition cue is essentially a neutral, minimal state
variable, expressed as a key-value pair. The key is
a noun phrase describing the salient features of the

compound or pinpointing the differences between
two readings without encoding explicit grammati-
cal roles or overtly signaling any particular relation.
The value is either binary or categorical. Typical
variables include IN_CURRENT_USE (yes/no)
for CONT-R readings, PURPOSE_FULFILLED
(yes/no) for PURPOSE readings.

Human adjudication To assess the reliability of
the automatically assigned relations and condition
cues, we engage human annotators in a post-hoc
verification step. Each predicted relation is pre-
sented in context, and annotators only need to re-
move relations that are not reasonable or add miss-
ing relations. Adjudication is done by two graduate
students in a U.S.-based university with Computa-
tional Linguistics backgrounds. We reach an inter-
agreement score of 90.3%. The errors mostly stem
from o3 picking the wrong argument type for the
binding. Manual review requires revision of 15.6%
of the predicted relations, affecting 10.1% of the
compounds, which corresponds to an end-to-end
pipeline accuracy of 84.4%. The high accuracy
from the automated pipeline also shows the useful-
ness of the qualia structure. This pipeline greatly
reduce the workload on human annotators to detect
and label polysemous NNCs. We also apply human
validation to ensure that there is no data leakage in
NNI inputs. Two PhD students are asked to check
if the condition cues and the context sentences con-
tain relation-suggesting phrases. If they do, then
they are regenerated until they meet the criterion.
About 25.7% of the generated condition-cues and
12.1% of the context sentences need regeneration.

Our framework eventually outputs a dataset
CONDITIONED-LEXICALIZED (C-LEX) that aug-
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Label # examples Ratio (%)

Mono. Poly. Total Mono. Poly. Total

CONT-R 14 65 79 1.4 6.3 7.6
COMP-R 63 25 88 6.1 2.4 8.5
PURPOSE 136 283 419 13.2 27.4 40.6
PARTONOMY 7 41 48 0.8 4.0 4.6
USG-R 5 16 21 0.5 1.5 2.0
TOPIC-R 14 73 87 1.4 7.1 8.4
PRODUCTION 9 132 141 0.9 12.8 13.6
LOCATION 54 58 112 5.2 5.6 10.8
PROD-R 1 37 38 0.1 3.6 3.6

Totals 303 730 1033 29.3 70.7 100.0

Compound 303 365 668 45.4 54.6 100.0

Table 8: Statistics of C-LEX. Compound refers to the
statistics of NNC instances.

ments compounds in LEXICALIZED with polysemy
and corresponding condition cues. The result-
ing corpus-level statistics are reported in Table 8.
We also create a conditioned dataset for NOVEL,
namely CONDITIONED-NOVEL (C-NOVEL) 2.

5.3 Experiment

We adopt the same models as in §4.2 on C-LEX

and C-NOVEL and their subsets to evaluate the
effectiveness of our approach. Each compound c
is associated with a set of relations ⟨r1, ..., rn⟩ and
their condition cues ⟨σ1, ..., σn⟩ obtained in §5.2.
We describe our experimental settings below.

Condition Cue Only (Cnd-Cue) For every tuple
⟨c, ; rk, ;σk⟩, we embed σk in the prompt, serving
as an explicit semantic anchoring help LLMs pre-
dict the correct relation, especially differentiating
readings of polysemous NNCs. The candidate rela-
tions are the original relation options. The model
must output a single relation label.

Conditioned Context Sentence (Cnd-Sent) This
experiment supplements the prompt with a syn-
thetic sentence sk automatically generated from
σk using OpenAI o3 model, e.g. “He tied the trash
bag and left it at the curb.” All other instructions
are unchanged.

Plus Enriched Descriptions (+Enr-Desc) On
top of the Cnd-Sent setting, we replace the original
relation descriptions with the enriched descriptions.

2Novel dataset only replaces head nouns or modifier nouns
of the lexicalized compounds with their hypernyms and we do
not see any relational change due to the replacement. There-
fore the statistics of C-Novel is exactly the same as C-Lex.

5.4 Results

We conduct evaluations on two levels: (i)
compound-level, which considers pairs of read-
ings for polysemous compounds, and requires cor-
rect predictions across both readings for the com-
pound to be considered accurately classified; and
(ii) reading-level, where performance is measured
individually for each compound reading.

The compound-level evaluation results are
shown in Table 9. Despite this stricter require-
ment, the enriched prompts still deliver consistent
gains compare to the baseline where the models are
run on data with no enrichment. The improvement
indicates that the models are not merely matching
isolated descriptions but are internalizing a coher-
ent compositional representation that generalizes
across a compound’s full meaning space.

The relative gains are most pronounced for
the lightweight, open-source models Llama-2 and
Mistral. Enrichment lifts their compound-level
accuracy by more than 9 points, whereas GPT-4o
shows a smaller but still reliable boost. This dis-
parity indicates that once surfacing the implicit
condition, smaller models no longer need to in-
fer it and can instead devote their limited capac-
ity to relational reasoning. Our strategy offers a
parameter-efficient alternative to model scaling, al-
lowing resource-friendly LLMs to approach the
interpretive performance of much larger systems.

Table 10 reports reading-level accuracy on C-
LEX. Enriching the prompts with conditioned
cues raises performance for all three LLM fami-
lies by 5-25 points. This suggests that our enrich-
ment improves a model’s ability to map a partic-
ular reading to the appropriate relation. For ex-
ample, “trash bag” is often labeled as of PUR-
POSE relation (a bag intended for trash, while
its gold label is CONT-R (a bag contains trash)
because both relations are plausible and the model
would randomly pick one from the two rela-
tions. Now with the enhancement of condition cue
IN_CURRENT_USE (yes/no), models are able
to distinguish the two readings and predict both re-
lations correctly. To pinpoint where the gains arise,
we examine the results on monosemous and pol-
ysemous subsets and trace the corrected readings
under enrichment. On average, 54.8 % of these pre-
dictions come from polysemous compounds, while
45.2 % originate from monosemous ones. The near-
even split shows that our condition cues uplift both
compound types, yet the modest tilt toward poly-
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Setting Llama-2 Mistral GPT-4o

Baseline 12.7 / 19.6 / 19.5 59.1 / 59.1 / 56.5 69.0 / 65.8 / 65.0
Cnd-Cue 35.5 / 30.1 / 27.8 65.0 / 68.1 / 68.3 69.3 / 70.6 / 72.0
Cnd-Sent 38.9 / 33.7 / 30.0 65.6 / 69.3 / 69.7 69.4 / 70.6 / 72.3
+Enr-Desc 41.5 / 35.5 / 31.7 65.9 / 69.4 / 70.4 69.9 / 71.6 / 72.4

Table 9: Compound-level evaluation results (%) on C-
LEX; each cell shows 0-shot / 1-shot / 3-shot accuracy.

Setting Llama-2 Mistral GPT-4o

Baseline 12.7 / 19.6 / 19.5 59.1 / 59.1 / 56.5 69.0 / 65.8 / 65.0
Cnd-Cue 38.3 / 35.7 / 33.3 69.3 / 71.4 / 72.1 74.2 / 75.5 / 76.5
Cnd-Sent 40.8 / 37.6 / 34.9 69.7 / 72.0 / 72.9 74.9 / 77.1 / 77.8
+Enr-Desc 44.4 / 39.3 / 40.1 70.4 / 72.1 / 73.3 75.2 / 77.8 / 78.2

Table 10: Reading-level evaluation results (%) on C-
LEX; each cell shows 0-shot / 1-shot / 3-shot accuracy.

semy suggests that condition cues are especially
valuable when multiple readings compete. On both
levels, results in 3-shot example settings gener-
ally output the best performance except for Llama
model. This indicates that these examples can in-
struct models to predict the correct relation. We
also see similar trends of improvement by adding
context sentence and enriched descriptions, prov-
ing the effectiveness of these enrichment.

We further extend the enrichment to the novel
compound set C-NOVEL. Results show that enrich-
ment boosts reading-level accuracy by 7–10 points
and compound-level accuracy by 6–9 points across
all models. Because these gains occur on likely
unseen lexical items, they show that the condition
cues confer a generalizable grasp of compositional
semantics rather than task-specific memorization,
enabling the method to scale effectively as the in-
ventory of compounds grows. We provide more
detailed results in Appendix A.3.

5.5 Analysis
We investigate the effectiveness of each component
in our conditioned context enrichment framework.
We also add the enriched description options as an
extra component from §4.2.

Condition Cues To evaluate the effectiveness of
condition cue, we create a subset that only keeps
the gold reading in the original dataset for each
compound. As a result, we can evaluate on the
same ⟨c, ; rk, ⟩ pairs as in LEXICALIZED. We have
seen consistent improvements across all models,
suggesting that enriching with conditions can en-
hance the NNI task.

Per-relation analysis (Appendix A.3) shows F1
gains for seven of the nine labels once condition

cues are added. The most pronounced improve-
ments appear for commonly conflated pairs such
as CONT-R and PURPOSE, confirming that the
cues help the model decide between readings like
those available to trash bag. F1 drops only for
PARTONOMY and PROD-R. The only two re-
lation that have seen degraded performances are
PARTONOMY and PROD-R. This is because
more than double the number of new readings are
introduced for these two relations. It also reveals
that disambiguating these two relations from other
competing relations are rather challenging.

Context Sentence Various settings of experi-
ments on all sets of our data show that supple-
menting the condition cue with a context sentence
yields an additional rise in accuracy. The improve-
ment suggests that a discourse-level cue, phrased
in natural language, helps the model ground the
abstract state constraint in a concrete scenario. A
per-relation breakdown (Appendix A.3) pinpoints
the largest gains in CONT-R and PARTONOMY.
Consider mail box, which admits (i) a PURPOSE
reading “a box intended to hold mail” and (ii) a
CONT-R reading “a box that currently contains
mail.” The condition cue MAIL_DELIVERED =
YES proved ambiguous, and the model selected the
PURPOSE relation. Augmenting the prompt with
the sentence “Our front-porch mail box is crammed
with letters and catalogs waiting to be sorted.” ex-
plicitly depicts the box in active use, disambiguates
the reading, and leads the model to the correct
CONT-R label. This pattern illustrates why con-
text sentences, by instantiating the condition cue
in a realistic setting, offer an effective contextual
constraint for accurate relation selection.

6 Conclusion

In this paper, we propose a textual-enrichment
framework to enhance the NNI task by surfacing
compound-specific events and providing semantic
condition constraints to compounds with compet-
ing readings. Comprehensive experiments show
that LLMs consistently benefit from these enrich-
ment, yielding improvements both at the granular
reading level and at the more demanding holis-
tic compound level, and can extend to novel com-
pounds. Beyond boosting accuracy, our method
offers a parameter-efficient alternative to scaling
and yields structured artifacts, i.e., eventful para-
phrases and condition cues, that can be reused for
explanation, retrieval, and consistency checking.
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Limitations

Thus far we have only applied the enrichment
framework to the LEXICALIZED set, whose modest
size facilitated rapid iteration and oracle compari-
son. Given our framework is fully automated, the
system can generate event-explicit descriptions and
conditions cues at scale. This scalability opens the
door to enriching much larger resources, e.g., Tratz
(2011). In future work we will exploit this property
to release high-coverage enriched NNC datasets
that can serve as more demanding test beds for
compositional semantics in LLMs.

Another limitation of our current implementa-
tion is that it handles at most two alternative read-
ings per compound. This binary design reflects
the practical observation that triple- or higher-order
ambiguities are rare in the datasets we studied, yet
it also hard-codes an upper bound on the frame-
work’s expressive power. Extending the framework
to n > 2 readings would require a richer pool of
orthogonal state variables and a more flexible selec-
tion mechanism, and would offer a sharper test of
an LLM’s capacity to navigate densely polysemous
compounds. Investigating such multi-way disam-
biguation remains an important direction for future
work.

Finally, our study is limited to English com-
pounds. While English NNCs provide a rich
testbed, cross-linguistic variation in compounding
is well documented, and it remains unclear whether
our enrichment framework would transfer directly
to languages with different compounding strategies
(e.g., German, Chinese). We leave multilingual
extensions and evaluations for future work.
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CONT. COMP. PURP. PART. USG. TOP. PROD. PROD-R. LOC.

CONT. – 4 49 0 4 1 7 0 0
COMP. – 12 4 1 2 0 2 0
PURP. – 20 4 45 111 15 27
PART. – 0 4 0 0 13
USG. – 1 1 0 5
TOP. – 1 12 1
PROD. – 1 5
PROD-R. – – 7
LOC. –

Table 11: Frequency of relation co-occurrence in the
polysemous compounds in C-LEX.

A Appendix

A.1 Statistics

Table 11 shows the number of relation co-
occurrences for polysemous compounds in C-LEX.

A.2 Prompts

In this section, we demonstrate various prompts
that we use to either generate intermediate artifacts
or probe LLMs on NNI task. Figure 3 illustrates
the prompt examples to generate enriched relation
descriptions. The two variations are for relation
with one definition and two definitions respectively.
Figure 4 shows an example prompt for NNI task
with the enriched description options. The model
is asked to select the most appropriate descriptions.
Figure 5 shows the prompt to automatically gen-
erate qualia structures for a single noun. Figure
6 shows the prompt for automatically extracting
possible composition relation by checking if qualia
structure binding is possible. Each relation is as-
signed with a set of rules that model will check if
the binding rules are satisfied and admit the corre-
sponding relation. Figure 7 and 8 show the prompts
that instruct LLM to generate condition cues for
compounds given its reading(s). Figure 9 and 10
show the prompts for converting the abstract condi-
tion cues into discourse-level, contextualized sen-
tences.

A.3 Results

In this section, we include results evaluated against
different components of our enrichment framework.
Table 12 and 13 show the results on C-NOVEL with
different experiment settings, suggesting the gener-
alizability of our enrichment framework. Table 14
shows the evaluation results on all the readings in
LEXICALIZED, which is essentially a subset of C-
LEX. Table 15 shows the relation-wise evaluation
results of the condition enrichment framework.

Setting Llama-2 Mistral GPT-4o

Baseline 12.6 / 15.6 / 16.5 34.5 / 58.0 / 53.4 59.6 / 60.2 / 61.3
Cnd-Cue 30.5 / 33.1 / 34.8 40.0 / 63.9 / 64.5 63.4 / 66.6 / 68.5
Cnd-Sent 31.7 / 33.3 / 34.1 39.7 / 65.4 / 65.8 65.0 / 66.8 / 68.5
+Enr-Desc 36.5 / 39.0 / 41.6 45.1 / 67.1 / 68.7 67.1 / 68.4 / 69.2

Table 12: Compound-level evaluation results (%) on
C-NOVEL-SAMEHEAD; each cell shows 0-shot / 1-shot
/ 3-shot accuracy.

Setting Llama-2 Mistral GPT-4o

Baseline 10.3 / 14.6 / 21.2 30.1 / 47.9 / 30.5 51.4 / 52.0 / 52.8
Cnd-Cue 26.3 / 31.3 / 32.6 37.5 / 56.4 / 57.8 56.9 / 59.3 / 59.4
Cnd-Sent 27.1 / 27.9 / 30.4 36.9 / 57.1 / 58.5 57.6 / 60.7 / 61.2
+Enr-Desc 30.5 / 31.3 / 31.8 42.3 / 60.0 / 62.7 60.9 / 61.6 / 62.0

Table 13: Compound-level evaluation results (%) on
C-NOVEL-SAMEMOD; each cell shows 0-shot / 1-shot
/ 3-shot accuracy.

A.4 Model Details
We follow the model hyperparameters in Ram-
belli et al. (2024). All artifacts for enrich-
ment (e.g., enriched descriptions, condition cues,
context sentences, etc.) are generated by o3
model using OpenAI API. Llama-2-7B-chat-hf,
Mistral-7B-Instruct-v0.2 and GPT-4o are
used to do NNI task. The open-source LLMs, i.e.,
Llama-2-7B and Mistral-7B are run on NVIDIA
RTX A6000 with these hyperparameters:

Temperature: 0,
do_sample: False,
top-k: 10,
top-p: 5,
max-tokens: 50,
frequency and presence penalty: 0

25907



One Definition Prompt (PURPOSE) Multi-Definition Prompt (CONT-R)

Given n2 = {n2}, n1 = {n1}, choose the most
appropriate words in the definition and generate
the sentence. If there are slashes, choose
only one word from the options. Do not add any
word except what is already in the definition and
n1 and n2:

a n2 that is designed to perform(s)/engage(s)
in/finance(s) the activity related to n1.

Only return the sentence

Given n2 = {n2}, n1 = {n1}, choose the most
appropriate definition based on the word type of
{n1} and generate the sentence with the most
appropriate words. If there are slashes, choose
only one word from the options. Do not add any
word except what is already in the definition and
n1 and n2:

Definition 1: a n2 that physically contain(s)/
hold(s)/define bound(s) of n1(s).
Definition 2: a n2 that much/many n1(s) live
in/at/on.

Only return the sentence.

Example Instantiations (n1 = trash, n2 = bag)

PURPOSE CONT-R

a bag is designed to engage in the activity re-
lated to trash.

a bag that physically holds trash.

Figure 3: Two prompts for LLM based on the number of relation definitions (top) and their concrete instantiations
(bottom) for compound trash bag. Other relations can be obtained by replacing the relation definition.

Setting Llama-2 Mistral GPT-4o

Baseline 12.7 / 19.6 / 19.5 59.1 / 59.1 / 56.5 69.0 / 65.8 / 65.0
Cnd-Cue 39.1 / 33.4 / 31.6 74.7 / 75.6 / 77.0 80.2 / 80.4 / 80.4
Cnd-Sent 42.1 / 39.8 / 34.1 75.0 / 77.2 / 77.4 80.7 / 80.7 / 81.1
+Enr-Desc 44.9 / 39.9 / 35.4 75.6 / 78.2 / 77.9 80.8 / 81.2 / 81.8

Table 14: Evaluation results (%) on all readings in LEX-
ICALIZED; each cell shows 0-shot / 1-shot / 3-shot ac-
curacy.

Relation Baseline Cnd-Cue Cnd-Sent +Enr-Desc

COMP-R 73.6 83.7 83.7 83.7
CONT-R 43.0 70.1 78.5 78.5
PRODUCTION 60.6 69.7 72.4 76.0
PROD-R 34.7 24.2 24.2 24.2
LOCATION 65.0 77.5 76.3 76.3
USG-R 25.1 31.3 35.3 35.3
PURPOSE 50.8 75.9 75.9 82.0
TOPIC-R 62.7 70.6 73.0 73.0
PARTONOMY 52.1 42.5 49.0 49.0

Table 15: Per–relation F1 scores (%) of conditioned
context enrichment on Mistral-7B-Instruct with 3-
shot prompting.

Question:
Which of the following is the most
likely description of "trash bag"?

[1] A bag that is made of trash where
trash is one of the primary
ingredients that make up bag.

[2] A bag that is a part of trash.

[3] A bag that uses trash to perform
where trash is the tool.

[4] A bag that trash creates.

[5] An trash that bag creates.

[6] A bag that physically holds trash.

[7] A bag that contains a plan about trash.

[8] Trash is the location where bag is at.

[9] A bag that is designed to perform
the activity related to trash.

Answer:

Figure 4: Multiple-choice prompt for the primary LLM
(example for trash bag).
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You are an expert in lexical semantics,
specifically Generative Lexicon (GL) theory.
Your task is to generate the qualia structure
for a given English noun, focusing on its most
common or contextually relevant meaning.
Provide the most salient values for each role:

- FORMAL: {FORMAL ROLE Definition}
- CONSTITUTIVE: {CONSTITUTIVE ROLE Definition}
- TELIC: {TELIC ROLE Definition}
- AGENTIVE: {AGENTIVE ROLE Definition}

If a specific qualia role genuinely does not apply
or cannot be determined for the noun's identified
meaning, output an empty list \texttt{[]} for that
role's value. DO NOT return an empty string for
the entire output if other roles can be filled.

Input Noun: {noun}

Figure 5: Prompt for eliciting the qualia structure of an
English noun.
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### System
You are a linguistically trained analyst specialised in Generative-Lexicon (GL) qualia roles.

### User
Determine whether the MODIFIER can plausibly act as the AGENT / CREATOR of the HEAD noun,
i.e. perform the AGENTIVE actions that bring the HEAD into existence.

---

- HEAD noun & AGENTIVE inventory
HEAD = {head_noun}
HEAD.AGENTIVE = {agentive_role}

- MODIFIER candidate
MODIFIER = {modifier}

---

#### Decision procedure
1. Accept the clause only if it is grammatical and semantically natural
2. Mark an AGENTIVE value compatible if the clause passes step 1.

Figure 6: Chain-of-thought prompt for relation PROD-R.

### System
You are an expert in lexical semantics. You are given a compound word and two relation labels
referencing possible head–modifier relations.
Each relation is a reading plus an explanatory sentence.
Your goal is to produce short, neutral state variables to disambiguate the two readings.
- Do NOT use words that reveal the labels.
- DO NOT reveal grammatical structure (e.g., agent/patient).
- ONLY use semantic information.
- Express each condition as KEY = value, where KEY is a

noun phrase in CAPS and value is "yes"/"no" or a short noun.
- Return only the JSON specified below.
- Do NOT include any extra text or explanation.

### User
Compound: {compound}

Relation labels and descriptions:
{labels_senses}

### Task
1. Choose state variable(s) that differentiate the readings.
2. Default to one variable; use two only if needed.

Figure 7: Prompt for generating state-variable-based condition cues for polysemous compounds.

### System
You are an expert in lexical semantics.
Given a compound and its reading, output one short, relation-agnostic state variable whose values
represent the reading.
- The state variable must encode ONLY semantic world-knowledge,

NOT surface grammar, argument structure, or words that betray the relation label
(e.g., avoid “IS_HELD”, “IS_MADE_OF”, “IS_AGENT”).

- Use the format STATE_NAME = value
- STATE_NAME: UPPER-CASE noun phrase (<= 3 words)
- value: “yes”/“no” or noun phrase (<= 3 words)
- The state variable must align with the reading.

### User
Compound: {compound}

Reading (label: definition)
{labels_sense}

Figure 8: Prompt for generating state-variable-based condition cues for monosemous compounds.
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### System
You are a careful contextual writer.
Your job is to craft ONE natural English sentence for each sense of a
polysemous noun–noun compound.
The sentence must
- include the compound verbatim;
- make the provided state assignments true;
- stay neutral—do not mention the state-variable names or any relation
label (e.g. “usage”, “containment”).

Return the sentences in the JSON format shown at the end and nothing else.

### User
Compound : {compound}

Reading A : {reading_a}
Relation for Reading A: {relation_a}
Condition A : {state_variable_a}

Reading B : {reading_b}
Relation for Reading B: {relation_b}
Condition B : {state_variable_b}

### Task
1. Write one sentence for each reading such that the state variables

are true and the meaning of the compound corresponds to the reading.
2. Try to make the sentence natural and fluent.
3. The sentence for Reading A should differentiate the compound from Reading B.
4. Keep each sentence <= 25 words; avoid technical jargon.

Figure 9: Prompt for generating conditioned context sentences for each reading of a polysemous compound.

### System
You are a careful contextual writer.
Your job is to craft ONE natural English sentence for to represent the sense of a noun–noun compound.
The sentence must
- include the compound verbatim;
- align with the provided state assignment;
- stay neutral—do not mention any relation label (e.g. “usage”, “containment”).

Return the sentence in the JSON format shown at the end and nothing
else.

### User
Compound : {compound}

Reading: {reading}
Relation for Reading A: {relation}
State: {state}

### Task
1. Write one sentence for each reading such that the state variable
is true and the meaning of the compound coresponds to the reading.
2. Try to make the sentence natural and fluent.
3. Keep each sentence <= 25 words; avoid technical jargon.

Figure 10: Prompt for generating conditioned context sentences for each reading of a monosemous compound.
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