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Abstract

Recent works have suggested that In-Context
Learning (ICL) operates in dual modes, i.e.
task retrieval (remember learned patterns from
pre-training) and task learning (inference-time
“learning" from demonstrations). However, dis-
entangling these the two modes remains a chal-
lenging goal. We introduce ICL CIPHERS, a
class of task reformulations based on substi-
tution ciphers borrowed from classic cryptog-
raphy. In this approach, a subset of tokens in
the in-context inputs are substituted with other
(irrelevant) tokens, rendering English sentences
less comprehensible to human eye. However,
by design, there is a latent, fixed pattern to
this substitution, making it reversible. This
bijective (reversible) cipher ensures that the
task remains a well-defined task in some ab-
stract sense, despite the transformations. It is
a curious question if LLMs can solve tasks re-
formulated by ICL CIPHERS with a BIJEC-
TIVE mapping, which requires “deciphering”
the latent cipher. We show that LLMs are
better at solving tasks reformulated by ICL
CIPHERS with BIJECTIVE mappings than the
NON-BIJECTIVE (irreversible) baseline, pro-
viding a novel approach to quantify “learning”
in ICL. While this gap is small, it is consistent
across the board on four datasets and six mod-
els. Finally, our interpretability analysis shows
evidence that LLMs can internally decode ci-
phered inputs.1

1 Introduction

In-Context Learning (ICL) is an emergent behav-
ior in Large Language Models (LLMs) that al-
lows them to identify patterns in demonstrations
given as prompts and apply these patterns to sim-
ilar tasks (Brown et al., 2020). This intriguing
inference-time ability has prompted many studies.
Despite recent efforts (Min et al., 2022; Srivastava
et al., 2023; Shen et al., 2024, inter alia), the liter-

1Our code is available at this repository.
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Figure 1: An example of ICL CIPHERS, a cryptographic
task reformulation where a subset of tokens are ciphered
(replaced with other tokens in the lexicon) via a BI-
JECTIVE mapping (e.g., each instance of “school” is
replaced with “apple”.) Since this cipher is a bijection,
one can recover the original format of the ICL instance,
ensuring the well-defined task upon the transformations.

ature’s understanding of the functional aspects of
ICL remains elusive and contentious.

Most pertinent to our study, Pan et al. (2023);
Lin and Lee (2024); Wang et al. (2024) propose
ICL’s dual behavior: task retrieval (TR), which
involves recalling a previously encountered task
from pre-training data through its demonstrations,
and task learning (TL), which refers to the abil-
ity to grasp new input-label mappings that were
not seen during pre-training. Although these two
mechanisms are not necessarily separate in prac-
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tice, examining them independently may help re-
searchers better understand their strengths and lim-
itations. This distinction is important as TL reflects
whether models can generalize to truly new tasks
or label spaces from just a few examples, which
is the assumption of many practical uses of ICL.
However, since most of the existing tasks are al-
ready included in pretraining, it is non-trivial to
find new tasks during inference and measure TL
independently. Pan et al. (2023) measure TL by
assessing task performance when labels are substi-
tuted with abstract symbols (such as numbers or
letters) that have never co-occurred with the inputs
during pre-training. However, TR may partially
influence this strategy. LLMs could still use the
intact human-readable inputs and prompt structure
to deduce the task, thereby performing implicit task
retrieval. This consideration motivates the explo-
ration of alternative approaches for quantifying task
learning.

In this study, we introduce ICL CIPHERS, a
class of prompt reformulations based on substitu-
tion ciphers borrowed from cryptography, applied
to task inputs. For example, in a sentiment clas-
sification task, we apply BIJECTIVE shuffling to
part of the LLM’s original vocabulary, ensuring a
one-to-one correspondence between tokens in the
shuffled and original vocabularies. We then replace
tokens in the input text with their corresponding
tokens based on this mapping (e.g., every instance
of “love” is replaced with “today”; see Fig.1).

The outcome of substitution ciphers is gener-
ally not easily interpretable by humans (see Fig.1
for examples), resembling a random shuffling of
words. However, since ICL ciphers are reversible,
the original tasks can be reconstructed from the en-
coded version, ensuring that the task, still remains
learnable. This lack of interpretability is a design
feature (rather than a flaw) here as it greatly re-
duces the likelihood that our prompts have been
encountered in the pre-training data. As a result,
our working hypothesis is that any gains above the
NON-BIJECTIVE shuffles should be indicative of
TL (as opposed to TR) within ICL. Unlike previ-
ous works (Pan et al., 2023; Wang et al., 2024) that
intervene in task outputs through label shuffling,
our approach modifies task inputs. This creates
instances less likely to have been encountered in
pre-training data.

In summary, we evaluate ICL CIPHERS us-
ing six models of different sizes across four well-
known benchmarks and different few-shot num-

bers. Our empirical results demonstrate that ICL
achieves better-than-random performance on ci-
phered tasks (§4.1). For example, on the BIJEC-
TIVE ciphered Amazon dataset, Llama3.1 (8B) av-
erages 7.1% higher accuracy than NON-BIJECTIVE

ciphers, across various demonstration counts (Ta-
ble 2). This suggests that LLMs can learn and
decode these random bijections, enabling them to
solve ICL Ciphers. Furthermore, we provide ad-
ditional results with the shuffling rate and model
scale. Finally, we perform an interpretability anal-
ysis (§4.7) which reveals promising, albeit weak,
trends in their ability to decode the ciphered inputs.

2 Defining ICL CIPHERS

2.1 Preliminaries: In-Context Learning

Let fθ denote a pre-trained language model pa-
rameterized by θ. This model performs ICL by
conditioning on an ordered set of n-many input-
output pairs Ddemo = (x1, y1, x2, y2, . . . , xn, yn).
To measure this model’s competence, we evalu-
ate it on a collection of input-output pairs Dtest =
{(xi, yi)}. Specifically, for instance (xtest, ytest) ∼
Dtest, from an LM conditioned on the demon-
strations with an appropriate encoding: ypred ∼
fθ(Ddemo, xtest) we extract a predicted label ypred
which is then compared against the gold label ytest.

2.2 ICL CIPHERS

A simple substitution cipher is a technique for en-
coding messages. Specifically, each letter in the
plain text is substituted with a different letter from
the alphabet, usually according to a predetermined
mapping or key. ICL CIPHERS are token-level sub-
stitution ciphers that are applied to demonstration
inputs in ICL. Formally, we define a ICL cipher
c : V → V that maps each token in the lexicon
V = {tj}|V |

j=1 to another token. Note that a token is
allowed to be mapped to itself. If all the tokens are
mapped to themselves (i.e., c(tj) = tj for all j),
then the ICL cipher is equal to an identity function,
and substitution with this mapping would lead to
no changes in the text. We define the tokens that
are mapped to different tokens as ciphered tokens
S := {tj |tj ∈ V, c(tj) ̸= tj}. The proportion of
shuffled tokens in the lexicon is called shuffle rate
r ∈ [0, 1]. The mapping of ciphered tokens de-
pends on the specific type of ICL CIPHERS, which
we discuss next.
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2.3 BIJECTIVE ciphers

We create a BIJECTIVE mapping between two
permuted orders of S. For example, say the to-
ken “school” is mapped to “apple”, as illustrated
in Fig.1. Let the input xi be constituted of Ki

tokens, i.e., xi is the ordered sequence of to-
kens (t1, . . . , tKi). For all tj = school ∈ xi or
xtest, c(tj) = apple. This results in corresponding
ciphered inputs x′i or x′test. Moreover, as c is a bi-
jection, ∃ c−1 such that for all tj = apple ∈ x′i or
x′test, c

−1(tj) = school. Note that “apple” doesn’t
have to be mapped back to “school”.

Decipherability of BIJECTIVE cipher: Since
we ensure the mapping is BIJECTIVE (reversible),
theoretically the models can learn the mapping
through enough demonstrations. Let the ac-
tual function between all (xi, yi) pairs be h, i.e.
h(xi) = yi, ∀(xi, yi) ∈ Ddemo ∪ Dtest. Using
ICL, the model fθ employs both TR and TL to
approximate h′ ≈ h such that h′(xi) ≈ yi. This
original function h cannot be expected to work on
ciphered (or shuffled) inputs x′i. However, there
is a corresponding function g(x′i) = h(c−1(x′i))
that is equivalent to h(xi). This shows that h is
still recoverable from the ciphered inputs. In natu-
ral language, replacing a word with another fixed
but randomly decided word can completely change
the meaning of its context. Any TR capabilities
are expected to be severely hurt with ciphered in-
puts. To perform well on Dtest, the model must rely
heavily on TL to learn and perform this composite
function.

2.4 NON-BIJECTIVE Ciphers

For comparison with BIJECTIVE ciphers (§2.3),
we also create a NON-BIJECTIVE cipher. In this
cipher, whenever a token tj ∈ S appears in the
demonstration inputs, it will be replaced by a
uniformly randomly picked token t′ ∈ S, i.e.,
c(tj) ∼ uniform(S). For example, if the token
“school” appears twice in the demonstration inputs,
then they will likely be replaced by two different
tokens. In contrast, in BIJECTIVE cipher (§2.3) we
ensure multiple occurences of a token are conis-
tently replaced by the same token.

Indecipherability of NON-BIJECTIVE cipher:
In a NON-BIJECTIVE cipher, the mapping is no
longer reversible, which means it’s impossible for
models to learn the mapping nor recover the origi-
nal inputs. This is because c is not surjective any-

more, and hence c−1 does not exist. This implies
that a composite function through which h can be
recovered also does not exist.

2.5 Measuring “Learning” via ICL CIPHERS

Bijective ciphers offer a novel and challenging yet
solvable task encoding, making it unlikely to be
seen from pretraining. However, the performance
of LLMs on this cipher might be influenced by un-
ciphered tokens (t ∈ V \S), which may invoke task
retrieval capability of LLMs. In contrast, we quan-
tify ICL ‘learning” using the performance gap
between BIJECTIVE (§2.2) and NON-BIJECTIVE

(§2.4) ciphers. The comparison between these two
ciphers is meaningful because the ciphers always
share the same ciphered tokens for consistency.
The only difference between the two is their token
mapping functions: BIJECTIVE cipher mapping
allows a reversible mapping of ciphered tokens.
In contrast, NON-BIJECTIVE cipher removes the
learnable patterns. Therefore, the gap between the
performance on BIJECTIVE and NON-BIJECTIVE

ciphered text can be a practical measure of TL.
Although it’s theoretically possible to com-

pletely solve the one-to-one mappings of BIJEC-
TIVE ciphers, the models are not necessarily re-
quired to do so to solve the reformulated tasks.
Instead, they only need to (internally) capture re-
lated information or attributes (e.g. sentiment ) of
the ciphered tokens, depending on the tasks and
given demonstrations. Our experiment results in 4
show that solving the cipher partially can still help
the model better solve the reformulated tasks.

3 Experimental Setup

We discuss our setup for evaluating ICL CIPHERS

when applied to various tasks.

3.1 Design Choices for ICL CIPHERS

Zipfian shuffling: Literature has shown a strong
correlation between token frequency in the pre-
training corpus and model performance (Razeghi
et al., 2022; Mallen et al., 2023)—LLMs tend to
perform better on frequent tokens. To diminish
the confounding influence of token frequency, we
constrain the shuffling between tokens of similar
frequency. Inspired by Zipfian shuffling (Pianta-
dosi, 2014), we divide all the tokens into k (k = 10
in our experiments) groups of similar frequency
and shuffle the tokens within each group. Specifi-
cally, we use the Wikipedia (Foundation) to calcu-

25914



late token frequency instead, which approximates
the actual token frequency.

Priority sampling of ICL demos: To create an
ICL demo set, one way is to randomly sample the
required number of examples (say n) from the pool
of demos. We call this non-priority (random) sam-
pling. However, in practice we always perform pri-
ority sampling (unless otherwise specified) where
we prioritize examples that contain the substituted
tokens of the test case input. This is done to ex-
pose LLMs to the relevant substitutions from which
they can learn to decipher. Suppose the number of
ciphered tokens in the test input is m (which de-
pends on the shuffle rate r). The goal is to select
n demonstrations from the pool of demos, such
that each of them contains at least one of the m
uniquely ciphered (substituted) tokens. This is triv-
ial if m = n (i.e., n demos cover the whole set of
m substitutions). Otherwise:

• If m < n (i.e., the number of substitutions is
less than the required number of ICL demos
to be sampled from the pool), we choose m
examples according to priority sampling and
the rest of n−m examples are randomly picked
from the demo pool.

• If m > n, we select a random subset of the
ciphered tokens of size n.

In §D, we compare priority sampling with non-
priority (random) sampling.

Shuffle Rate: The shuffle rate r determines the
proportion of tokens that are substituted. When r is
close to 0, the cipher’s effect is minimal, as few or
no tokens are substituted, making it uninteresting.
Conversely, when r approaches 1, nearly all tokens
are shuffled and solving the task is almost impossi-
ble (under both BIJECTIVE and NON-BIJECTIVE

ciphers). Thus, our focus lies on a moderate shuffle
rate between 0 and 1, striking a balance between
these extremes. We analyze this in §4.2.

Special tokens and filters: LLMs usually have
a list of special tokens that help the model un-
derstand the prompt and task (e.g. next token
prediction). For example, Llama3.1 models use
<|begin_of_text|> and <|end_of_text|> to de-
note the start of input and end of generation. We
preserve special and punctuation tokens from get-
ting ciphered to avoid hurting models’ basic func-
tionality. (Full list of preserved tokens is in Ap-
pendix B.1). Similarly, we avoid disturbing spaces
in the original text (details in Appendix B.2).

3.2 Evaluated Models

We mainly focus on pretrained LLMs in our ex-
periments, including Llama 3.1 (Dubey et al.,
2024, Llama-3.1-8B), QWen 2.5 (Team, 2024b,
Qwen2.5-7B), OLMo (Groeneveld et al., 2024,
OLMo-7B-0724-hf) and Gemma 2 (Team, 2024a,
Gemma-2-9b). In §4.4 and §4.5, we also
show results on Llama-3.1-8B-Instruct and
Llama-3.1-70B to explore the effect of instruction
tuning and model size. Unless otherwise specified,
Llama 3.1 refers to Llama-3.1-8B.

3.3 Datasets

We conduct experiments on four datasets. SST-2
(Socher et al., 2013) and Amazon (Hou et al., 2024,
Amazon Reviews 2023) are binary sentiment clas-
sification tasks. HellaSwag (Zellers et al., 2019)
is a sentence completion task, formatted as four-
choices QAs. WinoGrande (Sakaguchi et al., 2020)
is a pronoun resolution task, formatted as binary-
choice QAs. For each dataset, we curate a demo
pool for sampling ICL demos, and a test set con-
tains to-be-tested cases. We use accuracy as the
metric for all our experiments if not specified. We
averaged the metrics across three runs of experi-
ments for a more reliable evaluation. Further de-
tails on datasets (prompts and examples) are in §B
and §C.

4 Empirical Findings

We evaluate ICL CIPHERS on a range of LLMs and
datasets. We then use the accuracy gap between
the two types of ciphers to quantify a proxy for TL
capabilities of LLMs (§2.5).

4.1 Evidence of Task-Learning in ICL

Table 1 shows the performance of LLMs on four
datasets ciphered with our framework (§2), with
a fixed shuffle rate and number of demonstrations.
The statistically significant results are marked with
∗ using McNemar’s test (McNemar, 1947). The
null hypothesis is that two marginal probabilities
for each outcome are the same, meaning switching
from NON-BIJECTIVE to BIJECTIVE cipher has no
impact on the prediction results. We see a consis-
tent improvement in the performance of LLMs on
BIJECTIVE ciphered inputs over NON-BIJECTIVE

ciphered inputs (except for Olmo on WinoGrande
and Gemma 2 on Hellaswag). This consistent gap
demonstrates that LLMs solve decipherable BI-
JECTIVE ciphers better than the undecipherable
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Model → Cipher 20-shot

Dataset (shuffle rate) ↓ Llama3.1 Qwen2.5 Olmo Gemma2

SST-2 (r = 0.5) NON-BIJECTIVE 58.3 69.0 67.7 70.5
BIJECTIVE 63.1 (+4.8 ↑)∗ 73.5 (+4.5 ↑)∗ 72.7 (+5.0 ↑)∗ 74.2 (+3.7 ↑)∗

Amazon (r = 0.6) NON-BIJECTIVE 64.7 72.6 77.2 80.8
BIJECTIVE 72.3 (+7.6 ↑)∗ 77.9 (+5.3 ↑)∗ 80.2 (+3.0 ↑)∗ 85.0 (+4.2 ↑)∗

HellaSwag (r = 0.3) NON-BIJECTIVE 29.7 52.8 25.9 37.1
BIJECTIVE 31.9 (+2.2 ↑)∗ 62.3 (+9.5 ↑)∗ 26.1 (+0.2 ↑)∗ 36.6 (-0.5 ↓)

WinoGrande (r = 0.1) NON-BIJECTIVE 53.7 61.3 53.4 63.5
BIJECTIVE 55.5 (+1.8 ↑)∗ 62.5 (+1.2 ↑) 53.1 (-0.3 ↓) 63.5 (+0.0 ↑)

Table 1: LLM accuracies (reported in %) with 20-shot demonstrations, under BIJECTIVE and NON-BIJECTIVE
ciphers. For each dataset, we fix the shuffle rate to a reasonable value here to demonstrate the gap. We provide
an analysis on the effect of shuffle rate later (§4.2). The numbers inside the parenthesis shows the change from
NON-BIJECTIVE to BIJECTIVE ciphering (gains in green↑ and losses in red↓). In majority of cases, we observe
consistent performance gains under BIJECTIVE cipher. Statistically significant gains are indicated via ∗.
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Figure 2: Llama 3.1 8B performance on Amazon dataset. Left: Under the BIJECTIVE cipher, accuracy decreases
smoothly as the shuffle rate increases, highlighting the difficulty in interpreting the ciphered text. Accuracy also
increases with more demonstrations, suggesting the model’s ability to solve BIJECTIVE cipher. Right: y-axis shows
the accuracy gap between BIJECTIVE and NON-BIJECTIVE ciphers. For very high shuffle rates (e.g, > 0.7), the
task become very hard to understand and solve (for the model and even humans) as it becomes ill-defined.

NON-BIJECTIVE ones. This provides evidence for
task learning capabilities of LLMs.

4.2 Analysis: Effect of Shuffle Rates

As discussed in §3.1, the shuffle rate r dictates the
percentage of tokens that are substituted. When r
is near 0, the cipher has little to no impact. When r
nears 1, almost all tokens are shuffled, making the
task nearly unsolvable. Therefore, we expect the
largest difference between BIJECTIVE and NON-
BIJECTIVE ciphers when r is somewhere between
the two extremes. We verify this intuition in Fig.2
which shows the performance of Llama 3.1 on
the Amazon dataset with priority sampling. We
can observe the largest gap between BIJECTIVE

and NON-BIJECTIVE ciphers across the interval
r ∈ (0.4, 0.6), which aligns with expectations.

4.3 Analysis: Effect of Number of Demos

Prior work (Srivastava et al., 2023) shows ICL per-
formance improves with more demonstrations. Ta-
ble 2 reports performance gaps between BIJEC-
TIVE and NON-BIJECTIVE ciphers as the number
of demos varies. BIJECTIVE consistently outper-
forms NON-BIJECTIVE, with the gap widening as
demos increase—though this effect plateaus be-
yond a point, particularly for Hellaswag and Wino-
Grande. Fig.2 (on the right) also shows this visually
for the Amazon dataset.

4.4 Analysis: Effect of Alignment

Thus far, we have shown results on pre-trained
models (before alignment). Here we verify if
the results hold up on aligned (e.g., instruction-
tuned) models. Fig.3 compares Llama-3.1-8B (not
aligned) and Llama-3.1-8B-Instruct (aligned),
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Shots → Cipher Model: Llama 3.1 8B

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.5) NON-BIJECTIVE 56.9 59.5 58.6 58.3 62.6 58.4
BIJECTIVE 59.5 (+2.6 ↑)∗ 61.0 (+1.5 ↑) 60.8 (+2.2 ↑) 63.1 (+4.8 ↑)∗ 65.4 (+2.8 ↑)∗ 64.9 (+6.5 ↑)∗

Amazon (r = 0.6) NON-BIJECTIVE 63.1 61.8 68.1 64.7 64.8 72.5
BIJECTIVE 67.8 (+4.7 ↑)∗ 67.6 (+5.8 ↑)∗ 74.5 (+6.4 ↑)∗ 72.3 (+7.6 ↑)∗ 72.6 (+7.8 ↑)∗ 82.6 (+10.1 ↑)∗

HellaSwag (r = 0.3) NON-BIJECTIVE 31.7 29.7 30.7 29.7 30.9 33.1
BIJECTIVE 34.2 (+2.5 ↑)∗ 31.7 (+2.0 ↑) 34.1 (+3.4 ↑)∗ 31.9 (+2.2 ↑)∗ 31.6 (+0.7 ↑) 33.9 (+0.8 ↑)

WinoGrande (r = 0.1) NON-BIJECTIVE 54.9 53.2 53.7 53.7 53.3 54.3
BIJECTIVE 56.3 (+1.4 ↑) 53.8 (+0.6 ↑)∗ 54.2 (+0.5 ↑)∗ 55.5 (+1.8 ↑)∗ 54.6 (+1.3 ↑)∗ 55.5 (+1.2 ↑)∗

Table 2: Llama3.1 8B accuracies (reported in %) on different datasets with varying numbers of ICL examples
under BIJECTIVE vs. NON-BIJECTIVE ciphers. The numbers inside the parenthesis shows the change from
NON-BIJECTIVE to BIJECTIVE cipher. Statistically significant gains are indicated via ∗.
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Figure 3: Accuracy comparison of Llama-3.1-8B and Llama-3.1-8B-Instruct on four datasets under BIJECTIVE and
NON-BIJECTIVE ciphers with 20-shot (§4.4). Both aligned and non-aligned models achieve similar relative
improvements when solving tasks encoded with a BIJECTIVE cipher, compared to those encoded with NON-
BIJECTIVE ciphers.

which quantifies the effect of alignment on the
gaps between BIJECTIVE and NON-BIJECTIVE

ciphers. As expected, the aligned model
(Llama-3.1-8B-Instruct) outperforms the non-
aligned model (Llama-3.1-8B), on both BIJEC-
TIVE and NON-BIJECTIVE ciphers. But crucially,
the gaps between the two ciphers remain similar
in both settings. This indicates that the decipher-
ability for BIJECTIVE ciphers is maintained in
aligned models. §E shows more complete results
on Llama3.1-8B-Instruct.

4.5 Analysis: Effect of Model Size

Fig.4 compares Llama-3.1-8B and
Llama-3.1-70B, showing the effect of model
size on the gaps between BIJECTIVE and
NON-BIJECTIVE ciphers. As the model size
increases, performances for both BIJECTIVE

and NON-BIJECTIVE ciphers improve. The gaps
between the two ciphers remains similar in the
large model, indicating the decipherability of
BIJECTIVE ciphers across models of different
sizes. We do not observe any larger gaps in the

large model compared to the small model. §F
shows more complete results on Llama3.1-70B.

4.6 Analysis: Effect of Grammatical Roles

As shown in Fig.1, the substitution/ciphering pro-
cess may happen between tokens of different POS
groups, which changes the syntactic and semantic
structure of natural language. To explore how ci-
phers affect tokens differently based on their gram-
matical roles, we restrict the space of vocabulary
shuffling to only one POS group - noun, which
maintains the original syntactic and semantic struc-
ture. Table 3 shows that gaps between BIJEC-
TIVE and NON-BIJECTIVE ciphers when shuffling
within nouns are similar to those when shuffling
within all the tokens. This indicates ciphering
within certain grammatical roles is still a solvable
task for the models.

4.7 Analysis: Probing Representations

To examine how LLMs process ciphered inputs,
we use Logit Lens (nostalgebraist, 2020) to probe
their intermediate layer representations. Logit Lens
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Figure 4: Accuracy comparison of Llama-3.1-8B and Llama-3.1-70B on four datasets under BIJECTIVE and
NON-BIJECTIVE ciphers with 20-shot (§4.5). Larger models outperform smaller ones under both ciphers, while
BIJECTIVE cipher consistently yields higher accuracy than NON-BIJECTIVE cipher.

Figure 5: x-axis indicates the i-th occurrence of ciphered tokens in the Llama 3.1 context. y-axis indicates the
rank difference (Eq 1). Positive values (red) indicate the model’s preference for substituted tokens over original
ones. In the BIJECTIVE cipher (left), we see a preference that favors substituted tokens. However, there is no clear
preference in the NON-BIJECTIVE cipher (right).

Cipher Llama3.1 8B 20-shot

Dataset (shuffle rate) All Noun

HellaSwag (r = 0.3) NON-BIJECTIVE 29.7 32.1
BIJECTIVE 31.9 (+2.2 ↑) 33.6 (+1.5 ↑)

WinoGrande (r = 0.1) NON-BIJECTIVE 53.7 54.3
BIJECTIVE 55.5 (+1.8 ↑) 56.7 (+2.4 ↑)

Table 3: Llama3.1 8B accuracies (reported in %) with
20-shot demonstrations, under BIJECTIVE and NON-
BIJECTIVE ciphers. “All” operates shuffling on all the
tokens while “Noun” constrains shuffling to only nouns.

takes token embeddings from intermediate layers
and decodes them using the final LM head. We con-
duct this probing on the Amazon sentiment dataset
using Llama 3.1 8B.

Selecting tokens for probing: We first pick 600
most frequent tokens in the demo set after filtering
out tokens other than verbs, nouns and adjectives,
using NLTK (Bird et al., 2009). We randomly sam-
ple 30 tokens from them as the “original tokens”.
We then randomly sample another 30 tokens from

the remaining 570 tokens as the “substituted to-
kens”, each of which has a one-to-one correspon-
dence with the original tokens. Token substitu-
tion: For BIJECTIVE cipher, we create a bijection
between the 30 original tokens and the selected 30
substitution tokens, creating a mapping for the orig-
inal tokens to be substituted. For NON-BIJECTIVE

cipher, we substitute each occurrence of each origi-
nal token, by a randomly sampled token from the
remaining 570 tokens.

Building ciphered inputs: For each original token
t′ (the token to be ciphered), we sample 15 ex-
amples from the demo pool that contain t′, and
apply our two substitution ciphers to build the
ciphered prompt. Given the positions of orig-
inal tokens P = (p1, p2, ..., pn), we apply the
Logit Lens and observe embeddings at positions
P ′ = (p1− 1, p2− 1, ..., pn− 1) (i.e., one position
prior) to find the ranks of original tokens and “sub-
stituted tokens”. This gives us an understanding
of how the model changes its preference between
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original and substituted tokens. We quantify this
notion as the rank difference (original token rank -
substitution token rank):

rank-diff = rank(tj)− rank(c(tj)), (1)

where rank denotes the position of a given token in
the model’s softmax score over the vocabulary set.
LLM representations favor substituted tokens in
BIJECTIVE cipher: For BIJECTIVE cipher (Fig.5;
left) as the model observes more substitutions, the
rank difference changes from negative to positive
(in deeper layers, where the model interpreting with
LogitLens is more meaningful). Consistently, the
model gives a higher rank to the substituted tokens
than the original tokens, suggesting that the model
starts to understand the cipher. In contrast, there is
no trend for NON-BIJECTIVE cipher (Fig.5; right)
as there is nothing to decipher.

5 Related Work

Dual operating modes of ICL: Min et al. (2022)
showed the disconnect between “learning” and the
content of in-context demonstrations (lack of task
“learning”). This motivated following works to
identify two primary modes of operation for In-
Context Learning (ICL): task retrieval (TR), which
involves recalling patterns previously encountered
in pre-training data, and task learning (TL), which
involves learning new patterns on-the-fly that were
not seen during pre-training. Some studies em-
phasize TR by exploring the factual recall capa-
bilities of ICL (Sun et al., 2023; Golchin et al.,
2024; Han et al., 2023; Zhao, 2023; Reddy, 2023;
Dankers and Titov, 2024), providing insights into
how LLMs memorize pre-training data, thus fa-
cilitating TR. Other studies (Lin and Lee, 2024;
Song et al., 2024; Vacareanu et al., 2024; Nafar
et al., 2024; Anand et al., 2024) have made ef-
forts to measuring “learning” in ICL, but focus
on simplified datasets (e.g., linear regression) or
architectures (e.g., shallow transformers), which
differ from our focus. Additionally, some of the
studies (Vacareanu et al., 2024; Nafar et al., 2024)
may still suffer from data contamination, thus fail-
ing to accurately reflect the actual capacity of TL.
In contrast, our method is aimed at real datasets
and real LLMs. Most pertinent to our work, Pan
et al. (2023); Wang et al. (2024) have attempted
to separate TR and TL through output interven-
tion by replacing labels with abstract symbols like
numbers or letters. However, it remains uncertain

whether using abstract labels effectively eliminates
the influence of TR in ICL. Many human-readable
tasks may have inherent priors embedded in the
pre-training datasets, suggesting that LLMs might
still use inputs and prompt structures to infer the
task, thereby engaging in implicit task retrieval.
Our approach proposes an alternative method for
quantifying TL by intervening in the input space.
Compared to prior works, it is more general as it’s a
framework that can be combined with almost all the
tasks, and more reliable as it eliminates the effect
of data contamination as discussed in Sec 2.5.

Ciphers and their use in AI: Substitution ci-
phers are studied in NLP for their potential
to decipher lost languages without parallel cor-
pora (Knight et al., 2006; Ravi and Knight, 2008,
2011; Dou and Knight, 2012; Berg-Kirkpatrick
et al., 2013; Pourdamghani and Knight, 2017; Nuhn
et al., 2013; Berg-Kirkpatrick and Klein, 2011; Cor-
lett and Penn, 2010; Aldarrab and May, 2020, inter
alia). For example, Ravi and Knight (2011) pro-
pose a Bayesian approach combining n-gram mod-
els and dictionaries for efficient sampling-based
decipherment. Deterministic methods also exist,
using optimization or heuristics (Peleg and Rosen-
feld, 1979; Ganesan and Sherman, 1993; Olson,
2007). Yuan et al. (2023) is the only work we know
applying ciphers to LLMs (GPT-4) in the context
of safety.

6 Discussion and Conclusion

BIJECTIVE cipher is not a single task. The pro-
posed ciphers are a broad reformulation mecha-
nism of existing tasks. The underlying task can be
any task chosen by the user. Our method offers
a general-purpose framework for task reformula-
tion that enables us to probe the boundary between
memorization and generalization. Moreover, the
reformulated tasks are different from each other.
When solving the reformulated tasks, the model
doesn’t necessarily follow a manner that first com-
pletely solve the cipher/mapping, then recover and
solve the original tasks. Instead, it only needs to
(internally) capture related information or attributes
(e.g. sentiment ) of the ciphered tokens, depending
on the tasks and given demonstrations. This means
for each reformulated task, the model doesn’t al-
ways have to completely solve the cipher/mapping
and learns differently.
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Does BIJECTIVE cipher guarantee measuring
only “learning”? Achieving a perfect distinc-
tion between “learning” and “retrieval” may be
unattainable, as any learning inherently involves
non-zero level of retrieval (e.g., language under-
standing). Our framework provides a method to
quantify learning, by analyzing the difference be-
tween how LLMs process a random but learnable
bijection, vs non-bijective noise. Though under-
standing the complementarity of these approaches
and success at quantifying pure learning remains
to be further understood in future work.
Do the modest gains of BIJECTIVE cipher in-
dicate that the weakness of “learning” in ICL?
Not necessarily. The proposed re-encoding of ICL
transforms tasks into more complex problems that
are inherently more challenging to solve. This is
a feature, not a bug, as it allows us to argue that
such esoteric encoding tasks reduce the potential
confounding effect of retrieval. However, the side
effect is that this increased difficulty in task re-
encoding results in smaller gains. The key point
is that there are consistent positive gains between
the BIJECTIVE and NON-BIJECTIVE settings. The
magnitude of this gap is a secondary considera-
tion and is likely to change with future innovative
methods for re-encoding tasks.

Can your results be due to data contamination?
Our work is motivated by the same issue. Data
contamination makes it difficult to attribute the suc-
cess of ICL to “retrieval” (from pre-training) vs
“learning” (from in-context demonstrations, with-
out seeing them a priori). A reasonable approach
to measure the latter (and mitigate the former) is
through randomized tasks. The point of our study
is to substitute the given tasks with randomly gen-
erated bijection tokens, which makes it impossible
for any model to have memorized them. We report
the difference in performance with bijective vs non-
bijective ciphering and de-emphasize any absolute
performance numbers which could have resulted
from memorization of the original task.

To measure TL, why don’t we just evaluate
LLMs on “novel” tasks? There is currently no
straightforward way to define task “novelty”. Prior
work has shown that LLM performance correlates
strongly with the presence of tasks in the pretrain-
ing data (Razeghi et al., 2022; Mallen et al., 2023).
To quantify novelty, one would need to either (i)
perform large-scale fuzzy matching against pre-
training corpora, or (ii) recast tasks into an equiv-

alent representation that is unlikely to have been
encountered during pretraining. Few works have
tried (i) and have shown some success, but we also
know that it’s brittle and challenging. Hence, our
work focuses on (ii).

Conclusion: We introduced ICL CIPHERS, a
class of cryptography text transformations designed
to evaluate novel task learning capabilities of
LLMs. We show that LLMs exhibit the capacity to
decipher these novel tasks during inference. This
evidence indicates LLMs’ ability to learn novel
tasks outside of their pre-training corpus. The ex-
act mechanism of this “learning” remains an active
area of study. Understanding this mechanism holds
the potential to unleash novel problem-solving ca-
pabilities of LLMs.

Limitations

We discuss the potential limitations of our work:

Deviation from natural language: Ciphered
text generated diverges from natural language.
While this is useful to assess LLMs’ TL capabil-
ities, it may also make the task excessively chal-
lenging for them. Except for restricting the space
of shuffling (Sec 4.6), it is possible there might be
alternative ways to measure learning while main-
taining the naturalness of the tasks.

More models and datasets: Although we eval-
uated 24 settings (six models × four datasets),
expanding our study to include more and larger
models would strengthen our findings. The largest
model we tested was Llama 3.1 70B, due to limited
computing resources. Additionally, we did not eval-
uate large, aligned models such as GPT-4-o1, or
Gemini. Anecdotal evidence suggests that aligned
models may lose their ability to follow in-context
demonstrations (Fu et al., 2022), a crucial aspect of
our task definition. However, we acknowledge that
our task could potentially be adapted into a task de-
scription or instruction format suitable for aligned
models, which deviates from our current setting
and could be explored in future work. It would also
be interesting to evaluate ICL CIPHERS on various
pre-training checkpoints to better understand how
ICL “learning” emerges through pre-training.

Deeper interpretability analysis: In terms of
interpretability analysis, we experimented with sev-
eral approaches (e.g., PatchScope (Ghandeharioun
et al., 2024)) but found success only with the sim-
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plest method, the Logit Lens. More advanced inter-
pretability analyses could provide deeper insights
into the underlying mechanisms, offering a clearer
understanding of the processes involved.

We recognize these as areas for further explo-
ration and encourage future research to address
these limitations.
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A Additional Related Work

Alternative explanations of ICL: Since the discovery of ICL (Brown et al., 2020), numerous studies
have explored it across various contexts (Zhao et al., 2021; Min et al., 2022; Mishra et al., 2022; Han
et al., 2023; Wang et al., 2023; Sia et al., 2024; Vacareanu et al., 2024; Mueller et al., 2024). For example,
Perez et al. (2021); Lu et al. (2022); Mishra et al. (2022) demonstrated ICL’s sensitivity to the selection
and sequence of demonstrations, while Shin et al. (2022); Razeghi et al. (2022) highlighted its sensitivity
to the frequency and size of the relevant pre-training corpus. Another research direction seeks to elucidate
the mechanisms behind ICL. Xie et al. (2021) described ICL as implicit Bayesian inference, where ICL
demonstrations are mapped to a latent concept (task) learned during pre-training. Other works have
attempted to explain ICL as a form of implicit optimization (gradient descent and its variants) (Garg
et al., 2022; Zhang et al., 2023; Dai et al., 2023; Von Oswald et al., 2023; Li et al., 2023), though the
applicability of these formalisms to real LLMs is debated (Shen et al., 2024). A few studies aim to
understand how ICL emerges in LLMs. Hahn and Goyal (2023) suggested that the compositional structure
of natural language leads to emergent in-context learning, while other works (Chan et al., 2022) propose
that certain distributional properties in the pre-training data may give rise to ICL. Although these studies
offer varying perspectives into the origin and functioning nature of ICL, we propose to disentangle TL and
TR components of ICL by observing LLMs’ behavior on randomly generated bijections vs. non-bijection
noise.

Empirical understanding of ICL: Ever since In-Context Learning was discovered (Brown et al., 2020),
multiple works have studied it under diverse settings (Zhao et al., 2021; Min et al., 2022; Mishra et al.,
2022; Han et al., 2023; Wang et al., 2023; Sia et al., 2024; Vacareanu et al., 2024; Mueller et al., 2024).
For instance, Srivastava et al. (2023) benchmarked ICL under multiple tasks and models; Perez et al.
(2021); Lu et al. (2022) showed the sensitivity of ICL to the choice of demonstrations and their orderings;
Shin et al. (2022); Razeghi et al. (2022) showed the sensitivity of ICL performance to the frequency and
size of the relevant pre-training corpus. These works have made useful observations that allow us to better
use this elusive quality of LLMs.
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Functional nature of ICL: A more recent line of study aims to understand how ICL actually works in
LLMs. Multiple works have compared ICL with implicit optimization (specifically gradient descent) (Garg
et al., 2022; Zhang et al., 2023; Dai et al., 2023; Akyürek et al., 2022; Von Oswald et al., 2023; Li et al.,
2023; Kim and Suzuki, 2024). This line of work claims that Transformers can meta-learn to perform
optimization of internal models given a set of demonstrations. However, their study setup with toy
transformers does not align with how LLMs are trained as shown by Shen et al. (2024). Moreover, this
line of study does not explain the TR capabilities of LLMs.

Forces that lead to ICL: Few works try to understand how ICL emerges in LLMs. Xie et al. (2021)
explained ICL as implicit Bayesian inference, which maps a ICL demonstrations to a latent concept (task)
learned via pre-training. Hahn and Goyal (2023) posited that compositional structure in natural language
gives rise to emergent in-context learning. Other works (Chan et al., 2022) theorize more distributional
properties in the pre-training data, that may give rise to ICL. Many of these works explain some properties
of ICL but fail at others. The exact origin of ICL in LLMs still remains an active area of study.

B Additional Experimental Details

B.1 Preserved Tokens
For Llama 3.1, we preserve the tokens whose ids range from 0 to 255, 128000 to 128256. For Qwen 2.5,
we preserve the tokens whose ids range from 0 to 255, 151643 to 151664. For OLMo, we preserve the
tokens whose ids range from 0 to 244, 50254 to 50279. For Gemma 2, we preserve the tokens whose ids
range from 0 to 472, 255968 to 255999. For all the models, we preserve the spaces and underlines to
ensure the framework of each task. For example, in the WinoGrande dataset, LLMs are asked to predict
the pronouns in a sentence, where the original pronouns are replaced by an underline.

B.2 Handling of White Space
LLMs encode the spaces between words differently depending on their tokenization. Gemma 2 uses a
special underline to represent a space, while Llama 3.1 , QWen 2.5 and OLMo uses ’Ġ’. There are usually
two versions of the same word – with or without a space before it, which corresponds to two different
tokens. Take Llama 3.1 for example, the encoded id of “is” is 285 while that of “Ġis” is 374. We name
tokens containing a space at the beginning as “space tokens” and the others as “non-space tokens”. To
avoid disturbing spaces in the original text, which may confuse the model, we constrain the shuffling to be
within their space/non-space sets.

B.3 Design choices for ICL CIPHERS

In Tab.4, we explain our design strategies for choosing priority sampling (in selecting demonstrations
from the demo pool) and zipfian shuffling (in choosing the mapping c).

Strategies for ... Variant 1 Variant 2

selecting (sampling)
demonstrations

Priority: select demonstrations that
contain the target substitution in the test
example ✓

Non-priority: select demonstrations
randomly ✗

choosing the token
mapping c

Zipfian: c maps tokens of similar
frequency (popularity) among each
other ✓

Non-Zipfian: c maps tokens irrespective
of their frequency (popularity) ✗

Table 4: Design choices for experiments in ICL CIPHERS discussed in §3.1.

B.4 Datasets
For SST-2, HellaSwag and WinoGrande no label provided for the test set. Therefore, we use their
validation set instead.

SST-2: We use its validation set as our test set, which has size of 872. Its training set, which contains
67.3k examples, is used as the demo pool.
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Amazon: To fit the Amazon dataset into binary sentiment classification framework, we filter ratings
4-5 as positive and 1-2 as negative (discard rating 3). We focus on reviews under the the “All_Beauty”
category in our experiments. We sample 144k positive and negative samples to build the demo pool; and
500 other positive and negative examples as the test set.

HellaSwag: We use its validation set as our test set, which contains 444 positive examples and 428
negative examples (872 examples in total). Its training set, which contains 38K positive examples and 30k
negative examples, is used as the demo pool.

We randomly sample 1k examples from the validation set as our test set. We use its training set as the
demo pool, which contains 40k examples.

WinoGrande: We use its dev set as the test set, which contains 1267 examples. Its xl training set is
used as demo pool, which has 40k examples.

B.5 Prompt Template

We don’t include any instructions in our prompt. For SST-2 and Amazon, we use the following prompt
template:

Input: {input_demo}
Output: {label_demo}
...
Input: {input_test}

where {input_demo} and {label_demo} are the input text and sentiment labels of demonstrations, and
{input_test} is the input text of test case.

For HellaSwag and WinoGrande, we use the following prompt template:
Question: {question_demo}
Options: {options_demo}
Answer: {answer_demo}
...
Question: {question_test}
Options: {options_test}

where question_demo}, options_demo} and {answer_demo} are the questions, options and correct answers
of demos, and question_test} and options_test} are the question and option of the test case.

C Example Inputs/Outputs

Here we display the example inputs/outputs on all the four datasets. Note that in our experiments the
original inputs are not included in the prompts.

Dataset: SST-2; Model: QWen 2.5 ; Cipher: BIJECTIVE; Shuffle Rate: 0.6

Ciphered Input: been sc Mil Swift the Inch for pen Venezuela Moody
Original Input: been sent back to the tailor for some major alterations
Output: negative

Ciphered Input: is born Slovenia of an Platform San sitcom involved also Sr implementedecture
embarrassed Swift Malay you reach for the tissues Confederate
Original Input: is born out of an engaging storyline , which also is n’t embarrassed to make
you reach for the tissues .
Output: positive
...

Ciphered Test Input: allows us Swift hope Esc implementedolan Sr poised Swift cheating a
Venezuela career Mr a assembled Kann steak filmmaker Confederate
Original Test Input: allows us to hope that nolan is poised to embark a major career as a
commercial yet inventive filmmaker .
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Dataset: Amazon ; Model: Gemma 2 ; Cipher: BIJECTIVE; Shuffle Rate: 0.6

Ciphered Input: didnSUwell really notice anything mob. I sink it householder substance Woodward
Bean Simple Woodward Senior Caldwell Snowyyn Ato was instance.
Original Input: didn’t really notice anything special. I bought it because of the reviews and
the price but honestly, I was disappointed.
Output:negative

Ciphered Input:Item arrived regions principle unrest neighbours’]modern /><modern urchatosyn
Woodward item was calcium steamer principle Counter cap rendering Woodward cover ent since it
periodsSUwell Fam Arch anymore Simple iconicBer bottom Simple consequently’]modern /><modern
urchofficial was wrapped dentist regions principle padded envelope.
Original Input:Item arrived in a quick manner.<br /><br />However, the item was received with a
damaged cap rendering the cover useless since it won’t snap on anymore and dented bottom and
top.<br /><br />It was wrapped tightly in a padded envelope.
Output:negative
...

Ciphered Test Input: tried it for cosmetic qualifications perimeter a day spa0̆0f2 didnPervers
Tehran workil
Original Test Input: tried it for cosmetic procedures in a day spa; didn’t really work.

Dataset: Hellaswag; Model: OLMo ; Cipher: BIJECTIVE; Shuffle Rate: 0.3

Ciphered Question: Ter Back sits million titled with his Board effective on the keys. the Back
Original Question: A man sits a piano with his hands placed on the keys. the man
Ciphered Options: (1) begins playing the titled.\n(2) Carlos the keys with million malorn.\n(3)
beats the titled in million benefitedmic thought.\n(4) increases the play for playing.\n
Original Options: (1) begins playing the piano.\n(2) hits the keys with a mallet.\n(3) beats
the piano in a rhythmic beat.\n(4) increases the volume for playing.\n
Answer: (1)
...
Ciphered Question: People are noted on the street. million Back
Original Question: People are running on the street. a man
Ciphered Options: (1) is wearing poetilts.\n(2) limited million drink out Wars million After
presidents.\n(3) negotiating into million encourages Wars fire.\n(4) limited million high jump
in million Chris competition.\n
Original Options: (1) is wearing stilts.\n(2) takes a drink out of a water bottle.\n(3) jumps
into a pile of fire.\n(4) takes a high jump in a bar competition.\n

Dataset: WinoGrande ; Model: Llama 3.1 ; Cipher: BIJECTIVE; Shuffle Rate: 0.3

Ciphered Question: Estonia ferry that my parents story tied I permanent in Johnston permanent
Stadium partners bla than my house now because the _ permanent anchored.
Original Question: The home that my parents had when I was in school was a lot nicer than my
house now because the _ was sophisticated.
Ciphered Options: (1) ferry, (2) house
Original Options: (1) home, (2) house
Answer:(1)
...
Ciphered Question: Sarah permanent Stadium much better Chart than Maria so _ always got the
easier cases.
Original Question: Sarah was a much better surgeon than Maria so _ always got the easier cases.
Ciphered Options: (1) Sarah, (2) Maria
Original Options: (1) Sarah, (2) Maria
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D Priority vs. Non-Priority Sampling

Fig.2 shows peformance of LLaMa 3.1 8B on Amazon dataset with priority sampling. Fig.7 and
Fig.8 shows peformance of LLaMa 3.1 8B on SST-2 and Amazon datasets with non-priority sampling.
Comparing with Fig.6 and Fig.2, they demonstrate similar trends but the performances are more unstable
due to the randomness of non-priority sampling. Therefore, we use priority sampling throughout our
experiments for more steady results.
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Figure 6: Llama 3.1 8B performance on SST-2 dataset, which shows similar trends with Fig.2. Left: Under
the BIJECTIVE cipher, accuracy decreases smoothly as the shuffle rate increases, highlighting the difficulty in
interpreting the ciphered text. Accuracy also increases with more demonstrations, suggesting the model’s ability to
solve BIJECTIVE cipher. Right: y-axis shows the accuracy gap between BIJECTIVE and NON-BIJECTIVE ciphers.
For very high shuffle rates (e.g, > 0.7), the task become very hard to understand and solve (for the model and even
humans) as it becomes ill-defined.
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Figure 7: Peformance of Llama 3.1 8B on SST-2 dataset with non-priority sampling, comparing with Fig.6. Left:
The accuracies under BIJECTIVE cipher. Right: The y-axis displays the accuracy gap between BIJECTIVE and
NON-BIJECTIVE ciphers.
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Figure 8: Peformance of Llama 3.1 8B on Amazon dataset with non-priority sampling, comparing with Fig.2. Left:
The accuracies under BIJECTIVE cipher. Right: The y-axis displays the accuracy gap between BIJECTIVE and
NON-BIJECTIVE ciphers.
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E Pretrained-only vs. Aligned Models

Table 5 shows the performances of Llama3.1-8B-Instruct on different datasets. Comparing with its
pretrained-only version (Table 2), it demonstrates better performances. However, their gaps between
BIJECTIVE and NON-BIJECTIVE ciphers are on par.

Shots → Cipher Model: Llama 3.1 8B Instruct

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.5) NON-BIJECTIVE 65.5 66.5 68.9 68.1 67.5 65.5
BIJECTIVE 69.8 (+4.3 ↑)∗ 70.8 (+4.3 ↑)∗ 72.4 (+3.5 ↑)∗ 70.8 (+2.7 ↑)∗ 70.0 (+2.5 ↑)∗ 71.8 (+6.3 ↑)∗

Amazon (r = 0.6) NON-BIJECTIVE 70.5 80.0 77.3 79.3 80.6 80.5
BIJECTIVE 75.8 (+5.3 ↑)∗ 82.7 (+2.7 ↑)∗ 82.4 (+5.1 ↑)∗ 82.4 (+3.1 ↑)∗ 84.6 (+4.0 ↑)∗ 86.1 (+5.6 ↑)∗

HellaSwag (r = 0.3) NON-BIJECTIVE 43.2 43.2 42.3 41.6 41.4 41.0
BIJECTIVE 44.8 (+1.6 ↑)∗ 47.5 (+4.3 ↑)∗ 44.4 (+2.1 ↑)∗ 44.8 (+3.2 ↑) 45.1 (+3.7 ↑)∗ 42.4 (+1.4 ↑)∗

WinoGrande (r = 0.1) NON-BIJECTIVE 57.4 58.1 55.7 57.3 56.4 57.1
BIJECTIVE 59.0 (+1.6 ↑) 58.7 (+0.6 ↑)∗ 57.4 (+1.7 ↑)∗ 59.3 (+2.0 ↑)∗ 58.2 (+1.8 ↑)∗ 57.4 (+0.3 ↑)∗

Table 5: Llama3.1 8B Instruct accuracies (reported in %) on different datasets with varying numbers of ICL examples
under BIJECTIVE vs. NON-BIJECTIVE ciphers, as comparing to Table 2. The numbers inside the parenthesis shows
the change from NON-BIJECTIVE to BIJECTIVE cipher. Statistically significant gains are indicated via ∗.
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F Small vs. Large Models

Table 6 shows the performances of Llama3.1-70B on different datasets. Comparing with Llama3.1-8B
(Table 2), it demonstrates better performances. However, their differences in gaps between BIJECTIVE

and NON-BIJECTIVE ciphers are mixed.

Shots → Cipher Model: Llama 3.1 70B

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.5) NON-BIJECTIVE 64.8 70.3 66.4 71.8 69.8 74.5
BIJECTIVE 68.9 (+4.1 ↑)∗ 71.0 (+0.7 ↑) 69.6 (+3.2 ↑)∗ 76.9 (+5.1 ↑)∗ 74.4 (+4.6 ↑)∗ 80.3 (+5.8 ↑)∗

Amazon (r = 0.6) NON-BIJECTIVE 73.1 73.7 80.6 77.7 79.3 82.0
BIJECTIVE 76.5 (+3.4 ↑)∗ 78.6 (+4.9 ↑)∗ 84.4 (+3.8 ↑)∗ 82.0 (+4.3 ↑)∗ 84.0 (+4.7 ↑)∗ 85.7 (+3.7 ↑)∗

HellaSwag (r = 0.3) NON-BIJECTIVE 42.2 39.1 40.4 39.6 40.6 38.5
BIJECTIVE 44.2 (+2.0 ↑)∗ 43.6 (+4.5 ↑)∗ 43.1 (+2.7 ↑)∗ 42.2 (+2.6 ↑)∗ 40.9 (+0.3 ↑)∗ 41.6 (+3.1 ↑)∗

WinoGrande (r = 0.1) NON-BIJECTIVE 65.1 69.5 69.9 70.1 71.0 67.4
BIJECTIVE 68.6 (+3.5 ↑)∗ 70.1 (+0.6 ↑) 71.2 (+1.3 ↑)∗ 71.4 (+1.3 ↑)∗ 72.2 (+1.2 ↑)∗ 70.8 (+3.4 ↑)∗

Table 6: Llama3.1 70B accuracies (reported in %) on different datasets with varying numbers of ICL examples
under BIJECTIVE vs. NON-BIJECTIVE ciphers. The numbers inside the parenthesis shows the change from
NON-BIJECTIVE to BIJECTIVE cipher. Statistically significant gains are indicated via ∗.

G Statistical Significance of Results

To determine if the gaps between BIJECTIVE and NON-BIJECTIVE ciphers are significant, we conduct
McNemar’s test (McNemar, 1947). Table 7, Table 8, Table 9 and Table 10 show the computed p-values
for Table 1, Table 2, Table 5 and Table 6 respectively. The gap is regard as significant if its corresponding
p-value is no larger than 0.05.

Model → 20-shot

Dataset (shuffle rate) ↓ Llama3.1 Qwen2.5 Olmo Gemma2

SST-2 (r = 0.5) 0.000 0.000 0.000 0.001

Amazon (r = 0.6) 0.000 0.000 0.000 0.000

HellaSwag (r = 0.3) 0.000 0.000 0.000 0.663

WinoGrande (r = 0.1) 0.000 0.084 0.786 0.943

Table 7: Significance results (p-values) of McNemar’s test for Table 1. The gap between BIJECTIVE and NON-
BIJECTIVE can be regared as significant if its corresponding p-value is no larger than 0.05, which is bolded.

Shots → Model: Llama 3.1 8B

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.5) 0.018 0.205 0.084 0.000 0.020 0.000

Amazon (r = 0.6) 0.000 0.000 0.000 0.000 0.000 0.000

HellaSwag (r = 0.3) 0.015 0.627 0.000 0.000 0.278 0.357

WinoGrande (r = 0.1) 0.110 0.000 0.000 0.000 0.000 0.000

Table 8: Significance results (p-values) of McNemar’s test for Table 2. The gap between BIJECTIVE and NON-
BIJECTIVE can be regared as significant if its corresponding p-value is no larger than 0.05, which is bolded.
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Shots → Model: Llama 3.1 8B Instruct

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.5) 0.000 0.000 0.001 0.016 0.025 0.000

Amazon (r = 0.6) 0.003 0.002 0.000 0.000 0.000 0.000

HellaSwag (r = 0.3) 0.000 0.000 0.031 0.081 0.000 0.023

WinoGrande (r = 0.1) 0.067 0.000 0.000 0.013 0.015 0.000

Table 9: Significance results (p-values) of McNemar’s test for Table 5. The gap between BIJECTIVE and NON-
BIJECTIVE can be regared as significant if its corresponding p-value is no larger than 0.05, which is bolded.

Shots → Model: Llama 3.1 70B

Dataset (shuffle rate)↓ 5-shot 10-shot 15-shot 20-shot 25-shot 50-shot

SST-2 (r = 0.5) 0.000 0.497 0.006 0.000 0.000 0.000

Amazon (r = 0.6) 0.000 0.000 0.000 0.000 0.000 0.000

HellaSwag (r = 0.3) 0.000 0.006 0.000 0.000 0.000 0.000

WinoGrande (r = 0.1) 0.000 0.446 0.000 0.000 0.000 0.000

Table 10: Significance results (p-values) of McNemar’s test for Table 6. The gap between BIJECTIVE and NON-
BIJECTIVE can be regared as significant if its corresponding p-value is no larger than 0.05, which is bolded.
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H Further Results on Probing Analysis

To get a clearer vision, we extract the rank difference from the last layer on SST-2, dividing them equally
into 5 chunks, as shown in Fig.10. For random substitution, there is not much change for rank difference.
For BIJECTIVE substitution, rank difference increases as the chunk number gets bigger. This suggests
that as LLM sees more occurrences of the substitution token, it learns to use the substitution token as the
original token, namely solving ICL CIPHERS.

Figure 9: Complete heatmap of original token rank minus substitution token rank on Amazon for Fig.5. Left:
BIJECTIVE cipher Right: NON-BIJECTIVE cipher
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Figure 10: Average rank differences (original token rank - substitution token rank) in SST-2 (left) and Amazon
(right) datasets for BIJECTIVE (blue) and NON-BIJECTIVE (red) cipher over 15 occurrences, divided into 5 chunks
of size 3. Rank difference serves as a proxy for the model’s deciphering ability. Under BIJECTIVE cipher, this
ability improves with more exposure to substituted tokens, while NON-BIJECTIVE cipher shows no clear pattern.
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