
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 25961–25970
November 4-9, 2025 ©2025 Association for Computational Linguistics

Memory OS of AI Agent
Jiazheng Kang

Beijing University of Posts
and Telecommunications

kjz@bupt.edu.cn

Mingming Ji
Tencent AI Lab

matthhewj@tencent.com

Zhe Zhao
Tencent AI Lab

nlpzhezhao@tencent.com

Ting Bai *

Beijing University of Posts
and Telecommunications
baiting@bupt.edu.cn

Abstract

Large Language Models (LLMs) face a cru-
cial challenge from fixed context windows and
inadequate memory management, leading to
a severe shortage of long-term memory capa-
bilities and limited personalization in the in-
teractive experience with AI agents. To over-
come this challenge, we innovatively propose
a Memory Operating System, i.e., Memo-
ryOS, to achieve comprehensive and efficient
memory management for AI agents. Inspired
by the memory management principles in op-
erating systems, MemoryOS designs a hierar-
chical storage architecture and consists of four
key modules: Memory Storage, Updating, Re-
trieval, and Generation. Specifically, the archi-
tecture comprises three levels of storage units:
short-term memory, mid-term memory, and
long-term personal memory. Key operations
within MemoryOS include dynamic updates
between storage units: short-term to mid-term
updates follow a dialogue-chain-based FIFO
principle, while mid-term to long-term up-
dates use a segmented page organization strat-
egy. Extensive experiments on the LoCoMo
benchmark show an average improvement of
49.11% on F1 and 46.18% on BLEU-1 over
the baselines on GPT-4o-mini, showing con-
textual coherence and personalized memory
retention in long conversations. The imple-
mentation code is open-sourced at https://
github.com/BAI-LAB/MemoryOS.

1 Introduction

Large Language Models (LLMs) demonstrate im-
pressive capabilities in text comprehension and
generation, but face inherent limitations in sus-
taining dialogue coherence due to their reliance
on fixed-length contextual windows for memory
management. This fixed-length design inherently
struggles to preserve continuity in dialogues with
significant temporal gaps, often resulting in dis-

*Corresponding author.

jointed memory that manifests as factual incon-
sistencies and reduced personalization. Long-
term memory coherence is critical in scenarios re-
quiring persistent user adaptation, multi-session
knowledge retention, or stable persona representa-
tion across extended interactions, where the limi-
tations of fixed-length memory management in de-
fault LLMs become particularly acute, constitut-
ing a significant open challenge in the field.

To address this challenge, current memory
mechanisms in default LLMs can be broadly cat-
egorized into three methodological types: (1)
Knowledge-organization methods (Xu et al.,
2025; Liu et al., 2023; Zhang et al., 2024a), such
as A-Mem structure memory into interconnected
semantic networks or notes to enable adaptive
management and flexible retrieval; (2) Retrieval
mechanism-oriented approaches (Huang et al.,
2024; Zhong et al., 2024; Li et al., 2024; Chen
et al., 2024), e.g., MemoryBank integrates se-
mantic retrieval with a memory forgetting curve
mechanism to allow long-term memory updating;
and (3) Architecture-driven methods (Packer et al.,
2023; Chhikara et al., 2025; Zhang et al., 2024b),
such as MemGPT use hierarchical structures with
explicit read and write operations to dynamically
manage context. Although these diverse strategies
typically operate in isolation, i.e., each focusing
on single dimensions such as storage structure, re-
trieval mechanism, or update strategies, no unified
operating system has been proposed to enable sys-
tematic and comprehensive memory management
for AI agents.

Inspired by memory management principles in
operating systems, we pioneer the proposal of a
comprehensive memory operating system, termed
MemoryOS. As illustrated in Fig. 1, MemoryOS
comprises four core functional modules: mem-
ory Storage, Updating, Retrieval, and Genera-
tion. Through their coordinated collaboration, the
system establishes a unified memory management
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framework encompassing hierarchical storage, dy-
namic updating, adaptive retrieval, and contextual
generation. Specifically, Memory Storage orga-
nizes information into short-term, mid-term, and
long-term storage units. Memory Updating dy-
namically refreshes via a segmented paging ar-
chitecture based on the dialogue-chain and heat-
based mechanisms. Memory Retrieval leverages
semantic segmentation to query these tiers, then
Response Generation integrates retrieved mem-
ory information to generate coherent and personal-
ized responses. This synergistic workflow ensures
holistic management of long-term conversational
memory, enabling contextual coherence and per-
sonalized recall in extended dialogues. The pri-
mary contributions of our work are summarized
as:

• We make the first innovative attempt to intro-
duce a systematic operating system, termed
MemoryOS, for memory management, em-
powering AI agents with long-term conversa-
tional coherence and user persona persistence
in long conversational interactions.

• MemoryOS introduces a pioneering three-
tier hierarchical memory storage architecture
and integrates four core functional modules
(i.e, storage, updating, retrieval, and genera-
tion) for memory management, enabling dy-
namic capture and evolution of user prefer-
ences across extended dialogues.

• Comprehensive experiments validate Memo-
ryOS’s effectiveness and efficiency in main-
taining response correctness and coherence
across diverse benchmark datasets, demon-
strating its capability to handle long conver-
sational interactions.

2 Related Work

2.1 Memory for LLM Agents
Existing Large Language Models (LLMs) face
fundamental challenges in handling complex sce-
narios requiring long-term coherence. These
challenges stem from the inherent limitations of
fixed-length designs, which struggle to maintain
continuity in dialogues with significant temporal
gaps, resulting in fragmented memory that man-
ifests as factual inconsistencies and diminished
personalization. Advancements in memory sys-
tems of LLMs addressing this problem can be

broadly grouped into three categories: knowledge-
organization, retrieval mechanism-oriented, and
architecture-driven frameworks (Zhang et al.,
2024c; Wu et al., 2025; Du et al., 2025).
Knowledge-organization methods focus on cap-
turing and structuring the intermediate reason-
ing states of large language models. For exam-
ple, Think-in-Memory (TiM) (Liu et al., 2023)
stores evolving chains-of-thought, enabling con-
sistency through continual updates. A-Mem (Xu
et al., 2025) organizes knowledge into an in-
terconnected note network that spans sessions.
Grounded Memory (Ocker et al., 2025) integrates
vision-language models for perception, knowl-
edge graphs for structured memory representation
to enable context-aware reasoning in smart per-
sonal assistants. Retrieval mechanism–oriented
approaches enrich the model with an external
memory library. MemoryBank (Zhong et al.,
2024) logs conversations, events, and user traits
in a vector database and refreshes them using a
forgetting-curve schedule; AI-town (Park et al.,
2023) keeps memories in natural language and
adds a reflection loop for relevance filtering. Emo-
tionalRAG (Huang et al., 2024) retrieves mem-
ory entries by combining semantic similarity with
the agent’s current emotional state using a hy-
brid strategy. Architecture-driven designs al-
ter the core control flow to manage context ex-
plicitly. For example, MemGPT (Packer et al.,
2023) adopts an OS-like hierarchy with dedicated
read/write calls, while Self-Controlled Memory
(SCM) (Wang et al., 2025) introduces dual buffers
and a memory controller that gates selective recall.

2.2 Memory Management in OS

Modern operating systems (OS) use combined
segment-page memory management to balance
logical structure with efficient physical utiliza-
tion. Classic approaches like Multics (Bensous-
san et al., 1972) organize memory into segments
divided into pages, supporting efficient manage-
ment, protection, and sharing. Segment meta-
data (size, access permissions) prevents external
fragmentation (Bensoussan et al., 1972), while
paging reduces internal fragmentation (Denning,
1970). Advanced OS use priority-based eviction
(e.g., LRU, working-set models) to maintain hot
data (Denning, 1970), and Zheng et al. (Zheng
et al., 2020) show that combining coarse-grained
segmentation with fine-grained paging minimizes
overhead on many-core processors.

25962



Query

STM

FI
FO

Insert to MTM

Heat

Update to LPM

Page
Heat

Dialogue
Chain

Retrieve Retrieve Retrieve

FIFO Relevant LPM

Response Generation

answer

Timestamp

Query

Push to STM

Segment

LPM

User 
Profile

Agent 
Profile

Agent 
Traits

User Traits

User KB

Static

Dynamic

User Persona Agent Persona

MTM

Top-m Segment

τ

Top-k Page

Delete Segment

Figure 1: The overview architecture of MemoryOS, including memory Store, Updating, Retrieval, Response.

Inspired by the management in OS, our Mem-
oryOS applies these principles by structuring its
memory into logical segments (conversation top-
ics) subdivided into pages. It uses heat-based pri-
oritization to retain relevant content and efficiently
discard or archive less-accessed information, en-
hancing context management and personalization.

3 MemoryOS

MemoryOS is a comprehensive memory manage-
ment system for AI agents that dynamically up-
dates memory and retrieves semantically relevant
context, ensuring coherent and personalized inter-
actions in long conversations.

3.1 Overview Architecture
The overview architecture of MemoryOS is illus-
trated in Fig. 1. It consists of four modules: mem-
ory storage, update, retrieval, and generation.

Memory Storage: This module is responsible
for organizing and storing memory information
by a three-tier hierarchical structure: Short-Term
Memory (STM) for timely conversations, Mid-
Term Memory (MTM) for recurring topic sum-
maries, and Long-term Personal Memory (LPM)
for user or agent preferences, ensuring memory in-
tegrity and effective utilization.

Memory Updating: This module manages dy-
namic memory refreshing, including STM-to-

MTM updates via dialogue-chain FIFO and
MTM-to-LPM updates using a segmented page
strategy with heat-based replacement.

Memory Retrieval: This module retrieves rel-
evant memory via specific queries, employing a
two-tiered approach in MTM: semantic relevance
identifies segments first, followed by retrieving
pertinent dialogue pages. Finally, it combines per-
sona attributes from LPM and contextual informa-
tion from STM to generate responses, integrating
all relevant memories for response generation.

Response Generation: It processes the data and
generates appropriate responses. It integrates re-
trieval outcomes from STM, MTM, and LPM into
a coherent prompt, enabling the generation of con-
textually coherent and personalized responses.

3.2 Memory Storage Module
Memory storage module is implemented via a hi-
erarchical structure consisting of three type store
units, i.e., Short-Term Memory (STM), Mid-Term
Memory (MTM), and Long-term Personal Mem-
ory (LPM) store units.

Short-Term Memory (STM): It stores real-
time conversation data in units called dialogue
pages. Each dialogue page contains the user’s
query Q, the model’s response R, and the times-
tamp T , structured as pagei = {Qi, Ri, Ti}. To
ensure contextual coherence, a dialogue chain is
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constructed for each page to maintain contextual
information in short-term continuous dialogue ex-
changes and ensure consistent context tracking. A
dialogue page is defined as:

pagechaini = {Qi, Ri, Ti,metachaini }, (1)

where the meta information is generated by an
LLM in two steps: first, evaluating a new page’s
contextual relevance to prior pages to determine
chain linkage or resetting to the current page if
semantically discontinuous; second, summarizing
all chain pages into metachaini .

Mid-Term Memory (MTM): Inspired by the
memory management principles in Operating Sys-
tems, it adopts a Segmented Paging storage archi-
tecture. Dialogue pages with the same topic are
grouped into segments, each containing multiple
pages for a unique topic. The segment in MTM is
defined as:

segmenti = {pagei | Fscore(pagei, segmenti) > θ},
(2)

where the content of a segment is summarized by
a LLM based on the related dialogue pages. Fscore
measures the similarity between the dialogue page
and the segment based on both semantic and key-
word similarities, defined as:

Fscore = cos(es, ep) + FJaccard(Ks,Kp), (3)

where es and ep denote the embedding vectors of
a segment and the dialogue page, Ks and Kp are
the keyword sets summarized by LLMs in the seg-
ment and page, respectively. FJaccard is the Jac-
card similarity, defined as FJaccard =

|Ks∩Kp|
|Ks∪Kp| .

Pages with similarity scores to a segment ex-
ceeding the threshold θ are merged into the same
segment, ensuring topic coherence and semantic
consistency within the segment.

Long-term Persona Memory (LPM): This
module ensures that both the user and the assis-
tant maintain a persistent memory of important
personal details and characteristics, ensuring con-
sistency and personalization over long-term inter-
actions. It consists of two components: the User
Persona and the AI Agent Persona.

• User Persona. The User Profile comprises a
static component with fixed attributes (gen-
der, name, birth year), a User Knowledge
Base (User KB) that dynamically stores fac-
tual information extracted and incrementally

updated from past interactions, and User
Traits that contains the evolving interests,
habits, and preferences of users over time.

• Agent Persona. It contains the Agent Pro-
file, which includes fixed settings like the role
the AI agent assistant plays or its character
traits, providing a consistent self-description.
The Agent Traits are dynamic attributes that
develop through interactions with the user,
potentially including new settings added by
the user or interaction history, e.g., recom-
mended items, during conversations.

3.3 Memory Update Module

Key updating operations include updates within
each unit itself and the update mechanism from
STM to MTM, MTM to LPM store units.

STM-MTM Update: STM stores information
in the form of dialogue pages in a queue with fixed
length. We employ a First-In-First-Out (FIFO) up-
date strategy for information migration to the Mid-
Term Memory (MTM). New dialogue page is ap-
pended to the queue’s end. When the STM queue
reaches its maximum capacity, the oldest dialogue
page is transferred from the STM to the MTM ac-
cording to the FIFO principle.

MTM-LPM Update: MTM updates involve
two operations, i.e., segment deletion and
segment-to-LPM updates, both based on the Heat
score of segments, defined as:

Heat = α·Nvisit+β ·Linteraction+γ ·Rrecency, (4)

where coefficients α, β, and γ determine the rela-
tive importance of each factor. Nvisit is the number
of times the segment has been retrieved, Linteraction
denotes the total number of dialogue pages within
the segment, and Rrecency is the time decay co-
efficient represents the duration since the last re-
trieval time of the current segment, defined as:
Rrecency = exp

(
−∆t

µ

)
, where ∆t is the time

elapsed since the last access, measured in seconds,
and µ is a configurable time constant (i.e., 1e+7).

These three metrics, i.e., retrieval count (Nvisit),
total dialogue pages (Linteraction), and time de-
cay coefficient (Rrecency), collectively represent
the frequent access, high engagement, and recent
use as core indicators of segment heat. When
the length of segments exceeds the maximum ca-
pacity, segments with the lowest heat are evicted.
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This mechanism ensures that the content stored in
MTM can retain topics with high engagement fre-
quency in long user conversations, preserving de-
tailed dialogue content under these topics through
a segmented paging structure.

LPM Update: Segments with heat exceeding a
threshold τ (i.e., 5) are transferred to LPM. Seg-
ments and their dialogue pages update User Traits,
User KB, and Agent Traits. Following the user
traits in (Li et al., 2025), we construct personalized
User Traits with 90 dimensions across three cate-
gories: basic needs and personality, AI alignment
dimensions, and content platform interest tags.
Then, extract and update these dimensions from
segments and dialogue pages to autonomously
evolve traits by LLMs. Meanwhile, factual in-
formation relevant to the user and agent assistant
is extracted and recorded into the User KB and
Agent Traits, respectively. Both the User KB and
Assistant Traits maintain a fixed-size queue (i.e.,
100), employing a First-In-First-Out (FIFO) strat-
egy. After memory transition, the number of pages
Linteraction in Eq. 4 is reset to zero, causing the
heat score of the segment to decline. This ensures
continuous persona evolution without redundancy.

3.4 Memory Retrieval Module

The Memory Retrieval Module retrieves informa-
tion from three parts: STM for recent context,
MTM using a two-stage retrieval (segment and
page level), and LPM for personalized knowledge.
Given a query from the user, the memory retrieval
module retrieves from the stored memory, i.e.,
STM, MTM, and LPM, to return the most relevant
information to generate the responses, defined as:

FRetrieval(STM,MTM,LPM |Q), (5)

where FRetrieval is the retrieval strategies applied in
three memory store units.

STM retrieval: All dialogue pages are retrieved
as STM holds the most recent contextual memory
for the current conversation.

MTM retrieval: Inspired by psychological
memory recall mechanisms (Yuan et al., 2024), a
two-stage retrieval process is employed: first se-
lecting segments via a matching score (defined in
Eq. 3) to select top-m candidate segments, then
selecting the top-k most relevant dialogue pages
within these segments based on semantic similar-

ity. After retrieval, the segment’s visit counter
Nvisit and recency factor Rrecency are updated.

LPM retrieval: The User KB and Assistant
Traits each retrieve the top-10 entries with the
highest semantic relevance to the query vector as
background knowledge. All information in the
User Profile, Agent Profile, and User Traits is uti-
lized, as they store user preference information,
agent characteristic information, and user-specific
trait information.

3.5 Response Generation Module

Given the user query, the final prompt is con-
structed by integrating the above three types of re-
trieved content from STM, MTM and LPM, along
with the user’s query, form the final prompt in-
put for the LLM to generate the final response.
The incorporation of memory from recent dia-
logue (STM), relevant conversation pages (MTM),
and persona information (LPM) ensures responses
remain contextually coherent with current interac-
tions, draw on historical dialogue details and sum-
maries for depth, and align with user and assis-
tant identities, respectively, enabling coherent, ac-
curate, and personalized interaction experiences of
AI agent systems.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct our experiments on
GVD (Zhong et al., 2024) and LoCoMo bench-
mark (Maharana et al., 2024) datasets. The GVD
dataset consists of multi-turn dialogues simulated
from interactions between 15 virtual users and an
assistant over a 10-day period, covering at least
two topics per day. The LoCoMo benchmark
is specifically designed for assessing long-term
conversational memory capabilities, consisting of
ultra-long dialogues averaging 300 turns and about
9K tokens per conversation. Questions are catego-
rized into four types: Single-hop, Multi-hop, Tem-
poral, and Open-domain, to systematically evalu-
ate the memory abilities of LLMs.

Evaluation Metrics. For the GVD dataset, we
use three evaluation metrics: Memory Retrieval
Accuracy (Acc.), Response Correctness (Corr.),
and Contextual Coherence (Cohe.). Memory Re-
trieval Accuracy is evaluated as a binary indicator
(0 or 1), while Correctness and Coherence are as-
sessed on a three-point scale (0, 0.5, or 1). All
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evaluations on the GVD dataset are automatically
scored by the DeepSeek-R1 (Guo et al., 2025). On
the LoCoMo benchmark, standard F1 and BLEU-
1 (Papineni et al., 2002) are employed to evaluate
the model’s performance.

Compared Methods. We compare MemoryOS
with representative memory methods, including:

TiM (Think-in-Memory): This approach mim-
ics human memory by storing reasoning outcomes
instead of raw dialogues. It uses locality-sensitive
hashing (LSH) to retrieve relevant context before
generating responses and updates memory through
post-hoc reflection. TiM manages memory via in-
sertion, forgetting, and merging to reduce redun-
dant reasoning and improve consistency.

MemoryBank (Zhong et al., 2024): This
framework dynamically adjusts memory strength
based on the Ebbinghaus Forgetting Curve, pri-
oritizing important content over time. It further
builds a user portrait through continuous interac-
tion analysis to support personalized responses.

MemGPT (Packer et al., 2023): This method
introduces a dual-tier memory, featuring a main
context for fast access and an external context for
long-term storage. This design aims to enable
scalable memory extension beyond the fixed con-
text window of LLMs.

A-Mem (Agentic Memory) (Xu et al., 2025): it
dynamically generates structured notes and links
them to form interconnected knowledge networks,
enabling continuous memory evolution and adap-
tive management for LLMs.

MemoryOS: It is a comprehensive memory
management framework. Through coordinated
collaboration with four core functional modules:
memory Storage, Updating, Retrieval, and Gen-
eration. MemoryOS achieves dialogue coherence
and user persona persistence in long interactions.

Implementation Details. The experiments are
conducted on hardware equipped with 8-H20
GPUs. The fixed length of the dialogue page
queue in STM is 7. The maximum length of seg-
ments in MTM is set to 2000. The maximum ca-
pacity for both the User KB and Agent Traits is set
to 100 entries. The predefined Heat threshold τ ,
which controls the information from the MTM to
the LPM, is set to 5. The values of α, β, and γ in
Eq. 4 are equality set to 1. For memory retrieval,

Table 1: Comparison results on the GVD dataset.

Model Method Acc. ↑ Corr. ↑ Cohe.↑

GPT-4o-mini

TiM 84.5 78.8 90.8
MemoryBank 78.4 73.3 91.2
MemGPT 87.9 83.2 89.6
A-Mem 90.4 86.5 91.4
Ours 93.3 91.2 92.3

Improvement (%) 3.2% ↑ 5.4% ↑ 1.0% ↑

Qwen2.5-7B

TiM 82.2 73.2 85.5
MemoryBank 76.3 70.3 82.7
MemGPT 85.1 80.2 86.9
A-Mem 87.2 79.5 87.8
Ours 91.8 82.3 90.5

Improvement (%) 5.3% ↑ 3.5% ↑ 3.1% ↑

the number of retrieval top-m segments was set
to 5, and the hyperparameter top-k for retrieved
dialogue page was set to 5 and 10 on the GVD
and LoCoMo datasets. The similarity value of θ in
Eq. 2 is 0.6, and the time constant µ is 1e+7.

4.2 Main Results

The experimental results in GVD and LoCoMo
benchmark datasets are shown in Table 1 and Ta-
ble 2. We have the following observations:

(1) Among all memory methods, MemoryBank
performs the worst. This indicates that simply
applying memory decay mechanisms is insuffi-
cient for managing conversational memory effec-
tively. TiM outperforms MemoryBank by miti-
gating repetitive reasoning by saving “thoughts"
rather than raw turns, but its single-stage hash re-
trieval cannot preserve cross-topic dependencies.

(2) A-Mem and MemGPT demonstrate rela-
tively strong performance in long-form dialogue,
But both of them lack systematic memory man-
agement mechanisms, giving rise to certain issues.
For instance, MemGPT extends context via OS-
style paging, yet its flat FIFO queue causes topic
mixing as dialogue length grows; A-Mem orga-
nizes memories into a graph that enriches seman-
tics, but the heavy, multi-step link generation in-
flates latency and error accumulation. By contrast,
our Memory OS fuses a hierarchical STM/MT-
M/LPM architecture via segmented paging with
heat-based eviction and a persona module, thereby
ensuring that topic-aligned content remains acces-
sible while maintaining consistency with users’
specific preferences.

(3) Our proposed MemoryOS achieves superior
performance across all benchmark datasets due to
its hierarchical storage design, semantic retrieval
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Table 2: LoCoMo dataset comparison with per-category scores and average ranks. A-Mem refers to the results
reported in the original paper. A-Mem* represents our implementation results under the same experimental envi-
ronment as our model.

Model Method Single Hop Multi Hop Temporal Open Domain Avg. Rank ↓ Avg. Rank ↓
F1 ↑ BLEU-1 ↑ F1 ↑ BLEU-1 ↑ F1 ↑ BLEU-1 ↑ F1 ↑ BLEU-1 ↑ (F1) (BLEU-1)

GPT-4o-mini

TiM 16.25 13.12 18.43 17.35 8.35 7.32 23.74 22.05 3.8 4.0
MemoryBank 5.00 4.77 9.68 6.99 5.56 5.94 6.61 5.16 5.0 5.0
MemGPT 26.65 17.72 25.52 19.44 9.15 7.44 41.04 34.34 2.2 2.5
A-Mem 27.02 20.09 45.85 36.67 12.14 12.00 44.65 37.06 – –
A-Mem* 22.61 15.25 33.23 29.11 8.04 7.81 34.13 27.73 3.0 2.5
Ours 35.27 25.22 41.15 30.76 20.02 16.52 48.62 42.99 1.0 1.0

Improvement (%) 32.35%↑ 42.33%↑ 23.83%↑ 5.67%↑ 118.80%↑ 111.52%↑ 18.47%↑ 25.19%↑ – –

Qwen2.5-3B

TiM 4.37 5.01 2.54 3.21 6.20 5.37 6.35 7.34 4.3 3.5
MemoryBank 3.60 3.39 1.72 1.97 6.63 6.58 4.11 3.32 4.8 4.8
MemGPT 5.07 4.31 2.94 2.95 7.04 7.10 7.26 5.52 2.8 3.8
A-Mem 12.57 9.01 27.59 25.07 7.12 7.28 17.23 13.12 – –
A-Mem* 10.31 8.76 16.31 11.07 6.94 7.31 12.34 10.62 2.3 2.0
Ours 23.26 15.39 21.44 14.95 10.18 8.18 26.23 22.39 1.0 1.0

Improvement (%) 125.61% ↑ 75.68% ↑ 31.45% ↑ 35.05% ↑ 46.69% ↑ 11.90% ↑ 112.56% ↑ 110.83% ↑ – –

(a)Ablation results on the GVD dataset with GPT-4o-mini (b)Ablation results on the LoCoMo dataset with GPT-4o-mini using the F1 score.

Figure 2: The ablation study on the GVD and LoCoMo benchmark datasets.

Table 3: Efficiency analysis on LoCoMo benchmark
(quantified by LLM call and recalled tokens counts).

Method Tokens Avg.Calls Avg. F1

MemoryBank 432 3.0 6.84
TiM 1,274 2.6 18.01
MemGPT 16,977 4.3 29.13
A-Mem* 2,712 13.0 26.55
Ours 3,874 4.9 36.23

capabilities, and persona-driven dynamic updat-
ing, which ensure coherent and accurate mem-
ory management. Notably, the model’s advan-
tages are particularly pronounced in more chal-
lenging memory management tasks. For example,
on the LoCoMo benchmark with gpt-4o-mini, it
achieves average improvements of 49.11% on F1
score and 46.18% on BLEU-1, while on the easier
GVD dataset, in which all methods achieve higher
baseline accuracy, our MemoryOS still surpasses
the SOTA baseline A-Mem by 3.2% in accuracy,
showing robust handling of complex long-context
tasks requiring semantic consistency.

(4) To evaluate model efficiency, we employed
two metrics: tokens consumed and average LLM
calls in each response. As shown in Table 3,

(a) LoCoMo: Single Hop (b) LoCoMo: Mutil Hop 

(c) LoCoMo: Temporal (d) LoCoMo: Open Domain 

Figure 3: Impact of hyperparameter k (retrieved pages
in MTM) on LoCoMo benchmark.

our method outperforms the Top-2 baselines (i.e.,
MemGPT and A-Mem) in both aspects, requiring
significantly fewer LLM calls than A-Mem* (4.9
vs.13) and much lower token consumption than
MemGPT (3,874 vs. 16,977).

4.3 Ablation Study
To assess the contribution of each core module
in our framework, we perform an ablation study
by individually removing three key components:
the Mid-Term Memory (-MTM), the Long-term

25967



Conversation History

A few weeks later ...

I went to the wetland park last week, and the scenery there was beautiful.

You saw beautiful scenery, went for a run, and saw squirrels.Sorry, I don't remember you mentioning the park.

I feel like eating a burger—do you have any recommendations?

The cheeseburger[...],just don’t forget you’re hitting the gym!Teriyaki chicken burger.it's super delicious!

With MemoryOsWithout MemoryOs

User:I went to the wetland park last week, and the scenery there was beautiful. AI:Sounds likeSounds like a relaxing experience!
User:There were many little squirrels running in the trees—they were very cute.

AI:I like squirrels—they signal a healthy environment.
User:I ran two laps in the park and felt great. I’ll keep working out to get slimmer.

AI:Exercise is good for health. I’ll keep you motivated!

Figure 4: Case study demonstrating the positive impact of introducing our memory management system. Left:
default LLMs; Right: with MemoryOS.

Persona Module (-LPM), and the Dialogue page
Chain (-Chain) and the entire memory system (-
MemoryOS). The results are presented in Figure 2.
We can see that the memory system plays a piv-
otal role in the quality of responses during long
dialogues. Without MemoryOS, the model’s per-
formance drastically reduces. In MemoryOS, the
Mid-Term Memory (MTM) has the most signifi-
cant impact, followed by the Long-Term Memory
(LPM), while the Chain has the least impact.

4.4 Hyperparameter Analysis

We analyze the impact of top-k retrieved dia-
logue pages from Mid-Term Memory (MTM) on
model performance. As shown in Fig. 3, by set-
ting the hyperparameter k with different values
k = {5, 10, 20, 30, 40} on the LoCoMo bench-
mark, we can see that the model’s performance
improves as k increases, but the improvements di-
minish when exceeding a threshold. Retrieving
more pages can enhance model performance, but
excessive content may introduce noise, adversely
affecting performance. We set k = 10 to achieve
a relatively favorable performance while minimiz-
ing computational overhead.

4.5 Case Study

To visually demonstrate the role of our memory
system, specifically how user long-term memory
maintenance enhances conversational consistency.
We present case studies in Fig. 4. Based on the
conversation history, we show the responses of de-
fault LLMs and our LLMs with MemoryOS. We
can see that MemoryOS exhibits excellent capa-
bilities in recalling users’ long-term conversations
and preferences. For example, MemoryOS re-
calls details like "seeing the scenery, running, and

spotting squirrels in the wetland park." from the
initially mentioned a few weeks ago, “I went to
the wetland park ...". These details are retrieved
through the interplay and mutual support of mid-
term memory’s segment-page storage and the di-
alogue page chain. In addition, since the system
integrates a personalization module, it can remem-
ber the user’s goal of “wanting to get fit” and later
proactively reminds the user when they express a
desire to eat a burger: “Don’t forget you want to
get slimmer”. This highlights the crucial role of
the memory module in enhancing dialogue coher-
ence and user experience.

5 Conclusion

Inspired by memory management mechanisms in
operating systems, we pioneers propose a novel
memory management system, MemoryOS, for AI
agents. Implemented by a hierarchical mem-
ory storage architecture, MemoryOS addresses the
fixed context window limitations in long conversa-
tions. By adapting OS-style segment-paging stor-
age for dialogue history, MemoryOS enables effi-
cient memory storage, updating, and semantic re-
trieval using heat-driven eviction to dynamically
prioritize critical information across memory tiers.
The integrated persona module captures evolving
user preferences via personalized trait extraction,
ensuring responses align with long conversation
contexts. By bridging OS principles with AI mem-
ory management, MemoryOS empowers LLMs to
sustain coherent, personalized conversations over
extended interactions, enhancing human-like dia-
logue capabilities in real-world applications.
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6 Limitation

While Memory OS represents a significant ad-
vancement in LLM-based agent memory manage-
ment, several key limitations should be acknowl-
edged. First, the current design relies on empir-
ically set parameters for critical memory capaci-
ties, such as the short-term memory window size
and the number of mid-term memory segments,
without theoretical grounding in cognitive models.
Future work will explore human memory mecha-
nisms to derive more principled capacity config-
urations. Second, the topic within memory seg-
ments currently depends on the LLM’s intrinsic
extraction capabilities, lacking dynamic merging
mechanisms to resolve redundancies arising from
overlapping or evolving conversational themes.
Future research may focus on developing adaptive
merging strategies to refine segment organization
and improve memory efficiency. Despite these
limitations, we believe MemoryOS provides a fun-
damental foundation for memory management in
AI agents, addressing the challenges of long-term
dialogue coherence and personalization to enable
more intelligent and adaptive memory systems for
future AI agents.
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