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Abstract

Fine-tuning large language models (LLMs)
faces significant memory challenges due to
the high cost of back-propagation. MeZO
addresses this issue using zeroth-order (ZO)
optimization, matching memory usage to in-
ference but suffering from slow convergence
due to varying curvatures across model pa-
rameters. To overcome this limitation, we
propose HELENE, a scalable and memory-
efficient optimizer that integrates annealed A-
GNB gradients with diagonal Hessian estima-
tion and layer-wise clipping as a second-order
pre-conditioner. HELENE provably acceler-
ates and stabilizes convergence by reducing de-
pendence on total parameter space and scaling
with the larger layer dimension. Experiments
on RoBERTa-large and OPT-1.3B demonstrate
superior performances, achieving up to 20×
speedup over MeZO with an average accuracy
improvement of 1.5%. HELENE also supports
full and parameter-efficient fine-tuning meth-
ods, outperforming several state-of-the-art opti-
mizers.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across various
downstream tasks, and fine-tuning has become
the standard approach for adapting LLMs to
improve task-specific performance, in which
the first-order optimizers such as Stochastic
Gradient Descent (SGD) (Robbins and Monro,
1951), Adam (Kingma and Ba, 2014) and
AdamW (Loshchilov and Hutter, 2017) are widely
used. While effective, however, these methods de-
mand significant memory resources primarily due
to the backpropagation, which makes fine-tuning
process challenging, especially for large-scale mod-
els. To overcome this limitation, Malladi et al.
(2023) proposed a memory-efficient zeroth-order
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Figure 1: The motivating toy example. HELENE can
maintain stable updates when facing curvature issues,
while other optimizers are severely affected by them.

optimizer, MeZO, that estimates gradients using
only two forward passes per training step, contribut-
ing to considerable memory savings.

However, recent studies show that loss func-
tions in deep learning often exhibit heterogeneous
curvatures across different model parameters and
layers (Sagun et al., 2016; Ghorbani et al., 2019;
Zhang et al., 2022; Yao et al., 2020), which poses
challenges to ZO optimization. This variation in
curvature can overall hinder training efficiency
and lead to sub-optimal results. To address this
issue, more advanced techniques are developed,
such as incorporating second-order information
to better account for curvature differences (Liu
et al., 2023; Tran and Cutkosky, 2022; Jahani et al.,
2021). However, in ZO optimization, directly com-
puting the Hessian from first-order derivatives is
nearly impossible, and partial Hessian evaluations
are computationally intensive, leading to slower
convergence. Moreover, in practice, we observe
that methods estimating second-order information
without careful design can fail in fine-tuning LLMs
as illustrated in Figure 1.

To overcome the aforementioned challenges, we
propose HELENE, a novel optimizer designed to
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estimate second-order curvature information effi-
ciently in the context of ZO optimization. Originat-
ing from label-sampling-based Gaussian-Newton
-Bartlett (GNB) Estimator (Schraudolph, 2002; Wei
et al., 2020), we introduce a label-sampling-free
and efficient Hessian estimator called the asymp-
totic Gauss-Newton-Bartlett (A-GNB) Estimator
in our HELENE algorithm, which estimates the
diagonal of the Hessian matrix. A-GNB is proven
to asymptotically converge to the unbiased Gauss
Newton matrix.

Another key innovation of HELENE is its abil-
ity to adaptively clip Hessian updates according to
the curvature of each layer, which significantly en-
hances convergence rates. While the convergence
of state-of-the-art optimizers like MeZO-Sophia
may require O(d) steps; in contrast, the conver-
gence of HELENE requires significantly less steps,
which is O(maxi di) based on the largest layer di-
mension maxi di across all layers, making it more
suitable for modern deep architectures.

We observed that ZO methods require a stronger
emphasis on momentum because of the increasing
noise in stochastic approximation (SPSA) gradi-
ent estimation as optimization progresses, due to
the greater difficulty of training as the model pa-
rameters approach a local minimum, causing the
noise magnitude from sampling perturbations to
exceeding that of the true gradient signal. There-
fore, in contrast to most of the momentum design
in first-order methods, the proposed HELENE algo-
rithm also integrates a novel annealing exponential
moving average (EMA) of the gradients, which dy-
namically reduces the weight of the gradient in the
momentum updates.

Overall, our key contributions can be summa-
rized as follows:

1. HELENE integrates a novel A-GNB estima-
tor that efficiently estimates the diagonal of the
Hessian matrix without the need for label sampling
which may incur more noise. This estimator asymp-
totically converges to the unbiased diagonal Gauss
Newton matrix, improving the efficiency and preci-
sion of curvature-aware updates. We also devise a
new layer-wise adaptive clipping mechanism by ad-
justing Hessian updates according to the curvature
of each layer. HELENE integrates a new technique
of annealing exponential moving average (EMA)
of the gradients, ensuring robustness in non-convex
loss landscapes.

2. Our theoretical analysis demonstrates that HE-
LENE achieves improved convergence rates com-

pared to existing methods, particularly for models
with many layers. By reducing the convergence
steps from O(d) to O(maxi di), HELENE is prov-
ably more scalable for modern deep learning model
architectures, especially for fine-tuning LLMs.

3. HELENE achieves up to 20× speedup com-
pared to MeZO and improves performance by an
average of 1.5%. We conduct extensive experi-
ments on RoBERTa-large, OPT-1.3B, and OPT-
13B across various downstream tasks to verify HE-
LENE’s effectiveness. Furthermore, we demon-
strate that HELENE not only remains compatible
with both full parameter tuning and PEFT, but also
outperforms many of the latest optimizers across a
range of tasks.

2 Preliminaries
In this section, we briefly review essential back-
ground concepts related to ZO optimization and
diagonal Hessian approximation, which are funda-
mental to the design of our proposed method.

2.1 ZO Gradient Estimators and MeZO

ZO optimization has long been studied in the con-
text of convex and non-convex objectives. One
of the typical ZO gradient estimators is the si-
multaneous perturbation stochastic approximation
(SPSA) (Maryak and Chin, 2001). Given a model
with parameters θ ∈ Rd and loss function L, SPSA
estimates the gradient on a minibatch B as:

gϵ(θ) =
L(θ + ϵz;B)− L(θ − ϵz;B)

2ϵ
z (1)

where z ∈ Rd with z ∼ N (0, Id) and ϵ is the
perturbation scale.

2.2 Diagonal Hessian Approximation

While MeZO provides valuable tools to estimate a
noisy gradient, optimization can be significantly en-
hanced by incorporating second-order information
such as curvature. However, directly computing
and applying the full Hessian matrix is computa-
tionally expensive, especially in high-dimensional
parameter spaces. In particular, applying the Hes-
sian pre-conditioner by computing H−1g at each
iteration is notably costly. To address this chal-
lenge, inexact Newton methods have been devel-
oped, where approximations of the Hessian are
used instead of the full matrix (Bollapragada et al.,
2019; Xu et al., 2020).

A simple yet effective alternative is to approxi-
mate the Hessian by its diagonal elements, which
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reduces computational complexity while retaining
useful curvature information. In this approach, a
general descent direction can be written as follows:

∆θ ≈ diag(H)−1g,

where diag(H) represents the diagonal elements of
the Hessian matrix. This method enables efficient
inverse Hessian application and supports inexact
Newton methods, which provides improved con-
vergence in complex problems.

3 Method
We first highlight the limitations of existing ZO
methods in Section 3.1 to motivate our proposed
model. Then, we formally present HELENE in
Section 3.2. In Sections 3.3 and 3.4, we introduce
Annealing mechanism and A-GNB, followed by a
detailed discussion of layer-wise clipped diagonal
Hessian in Section 3.5.

3.1 Motivation
Highly variable curvature across different pa-
rameters. ZO optimizers, such as MeZO (Malladi
et al., 2023), have been proposed to mitigate the
substantial GPU memory consumption associated
with finetuning, providing memory-efficient solu-
tions by approximating gradients through forward
passes. Nevertheless, despite memory savings, ex-
isting ZO methods still face challenges in handling
the heterogeneous curvatures of LLMs, which can
result in inefficient convergence and suboptimal
solutions. One key challenge is the inability of
optimizers to adapt to the highly variable curva-
ture across different layers and parameters in large
models (Sagun et al., 2016; Ghorbani et al., 2019;
Zhang et al., 2022). While techniques that estimate
second-order information, such as curvature-aware
methods, have shown promise in improving op-
timization efficiency (Liu et al., 2023; Tran and
Cutkosky, 2022), they are challenging to integrate
into ZO optimizers due to the noise from label-
sampling and the difficulty of computing or approx-
imating the Hessian efficiently in high-dimensional
spaces.

Limitation of EMA to balance short-term
gradient noise and long-term convergence. A
commonly used technique to manage these curva-
ture variations is the Exponential Moving Average
(EMA), which smooths the gradient updates over
iterations. However, EMA alone can be insuffi-
cient for highly non-convex loss landscapes, es-
pecially when it lacks mechanisms to adaptively

adjust the weights between the past momentum and
the current gradient in the presence of strong noise
in gradient estimation. Without annealing, EMA
struggles near stationary points where ZO gradient
noise exceeds the true gradient, leading to subop-
timal convergence. The noisy gradient estimation
issue calls for more careful ZO-specific strategies
to balance short-term gradient fluctuations with
long-term convergence.

Challenge in managing extreme curvature val-
ues using Universal clipping. Furthermore, clip-
ping the Hessian to manage extreme curvature val-
ues is another widely adopted strategy. Sophia (Liu
et al., 2023), for example, performs global clip-
ping of Hessian-based updates to ensure numeri-
cal stability, which essentially can slow down the
convergence. While effective at curbing extreme
updates, applying a universal clipping threshold
across all parameters is inherently suboptimal for
models with heterogeneous curvatures. A universal
clip might suppress meaningful gradient informa-
tion in some layers while insufficiently address-
ing extreme Hessian values in others, thus limiting
the optimizer’s ability to adaptively handle the di-
verse learning dynamics across layers (Tran and
Cutkosky, 2022).

Algorithm 1 HELENE with Layer-wise Clipping

1: Input: Initial parameters θ1, step budget T ,
learning rate schedule {ηt}Tt=1, hyperparame-
ters {λi} , γ, β1, β2, ϵ.

2: Set m0 = 0, h0 = 0
3: for t = 1 to T do
4: Estimate gradient gt from Eq. (1).
5: α = Anneal(t)
6: mt = β1mt−1 + αgt
7: if t mod k = 1 then
8: Compute diagonal Hessian estimator

ĥt = A-GNB(θt)
9: ht = β2ht−k + (1− β2)ĥt

10: else
11: ht = ht−1

12: end if
13: update θt+1,i = θt,i − ηt · mt,i

γ·max(ht,i,λi)+ϵ

for each layer i
14: end for

1: Subroutine Anneal(t)

α← β1 + (1− β1) · exp (−t/T ) (2)

To overcome the limitations above, HELENE ad-
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dresses both the limitations of EMA and the issue
of global Hessian clipping. We instantiate MeZO-
SGD, MeZO-Adam, and HELENE on a simpli-
fied 2D problem to illustrate the advantages of HE-
LENE, as shown in Figure 1. A visual comparison
of the methods reveals that while MeZO-Adam
and MeZO-SGD struggle to converge effectively,
Compared to methods like HELENE without clip-
ping and without annealing, which estimate second-
order information but struggle to maintain stability
in the presence of heterogeneous curvature, HE-
LENE more effectively captures and handles cur-
vature information.

3.2 HELENE: Hessian Layer-wise Clipping
and Gradient Annealing

In HELENE, we introduce an annealing mech-
anism to mitigate noise dominance in SPSA-
estimated gradients, combined with a clipped diag-
onal Hessian pre-conditioner that adjusts parame-
ter update step sizes based on layer-wise curvature.
First, the ZO gradient is estimated using the SPSA,
while the diagonal Hessian is efficiently estimated
by the proposed new A-GNB method, to elimi-
nate the noise incurred in sampling labels from the
model output used in GNB and Sophia. At each it-
eration, SPSA provides an estimate gt with random
perturbations, and A-GNB returns ht, the diagonal
Hessian of the mini-batch loss.

We apply an exponential moving average (EMA)
to both the gradient and diagonal Hessian esti-
mates to reduce noise and improve stability. To
further enhance convergence, we apply layer-wise
magnitude-based clipping to the diagonal Hessian,
ensuring extreme values do not disproportionately
affect parameter updates. We provide our pseudo
code in Algorithm 1 and describe each module in
detail in the following section.

3.3 Annealing Mechanism
We observe that, unlike first-order methods such as
SGD, ZO methods require stronger momentum due
to increasing noise dominance in SPSA gradient es-
timation as optimization progresses, as illustrated
in Appendix Figure 8. To address this, we in-
troduce an annealing factor that dynamically
reduces the reliance on newly sampled gradi-
ents. By gradually diminishing the influence of
potentially noisy estimates, the algorithm avoids
compounding noise in the Hessian and gradients
near optima, leading to more stable second-order
updates and faster convergence. The resulting sta-

bility and improved convergence behavior can be
visualized in Figure 6a in the Appendix. Notably,
our annealing approach is simple to implement, re-
quiring the tuning of only a single hyperparameter.

Algorithm 2 Asymptotic Gauss-Newton-Bartlett
(A-GNB)

1: Parameters: θ
2: Draw a mini-batch of the input {xb}Bb=1

3: Estimate diagnal Hessian matrix by h =∑B
b=1[g(θ,xb, yb)]⊙ [g(θ,xb, yb)]

4: return h

At each iteration, the annealing mechanism com-
putes α using an exponential decay schedule in Eq.
2, where T is a predefined hyperparameter control-
ling the annealing rate. The increase of noise domi-
nance in SPSA is likely due to the greater difficulty
of training as the model parameters approach a lo-
cal minimum, causing the noise magnitude from
sampling perturbations to exceed that of the true
gradient signal. To address this, as t increases, α
gradually decreases to reduce the impact of gradi-
ent on the updates, mitigating the bias introduced
by EMA. This ensures that, in the later stages of
training, the model focuses more on stable gradient
estimates and less on noisy or rapidly changing
updates via the SPSA estimated gradient. The an-
nealing mechanism is incorporated into the EMA
update rule as line 6 in Algorithm 1. Via dynam-
ical α, the annealing mechanism ensures that the
optimizer can effectively balance short-term noise
with long-term convergence.

3.4 Asymptotic Gauss-Newton-Bartlett
(A-GNB) Estimator

The original GNB (Martens, 2020) estimator relies
on sampled labels ŷb drawn from the categorical
distribution based on the model’s output. However,
this induces stochasticity due to label sampling,
which could be problematic when label distribu-
tions are highly imbalanced, as is the case in LLM
training. We propose a new estimator, which we
call the Asymptotic Gauss-Newton-Bartlett (A-
GNB) Estimator, that replaces the sampled labels
ŷb with the true labels yb and asymptotically con-
verges to the true diagonal of the Gauss-Newton
matrix, which is a biased estimator for the diagonal
of the Hessian as shown below:

∇2
θL(θ) ≈ Jθ · S · J⊤

θ (3)
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For convenience we denote Jθf(θ, x) as Jθ which
is the Jacobian of the model’s output f(θ,x) with
respect to the parameters θ, and S = ∂2L(t,y)

∂t2
is the

second-order derivative of the loss w.r.t. the logits
t = f(θ,x) and y ∼ p(y|x), which implies that
S = Ey∼p(θ,x)

[
∂2L(t,y)

∂t2

]
assuming that L is the

Cross-Entropy loss. Consequently, the diagonal of
the Gauss-Newton matrix for the mini-batch loss is
estimated as:

diag(Jθ · S · J⊤
θ ])

=Ey∼p(y|x)

[
diag(Jθ

∂L(t, y)

∂t

∂L(t, y)

∂t

⊤
Jθ

]

=Ey∼p(y|x)

[
diag(∇θL(f(θ,x), y)∇θL(f(θ,x), y)

⊤)
]

≈ 1

B

B∑

b=1

[(g(θ,xb, yb)]⊙ [(g(θ,xb, yb)]

where diag(·) represents the diagonal elements
of a matrix, and B denotes the batch size and g is
the estimated gradient from Eq. (1). In contrast to
GNB estimator, which includes sampling label ŷ
from the logit probability output from the model,
we replace it by yb, the true label, thereby avoiding
the need for post-output label sampling. By elimi-
nating the stochasticity induced by sampled labels
ŷ, we reduce the variance caused by sampling noise,
and it is especially beneficial in imbalanced data
scenarios, when samples from minor class is rarely
selected unless sampling significantly many times.

The estimated gradient terms now correspond
directly to the true labels, and their outer prod-
uct sums up to the true Gauss-Newton approxima-
tion of the Hessian. As the batch size B → ∞,
the A-GNB estimator converges to the true Gauss-
Newton’s diagonal:

lim
B→∞

1

B

B∑

b=1

[g(θ,xb, yb)]⊙ [g(θ,xb, yb)]

= diag(Jθf(θ,x) · S · Jθf(θ,x)⊤)

Therefore, The A-GNB estimator asymptotically
converges to the true diagonal of the Gauss-Newton
matrix as B increases.

3.5 Laywerwise Clipped Diagonal Hessian to
help Newton’s method

As discussed in the motivating examples, fine-
tuning LLMs and optimizing non-convex functions
pose challenges for estimating second-order in-
formation. Moreover, the inaccuracy of Hessian
estimates and changes in the Hessian along the
optimization trajectory can render second-order

information unreliable. To address these issues,
we draw inspiration from Sophia(Liu et al., 2023).
While Sophia performs clipping on the Newton up-
date H−1g, we propose a more robust approach
by applying layer-wise clipping directly to the
Hessian matrix H . Using a universal clipping
threshold for the update H−1g disregards the dif-
ferences in layer-wise Hessian and gradient magni-
tudes, which are frequently observed during DNN
training, and may distort valuable gradient infor-
mation. Moreover, H−1g introduces excessive
bias, potentially distorting useful gradient infor-
mation, whereas clipping extreme Hessian values
more effectively preserves essential second-order
information.

In particular, we improve convergence rates by
(1) considering only the positive entries of the di-
agonal Hessian and (2) introducing layer-wise clip-
ping of the Hessian values. This approach adapts
the clipping threshold across layers to account for
the diverse curvature across different parts of the
model. Given a clipping threshold λi > 0 for layer
i, the clipping function is defined as:

clip(hi) = max(hi, λi), λi ∈ R,

where all operations are applied element-wise for
each layer. The update rule for layer i is then writ-
ten as:

θt+1,i = θt,i − η · mt,i

γ ·max(ht,i, λi) + ϵ
,

where ϵ > 0 is a small constant to avoid division
by zero, and λi controls the fraction of clipped
Hessian values per layer, more layer-wise-clipping
visualization and numerical experiments can be
found in E.2.

For further information about the differences of
HELENE with previous work, please refer to the
related work section in Appendix A.

4 Convergence Analysis

In this section, we provide a theoretical analysis of
the convergence of our proposed method.

The theoretical bound for the number of steps T
in our method is given by the following theorem
with two assumptions:

Assumption 1. Let L : Rd → R be a loss function.
We assume L is twice continuously differentiable
strictly convex, and has a unique minimizer de-
noted by θ∗. For each layer i, define µi as the
minimum eigenvalue of the Hessian matrix of L
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concerning the parameters of that layer evaluated
at its minimizer:

µi ≡ λmin(∇2
θi
L(θ∗))

where∇2
θi

denotes the Hessian with respect to the
parameters of the i-th layer.

Assumption 2. Regarding the Hessian ∇2L(θ)
of the loss function, we assume: There exists a
radius Ri > 0 such that for any θi,θ

′
i ∈ Rd with

∥θi − θ′
i∥2 ≤ Ri, the following inequality holds:
∥∥∇2L(θ′

i | θ−i)
−1∇2L(θi | θ−i)

∥∥
2
≤ 2

where ∥ · ∥2 represents the spectral norm.

Theorem 1. Under Assumptions 1 and 2, let η = 1
2

and λi =
Ri

2
√
di

. The update reaches a loss at most
ϵ in

T ≤ max
i

{
di · (L(θ0,i)−minL) + ln

(
µiR

2
i

32diϵ

)}

steps, where L is the loss function, θ0,i is the
initial parameter vector for layer i, µi is the strong
convexity constant for layer i, and Ri is the bound
on the distance between θ0,i and θ∗

i .

The best known theoretical bound for the num-
ber of steps T to reach a loss at most ϵ when using
noisy gradient estimation is given by Sophia in
which TSOPHIA ∼ O(d), where d is the total dimen-
sion of the parameter space. This result implies
that the convergence rate depends linearly on the
total dimension d, which can lead to slow conver-
gence for models with large parameter spaces. In
contrast, our method introduces layer-wise param-
eters λi = Ri

2
√
di

, where Ri is the bound on the
distance between the initial parameters θ0,i and the
optimal parameters θ∗

i for layer i, and di is the di-
mension of the parameter space for layer i. This
layer-wise setting significantly reduces the com-
plexity to TSOPHIA ∼ O(maxi di), which is the
maximum dimension across layers. Besides the
lower runtime bound, our method allow each layer
to have its own parameter ρi, allowing the method
to adapt to the specific geometry of each layer. Re-
fer to Appendix E.3 for the empirical study on the
significant variance using unified parameter clip-
ping across different layers. This flexibility leads
to a more efficient optimization process, as each
layer is treated independently based on its charac-
teristics. In large models where some layers have
much smaller dimensions than others, our method
is able to achieve faster convergence by focusing

on the most difficult layer with the largest dimen-
sion, therefore making our method more scalable
for deep models with many layers. Detailed proof
can be seen in the Appendix F.

5 Experiments

To rigorously evaluate the capability and univer-
sality of HELENE, we follow the experimental
settings in MeZO on both medium-sized masked
LMs (RoBERTa-large (Liu, 2019), 350M) and auto-
regressive LLMs (OPT-1.3B, OPT-13B (Zhang
et al., 2023), and LLaMA-2-7B (Touvron et al.,
2023)) under both few-shot and many-shot settings.
Additionally, all optimization algorithms are tested
with full-parameter fine-tuning (FT) and two PEFT
methods including LoRA (Hu et al., 2021) and
prefix-tuning (Li and Liang, 2021). We also con-
duct experiments with zeroth-order (ZO) versions
of selected optimizers, as well as ZO-SGD variants
introduced in (Zhang et al., 2024). In addition, we
perform a comprehensive analysis of wall-clock
time and hyperparameter sensitivity to assess the
practical efficiency and robustness of each method.

5.1 Masked Language Models

For masked LMs, we conduct experiments using
RoBERTa-large on three types of NLP tasks, senti-
ment classification, natural language inference, and
topic classification with k = 16 examples per class.
We run HELENE for 5,000 steps and FT for 1,000
steps. We include baseline methods of MeZO (Mal-
ladi et al., 2023), ZO-AdaMU (Jiang et al., 2024)
and MeZO-SVRG (Gautam et al., 2024). The ex-
perimental results are listed in Table 1, from which
we can have following findings.

HELENE largely outperforms zero-shot and
linear probing. Across all six datasets, HELENE
can stably optimize the pre-trained LM and con-
sistently perform better than zero-shot and linear
probing.

Significant speed improvement over MeZO.
With the guidance of layer-wise clipped Hessian
information, HELENE can reach convergence in
about 5000 steps on average across the datasets,
accelerating the optimization process by approxi-
mate 10× than MeZO, based on the average results.
Meanwhile, the results show that HELENE can still
achieve performance on par with MeZO, leading
in 5 out of 6 datasets in terms of average accuracy
across three tuning methods.
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Task SST-2 SST-5 SNLI MNLI RTE TREC
Task Type —— sentiment —— —— natural language inference —— — topic —

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0
LP 76.0 (±2.8) 40.3 (±1.9) 66.0 (±2.7) 56.5 (±2.5) 59.4 (±5.3) 51.3 (±5.5)

FT 91.9 (±1.8) 46.7 (±1.9) 77.5 (±2.6) 70.0 (±2.3) 66.4 (±7.2) 85.0 (±2.5)
FT(LoRA) 91.4 (±1.7) 46.7 (±1.1) 74.9 (±4.3) 67.7 (±1.4) 66.1 (±3.5) 82.7 (±4.1)
FT(Prefix) 91.9 (±1.0) 47.7 (±1.1) 77.2 (±1.3) 66.5 (±2.5) 66.6 (±2.0) 85.7 (±1.3)

MeZO 90.5 (±1.2) 45.5 (±2.0) 68.5 (±3.9) 58.7 (±2.5) 64.0 (±3.3) 76.9 (±2.7)
MeZO (LoRA) 91.4 (±0.9) 43.0 (±1.6) 69.7 (±6.0) 64.0 (±2.5) 64.9 (±3.6) 73.1 (±6.5)
MeZO (Prefix) 90.8 (±1.7) 45.8 (±2.0) 71.6 (±2.5) 63.4 (±1.8) 65.4 (±3.9) 80.3 (±3.6)

ZO-AdaMU 92.6 (±0.4) 45.6 (±0.4) 71 (±1.3) 63.8 (±0.6) 66.0 (±2.3) 77.1 (±1.7)
MeZO-SVRG 91.7 (±0.2) 46.0 (±0.5) 67 (±1.5) 43 (±0.9) 65.7 (±1.3) 74 (±1.2)

HELENE 92.6 (±2.3) 46.7 (±0.8) 72.0 (±2.6) 58.9 (±1.1) 65.7 (±1.2) 78.1 (±1.5)
HELENE-F 91.8 (±1.7) 44.8(±1.1) 70.3(±1.5) 58.7 (±0.6) 63.8 (±0.9) 77.5 (±3.1)
HELENE (LoRA) 90.6 (±0.3) 41.8 (±1.0) 68.5 (±2.0) 59.0 (±1.1) 66.8 (±3.2) 67.4 (±2.1)
HELENE (Prefix) 91.7 (±0.6) 46.0 (±0.7) 69.5 (±1.9) 64.6 (±2.1) 66.1 (±1.8) 77.4 (±2.1)

Table 1: Experiments on RoBERTa-large (350M parameters, k = 16). HELENE-F compresses the momentum
and hessian in the optimizer through matrix factorization. All reported numbers are averaged accuracy (standard
deviation) across 5 runs.

Model Method SST-2 RTE CB WSC WIC COPA SQuAD Avg.

LLaMA2-7B
MeZO 92.0 69.5 64.3 62.9 57.8 84.0 72.5 71.9
HELENE 93.2 71.0 71.1 63.4 59.0 86.4 77.0 74.4
HELENE-F 92.4 69.8 69.8 63.2 58.4 86.3 76.0 73.7

OPT-13B
MeZO 91.4 66.1 66.0 62.5 59.4 88.0 84.7 74.0
HELENE 92.8 68.5 69.6 64.0 61.1 88.8 82.5 75.3
HELENE-F 92.3 67.2 69.5 63.6 59.6 88.9 85.0 75.2

Table 2: Experiments on LLaMA-2-7B and OPT-13B using 1,000 examples, highlighting the best-performing
results.

5.2 Auto-regressive LLMs

We extend our evaluation to the auto-regressive
LLMs OPT-1.3B, OPT-13B, and LLaMA-2-7B
across three representative tasks: text classification,
multiple choice, and text generation. We employ
datasets from the SuperGLUE benchmark (Wang
et al., 2019), including SST-2, RTE, CB, WSC,
WIC, COPA, and ReCoRD, and additionally evalu-
ate on BoolQ (Clark et al., 2019) and SQuAD (Ra-
jpurkar, 2016). For each dataset, we fine-tune HE-
LENE for approximately 20,000 training steps. De-
tailed results for OPT-1.3B can be found in the Ta-
ble 9. The main results are summarized in Table 2,
from which we draw the following observations.

HELENE consistently outperforms MeZO
across models and tasks. As shown in Table 2,
HELENE demonstrates superior performance com-
pared to MeZO on both LLaMA-2-7B and OPT-
13B, highlighting its effectiveness and robustness
across various language understanding and reason-
ing tasks. On LLaMA-2-7B, HELENE improves
over MeZO by 6.8% on CB, 4.5% on SQuAD,
and 2.4% on COPA. Similarly, for OPT-13B, HE-
LENE yields gains of 3.6% on CB and 0.6% on

COPA, while maintaining competitive performance
on other tasks.

Acceleration and compatibility with PEFT
methods. In Figure 2, we visualize the results from
four selected datasets across different tasks under
three tuning methods. The results indicate that
HELENE consistently accelerates convergence by
up to 20× while also improving performance. We
also conducted experiments to OPT-13B model and
evaluating its performance on non-differentiable
optimization objectives (F1). For detailed results,
please refer to Appendix D.

5.3 Experiments with Other ZO Algorithms
It is worth noting that the ZO optimization tech-
nique utilized in Malladi et al. (2023) is primarily
the basic SGD version (ZO-SGD), and it is still
not clear how effective HELENE is when compar-
ing with other ZO optimization algorithms like
ZO-SGD, ZO-SGD-MMT, ZO-SGD-Cons, ZO-
SGD-Sign and ZO-Adam as introduced in Liu et al.
(2020). Therefore, we reference the statistics of
performances summarized in Zhang et al. (2024)
and experiment under the same setting with them
(Table 8). We further implement the ZO versions
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Figure 2: Performance and convergence of MeZO and HELENE for fine-tuning, LoRA, and prefix-tuning of
OPT-1.3B on different datasets. HELENE achieves approximate 10× speedup and up to 15% accuracy improvement
compared to MeZO.

of Adam, AdamW and Lion (Chen et al., 2024) and
plot the results in Figure 3. The results indicate
that HELENE helps the model converge faster as
well as obtain lower validation loss value.

Model Method Steps to Convergence Time to Convergence Accuracy Speedup over MeZO

RoBERTa-Large MeZO 200,000 400 minutes 90.5 1×
RoBERTa-Large HELENE 5,000 20 minutes 92.6 20×
OPT-1.3B MeZO 20,000 95 minutes 89.6 1×
OPT-1.3B HELENE 6,000 45 minutes 91.2 2.11×
LLaMA-7B MeZO 35,000 300 minutes 92.0 1×
LLaMA-7B HELENE 10,000 80 minutes 93.2 3.75×

Table 3: Comparison of MeZO and HELENE in terms of
convergence steps, time, accuracy, and speedup across
different models.

5.4 Memory Usage and Wall-Clock Time
Analysis

As shown in Figure 9, HELENE increases the mem-
ory usage compared to MeZO because of the stor-
age of the momentum and the diagonal Hessian (de-
tails in Table 12). To further reduce memory con-
sumption, we propose HELENE-F, the low-rank
implementation of HELENE, inspired by Adafac-
tor (Shazeer and Stern, 2018) and SMMF(Park and
Lee, 2024). The detailed algorithm can be seen
in Appendix 3. As a result, HELENE-F increases
less than 25% memory compared to MeZO, while
maintaining the original performance of HELENE,
as shown in Figure C. HELENE-F is, to the best
of our knowledge, the first ZO algorithm that in-
tegrates factorization-based techniques to enhance
memory efficiency via compression with both cur-
vature and momentum awareness. Empirical results
imply that HELENE-F ensures essential model up-
date dynamics are retained post-decompression, as
demonstrated in Figure 4. In Table 3, we present
a wall-clock time analysis alongside comparisons
of convergence speed, final accuracy, and training
efficiency across different model architectures, in-
cluding RoBERTa-Large, OPT-1.3B, and LLaMA-
7B. The consistent speedups observed across these
diverse backbones demonstrate the compatibility
and adaptability of our approach to various model

families.

5.5 Hyperparameter Sensitivity Analysis
We set beta1 and beta2 following the default con-
figuration of the Adam (Kingma and Ba, 2014) op-
timizer. In our method, T denotes the total training
step budget, while f represents the Hessian update
frequency. As shown in Table 4, the performance
remains stable across different settings of T and f,
demonstrating the robustness of our approach to
these hyperparameter choices.

OPT-1.3B on SST-2 T=4000 T=6000 T=8000

Freq = 1 91.1% 90.8% 90.7%
Freq = 5 91.2% 91.0% 91.0%
Freq = 10 90.8% 90.5% 90.6%

Table 4: Accuracy (%) of OPT-1.3B fine-tuned on SST-
2 with different step budgets and Hessian update fre-
quency.

5.6 Ablation Study

We conduct a comprehensive ablation study on
the key techniques of HELENE in Appendix E,
including in-depth analysis of the effects of magni-
tude clipping across different ranges. Additionally,
we explore the factors resulting in initial conver-
gence and subsequent divergence when our pro-
posed modules are not deployed.

6 Conclusion

We introduce HELENE, a novel optimizer for
fine-tuning LLMs. It features an asymptotic
Gauss-Newton-Bartlett (A-GNB) estimator for un-
biased Hessian approximation and a layer-wise
clipping mechanism for adaptive updates. HE-
LENE improves stability, scalability, and conver-
gence speed. Experiments on RoBERTa-large,
OPT-1.3B/13B, and LLaMA-2-7B demonstrate re-
markable speedup over MeZO, comparable mem-
ory consumption, and accuracy gains. Compatible
with both full and parameter-efficient fine-tuning,
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HELENE consistently outperforms state-of-the-art
optimizers across model scales.

Limitations

While layer-wise clipping alleviates some issues
caused by large curvature differences, the diagonal
Hessian itself may still be a coarse approximation
when the Hessian’s off-diagonal terms are signifi-
cant (e.g., in strongly coupled parameter updates).
Our future work will incorporate block-diagonal or
structured approximations within a ZO framework.
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A Related work

A.1 Zero-order Optimization

Zeroth-order (ZO) optimization, which only re-
lies on the forward passes of neural networks, of-
fers significant memory savings during the training
process. Recently, MeZO (Malladi et al., 2023)
adapted the traditional zeroth-order SGD optimiza-
tion method for fine-tuning LMs, achieving per-
formance comparable to full-parameter fine-tuning
while significantly reducing memory usage. Thus,
zeroth-order optimization is regarded as a promis-
ing approach for memory-efficient fine-tuning of
LLMs. Several studies have aimed to improve
the MeZO algorithm. For instance, Gautam et al.
(2024) introduced a zeroth-order optimization al-
gorithm that integrates both full-batch and mini-
batch information to produce asymptotically unbi-
ased, low-variance gradient estimations. However,
the convergence rate of their approach still leaves
room for improvement. In pursuit of better gradi-
ent estimation, Jiang et al. (2024) proposed an in-
novative perturbation sampling technique inspired
by the Adam optimizer. Other methods, such as
SPSA (Spall, 1992; Maryak and Chin, 2001), have
shown to be effective in non-convex multi-agent
optimization (Tang et al., 2020; Hajinezhad and
Zavlanos, 2018) and in generating black-box adver-
sarial examples (Chen et al., 2017; Cai et al., 2021;
Ye et al., 2018; Li et al., 2025).

A.2 Second-order Information for
Fine-tuning LLMs

Classic second-order optimization algorithms pre-
condition the gradient with curvature informa-
tion (Broyden, 1970; Nesterov and Polyak, 2006;
Conn et al., 2000). Over the years, people have
developed numerous ways to adapt these methods
to deep learning. To the best of our knowledge,
BECKER (1988) was the first to use diagonal Hes-
sian as the pre-conditioner. (Martens et al., 2010)
approximated the Hessian with conjugate gradi-
ent. Schaul et al. (2013) automatically tuned the
learning rate of SGD by considering diagonal Hes-
sian. Pascanu (2013) considered Gaussian New-
ton’s approximation of Hessian and Fisher infor-
mation matrix. Martens and Grosse (2015) and
follow-up works (Ba et al., 2017; George et al.,
2018; Zhang et al., 2022; Li et al., 2024; Zhou
et al., 2025) proposed to approximate the Hessian
based on the structure of neural networks. De-
spite these progress on deep learning applications,

for decoder-only LLMs, Adam still appears to be
the most popular optimizer. The authors of this
paper suspect that many previous second-order op-
timizers face the challenge that the computational
/ memory overhead due to frequent Hessian com-
putation hinders improvements in wall-clock time
(Gupta et al., 2018). Some of them also depend on
specific model architecture or hardware structures,
e.g., Anil et al. (2020) offloads hessian computation
to CPUs, and George et al. (2018) needs ResNet
and very large batch size to approximate the Fisher
information matrix. To the best of our knowledge,
there was no previous report that second-order op-
timizers can achieve a speed-up on LLMs in total
compute.

There is also a concurrent work HiZOO (Zhao
et al., 2024) that utilizes Hessian information to
enhance zeroth-order optimization for fine-tuning
LLMs. A major focus of HiZOO is to introduce one
more forward pass to handle heterogeneous curva-
tures across parameter dimensions. However, our
work focus on incorporating layer-wise clipping to
exclude extreme Hessian values and Exponential
Moving Average (EMA) to improve generalization.

A.3 Gradient Clipping

Global gradient clipping has been a widely adopted
practice in fine-tuning LLMs (Chen et al., 2020;
Zhang et al., 2019; Liu et al., 2022, 2025). This
technique stabilizes training by mitigating the im-
pact of rare examples and large gradient noise. In
addition to gradient clipping, HELENE is the first
method to clip the Hessian matrix in second-order
optimization techniques. This approach addresses
the issue of the Hessian matrix fluctuating along
the optimization trajectory and reduces the errors
in Hessian approximations.

B Additional Experiments

B.1 ZO Compatibility with LoRA

As shown in Table 5, full tuning with a first-
order optimizer like SGD consumes a large amount
of memory (27.0 GB), which is substantially re-
duced by applying LoRA (10.4 GB). Interestingly,
our zeroth-order method HELENE-F already uses
much less memory in full tuning (5.5 GB), and
when combined with LoRA, it achieves the low-
est memory footprint (4.4 GB). This illustrates an
intuitive and consistent trend: zeroth-order train-
ing not only avoids gradient storage but also scales
particularly well with LoRA-based fine-tuning.
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Method Model Full Tuning (FT) LoRA

SGD (First-order) OPT-1.3B 27.0 GB 10.4 GB
HELENE-F (ZO) OPT-1.3B 5.5 GB 4.4 GB

Table 5: (b) Comparison with first-order LoRA:
HELENE-F achieves significantly lower memory us-
age in both full tuning and LoRA settings.

B.2 Regarding Batch Size and Memory
Efficiency

It is true that zeroth-order (ZO) methods bene-
fit from larger batch sizes to reduce optimization
noise, increasing the batch size does not lead to
significantly higher memory usage. This is because
ZO methods avoid the backward pass and do not
require activation caching during training.

Table 6 shows the memory usage when fine-
tuning OPT-1.3B on the SST-2 dataset. As shown,
first-order (FO) methods require substantially more
memory, especially as the batch size increases (e.g.,
22.5 GB for batch size 4 and 27.0 GB for batch size
16). In contrast, ZO methods maintain a constant
and minimal memory footprint of approximately
4.4 GB, even when the batch size scales up to 64.
This is due to the fact that, in PyTorch, ZO finetun-
ing does not set requires_grad=True, and there-
fore no intermediate activations are retained. As
a result, memory usage remains nearly flat across
different batch sizes.

Finetuning Type Batch Size Memory Usage (GB)

First-order (FO) 4 22.5
First-order (FO) 16 27.0
Zeroth-order (ZO) 8 / 16 / 32 / 64 4.4

Table 6: Memory usage when fine-tuning OPT-1.3B on
SST-2 with different batch sizes.

B.3 Regarding the Memory Usage of
HELENE-F and Contemporary ZO
Methods

Recent zeroth-order (ZO) optimizers such as
MeZO-SVRG (Gautam et al., 2024) and ZO-
AdaMU (Jiang et al., 2024) require nearly twice
the memory of MeZO due to their use of additional
gradient accumulators or control variates.

As shown in Table 7, HELENE-F consistently
performs the best or matches the strongest base-
line across all three tasks. This demonstrates
that HELENE-F achieves a favorable trade-off be-
tween memory efficiency and convergence perfor-

mance, making it a practical choice for resource-
constrained scenarios.

Model SST-2 (%) SST-5 (%) RTE (%) Memory (GB)

HELENE-F 92.6 46.7 66.8 5.5
ZO-AdaMU 92.6 45.6 66.0 8.8
MeZO-SVRG 91.7 46.0 65.7 8.8

Table 7: Comparison of recent ZO optimizers in terms
of accuracy and memory usage (OPT-1.3B, SST-2/SST-
5/RTE).
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Figure 3: Validation losses for ZO-optimizers.
MeZO:0.426, Adam:0.286, AdamW:0.351, Lion:0.343,
HELENE:0.283.

C HELENE Variants

C.1 HELENE-F

Due to the necessity of storing Hessian information,
HELENE incurs additional memory overhead asso-
ciated with maintaining both momentum and Hes-
sian matrices. Specifically, each of these compo-
nents requires storage equivalent to the size of the
model parameters. To mitigate this limitation, we
propose HELENE-F, a low-rank storage approach
for momentum and Hessian, inspired by Adafac-
tor(Shazeer and Stern, 2018) and SMMF (Park and
Lee, 2024). HELENE-F leverages factorization-
based techniques to enhance memory efficiency
through compression while preserving both curva-
ture and momentum awareness. Extensive experi-
ments are conducted to evaluate the effectiveness
of HELENE-F, with the results presented in Figure
4.
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SST2
Roberta-Large OPT-1.3B

FT LoRA Prefix FT LoRA Prefix

FO-SGD 91.4 91.2 89.6 91.1 93.6 93.1

Forward-Grad 90.1 89.7 89.5 90.3 90.3 90.0

ZO-SGD 89.4 90.8 90.0 90.8 90.1 91.4
ZO-SGD-MMT 89.6 90.9 90.1 85.2 91.3 91.2
ZO-SGD-Cons 89.6 91.6 90.1 88.3 90.5 81.8
ZO-SGD-Sign 52.5 90.2 53.6 87.2 91.5 89.5
ZO-Adam 89.8 89.5 90.2 84.4 92.3 91.4
HELENE 92.6 90.6 91.7 90.8 91.4 92.4
HELENE-F 91.8 91.3 91.2 91.0 91.2 90.9

Table 8: Performance of LLM fine-tuning on SST2 over
pre-trained Roberta-Large and OPT-1.3B. Best perfor-
mance among ZO methods (including Forward-Grad)
are in bold.

Algorithm 3 HELENE-F
1: Input: Initial parameters θ1, total steps T , learning rate

schedule {ηt}Tt=1, hyperparameters {λi}, γ, β1, β2, ϵ.
2: Compression/Decompression routines: Decompression(·),

Compression(·).
3: Initial compressed momenta (rm0 , cm0 ,Sm0) and

(rh0 , ch0 ,Sh0).
4: for t = 1 to T do
5: gt ← ∇Lt(θt)
6: α← Anneal(t)
7: m̂t−1 ← Decompression(rmt−1 , cmt−1 , Smt−1)

8: ĥt−1 ← Decompression(rht−1 , cht−1 , Sht−1)
9: m̂t ← β1m̂t−1 + α gt

10: if t mod k = 1 then
11: ˆ̂

ht ← A-GNB(θt)

12: ĥt ← β2 ĥt−k + (1− β2)
ˆ̂
ht

13: else
14: ĥt ← ĥt−1

15: end if
16: (rmt , cmt ,Smt)← Compression(m̂t)

17: (rht , cht ,Sht)← Compression(ĥt)
18: θt ← θt − ηt ϵθt

19: for each layer i do
20: θt+1,i ← θt,i − ηt · m̂t,i

γ max(ĥt,i,λi)+ϵ

21: end for
22: end for
1: Subroutine Anneal(t):
2: α← β1 + (1− β1) · exp(−t/T )

Algorithm 4 Decompression

Input: Factorized vectors r ∈ Rn̂×1 and c ∈ R1×m̂, and a
binary sign matrix S ∈ {0, 1}n̂×m̂.
Output: Decompressed matrix M ∈ Rn̂×m̂ M = r ⊗ c
{⊗ is the outer product}

Mi,j =

{
Mi,j , if Si,j = 1

−Mi,j , otherwise
(4)

Return M

Algorithm 5 Compression

Input: Matrix M ∈ Rn̂×m̂ to be factorized.
Output: Factorized vectors r ∈ Rn̂×1, c ∈ R1×m̂, and
binary sign matrix S ∈ {0, 1}n̂×m̂.

Si,j =

{
1, if Mi,j ≥ 0

0, otherwise
(5)

Compute:

(r, c) = (|M|1m̂,1⊤
n̂ |M|) (6)

Normalize:

r =

{
r/(1⊤

n̂ r), if n̂ ≤ m̂

r, otherwise
(7)

c =

{
c/(c1m̂), if n̂ > m̂

c, otherwise
(8)

Return r, c,S
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Figure 4: Accuracy comparison between HELENE and
HELENE-F on RoBERTa (left) and OPT-1.3B (right).

D Extra Experiments

We assert that HELENE demonstrates robust per-
formance across both small-scale and large-scale
models, consistently outperforming MeZO. Specif-
ically, on a 13B model, HELENE achieves an av-
erage improvement of 1.5%. Furthermore, in the
domain of non-differentiable optimization, it yields
an average performance gain of 4%.
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Task SST-2 RTE CB BoolQ WSC WIC COPA ReCoRD SQuAD
Task Type ——————— classification ——————— — multiple choice — – generation –

Zero-shot 53.4 53.1 37.5 45.7 44.2 57.0 75.0 70.3 27.1
ICL 80.3 53.1 48.2 58.5 44.2 50.6 69.0 71.0 59.0
LP 80.3 52.7 44.6 58.9 47.1 50.6 69.0 71 75.9

MeZO 89.6 55.8 77.0 59.6 55.0 58.0 74.0 60.0 62.2
MeZO (LoRA) 90.8 63.0 68.6 67.2 51.2 58.0 79.0 59.8 67.6
MeZO (prefix) 92.4 52.8 66.0 61.6 51.6 52.8 74.0 56.8 56.0

HELENE 91.2 64.4 87.0 60.8 55.4 58.4 69.0 55.6 63.8
HELENE-F 91.0 58 82.0 62 55.2 56.4 73.0 56.6 62.4
HELENE (LoRA) 91.4 63.5 78.0 64.0 53.8 58.0 82.0 60.2 60.4
HELENE (prefix) 92.4 51.6 74.0 62.5 52 57.2 80.0 58.8 68.4

FT (12× memory) 90.8 73.4 77 70.2 53 60.2 81.0 59.6 70.9

Table 9: Experiments on OPT-1.3B (with 1000 examples). ICL: in-context learning; LP: linear probing; FT:
full-parameter fine-tuning with Adam. We highlight the best results in bold to facilitate comparison.

Task SST-2 RTE WSC WIC Average

13B MeZO 91.4 66.1 63.5 59.4 70.1
13B HELENE 92.8 68.5 64.0 61.1 71.6
13B HELENE-F 92.3 67.2 62.8 59.6 70.48

Table 10: Performance comparison across different op-
timizers on multiple tasks.

Model RoBERTa-large (350M) OPT-13B

Task SST-2 SST-5 SNLI TREC SQuAD

Zero-shot 79.0 35.5 50.2 32.0 46.2
MeZO 92.7 48.9 82.7 68.6 78.5
HELENE 93.5 51.7 82.5 82 82.5

Table 11: Experiments on non-differentiable optimiza-
tion objectives (F1), using full-parameter tuning for
classification (k = 512) and prefix tuning for SQuAD
(1,000 examples).

E Ablation Study

E.1 Evaluating the Impact of Key
Components on Convergence and
Stability

Figure 6 illustrates the effectiveness of each com-
ponent in our algorithm. Adding momentum to
MeZO alone doesn’t improve performance. In-
troducing bias in the gradient boosts convergence
speed, but causes loss to increase later in training
due to biased gradient estimates. To counter this,
we added an annealing term to make the gradient
asymptotically unbiased, which stabilizes the loss.
Inspired by Sophia, we introduced the clipped Hes-
sian to address heterogeneous curvatures, further
improving convergence speed. Our ablation study
validates both the motivation and effectiveness of
these components.

E.2 Magnitude clipping

From Figure 7, We observed that the Hessian values
associated with the variance in the normalization
layer are substantially larger than those in other
layers (e.g., bias, QKV, and fully-connected lay-
ers). Consequently, we recommend using a stricter
gradient clipping threshold for the normalization
layer—specifically, clipping by norm at 2.0—while
adopting a threshold of 1.0 for layers such as QKV.
To determine these thresholds, we conducted a grid
search for clipping values in [0.8,0.9,1.5,2,2.5,3].
Our results show that setting the threshold to 2.0 for
the normalization layer and 1.0 for the QKV layer
yields superior performance compared to applying
a universal clipping value across all layers.

In Figure 5, the color bar represents the ratio of
the standard deviation (STD) of the Hessian values
for the self_attn_layer_norm layer to the STD
of the Hessian values for other layers. The y-axis
corresponds to the training steps, while the x-axis
represents different layers within a block. For our
investigation, we selected the 5th, 10th, and 15th
blocks from the OPT-1.3B model, which consists
of 24 layers.

As shown in the figure 5, at the early stages
of training, the STD of the Hessian values for
the self_attn_layer_norm layer is substantially
higher than that of other layers, indicating a greater
presence of extreme Hessian values. This suggests
that stronger clipping should be applied to the Hes-
sian values of the self_attn_layer_norm layer.
As training progresses, the ratio between these val-
ues stabilizes and gradually approaches 1. This
observation indicates the effectiveness of our layer-
wise clipping strategy. Detailed numerical experi-
ments can be found in the Figure 7.
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(a) Block 5 in OPT-1.3B (b) Block 10 in OPT-1.3B (c) Block 15 in OPT-1.3B

Figure 5: The standard deviation (STD) of the Hessian values for the self_attn_layer_norm layer is substantially
higher than that of other layers. As training progresses, the ratio between these values stabilizes and gradually
approaches 1. This observation indicates the effectiveness of our layer-wise clipping strategy.

E.3 Investigation into the Convergence
Instability of Sophia

We study the reasons for Sophia’s failure in the
Figure 1 by counting the number of clip triggers.
We computed the loss between timesteps 400 and
800, with a mean value of 0.57. The average loss
between timesteps 1400 and 1800 was 0.65. We
then analyzed the number of times the Sophia clip-
ping mechanism was triggered within these two
time intervals. Our analysis covered the Q, K, V
matrices, fully connected layers, and bias layers.
We found that the frequency of clipping in the inter-
val where the mean loss was 0.65 was 1.18 to 1.22
times higher than in the interval where the mean
loss was 0.57.

Based on these experimental observations, we
conclude that Sophia’s clipping mechanism tends
to be over-triggered in complex data scenarios, par-
ticularly when faced with heterogeneous curvature.
This over-triggering can result in non-convergence,
aligning with our intuition. In the zeroth-order
setting, gradients are estimated using SPSA, and
excessive clipping of the g

H terms can lead to insta-
bility and failure of the model to converge.

F Detailed Convergence Analysis

Lemma 1 (Divergence to Infinity). Under Assump-
tion 1, for each layer i in a neural network model,
assume the function L : Rdi → R is strictly convex,
twice continuously differentiable, and has a unique
minimizer denoted by θ∗

i . For any parameter vec-
tor θi of layer i such that ∥θi − θ∗

i ∥2 ≥ 1, the
function L(θi) diverges to infinity as ∥θi∥2 →∞.

Proof. By the strict convexity of L, for any θi such

that ∥θi − θ∗
i ∥2 ≥ 1, we have:

L(θi)− L(θ∗
i )

∥θi − θ∗
i ∥2

≥ min
∥ϕ∥2=1

L(θ∗
i +ϕ)−L(θ∗

i ), (9)

where ϕ is a unit vector. For the convenience, here
L(θi) denotes L(θi|θ−i) where θ−i denotes the pa-
rameters in the whole model except θi, and L(θ∗

i )
denotes L(θ∗

i |θ∗
−i). Define ∆i as:

∆i = min
∥ϕ∥2=1

L(θ∗
i + ϕ)− L(θ∗

i ), (10)

a positive constant due to the strict convexity of L
indicating the minimal rate of increase of L around
θ∗
i .
Thus, the inequality can be written as:

L(θi) ≥ ∥θi − θ∗
i ∥2∆i + L(θ∗

i ). (11)

This implies that as ∥θi∥2 → ∞, which neces-
sarily implies ∥θi−θ∗

i ∥2 →∞, the loss L(θi) also
diverges to infinity, since the term ∥θi − θ∗

i ∥2∆i

dominates and increases without bound.

Note: We do not require the Hessian of the loss
function,∇2L(θi), to be Lipschitz continuous; As-
sumption 2 only requires that the Hessian is con-
tinuous in a multiplicative sense within a neighbor-
hood of constant radius.

Lemma 2 (Parameter Bound). Let L : Rd → R
be a loss function for a neural network composed
of multiple layers, each with parameters θi, and
L is twice continuously differentiable and strictly
convex with respect to each layer’s parameters at a
global minimizer θ∗. Assume each layer i satisfies
the following condition:

L(θi)−minL ≤ µiR
2
i

4
,
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Figure 6: Comparison of tuning processes and ablation studies with different optimization algorithms.
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where µi is the minimum eigenvalue of the Hessian
of L at the minimizer for parameters of layer i, and
Ri is a predefined radius. Then, it holds that

∥θi − θ∗
i ∥2 ≤ Ri.

Proof. Suppose, by way of contradiction, there ex-

ists a θi such that L(θi) ≤ µiR
2
i

4 , but ∥θi−θ∗
i ∥2 >

Ri. Define θ′
i as:

θ′
i = θ∗

i +
√
2(L(θi)−minL)

θi − θ∗
i

µi∥θi − θ∗
i ∥2

.

(12)
Since θ′

i is a point between θi and θ∗
i , and due to

the strict convexity of L, we have L(θ′
i) < L(θi)

by convexity. Considering the Taylor expansion of
L at θ∗

i along the direction towards θ′
i, we have:

f(t) = L(θ∗
i + t(θ′

i − θ∗
i )),

f(1) = L(θ′
i), f(0) = L(θ∗

i ), f ′(0) = 0,

f ′′(t) = (θ′
i−θ∗

i )
T∇2L(tθ′

i+(1−t)θ∗
i )(θ

′
i−θ∗

i ),

Given f ′′(t) ≥ µi

2 ∥θ′
i − θ∗

i ∥22 from Assumption 2
and the convexity, the Taylor expansion yields:

f(1) ≥ f(0) + f ′(0) +
1

2
f ′′(t)

=L(θ∗
i ) +

µi

2
∥θ′

i − θ∗
i ∥22,

thus,

L(θ′
i) ≥ L(θ∗

i ) +
µi

2
∥θ′

i − θ∗
i ∥22

which contradicts the assumption that L(θ′
i) <

L(θi). Therefore, the original assumption that
|θi − θ∗

i ∥2 > Ri must be false, concluding
that∥θi − θ∗

i ∥2 ≤ Ri.

Lemma 3 ( Gradient Norm Bound). For any
θi in layer i of a neural network, satisfying
∥∇L(θi)∥2 ≤ µiRi

2 , where µi is the minimum
eigenvalue of the Hessian of L at the minimizer for
layer i parameters, it holds that ∥θi − θ∗

i ∥2 ≤ Ri.
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Proof. Assume, by way of contradiction, there ex-
ists a θi with ∥∇L(θi)∥2 ≤ µiRi

2 and ∥θi−θ∗
i ∥2 >

Ri. Define a function f(t) by:

f(t) = ∇L(θ∗
i +t ·(θi−θ∗

i )) ·
θi − θ∗

i

∥θi − θ∗
i ∥2

, (13)

where f(0) = ∇L(θ∗
i ) due to θ∗

i being a mini-
mizer, and f(Ri) = ∇L(θi).

Due to the strict convexity of L, f(t) is a strictly
monotone increasing function. The derivative with
respect to t, must satisfy:

f ′(t) =
d

dt

(
∇L
(
θ∗
i + t · (θi − θ∗

i )
)
·

θi − θ∗
i

∥θi − θ∗
i ∥2

)
(14)

≥ ∥∇L(θi)∥2
2

. (15)

by Assumption 2 and the fact that the gradient
norm does not increase more than twice in any
direction within the ball of radius Ri.

The fundamental theorem of calculus and the
above inequality imply:

f(Ri) = f(0) +

∫ Ri

0
f ′(t)dt

≥
∫ Ri

0

∥∇L(θi)∥2
2

dt =
Ri∥∇L(θi)∥2

2
,

However, f(Ri) = ∥∇L(θi)∥2 and this leads to

∥∇L(θi)∥2 ≥
Ri∥∇L(θi)∥2

2
, (16)

a contradiction unless ∥θi − θ∗
i ∥2 ≤ Ri.

Therefore, the original assumption that ∥θi −
θ∗
i ∥2 > Ri must be false, proving the lemma.

Lemma 4 (Stability of Gradient Flow). Sup-
pose the gradient ∇L(θi(t)) and the Hessian
∇2L(θi(t)) of the loss function L satisfy the con-
ditions for all t ∈ [0, 1] that ensure stability and
convergence to a minimizer θ∗

i . Assume the differ-
ential equation

dθi(t)

dt
= −

(
∇2L(θi(t))

)−1∇L(θi(t)),
θi(0) = θi, θi(1) = θ∗

i ,

has at least one solution on the interval [0, 1]
and satisfies ∇L(θi(t)) = (1 − t)∇L(θi) for all
t ∈ [0, 1].

Proof. We demonstrate this by showing that the
given ordinary differential equation (ODE) is well-
posed under the assumptions. The initial value
problem

dθi(t)

dt
= −

(
∇2L(θi(t))

)−1∇L(θi(t)), (17)

can be solved over the interval [0, 1] due to the
continuity and positive definiteness of ∇2L, which
ensures the existence and uniqueness of the solu-
tion by the Picard-Lindelöf theorem.

Define Tmax,i as the largest positive number such
that the solution exists on [0, Tmax,i]. We claim
Tmax,i ≥ 1, based on the behavior of the gradient
along the solution path. Considering:

d

dt
∇L(θi(t)) = ∇2L(θi(t))

dθi(t)

dt
= −∇L(θi(t)).

(18)

which implies that ∇L(θi(t)) = e−t∇L(θi).
Since ∇L(θi(t)) = (1 − t)∇L(θi) for t ∈ [0, 1],
the condition aligns perfectly.

Finally, since θi(1) has zero gradient by the con-
struction of the ODE, θi(1) must be θ∗

i . This com-
pletes the proof.

Lemma 5 (Quadratic Form Integration). Assume
the gradient norm ∥∇L(θi)∥2 and the Hessian
∇2L(θi) satisfy certain conditions over the inter-
val [0, 1]. Suppose either

1. L(θi)−minL ≤ µiR
2
i

16 , or

2. ∥∇L(θi)∥2 ≤ µiRi

4 ,

where µi is the minimum eigenvalue of the Hessian
at the minimizer for the parameters of layer i, then
it holds that

∥∥∇L(θi)T (∇2L(θi))
−1∇L(θi)

∥∥
≤4(L(θi)−minL).

Proof. Let {θi(t)}1t=0 be the solution of the fol-
lowing differential equation:

dθi(t)

dt
= −(∇2L(θi(t)))

−1∇L(θi(t)),
θi(0) = θi, θi(1) = θ∗

i .

From Lemma 4, adapted for each layer, we have
∇L(θi(t)) = (1 − t)∇L(θi) for all t ∈ [0, 1].
Assume ∥θi(t)− θ∗

i ∥ ≤ Ri/2 by Lemmas 2 and
3.

26061



By Assumption 2, for each layer, this implies:

(∇2L(θi(t)))
−1 ≥ 1

2
(∇2L(θi))

−1 (19)

for all t ∈ [0, 1].
Integrating the quadratic form along the path, let

gi := ∇L(θi), Hi(t) := ∇2L(θi(t)), we have:

L(θi)−minL = L
(
θi(0)

)
− L

(
θi(1)

)

=

∫ 1

0
(1− t)2 g⊤i Hi(t)

−1 gi dt.

(20)
Substituting the inequality from equation 19, we

simplify:

1

2

∫ 1

0
(1− t)2dt(∇L(θi))T (∇2L(θi))

−1∇L(θi)

=
1

6
(∇L(θi))T (∇2L(θi))

−1∇L(θi).

This integration shows that∥∥∇L(θi)T (∇2L(θi))
−1∇L(θi)

∥∥ ≤
4(L(θi)−minL), completing the proof.

Lemma 6 (Gradient and Loss Bound). Assuming
the gradient norm ∥∇L(θi)∥2 and the conditions
on the loss function L are such that either

1. L(θi)−minL ≤ µiR
2
i

4 , or

2. ∥∇L(θi)∥2 ≤ Riµi

2 ,

it holds that

L(θi)−minL ≤ 1

µi
∥∇L(θi)∥2. (21)

Proof. The proof follows a reasoning similar to
that of Lemma 5 but adapted for each layer. Given
the conditions on L(θi) − minL or the norm of
the gradient ∥∇L(θi)∥2, we utilize the connection
between the gradient norm and the difference in
loss to bound L(θi)−minL.

From the gradient norm bound ∥∇L(θi)∥2 and
the positive definiteness and continuity of ∇2L,
the loss function exhibits quadratic behavior near
the minimizer. This is characterized by the Taylor
expansion:

L(θi) ≈ L(θ∗
i )+

1

2
(θi−θ∗

i )
T∇2L(θ∗

i )(θi−θ∗
i ),

where θ∗
i is the minimizer of L.

Using the bound ∥∇L(θi)∥2 ≤ Riµi

2 , the Taylor
series expansion around θ∗

i implies:

L(θi)−minL ≤ 1

2µi
∥∇L(θi)∥2, (22)

satisfying the condition given by Lemma 6.
This completes the proof by relating the behavior

of the loss function’s gradient at θi to its minimum
value, leveraging the quadratic approximation pro-
vided by the Hessian at the minimizer.

Lemma 7 (Norm Bound on Inverse Hessian and
Gradient Product). Assuming the gradient ∇L(θi)
and the Hessian∇2L(θi) satisfy certain conditions
such that either

1. L(θi)−minL ≤ µiR
2
i

16 , or

2. ∥∇L(θi)∥2 ≤ Riµi

4 ,

it holds that

∥∇2L(θi)
−1∇L(θi)∥2 ≤

8(L(θi)−minL)

µi
.

Proof. We derive this by using the properties of the
Hessian and the gradient for the loss function L
specific to layer i. From Lemma 2, we have:

∥θi − θ∗
i ∥2 ≤ Ri.

Given that ∇2L(θ∗
i ) ≥ µi

2 I , and from Lemma 5
adapted for layer i, it holds that:

4(L(θi)−minL) ≥
∥∇L(θi)T (∇2L(θi))

−1∇L(θi)∥ (23)

Expanding and manipulating the inequality, we
derive:

∥∇L(θi)∥T (∇2L(θi))
−1∥∇L(θi)∥

=∥∇2L(θi)
−1∇L(θi)∥2.

Given ∇2L(θi)
−1 ≤ 2

µi
I , we can substitute this

into our calculation to find:

∥∇2L(θi)
−1∇L(θi)∥2 ≤

2

µi
∥∇L(θi)∥2

≤ 4(L(θi)−minL)

µi
,

and finally,

∥∇2L(θi)
−1∇L(θi)∥2 ≤

8(L(θi)−minL)

µi
,

completing the proof.

Lemma 8. For any θi ∈ Rdi , where θi represents
the parameters for the i-th layer, and satisfying that

∥∇2L(θi)
−1∇L(θi)∥2 ≤

R

2
,

it holds that

L(θi)−minL ≤∇L(θi)T (∇2L(θi))
−1∇L(θi)

≤4(L(θi)−minL).
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Proof. Let {θi(t)}1t=0 be the solution of the fol-
lowing differential equation:

dθi(t)

dt
= −(∇2L(θi(t)))

−1∇L(θi(t)),

where θi(0) = θi and θi(1) = θ∗
i .

We claim that for all t ∈ [0, 1], ∥θi(t)− θi∥2 ≤
Ri. If not, let T be the smallest positive num-
ber such that ∥θi(T ) − θi∥2 = Ri. Such T ex-
ists because ∥θi(t) − θi∥2 is continuous in t and
∥θi(0)− θi∥2 = 0.

We can now bound the distance:

Ri = ∥θi(T )− θi(0)∥2 ≤
∫ T

0

∥∥∥∥
dθi(t)

dt

∥∥∥∥
2

dt.

Substituting the derivative expression for θi(t), we
get:

=

∫ T

0

∥∥(∇2L(θi(t)))
−1∇L(θi(t))

∥∥
2
dt

≤
∫ T

0
∥∇2L(θi(t))

−1∥2∥∇L(θi(t))∥2dt.

From Assumption 2, we know that:

∇2L(θi)
−1 ≤ 2(∇2L(θi(t)))

−1.

Thus, we can bound this integral:

≤ 2

∫ T

0
∥∇2L(θi(t))

−1∇L(θi(t))∥2dt

≤ 2T∥∇2L(θi(t))
−1∇L(θi(t))∥2.

Using the assumption that
∥∇2L(θi)

−1∇L(θi)∥2 ≤ Ri
2 , we get:

≤ 2T
Ri

2
= RiT,

which implies that T = 1.
Therefore, for all t ∈ [0, 1], ∥θi(t)− θi∥2 ≤ Ri.

By Assumption 2, we also have:

2(∇2L(θi))
−1 ⪯ (∇2L(θi(t)))

−1 ⪯ 1

2
(∇2L(θi))

−1.

Now, we compute the difference in the loss func-
tion:

L(θi)−minL

=L(θi(0))− L(θi(1))

=

∫ 1

0
∇L(θi(t))T (∇2L(θi(t)))

−1∇L(θi(t))dt

=

∫ 1

0
(1− t)∇L(θi)T (∇2L(θi))

−1∇L(θi)dt.

Thus:

L(θi)−minL ≤ 1

2
∇L(θi)T (∇2L(θi))

−1∇L(θi).

Finally, using the fact that
∫ 1
0 (1− t)dt = 1

2 , we
complete the proof, showing that:

L(θi)−minL

≤∇L(θi)T (∇2L(θi))
−1∇L(θi)

≤4(L(θi)−minL).

Lemma 9. If λi ≤ Ri

2
√
di

, then for any ∆ ≤ Riµ
10

and any θi ∈ Rℶ
di satisfying

di∑

i=1

min
{
pT
i ∇L(θi)σ−1

i pT
i ∇L(θi)

}
≤ ∆,

where ∇2L(θi) = ViΣiV
T
i is the eigen-

decomposition of ∇2L(θi), pi is the i-th row of
Vi, and Σi = diag(σ1, . . . , σdi), it holds that

L(θi)−minL ≤ 25∆2

λ2
iµ

.

Proof. Let {θi(t)}1t=0 be the solution to the ODE

dθi(t)

dt
= −(∇2L(θi(t)))

−1∇L(θi(t)),

starting from θi(0) = θi and assume θi(1) = θ∗
i

as derived in previous lemmas.
By Lemma 2, ∥θi(t) − θ∗

i ∥2 ≤ Ri for all
t ∈ [0, 1]. Define I0 ⊆ [di] as the indices where
clipping does not occur. We have:

∑

i∈I0
σ−1
i

∣∣pT
i ∇L(θi)

∣∣2 ≤ ∆.

Using Assumption 2, the Hessian continuity
within a local radius implies:

∑

i∈I0

∣∣pT
i ∇L(θi(t))

∣∣2 ≤ ∆.

For the newly restricted convex function L0 on
RI0
i , which is L restricted to the subspace of Rdi

i

spanned by vectors corresponding to I0, by Lemma
1 and assuming L0 is strictly convex, we apply
Lemmas 6 and 8 by restricting to I0:

∥∇L0(θi) + V T
I0θ

∗
i ∥22

=∥∇L0(θi)∥22 ≤ µ−1∥∇L0(θi)∥22 ≤
25∆2

λ2
iµ

.
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Integrating the differential for L0, we can show:

L(θi)−minL

≤
∫ 1

0
∇L(θi(t))T (∇2L(θi(t)))

−1∇L(θi(t))dt

≤25∆2

λ2
iµ

.

This completes the proof.

Lemma 10 (Descent Lemma). For any η > 0 and
per-layer λi > 0 with ηλi ≤ Ri√

di
, define

θ+
i = θi − ηclip

(
(ĝiĝi)

−1ĝi, λi

)
,

where ĝi is the estimated gradient using a ZO
finite difference method with noise ϵ, such that:

ĝi = ∇L(θi) + ϵ.

The theoretical bound for the descent is given
by:

L(θ+
i )− L(θi)

≤− (η − η2βiλi)

di∑

j=1

min{λi,
1

σi,j
|vT

i,j∇L(θi)|2

+ C(δ2g + δ2H)}

≤ − (η − η2)
d∑

i=1

min
{
λi |ĝi|, (ĝiĝi)−1|ĝi|2

}

+O(h) +O(1/
√
m),

where h is the step size of the finite difference and
m is the number of perturbations performed for
finite difference estimation. The second inequality
goes equal when h and 1/sqrt(m) are sufficiently
small.

Proof. Step 1. Derivation of the upper bound for
∥ĝi −∇L(θi)∥. To derive a theoretical bound for
∥ĝi −∇L(θi)∥, where ĝi is the gradient estimated
using our proposed zero-order method, and∇L(θi)
is the true gradient, we need to quantify the error
due to using finite perturbations to approximate the
gradient. Let’s denote this error by ϵ, such that:

ϵi = ĝi −∇L(θi)
Specifically, the gradient estimate for dimension

i is obtained by:

ĝi =
1

m

m∑

k=1

L(θ + huk)− L(θ)

h
u
(i)
k ,

where m is the number of perturbations,h is the
step size for finite differences, and u

(i)
k represents

the i-th component of the random vector uk. The
true gradient, on the other hand, is:

∇L(θi) = lim
h→0

L(θ + huk)− L(θ)

h
u
(i)
k ,

The error between the estimated gradient ĝi and
the true gradient ∇L(θi) arises from two main
sources. To derive a theoretical bound for the es-
timation error, ∥ĝi − ∇L(θi)∥, we consider both
sources of error.

1. Finite Difference Approximation Error. By
Taylor expansion, for a small step size h, we have:

L(θ + huk)

=L(θ) + h∇L(θ)Tuk +
h2

2
uT
kH(θ)uk +O(h3),

where H(θ) is the Hessian of L at θ. Thus, the
error due to finite differences is of order O(h).
Specifically, the bias in the gradient estimate is
proportional to:

Bias = O

(
h

2
∥H(θ)∥

)
.

2. Monte Carlo Sampling Error. The gradient
estimate involves averaging over m samples of ran-
dom perturbations. By the Central Limit Theorem,
the variance of the gradient estimate decreases with
the number of samples m. Specifically:

Variance = O

(
σ2

m

)
,

where σ2 is the variance of the directional deriva-
tive∇L(θ)Tuk.

The total error can be expressed as a combination
of the bias and variance components. Using a norm
(e.g., Euclidean norm) to quantify the error, we
have:

∥ĝi −∇L(θi)∥ ≤ O (h∥H(θ)∥) +O

(
σ√
m

)
.

Thus, the theoretical bound on the error is:

∥ĝi −∇L(θi)∥ = O

(
h∥H(θ)∥+ σ√

m

)
.

Step 2. Derivation of the upper bound
for ∥ĝ2

i − diag(∇2L(θi))∥. Let’s denote
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diag(∇2L(θi)) as the diagonal of the true Hessian,
and Ĥi = ĝ2

i as the diagonal Hessian estimated
from the zero-order gradient estimate, where each
diagonal element is given by ĝiĝi.

To derive the theoretical bound for ∥Ĥi −Hi∥,
we consider:

∥Ĥi −Hi∥ = ∥ĝ2
i − diag(∇2L(θi))∥.

Let’s rewrite ĝi as:

ĝi = ∇L(θi) + ϵi,

where ϵi represents the noise introduced due to
the limited number of perturbations.

The estimated diagonal Hessian element for each
component i can be written as:

Ĥ
(i)
i = (∇L(θi) + ϵi)

2.

Expanding this expression gives:

Ĥ
(i)
i = (∇L(θi))2 + 2∇L(θi)ϵi + ϵ2i .

The true diagonal Hessian element is:

H
(i)
i = diag(∇2L(θi))

(i).

Thus, the error for each component can be ex-
pressed as:

Ĥ
(i)
i −H

(i)
i = (∇L(θi))2+2∇L(θi)ϵi+ϵ2i−H(i)

i .

To find the bound for the error, we need to bound
the terms involving ϵi:

1. Term 1: 2∇L(θi)ϵi
This term represents the interaction between

the true gradient and the noise. Since ∥ϵi∥ ≤
O
(
h∥H(θi)∥+ σ√

m

)
, we can bound this term as:

|2∇L(θi)ϵi| ≤ 2∥∇L(θi)∥O
(
h∥H(θi)∥+

σ√
m

)
.

2. Term 2: ϵ2i
The noise squared term can be bounded by:

ϵ2i ≤ O

(
h2∥H(θi)∥2 +

σ2

m

)
.

Combining these results, we have:

∥Ĥi −Hi∥

=O

(
(∇L(θi))2 −Hi +

(
h2∥H(θi)∥2 +

σ2

m

))

+ 2∥∇L(θi)∥
(
h∥H(θi)∥+

σ√
m

)
.

Thus, the error bound for the diagonal Hessian
estimation is:

∥Ĥi −Hi∥

=O(h2∥H(θi)∥2 +
σ2

m
+ 2h∥∇L(θi)∥∥H(θi)∥

+
2∥∇L(θi)∥σ√

m
).

Step 3. Combination of the bounds. Let
ui = clip

(
(ĝiĝi)

−1ĝi, λi

)
. By the definition of

the clipping operation:

||ui||∞ ≤ λi.

Thus:

||θ+
i − θi|| = η||ui|| ≤ ηλi

√
di.

Define the function:

f(t) = L(θi + (1− t)ui).

By Assumption 4.2, we know that:

f ′′(t) ≤ 2f ′′(0) for all t ∈ [0, 1],

and hence:

f(1) =f(0) + f ′(0) +
∫ 1

0

∫ s

0
f ′′(s) ds dt

≤f(0) + f ′(0) + f ′′(0).

The ZO estimate introduces noise ϵ in the estimated
gradient:

ĝi = ∇L(θi) + ϵ.

Thus:

f ′(0) = −η
d∑

i=1

min
{
λi |ĝi|, (ĝiĝi)−1|ĝi|2

}
.

Using the bound for the error ||ϵ|| ≤
O
(
h ||H(θi)||+ σ√

m

)
, the noise affects the effec-

tive descent rate. Therefore, the new bound for
f ′(0) is:

f ′(0) ≈ −η
d∑

i=1

min{λi (|∇L(θi)|+ |ϵ|),

(ĝiĝi)
−1(|∇L(θi)|+ |ϵ|)2}.
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The Hessian is estimated using ĝ2
i . The noise in

the diagonal Hessian estimate affects the curvature.
Therefore, for the second derivative, we have:

f ′′(0) ≤ η2
d∑

i=1

min
{
λi |ĝi|, (ĝiĝi)−1|ĝi|2

}
.

The noise in the Hessian (δH ) affects the estima-
tion, and thus the bound is affected as follows:

f ′′(0) ≤ η2
d∑

i=1

min{λi(|∇L(θi) + ϵ|),

(ĝiĝi)
−1(|∇L(θi) + ϵ|)2}.

Combining these results, the descent bound is af-
fected by both the gradient and Hessian noise. We
obtain:

L(θ+
i )− L(θi) ≤− (η − η2)

d∑

i=1

min{λi |ĝi|,

(ĝiĝi)
−1|ĝi|2}+ C(δ2g + δ2H),

where C is a constant that depends on the prop-
erties of the function L. δg represents the
bound on the gradient estimation noise δg =

O
(
h ||H(θi)||+ σ√

m

)
, and δH represents the

bound on the Hessian estimation noise:

δH = O(h2||H(θi)||2 +
σ2

m
+

2||∇L(θi)||σ√
m

+ 2h ||∇L(θi)|| ||H(θi)||).

Lemma 11 (Convergence Lemma). For any λi ≤
Ri√
di

and some Ti ∈ N, if L(θTi,i) −minL ≤ µ2
i
8 ,

then for all t ≥ Ti,

1. θt+1,i = θt,i − η(∇2
θi
L(θt,i))

−1∇L(θt,i),

2. L(θt,i) − minL ≤ (1 − η(1 −
η))t−Ti(L(θTi,i)−minL).

Proof. By Lemma 10, we have for all t ≥ T ,
(θt,i) − minL ≤ L(θT,i) − minL ≤ µ2

8 . There-
fore, by Lemma 7, we have that ∥∇2L(θt,i) −
∇L(θt,i)∥2 ≤ λi for all t ≥ T , which implies
clipping will not happen.

For the second claim, by Lemmas 5 and 10, we
have that

L(θt+1,i)− L(θt,i)

≤− (η − η2)

d∑

i=1

σ−1
i |vT

i ∇L(θt,i)|2,

where vi is the i-th row of matrix V from the eigen-
decomposition of∇2L(θi). By further simplifica-
tion,

− (η − η2)∇L(θt,i)T (∇2L(θt,i))
−1∇L(θt,i)

≤− η(1− η)(L(θt,i)−minL),

thus, we conclude that the loss decreases at least
geometrically by the factor (1 − η(1 − η)) each
step after time T , thereby proving the convergence
rate.

Theorem 2. Under Assumptions 1 and 2, let η = 1
2

and λi =
Ri

2
√
di

. The update reaches a loss at most
ϵ in

T ≤ max
i

{
di ·
(
L(θ0,i)−minL

)

+ ln

(
µiR

2
i

32diϵ

)}
.

steps, where L is the loss function, θ0,i is the
initial parameter vector for layer i.

Proof. By Lemma 10 (Descent Lemma), we have
a guarantee on the descent rate per step for each
layer i:

L(θt+1,i)− L(θt,i)

≤− (η − η2)

di∑

j=1

min

{
λi;

1

σi,j

∣∣vTi,j∇L(θt,i)
∣∣2
}
,

where σi,j is the j-th eigenvalue corresponding
to the i-th layer, and vi,j is the corresponding eigen-
vector.

Applying this result, we estimate a decrease in
the loss function per layer under the condition that
the gradient norm for layer i is significantly larger
than the error threshold ϵ. This phase continues
until the loss reduction per step for each layer falls
below a certain threshold, say when:

L(θt,i)−minL ≤ µ2
i

8
.

Phase 2: Exponential Decay.
Once the loss for each layer is sufficiently re-

duced, Lemma 11 guides the convergence from
this point:

L(θt,i)−minL

≤(1− η(1− η))t−Ti(L(θTi,i)−minL),
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indicating an exponential decay in error for each
layer. The factor (1 − η(1 − η)) represents the
contraction per step, dependent on the learning rate
η.

To calculate the total number of steps Ti for each
layer, consider that:

µ2
i

8
≈ ϵ⇒ Ti ≈

ln
(
L(θ0,i)−minL

ϵ

)

− ln(1− η(1− η))
.

Simplifying the expression for η = 1
2 , we get:

Ti ≈ 2 ln

(
L(θ0,i)−minL

ϵ

)
,

since ln(1− η(1− η)) ≈ −η(1− η) for small η.
Combining Phases 1 and 2.
For each layer, combining the estimates from

Phase 1 and Phase 2, the total number of steps Ti

needed to reach a loss of ϵ for layer i is given by:

Ti ≤ di · (L(θ0,i)−minL) + ln

(
µiR

2
i

32diϵ

)
,

Finally, to ensure convergence across all layers,
we take the maximum over all layers:

T ≤ max
i

{
di · (L(θ0,i)−minL) + ln

(
µiR

2
i

32diϵ

)}
.

This completes the proof by integrating the rapid
initial decrease and the subsequent exponential de-
cay for each layer.

This reflects an improved convergence rate due
to the use of different λi values for different layers,
reducing the dependency on the total dimension d
into the dimension maxi di.

G Memory Usage Analysis

Figure 9: GPU memory consumption for finetuning
different OPT models on the SST-2 dataset with a max-
imum sequence length of 1000 per example. More
details can be found in Appendix 12.

Method zero-shot/MeZO(FT) HELENE HELENE-F(FT)

1.3B 1xA100 (4GB) 1xA100 (11GB) 1xA100 (5.5GB)
2.7B 1xA100 (7GB) 1xA100 (18GB) 1xA100 (10GB)
6.7B 1xA100 (14GB) 1xA100 (42GB) 1xA100 (20GB)
13B 1xA100 (26GB) 1xA100 (79GB) 1xA100 (39GB)

Method ICL Adam(FT)

1.3B 1xA100 (6GB) 1xA100 (27GB)
2.7B 1xA100 (8GB) 1xA100 (55GB)
6.7B 1xA100 (16GB) 2xA100 (156GB)
13B 1xA100 (29GB) 4xA100 (316GB)

Table 12: Memory usage on the MultiRC (average to-
kens=400) dataset. Results of ICL and full-parameter
tuning are from MeZO (Malladi et al., 2023).
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