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Abstract

We explore a new language model inver-
sion problem under strict black-box, zero-shot,
and limited data conditions. We propose a
novel training-free framework that reconstructs
prompts using only a limited number of text
outputs from a language model. Existing meth-
ods rely on the availability of a large number
of outputs for both training and inference, an
assumption that is unrealistic in the real world,
and they can sometimes produce garbled text.
In contrast, our approach, which relies on lim-
ited resources, consistently yields coherent and
semantically meaningful prompts. Our frame-
work leverages a large language model together
with an optimization process inspired by the ge-
netic algorithm to effectively recover prompts.
Experimental results on several datasets de-
rived from public sources indicate that our ap-
proach achieves high-quality prompt recovery
and generates prompts more semantically and
functionally aligned with the originals than
current state-of-the-art methods. Additionally,
use-case studies introduced demonstrate the
method’s strong potential for generating high-
quality text data on perturbed prompts.

1 Introduction

With the advancement of large language models
(LLMs), prompt engineering has become an essen-
tial technique for expanding their capabilities (Sa-
hoo et al., 2024). This method uses task-specific in-
structions, or prompts, to enhance model effective-
ness without altering core parameters. Widely used
prompting techniques, such as few-shot prompting
(Radford et al., 2019), chain-of-thought prompting
(Wei et al., 2022), and retrieval-augmented gen-
eration (Lewis et al., 2020), have proven highly
practical in diverse applications.

With the increasing focus on prompt engineer-
ing, where input prompts are carefully modified
to improve the outputs generated by LLMs, a
natural question arises: can we infer the input

prompt based solely on the outputs? This challenge,
termed language model inversion by Morris et al.
(2024), has gained prominence with the growing
prevalence of LLMs offered as “services,” where
users interact only with outputs while the original
prompts remain concealed. This situation presents
a dual interest, with users seeking to deduce con-
cealed prompts and service providers striving to
protect them, thereby rendering language model
inversion an increasingly pertinent problem (Mor-
ris et al., 2024). Furthermore, recovering prompts
has practical applications, such as enabling users to
adapt inferred prompts for generating high-quality
outputs tailored to new contexts, e.g., transforming
a marketing plan for one product into a similarly
high-quality plan for another with minimal adjust-
ments. In Appendix C, we demonstrate that text
generated through our language model inversion
method is more favored by human evaluators than
text derived from existing high-quality templates.

Morris et al. (2024) develop a model trained to
predict the input prompt by leveraging the prob-
ability distributions and logits from the last layer
of an LLM. Building on this, Zhang et al. (2024)
further propose a model that uses only the textual
outputs to infer the prompts, without relying on
internal model parameters. However, this approach
is developed under the assumption that a large num-
ber of outputs (64) are available to recover a single
prompt and that access to user prompts for com-
plex system prompts is granted. These assumptions
rarely hold true in real-world scenarios. Further-
more, both methods demand extensive training on
large datasets, which can be resource-intensive. Ad-
ditionally, their outputs are heavily influenced by
the form of the training data, so they perform poorly
on out-of-domain prompt recovery and sometimes
generate non-linguistic sequences. These limita-
tions, alongside the broader interest in uncovering
and protecting prompts and the practical utility of
generating high-quality data, motivate the develop-
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Figure 1: Performance comparison of RPE and
output2prompt on the REhard dataset. Evaluates the
effectiveness of recovering complex system prompts
from outputs generated by different target LLMs.

Figure 2: Examples of non-linguistic prompts recovered
by output2prompt and prompts recovered by RPE for
the same latent prompts.

ment of a robust, training-free, zero-shot language
model inversion method that operates with limited
output access.

In this paper, we propose a novel language model
inversion technique, reverse prompt engineering
(RPE), which assumes the target LLM is a black-
box model accessible only through limited text
outputs. RPE infers the underlying prompt from
these outputs by leveraging the LLM’s reasoning
capabilities in combination with an iterative opti-
mization algorithm inspired by the genetic algo-
rithm (Sampson, 1976). Importantly, RPE in-
troduces no new models and requires no training.
The core idea of RPE is to conceptualize lan-
guage model inversion as a reverse-engineering
optimization problem, using the relationship be-
tween prompts and outputs to iteratively refine po-
tential candidates. By utilizing the reasoning ability
of an LLM to generate candidate prompts, RPE
evaluates these candidates based on the similarity

of their generated outputs to the true output. This
evaluation serves as the basis for iterative optimiza-
tion, guided by a genetic algorithm intertwined
with an LLM, to progressively reduce discrepan-
cies between candidates and the latent prompt, and
to converge on the most plausible prompt.

Compared to previous methods (Morris et al.,
2024; Zhang et al., 2024), RPE is more resource-
efficient, requiring only minimal information from
the target LLM (five text outputs) while ensur-
ing the generation of natural language outputs.
RPE outperforms state-of-the-art methods, achiev-
ing an average 5.1% improvement in cosine sim-
ilarity over output2prompt (Zhang et al., 2024)
on Llama-2 Chat (7B) outputs and 9.5% on
GPT-3.5 outputs across different datasets. Ad-
ditionally, RPE demonstrates superior perfor-
mance in system prompt recovery tasks, surpassing
output2prompt by an average of 5.8% in cosine
similarity.

Our main contributions are as follows.

• We provide the first study of the language
model inversion problem under black-box,
zero-shot, and limited data conditions.

• We design an innovative evaluation method
that selects the most accurate recovered
prompt from multiple candidates by their cor-
responding outputs, thereby enhancing the ac-
curacy of prompt recovery in scenarios involv-
ing multiple candidate prompts.

• We purpose a novel optimization algorithm
that leverages the LLM itself as an optimizer
to further enhance prompt recovery accuracy.

The code and datasets are available at
https://github.com/hanklee97121/RPE_
Reverse_Prompt_Engineering.

2 Related Works

2.1 Prompt Engineering

Prompt engineering is a closely related field, es-
sential for optimizing LLMs by designing prompts
that guide model outputs across diverse tasks with-
out altering model parameters (Sahoo et al., 2024).
Initial prompting techniques include zero-shot and
few-shot prompting (Radford et al., 2019; Brown
et al., 2020), demonstrating that LLMs can han-
dle novel tasks without additional training. Chain-
of-thought (CoT) prompting by Wei et al. (2022)
introduced step-by-step reasoning, which inspired
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further techniques to enhance LLM reasoning and
logic abilities (Zhang et al., 2023; Wang et al.,
2023; Zhao et al., 2024; Hu et al., 2023; Yao et al.,
2024a; Long, 2023; Yao et al., 2024b; Weston and
Sukhbaatar, 2023; Zhou et al., 2023b; Wang et al.,
2024; Diao et al., 2024; Chia et al., 2023). To
improve accuracy and mitigate hallucinations, Re-
trieval Augmented Generation (RAG) integrates
information retrieval into prompting (Lewis et al.,
2020), and its variations enhance real-time knowl-
edge access for LLMs (Yao et al., 2023; Dhuliawala
et al., 2024; Li et al., 2024b; Yu et al., 2024b).
Other approaches incorporate external tools for im-
proved accuracy (Paranjape et al., 2023; Wu et al.,
2024). Techniques for automating prompt genera-
tion have also emerged, using LLMs as optimizers
to craft more effective prompts (Zhou et al., 2023a;
Yang et al., 2024), alongside specialized prompting
methods for specific tasks such as code generation
(Nye et al., 2021; Chen et al., 2023; Li et al., 2023b,
2024a), emotion comprehension (Li et al., 2023a),
user intent understanding (Deng et al., 2023), and
abstract concept extraction (Zheng et al., 2024).

The primary distinction between prompt opti-
mization (PO) methods and RPE lies in their ob-
jectives. PO methods are aimed at prompt engi-
neering, where, given multiple input-output pairs
and an initial instruction for a specific, known
task, the instruction is refined for improved perfor-
mance. In contrast, RPE tackles language model
inversion, where the task is to infer the original
input prompt based solely on outputs from a lan-
guage model, making this inherently more chal-
lenging than prompt engineering. Furthermore, PO
methods require a large number of input-output
pairs (typically more than 50) to derive the final in-
struction, whereas RPE can achieve high-quality
prompt recovery with as few as five outputs. Addi-
tionally, PO methods rely on straightforward eval-
uation and refinement processes, typically assess-
ing candidate instructions based on accuracy, as
they address tasks with a single correct answer
(e.g., mathematical problems or true-false ques-
tions). Conversely, RPE employs more nuanced
evaluation and candidate generation processes, fo-
cusing on the similarities and differences between
candidate outputs and reference answers, due to
its applicability to more complex tasks with mul-
tiple viable answers, such as creating a marketing
plan or generating startup ideas. These distinctions
highlight that the two problems are very different
and thus RPE requires a different treatment.

2.2 Language Model Inversion

Unlike prompt engineering, which focuses on
crafting prompts to achieve better outputs, lan-
guage model inversion aims to infer the under-
lying prompt from given outputs. Morris et al.
(2024) first introduce this problem, developing
logit2prompt, a solution that extracts prompts
from next-token probability distributions using a
T5-based model (Raffel et al., 2020) with addi-
tional training. Building on logit2prompt, Zhang
et al. (2024) propose output2prompt, the current
state-of-the-art method for language model inver-
sion. The output2prompt method, also T5-based,
can recover prompts using only text outputs, with-
out requiring access to model logits (Zhang et al.,
2024).

Our proposed method, RPE, differs in that
it requires neither access to model logits nor
user prompts, making it particularly suitable
for closed-source LLMs like GPT-3.5. Un-
like output2prompt, which still relies on the
user prompt when reconstructing complex system
prompts, RPE depends solely on LLM outputs,
requiring no additional information. Moreover,
RPE is unique in that it does not require training,
training data, or large quantities of LLM outputs,
needing only five outputs compared to the 64 re-
quired by output2prompt. Since logit2prompt
and output2prompt use T5-based models with
smaller vocabularies than modern LLMs, RPE
offers the advantage of generating prompts with
more flexibility in word choice.

3 Methodology

We formalize the language model inversion prob-
lem as follows: given a set of n responses, denoted
as A = {a1, a2, . . . , an}, generated by submitting
a single prompt p to an LLM n times, the objective
is to design a language model inversion method, de-
noted as RPE, that can infer the original prompt p
from the response set A, which means the output p′

of RPE should be the same as the original prompt
p:

min d(p, p′) (1)

LLM(p)n = A (2)

RPE(A) = p′ (3)

Here, d could be any score measuring the difference
between two prompts. The intriguing part is that p
is latent and thus unknown. In this setup, the LLM
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Figure 3: Example of One Answer One Shot inference.

Figure 4: Example of Five Answers One Shot and Five
Answer Five Shots inference.

is treated as a black box, meaning that, aside from
the text outputs, no access is granted to its internal
parameters or mechanisms. Moreover, the RPE
method is developed under a zero-shot constraint,
where no prior training data or additional examples
of outputs (beyond the given set) are available, and
no training is permitted in the development of the
method.

3.1 The “Naive” Approach

Our initial approach aims to directly infer the
prompt p using exactly one response a generated by
the LLM. Specifically, we query the LLM to infer
the underlying prompt based on the given response
a, a method we refer to as one-answer-one-shot
reverse prompt engineering (RPE1A1S). As illus-
trated in Figure 3, we provide an example where
GPT-3.5 is tasked with recovering a prompt from
a response related to start-up ideas. The recovered
prompt p′ contains some elements of the original
prompt p but also includes additional details drawn
from the response a, such as “customer service,”
“data analytics,” and “cybersecurity,” which are not
part of the original prompt. We hypothesize that
inferring the prompt from only one response may
lead the LLM to overemphasize specific details
from the response a that were not present in the
original prompt p, as demonstrated in the exam-
ple shown in Figure 3. A detailed example is in
Appendix D.

3.2 Five Answers Inference

We then extend the naive method by using mul-
tiple responses to recover the underlying prompt.
Given a set of responses A, we inform the LLM
that these responses are generated from the same
prompt p and ask the LLM to recover p based on
the entire set A. We set n = 5 in our experiments
and refer to this method as five-answers-one-shot
reverse prompt engineering (RPE5A1S). In Fig-
ure 4, we present an example of RPE5A1S using
GPT-3.5. Compared to RPE1A1S , the recovered
prompt p′ in RPE5A1S captures more elements
of the original prompt, such as “two,” “AI,” and
“missions.” Additionally, RPE5A1S avoids incor-
porating response-specific details, like “customer
service” and “data analytics,” which were mistak-
enly included by RPE1A1S . However, there is still
room for improvement, as the recovered prompt
does not fully replicate the original prompt.

Building on RPE5A1S , we propose an enhanced
approach that generates multiple candidate prompts
and selects the most accurate one. Specifically,
given a set of responses A with n answers, we
ask the LLM to recover the prompt p and gen-
erate a set of m candidate prompts, denoted as
P ′ = {p′1, p′2, . . . , p′m}. To evaluate the quality of
each candidate prompt in P ′, we first pass each
recovered prompt p′i to the LLM and obtain a cor-
responding response a′i. We then compute the
ROUGE-1 score between a′i and each answer in
A, yielding a set of scores S′

i = {s′i1, s′i2, . . . , s′in}.
While it is intuitive to take the average of S′

i as the
final score, a promising prompt might generate a
response a′i that closely matches one of the answers
in A but not the others. To address this, we combine
both the mean and the maximum of S′

i to define the
final score for p′i as s′i =

mean(S′
i)+max(S′

i)
2 .

The recovered prompt with the highest score s′i
is selected as the final prompt. In our experiments,
we use n = 5 and m = 5, referring to this approach
as five-answers-five-shots reverse prompt engineer-
ing (RPE5A5S). As shown in Figure 4, the recov-
ered prompt using RPE5A5S captures more details
from the original prompt compared to RPE5A1S ,
although further improvement is still possible. De-
tailed examples of RPE5A1S and RPE5A5S are in
Appendix D.

3.3 Iterative Method

To further enhance our approach, we introduce an
iterative method aimed at progressively optimiz-
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Figure 5: Workflow of RPEGA

ing the recovered prompt with each iteration. In-
spired by the genetic algorithm (Sampson, 1976),
we designed an algorithm that generates new candi-
date prompts based on existing ones and selects the
most accurate candidates using a custom evaluation
strategy. We refer to this iterative reverse prompt
engineering method as RPEGA. The complete
workflow of the algorithm is depicted in Figure
5. Below, we describe the key components of this
algorithm in detail.

3.3.1 Initialization
Given a set of responses A with n answers,
we first ask the LLM to infer the underlying
prompt p, generating m candidate prompts P ′ =
{p′1, p′2, . . . , p′m}, following the same procedure as
in RPE5A5S (see Section 3.2). We then evalu-
ate each candidate prompt p′i using the evaluation
method from RPE5A5S , where we pass each can-
didate p′i to the LLM to generate a response a′i
and calculate its performance score s′i. The per-
formance score s′i for each candidate prompt is
calculated by averaging the mean and max of the
ROUGE-1 score between a′i and each response in
A. This completes the initialization phase of the
RPEGA algorithm.

3.3.2 Iteration
Following the initialization step, we iteratively gen-
erate new candidate prompts and replace the ex-
isting candidates with better-performing ones. In
each iteration, we start with the set of original re-
sponses A, the current candidate set P ′, the re-
sponses A′ = {a′1, a′2, . . . , a′m} generated by can-
didate prompts P ′, and the corresponding perfor-
mance scores S′ = {s′1, s′2, . . . , s′m}. For each can-
didate prompt p′i and its corresponding response a′i,
we first ask the LLM to identify the differences
between a′i and the responses in A. Then, we
request the LLM to summarize these differences
and use the summary as a guide to modify the

Figure 6: Process of generating new candidate prompts
from the old ones.

candidate prompt p′i. The process is illustrated
in Figure 6 in detail. This process yields a new
set of candidate prompts, P ′′ = {p′′1, p′′2, . . . , p′′m},
for which we calculate the performance scores
S′′ = {s′′1, s′′2, . . . , s′′m} as in the previous step.
Based on these scores, we update the candidate
set by selecting the best m prompts from the union
of all 2m prompts (i.e., P ′ and P ′′).

3.3.3 Output
After repeating the iteration process for k iterations,
we select the best-performing prompt from the fi-
nal candidate set P ′ based on the highest perfor-
mance score in S′. This selected prompt, denoted
as p′o, is the final recovered prompt produced by
the RPEGA method.

4 Computational Assessment

In this section, we present the results of testing our
proposed methods on various datasets, comparing
their performance with the benchmark approach of
output2prompt (Zhang et al., 2024). The evalu-
ation focuses on assessing the semantic and func-
tional similarity between the recovered and original
prompts. Specifically, we employ cosine similarity
as the evaluation metric, as it best aligns with the
language model inversion objective (Zhang et al.,
2024). Throughout all experiments, GPT-3.5 serves
as the backbone model for RPE.
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Figure 7: Example prompt from each dataset.

4.1 Dataset
We evaluate our method using five datasets: Awe-
some ChatGPT Prompts1 (153 complex instruc-
tional role-based prompts), MetaMathQA (Yu et al.,
2024a) (395,000 linguistically diverse math word
problems), TruthfulQA (Lin et al., 2022) (817 truth-
fulness assessment prompts), Alpaca-GPT4 (Peng
et al., 2023) (52,000 simple instruction-following
prompts), and Dolly Creative Writing2 (673 cre-
ative writing prompts). Detailed descriptions are
provided in the appendix A.

Figure 7 presents an example prompt from each
dataset. To ensure comprehensive evaluation across
diverse LLM tasks, including general conversation,
complex instructions, and creative writing, we sam-
ple prompts from all five datasets. However, eval-
uating large datasets via the OpenAI API incurs
significant costs. To balance cost efficiency and
evaluation rigor, we randomly select 20 prompts
from each dataset, forming our primary test set,
REprompt, while maintaining diversity and com-
plexity.

To assess how prompt complexity impacts RPE
performance, we construct two additional test sets:
REhard, containing 100 challenging prompts from
Awesome ChatGPT Prompts, and REeasy, consist-
ing of 100 simpler prompts from Alpaca-GPT4.
These three test sets enable a thorough evaluation
of both the proposed method and the benchmark
model across varying levels of prompt complexity.

4.2 Benchmark
We compare the performance of our best-
performing method, RPEGA, against the state-of-
the-art benchmark output2prompt (Zhang et al.,
2024). To ensure a fair comparison, given that

1https://github.com/f/awesome-chatgpt-prompts
2https://huggingface.co/datasets/lionelchg/

dolly_creative_writing

Figure 8: Demonstration of system prompt and user
prompt.

output2prompt is trained on outputs from Llama-
2 Chat (7B), experiments are performed on outputs
generated by both Llama-2 Chat (7B) and GPT-3.5.
Following Zhang et al. (2024), cosine similarity
is chosen as the evaluation metric due to its align-
ment with the objectives of language model inver-
sion. To this end, we generate text embeddings us-
ing OpenAI’s “text-embedding-ada-002” and “text-
embedding-3-large” models, as well as the open-
source embedding models “bge-m3” (Chen et al.,
2024) and “gtr-t5-large” (Ni et al., 2022).

Zhang et al. (2024) also introduce a variant of
output2prompt, referred to as output2prompts,
specifically designed to recover system prompts
but requiring access to user prompt. In Figure 8,
we present an example from the REhard dataset,
which includes both system and user prompts.

In output2prompts, the user must generate a
total of 64 distinct outputs with 64 different out-
puts. These 64 outputs are then fed into the
trained output2prompts model to infer the system
prompt. To ensure a fair comparison, we evalu-
ate output2prompts under two additional settings:
(1) using a randomly selected subset of five outputs
from the 64, denoted as output2prompts5, and (2)
using the same five outputs utilized by RPEGA,
denoted as output2prompts5o. This comparison is
conducted exclusively on the REhard dataset, as the
other two datasets consist mostly of user prompts
and do not include system prompts. Additionally,
since output2prompts is trained on GPT-3.5 input
and output, all experiments comparing RPEGA

with output2prompts are performed using GPT-
3.5 outputs.

4.3 Experiments

We conduct experiments on all three datasets using
the methods described in Section 3 with parame-
ters n = 5, m = 5, and k = 5. As shown in Fig-
ure 9, RPEGA achieves higher cosine similarity
than output2prompt across all datasets, regardless
of whether the outputs are generated by Llama-2
Chat (7B) or GPT-3.5. On average across all 3
datasets, RPEGA outperforms output2prompt by
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Figure 9: Comparison of RPRGA and output2prompt.

5.1% on Llama-2 Chat (7B) outputs and by 9.5%
on GPT-3.5 outputs, demonstrating its superior per-
formance.

Furthermore, we evaluate RPEGA’s cosine sim-
ilarity on different datasets to measure its perfor-
mance under different prompt complexities. Figure
9 shows that RPEGA performs best on REprompt,
achieving average cosine similarities of 80.1% on
GPT-3.5 outputs and 78.6% on Llama-2 Chat (7B)
outputs. In contrast, on REhard, its performance
drops by 7.1% and 3.6%, respectively, due to the
complex and restrictive nature of these prompts
(e.g. “do not write explanations” and “answer only
ASCII drawing”). Additionally, performance de-
clines when switching from REprompt to REeasy,
as prompts from MetaMathQA (in REprompt) are
easier to recover than those from Alpaca-GPT4,
the source of REeasy. When solving mathemat-
ical problems, LLMs tend to repeat the original
question, facilitating recovery, whereas REeasy

prompts often lead to extra elaboration that hinders
prompt recovery. Overall, RPEGA performs best
on REprompt, moderately on REeasy, and worst on
REhard, but still handily beating the benchmark,
indicating that detailed instructions with output
restrictions present the greatest challenge for lan-
guage model inversion.

With n = m = k = 5, RPEGA issues
230 queries to an LLM and processes approxi-
mately 100,000 input tokens and 30,000 output
tokens to recover a prompt. The benchmark
output2prompt is trained on 30,000 prompts, with

Figure 10: Comparison of RPEGA and
output2prompts on system prompt recovery
(REhard).

each prompt necessitating 64 outputs—resulting
in a total of 1,920,000 queries to an LLM dur-
ing training. The final output2prompt model is
based on the T5 architecture and comprises of
222 million parameters. Next, we evaluate the
ability of RPEGA to recover the system prompt
on REhard and compare it with output2prompts
and its variants with additional settings. Figure
10 reports the performance of each method. On
system prompt recovery, RPEGA achieves higher
cosine similarity than both output2prompts5 and
output2prompts5o. When evaluated with “text-
embedding-3-large,” RPEGA exhibits an improve-
ment of 20.4% over output2prompts5 and 11.7%
over output2prompts5o. Moreover, when com-
pared with output2prompts, which utilizes all 64
outputs, RPEGA achieves higher cosine similarity,
with enhancements of 2.3% using “text-embedding-
ada-002” and 8.1% using “text-embedding-3-large.”
These findings indicate that RPEGA produces
prompts that are more semantically and function-
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Figure 11: Example of RPEGA and output2prompt
recovering a prompt. To conserve space, we do not
include all 64 outputs generated for output2prompts,
but instead present one output for each query mentioned
earlier.

Figure 12: Example of recovered prompts of RPEGA

and output2prompt.

ally aligned with the original system prompts than
those recovered by output2prompts.

Furthermore, since RPEGA uses an LLM to
generate the recovered prompt, the output is guar-
anteed to be in natural language. In contrast, the
output of output2prompt and output2prompts
occasionally produces sequences that are not lan-
guage. As illustrated in Figure 11, RPEGA suc-
cessfully recovers a complete, coherent sentence,
whereas output2prompt and output2prompts do
not. The example in Figure 11 represents a partic-
ularly challenging task, as RPEGA has only five
identical answers, containing only ASCII symbols,
to work with. In contrast, output2prompts has ac-
cess to more information, especially from the query
“Provide 16 scenarios where I can use your services.
Start with ‘1:’.” Despite this difficulty, RPEGA

still outperforms output2prompts, demonstrating

its robustness in generating natural and semanti-
cally meaningful prompts, even under constrained
conditions.

Another key advantage of RPEGA is its abil-
ity to generate prompts in free form, whereas
output2prompt and output2prompts are con-
strained to producing prompts in a specific for-
mat, especially output2prompts, as shown in Fig-
ure 12. This limitation of output2prompts may
stem from its training data, where all prompts fol-
low a uniform structure. Additionally, models
in output2prompt and output2prompts have a
smaller vocabulary size compared to GPT-3.5, lead-
ing to the possible inclusion of “<unk>” tokens
in its outputs, as seen in Figure 12. An ablation
study comparing the different variants of RPE is
included in Appendix B. A use-case study of RPE
is included in Appendix C.

5 Conclusion

We address the language model inversion prob-
lem under black-box, zero-shot conditions, intro-
ducing reverse prompt engineering. RPE utilizes
only an LLM and an optimization algorithm to
recover prompts from as few as five text outputs.
Experiments on three datasets (REprompt, REhard,
REeasy) demonstrate that RPE effectively recon-
structs high-quality prompts. On average across
all datasets and embedding models, RPE outper-
forms output2prompt by 7.3% in cosine similarity
on language model inversion. In system prompt re-
construction, RPE recovers prompts from REhard
that are 5.8% closer in cosine similarity to the orig-
inal prompts than output2prompts, a variant tai-
lored for system prompt recovery.

6 Limitations

While our approach demonstrates significant ad-
vancements in language model inversion under
zero-shot and black-box conditions, there are sev-
eral limitations to consider. First, although the
method requires only five outputs from the target
LLM, making it resource-efficient compared to ex-
isting approaches, real-world scenarios may im-
pose stricter constraints where fewer outputs are
available, which could affect its applicability. Sec-
ond, the quality and informativeness of the outputs
play a critical role in the effectiveness of the prompt
recovery process. In cases where the latent prompt
restricts the target LLM to produce minimal or un-
informative responses—such as outputs containing
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only ASCII characters, as demonstrated in Figure
11—our method has room for improvement to han-
dle such situations more effectively. Lastly, the
computational cost of iterative optimization can
scale with the complexity of the task, posing chal-
lenges for large-scale or time-sensitive applications.
Addressing these limitations offers opportunities
for future work to further enhance the robustness
and applicability of the proposed framework.
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A Public Datasets and Ethics

• Awesome ChatGPT Prompts3: This is a cu-
rated set of 153 prompts resembling system
messages used in real-world LLM-based APIs
and services. These prompts are structured as
detailed instructions, designed to adapt the
LLM to specific roles, such as a food critic or
a Python interpreter. The dataset is released
under the CC0-1.0 license.

• MetaMathQA: Introduced by Yu et al.
(2024a), MetaMathQA consists of 395,000
linguistically diverse math word problems,
ranging in difficulty from primary school to
graduate school. This dataset is released under
the MIT license.

• TruthfulQA: TruthfulQA(Lin et al., 2022)
consists of 817 questions across 38 categories,
including health, law, finance, and politics.
These questions are designed in a way that
some humans might answer incorrectly due to
false beliefs or misconceptions. The dataset
is intended to evaluate whether a language
model generates truthful answers to such ques-
tions. This dataset is released under the
Apache-2.0 license.

• Alpaca-GPT4: Alpaca-GPT4 contains
52,000 instruction-following examples
generated by GPT-4 using prompts from the
Alpaca dataset, and it was used to fine-tune
LLMs in the work by Peng et al. (2023). The
dataset is released under the CC-BY-NC-4.0
license.

• Dolly Creative Writing4: This dataset con-
sists of 673 prompts designed to assess the

3https://github.com/f/awesome-chatgpt-prompts
4https://huggingface.co/datasets/lionelchg/

dolly_creative_writing

Figure 13: Comparison of different RPE methods on
three datasets.

creativity of a language model. Each prompt
is either a question or an instruction, guiding
the LLM to perform a creative writing task.

The benchmark code for output2prompt is dis-
tributed under the MIT license. All datasets and
code employed in this study are solely intended
for academic research, in accordance with their
designated usage. We have verified the ethical doc-
umentation for each dataset and conducted exten-
sive sampling to ensure the absence of personally
identifying or objectionable content. The code and
datasets generated in this study will likewise be
released under the MIT license.

Moreover, our questionnaire explicitly obtained
participants’ consent to utilize their anonymized
responses in our research.

B Ablation Study

In the ablation study, we compare the performance
of RPEGA and its variants depicted in Section 3.
In addition, we examine the impact of different
approaches to calculating the performance score s′

for the RPEGA variant. Specifically, the variant
RPEGAm computes s′i by selecting the maximum
ROUGE-1 score between a′i and each response in
set A, while RPEGAa calculates s′i as the average
ROUGE-1 score between a′i and all responses in
A. The best and thus default RPEGA method, by
contrast, determines s′i as the average of both the
mean and maximum ROUGE-1 scores.

As illustrated in Figure 13, RPEGA consistently
outperforms the other RPE variants. The results
from RPEGAm and RPEGAa indicate that using
either the maximum or the average score alone for
performance calculation compromises the quality
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of the inferred prompts. Furthermore, the superior
performance of RPE5A5S over other non-iterative
approaches underscores the efficacy of our evalu-
ation strategy in selecting high-quality recovered
prompts.

C Use Case

A potential use case of RPE is extracting prompts
from high-quality content, such as marketing plans,
video game designs, and song lyrics, enabling users
to refine and reuse them for generating similar high-
quality outputs. To explore this, we collect samples
from these domains and use RPEGA to infer the
original prompts. The inferred prompts are then
used to generate new content—marketing plans
for different products, game designs with varied
themes, and lyrics featuring diverse motifs—which
are compared against outputs generated using stan-
dard templates.

Participants in our evaluation are recruited from
a pool of college students. An online question-
naire has been developed and its link is distributed
through email and social media platforms to reach
individuals who had not previously been known to
the research team, thereby ensuring an unbiased
sample. To assess quality, we conducted a blind
evaluation in which participants reviewed both tem-
plate generated and RPE generated responses for
the same task without any indication of their ori-
gin. Participants were asked to select the response
they deemed more favorable, with the option cho-
sen by the majority being classified as the higher
quality response. Table 1 presents the human evalu-
ation results, demonstrating that RPE outperforms
template based methods in generating content pre-
ferred by users. This result indicates that RPE is
better for producing more high-quality data than
templates.

In Figure 14, we illustrate the workflow for gen-
erating new high-quality data using both RPE and
templates, exemplified by generating a marketing
plan for Product B based on Product A’s plan.

Figure 14: Workflow to generate new high quality an-
swers.

C.1 Use Case Experiments: Marketing Plan

We begin with a marketing plan for an energy drink
as our initial reference point. Using both the RPE
and template methods, we then generate marketing
plans for three distinct products: “a new smart-
phone targeting seniors aged 65 and older”, “a
financial software tailored for small businesses and
individual investors”, and “developmental toys de-
signed for toddlers under one year old”. As shown
in Table 1, for each product, a greater number of
participants favored the RPE-generated market-
ing plan over the template-generated one. Overall,
90.5% of responses preferred the RPE method,
while only 9.5% favored the template method. De-
tailed marketing plans are provided in Appendix
C.4.

C.2 Use Case Experiments: Video Game
Design

Using the game design of the popular video game
“Don’t Starve” as a reference, we created high-
quality designs for other games. We prompted
GPT-3.5 to design games based on the following
themes: “a rogue-like game incorporating elements
of Greek mythology and combat,” “a kart racing
game that includes multiplayer and item-based me-
chanics,” and “a first-person shooter game combin-
ing elements of war and counter-terrorism.” Using
both RPE and template methods, we produced
a total of six game designs. As shown in Table
1, participants preferred the game designs gener-
ated by RPE over those created by the template
method. Overall, 76.2% of responses favored the
RPE-generated designs, while only 23.8% pre-
ferred the template-generated designs. Complete
game designs are presented in Appendix C.5.

C.3 Use Case Experiments: Lyrics

For the lyrics generation task, we first use “Cruel
Summer” by Taylor Swift as a reference to create
lyrics for songs with the following themes: “evok-
ing sadness and grief with themes of loss, winter,
and religion,” “evoking happiness and joy with
themes of family, friends, college life, and flowers,”
and “evoking excitement and positivity with themes
of courage, hope, and the future.” We then use
“Master of Puppets” by Metallica as another refer-
ence to generate lyrics for songs themed around
“love and heartbreak,” “self-discovery and personal
growth,” and “nostalgia and memories.” For each
theme, we generated two sets of lyrics using both
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Marketing Plan Video Game Design Lyrics
Example Number Template RPE Template RPE Template RPE

1 2 5 3 4 1 6
2 0 7 0 7 1 6
3 0 7 2 5 1 6
4 / / / / 2 5
5 / / / / 3 4
6 / / / / 3 4

summary 2(9.5%) 19(90.5%) 5(23.8%) 16(76.2%) 11(26.2%) 31(73.8%)

Table 1: Result of the Use Case Experiment. Record the number of people who think the answer generated by the
corresponding method is better than the other.

the template and RPE methods, producing a total
of twelve lyrics. Participants preferred the RPE-
generated lyrics, with 73.8% of responses favoring
them over the template-generated versions, which
received only 26.2% preference. All lyrics are pro-
vided in Appendix C.4.

C.4 Complete Examples of Market Plan

Figure 15 presents the reference marketing plan,
the prompt recovered using RPE, and edited
prompts used to generate marketing plans for dif-
ferent products. Complete marketing plans gener-
ated from perturbed RPE-recovered prompts and
template-based prompts are provided in Figures 16,
17, and 18.

C.5 Complete Examples of Video Game
Description

Figure 19 displays the reference video game de-
scription, along with the prompt recovered using
RPE and modified prompts used to generate de-
scriptions for video games with varying themes.
The full set of video game descriptions gener-
ated from perturbed RPE-recovered prompts and
template-based prompts is presented in Figures 20,
21, and 22.

C.6 Complete Examples of Lyrics

Figures 23 and 24 present the reference song lyrics,
along with the prompt recovered using RPE and
modified prompts used to generate lyrics in differ-
ent styles and themes. The complete set of lyrics
generated from perturbed RPE-recovered prompts
and template-based prompts is shown in Figures
25, 26, 27, 28, 29, and 30.

D Detailed Examples of RPE1A1S ,
RPE5A1S , and RPE5A5S

A detailed example of RPE1A1S is in Figure 31.
Detailed examples of RPE5A1S and RPE5A5S are
in Figure 32.
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Figure 15: Reference marketing plan and the prompt recovered by RPE, along with perturbed prompts used to
generate marketing plans for different products.

Figure 16: Example 1 of market plan generation.
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Figure 17: Example 2 of market plan generation.

Figure 18: Example 3 of market plan generation.
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Figure 19: Reference video game description and the prompt recovered by RPE, along with perturbed prompts
used to generate video description for different themes.

Figure 20: Example 1 of video game description generation.
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Figure 21: Example 2 of video game description generation.

Figure 22: Example 3 of video game description generation.
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Figure 23: Reference song lyrics 1 and the prompt recovered by RPE, along with perturbed prompts used to
generate song lyrics for different themes and motifs.

Figure 24: Reference song lyrics 2 and the prompt recovered by RPE, along with perturbed prompts used to
generate song lyrics for different themes and motifs.
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Figure 25: Example 1 of song lyrics generation.

Figure 26: Example 2 of song lyrics generation.
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Figure 27: Example 3 of song lyrics generation.

Figure 28: Example 4 of song lyrics generation.
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Figure 29: Example 5 of song lyrics generation.

Figure 30: Example 6 of song lyrics generation.
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Figure 31: A detailed example of One Answer One Shot inference.
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Figure 32: Detailed examples of Five Answers One Shot and Five Answers Five Shots inference.
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