




computational overhead. Recent advances in multi-
modal large language models (MLLMs) have en-
abled direct GUI element localization (Hong et al.,
2024; Cheng et al., 2024; Lin et al., 2024), partially
bridging the visual perception gap. (Tang et al.,
2025) introduces a dual-system framework that
combines fast prediction with systematic analysis
to provide robust GUI foundation. OS-Atlas (Wu
et al., 2024) and UGround (Gou et al., 2024) cre-
ated large datasets and trained models to handle
out-of-distribution tasks. (Zhou et al., 2025; Lee
et al., 2025a; Yuan et al., 2025; Xia and Luo, 2025)
explored improving grounding performance using
reinforcement learning. (Tao et al., 2025) proposes
a framework and method to diagnose and reduce
localization errors in MLLMs for GUI interaction,
improving interpretability and robustness.

2.2 Test-time scaling

Test-time scaling dynamically adjusts compu-
tational resources during inference to enhance
model performance, with recent studies showing it
can outperform increased train-time computation
through strategies like best-of-N sampling and ex-
ternal veri�cation (Snell et al., 2024; Lee et al.,
2025b; Hosseini et al., 2024). In localization tasks,
test-time scaling has also been framed as a search
problem (Wu and Xie, 2024). Inspired by its suc-
cess in LLMs, similar techniques have been ap-
plied to GUI agents, such as leveraging action his-
tories (Zhang and Zhang, 2023), gathering external
information (Nakano et al., 2022), zooming in and
searching (Nguyen, 2024), and adaptively re�ning
focus regions (Luo et al., 2025). (Ge et al., 2025)
proposes Multi-Region Fusion Decoding (MRFD),
a training-free method that reduces hallucinations
in LVLMs by leveraging inter-region consistency
to improve factual grounding.

3 Methodology

To address the limitations of existing GUI agents
in handling high-resolution images and their imbal-
anced performance between text and icon under-
standing, we propose a novel framework called
DiMo-GUI. As shown in the algorithm 1, our
method integrates a dynamic zooming mechanism
and a modality decoupling strategy. Speci�cally,
DiMo-GUI dynamically narrows down the target
region through iterative zooming on the input high-
resolution screenshot, progressively re�ning the lo-
calization until the target coordinates are identi�ed.

Algorithm 1: Dual-Modality Grounding
with Dynamic Zooming
Input: Full-resolution GUI imageI,

instructionQ
Output: Final grounded coordinateC �

1 Step 1: Text modality grounding.
2 Ctext← DynamicGrounding(I,Q, “text”)
3 Step 2: Icon modality grounding.
4 Cicon← DynamicGrounding(I,Q, “icon”)
5 Step 3: Candidate selection.
6 C � ← Select (Ctext, Cicon, I, Q)
7 return C �

8 Function: DynamicGrounding(I, Q,
modalitym)

9 Initialize zoom region:R← I
10 for t = 1 to max_iters do
11 Predict coordinate:
12 Ct ← PredictCoordinate (R,Q,m)
13 if StopCondition (Ct , t) then
14 return Ct

15 R← CropAround(R,Ct ) // update
region

16 return Cmax

In parallel, DiMo-GUI decouples text-based and
icon-based GUI elements, processing each modal-
ity independently to reduce cross-modal interfer-
ence. This design mitigates a common shortcom-
ing of vision-language models (VLMs), which typ-
ically exhibit stronger capabilities in text under-
standing compared to visual icon interpretation.

3.1 Dynamic Grounding Mechanism

High resolution remains one of the most signi�cant
challenges in GUI grounding, often leading to long
inference times and excessive visual redundancy. A
natural solution to this problem is to iteratively nar-
row down the target region, progressively re�ning
the prediction of the target coordinates. To this end,
DiMo-GUI introduces a dynamic zooming mecha-
nism that enables ef�cient and focused localization.
Speci�cally, the original high-resolution image is
�rst passed to the model for an initial prediction.
Based on the returned coordinates, a bounding box
is cropped using the center point and a scaling fac-
tor of half the original image size. This cropped
region is then used as input for the next round of
inference. Iterative zooming in allows the model to
capture �ner details of the target element, making

26248



Stage 1: Divide Modalities Stage 2: Dynamic Zooming

Stage 3: Select Answer

In this UI screenshot, please find the TEXT element 
corresponding to the command "{}" (with bbox). Only 
focus on text content, ignore icons.

In this UI screenshot, please find the ICON element 
corresponding to the command "{}" (with bbox). Only 
focus on graphical icons, ignore pure text.

You are given a UI screenshot and a user 
command: add notes
There are two candidate UI elements:
Candidate 1 (text-based): [718, 741, 821, 887]
Candidate 2 (icon-based): [0, 444, 524, 555]
Based on the command and the description of candidates, 
choose which candidate (1 for text, 2 for icon) better 
matches the command.
Just answer with '1' or '2'.

TEXT ICON

Instruction: add notes

1

Answer: [718, 741, 821, 887] Answer: [0, 444, 524, 555]

Figure 3: Processing pipeline of DiMo-GUI.DiMo-GUI decomposes the grounding process into three steps:
(1) Divide Modalities: It processes textual and icon elements in the screenshot separately to prevent interference
between the two modalities. (2) Dynamic Zooming: Based on an initial prediction, the model centers on the returned
coordinates and crops a region half the size of the original image for more precise localization. (3) Decision Making:
By analyzing the instruction along with the screenshot, the model determines whether the text-based or icon-based
candidate is more likely to be the correct answer.

it easier to recognize. At the same time, it sig-
ni�cantly reduces redundant regions in the image,
thereby increasing the signal-to-noise ratio. This
helps the model receive less visual interference
and focus more effectively on identifying the target
element. As the iterations proceed, the model's
attention becomes increasingly concentrated, ulti-
mately enabling accurate target localization with
minimal computational overhead.

The number of iterations in the zooming process
plays a critical role in determining the �nal ground-
ing performance. Since different GUI screenshots
and user instructions vary in complexity, it is evi-
dent that a �xed number of iterations is not optimal
for all cases. To address this, we introduce a dy-
namic iteration mechanism that allows the model to
autonomously decide whether to DiMo-GUI early
during the progressive narrowing process. This
approach not only reduces unnecessary iterations
and improves inference ef�ciency but also prevents
the model from "overthinking"—i.e., drifting into
incorrect regions after having already located the
correct target. Speci�cally, the method determines
whether to continue zooming based on the spatial
distance between the inference results before and
after zooming. If the spatial distance between the
predicted coordinates is smaller than one-sixth of
the diagonal length of the pre-zoom image, it indi-
cates that the target region has been localized with

suf�cient precision. In this case, further zooming
is stopped, and the �nal coordinates are returned
as the result. The above process is described as
StopCondition (Ct , t) in the algorithm 1, which
decides whether to stop dynamic zooming in thet
iteration based on the predicted coordinatesCt . Ad-
ditionally, to prevent excessive zooming, we set an
upper limitmax_iters of seven zooming iterations.

3.2 Modality Decoupling Strategy

Another major challenge in GUI grounding lies
in the uneven performance across different UI
modalities, particularly between text-based and
icon-based elements. Across multiple benchmarks,
existing models consistently perform much better
on text than on icons. This imbalance stems from
two main issues: �rst, models often lack the abil-
ity to effectively recognize and understand icons,
making it dif�cult to correctly associate them with
the given instruction; second, models tend to over-
rely on textual information due to their stronger
language processing capabilities, often focusing on
related text even when it is not the correct target.
To address this issue, we propose a Modality De-
coupling Strategy based on a divide-and-conquer
paradigm, which explicitly separates the handling
of text and icons to reduce cross-modality interfer-
ence and improve grounding reliability across both
modalities.
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Grounding Model Development Creative CAD Scienti�c Of�ce OS Avg

text icon avg text icon avg text icon avg text icon avg text icon avg text icon avg text icon avg

QwenVL-7B (Bai et al., 2023) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1
GPT-4o (OpenAI, 2023) 1.3 0.0 0.7 1.0 0.0 0.6 2.0 0.0 1.5 2.1 0.0 1.2 1.1 0.0 0.6 0.0 0.0 0.0 1.3 0.0 0.8
SeeClick (Cheng et al., 2024) 0.6 0.0 0.3 1.0 0.0 0.6 2.5 0.0 1.9 3.5 0.0 2.0 1.1 0.0 0.5 2.8 0.0 1.5 1.8 0.0 1.1
Qwen2-VL-7B (Wang et al., 2024b)2.6 0.0 1.3 1.5 0.0 0.9 0.5 0.0 0.4 6.3 0.0 3.5 3.4 1.9 3.0 0.9 0.0 0.5 2.5 0.2 1.6
ShowUI-2B (Lin et al., 2024) 16.9 1.4 9.4 9.1 0.0 5.3 2.5 0.0 1.9 13.2 7.3 10.6 15.3 7.5 13.5 10.3 2.2 6.6 10.8 2.6 7.7
CogAgent-18B (Hong et al., 2024) 14.9 0.7 8.0 9.6 0.0 5.6 7.1 3.1 6.1 22.2 1.8 13.4 13.0 0.0 6.5 5.6 0.0 3.1 12.0 0.8 7.7
Aria-UI (Yang et al., 2024b) 16.2 0.0 8.4 23.7 2.1 14.7 7.6 1.6 6.1 27.1 6.4 18.1 20.3 1.9 16.1 4.7 0.0 2.6 17.1 2.0 11.3
Claude Comp.Use (Hu et al., 2024)22.0 3.9 12.6 25.9 3.4 16.8 14.5 3.7 11.9 33.9 15.8 25.830.1 16.3 26.211.0 4.5 8.1 23.4 7.1 17.1
UI-TARS-7B (Qin et al., 2025) 58.4 12.4 36.150.0 9.1 32.8 20.8 9.4 18.0 63.9 31.8 50.063.3 20.8 53.530.8 16.9 24.547.8 16.2 35.7
UI-TARS-72B(Qin et al., 2025) 63.0 17.3 40.857.1 15.4 39.618.8 12.5 17.264.6 20.9 45.763.3 26.4 54.842.1 15.7 30.150.9 17.5 38.1

OS-Atlas-4B (Wu et al., 2024) 7.1 0.0 3.7 3.0 1.4 2.3 2.0 0.0 1.5 9.0 5.5 7.5 5.1 3.8 4.4 5.6 0.0 3.1 5.0 1.7 3.7
+ DiMo-GUI 13.6 1.4 7.7 9.6 2.8 6.7 4.1 4.7 4.2 30.6 4.5 19.3 24.3 15.1 22.2 7.5 2.2 5.1 14.6 4.0 10.6
∆ 6.5 1.4 4.0 6.6 1.4 4.4 2.1 4.7 2.7 21.6 1.0 11.8 19.2 11.3 17.8 1.9 2.2 2.0 9.6 2.3 6.9
OS-Atlas-7B (Wu et al., 2024) 33.1 1.4 17.7 28.8 2.8 17.9 12.2 4.7 10.3 37.5 7.3 24.4 33.9 5.7 27.4 27.1 4.5 16.8 28.1 4.0 18.9
+ DiMo-GUI 66.9 21.4 44.860.6 21.7 44.350.3 14.1 41.468.1 21.8 48.080.8 52.8 74.369.2 28.1 50.565.2 24.5 49.7
∆ 33.8 20.0 27.131.8 18.9 26.438.1 9.4 31.1 30.6 14.5 23.646.9 47.1 46.942.1 23.6 33.737.1 20.5 30.8

UGround-7B (Gou et al., 2024) 26.6 2.1 14.7 27.3 2.8 17.0 14.2 1.6 11.1 31.9 2.7 19.3 31.6 11.3 27.917.8 0.0 9.7 25.0 2.8 16.5
+ DiMo-GUI 44.2 6.2 25.8 39.9 7.7 26.4 17.3 3.1 13.8 50.7 8.2 32.3 46.9 15.1 39.632.7 10.1 22.438.1 7.9 26.6
∆ 17.6 4.1 11.1 12.6 4.9 9.4 3.1 1.5 2.7 18.8 5.5 13.0 15.3 3.8 11.7 14.9 10.1 12.713.1 5.1 10.1
UGround-V1-7B (Gou et al., 2024)51.9 3.4 28.4 48.0 9.1 31.7 20.0 1.6 15.3 57.6 16.4 39.861.6 13.2 50.437.4 7.9 25.0 45.6 8.4 31.4
+ DiMo-GUI 57.8 21.4 40.160.1 18.1 42.545.7 18.8 39.175.7 28.2 55.179.7 37.7 70.051.4 30.3 41.861.7 24.3 47.4
∆ 5.9 18.0 11.7 12.1 9.0 10.8 25.7 17.2 23.818.1 11.8 15.318.1 24.5 19.614.0 22.4 16.816.1 15.9 16.0

Table 1: Comparison of various models on ScreenSpot-Pro.Without requiring any additional training or
external data, DiMo-GUI signi�cantly boosts the grounding performance of existing models. It nearly doubles the
performance metrics of OS-ATLAS-7B and UGroundV1-7B on the ScreenSpot-Pro benchmark, with substantial
improvements observed across all subsets.

Speci�cally, we perform two separate ground-
ing passes over the image: one focusing exclu-
sively on text elements and the other on icon ele-
ments. Each pass leverages the proposed dynamic
zooming mechanism to progressively re�ne the
target location within its respective modality. Af-
ter obtaining two candidate coordinate,Ctext and
Cicon from each modality, we feed them back into
the model alongside the original instruction and
full-resolution image. The model then evaluates
both candidates and determines which coordinate
is more likely to correspond to the correct target
C � , enabling more balanced and reliable grounding
across modalities.

4 Experiments

We conducted evaluations of the DiMo-GUI frame-
work on the most recent ScreenSpot-Pro (Li et al.,
2025) and ScreenSpot (Cheng et al., 2024) bench-
mark datasets, and the results demonstrate its supe-
rior grounding performance compared to existing
approaches.

4.1 Experimental Setup

Benchmarks and Models To thoroughly assess
the grounding capabilities of DiMo-GUI, we con-
duct extensive experiments on two GUI ground-
ing benchmarks: ScreenSpot (Cheng et al., 2024)
and ScreenSpot-Pro (Li et al., 2025). ScreenSpot
comprises 1,272 samples spanning mobile, desk-

top, and web platforms, emphasizing common in-
terface scenarios and element types. However,
due to its limited ability to represent professional
software environments, ScreenSpot-Pro was intro-
duced, featuring 23 professional applications with
high-resolution interfaces and complex layouts.

On the two latest datasets mentioned above, we
select the most recently reported state-of-the-art
GUI agents as baseline models,i.e., OS-Atlas (Wu
et al., 2024) and UGround-V1 (Gou et al., 2024).
OS-Atlas is a foundational action model that lever-
ages a multi-platform GUI grounding dataset and
addresses action naming con�icts during training
to enhance performance across desktop, mobile,
and web platforms for GUI agent development.
UGround-V1 is a universal visual grounding model
for GUI agents, trained on the largest dataset of
10M GUI elements and 1.3M screenshots, utilizing
web-based synthetic data and a slight adaptation
of the LLaVA architecture to accurately map refer-
ring expressions to pixel-level coordinates across
diverse platforms. We then apply our DiMo-GUI
framework to these models to evaluate its effective-
ness in enhancing the performance of GUI agent
systems.

4.2 Evaluation on Grounding Ability

We evaluate the effectiveness of the DiMo-GUI
framework on the latest ScreenSpot-Pro dataset.
As shown in Tab. 1, introducing the DiMo-GUI
framework leads to signi�cant performance break-
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get help for inserting charts

change alarm sound to Funkycancel downloading

change the font color to yellow

Figure 4:Quantitative results on ScreenSpot-Pro.On the left is the original model's prediction, where the red
box represents the ground truth and the blue dot indicates the predicted coordinates. On the right is the result after
integrating DiMo-GUI, where the model is able to localize more accurately according to the instruction.

throughs for both OS-Atlas-7B and UGround-V1-
7B, with OS-Atlas-7B achieving more than twice
the performance of its original version. After in-
tegrating the framework, all subsets show notice-
able performance improvements, demonstrating
that this training-free framework delivers surpris-
ingly strong gains in GUI grounding with minimal
cost. The qualitative results further demonstrate the
effectiveness of the DiMo-GUI framework. When
integrated with OS-Atlas-7B and UGround-V1-7B,
we observe that in the early iterations, the models
often fail to return accurate coordinates—primarily
due to the overwhelming contextual redundancy
caused by high-resolution input. However, after
several rounds of iterative zooming, the models
exhibit a signi�cantly increased likelihood of pin-
pointing accurate coordinates within speci�c re-
gions, indicating that DiMo-GUI effectively guides
the model's attention to more relevant visual cues.

In addition, we conduct evaluations on the
ScreenSpot dataset by integrating the DiMo-GUI
framework into OS-Atlas-7B and UGround-V1-7B.
As shown in Tab. 2, both models exhibit notable
performance improvements, further validating the
strong generalizability of this plug-and-play frame-
work. Despite its minimal computational cost,
DiMo-GUI consistently enhances grounding per-
formance across diverse task scenarios.

4.3 Analysis

In this section, we analyze the experimental re-
sults presented above to investigate the key factors
that in�uence GUI grounding performance. By ex-
amining the strengths and weaknesses of different
models across various tasks, we aim to identify

the main challenges and provide insights into how
future research in this �eld can further improve
grounding accuracy and generalization. Overall,
the performance of current GUI grounding models
is mainly affected by two key factors: ultra-high
resolution of GUI screenshots and limited visual
processing ability of VLMs.

Ultra-high resolution of GUI screenshots High
resolution has always been a critical issue in visual
tasks. Almost all visual tasks experience a decline
in performance as resolution increases, as higher
resolution brings in more redundant information,
making the task more challenging. GUI grounding
is no exception, especially since the UI elements
that need to be localized are often small. As shown
in Figure 1, performance in GUI grounding sig-
ni�cantly drops as the resolution increases. An
intuitive solution to this issue is zooming in, which
is the dynamic zooming approach proposed in this
paper. However, it can be observed that as the reso-
lution of the screenshots increases, the probability
of the model making errors in the �rst iteration
also increases, which inevitably leads to failure in
subsequent operations. On the contrary, blindly
enlarging the image can also introduce negative
effects—for instance, excessive magni�cation may
lead to a loss of global information. Determining
the appropriate degree of magni�cation plays a cru-
cial role in the task of GUI grounding, making a
dynamic zooming strategy essential.

Limited visual processing ability of VLMs An-
other reason for the poor performance of GUI
grounding is the weak ability of grounding models
to process visual information. Most current GUI
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GUI Agent MLLMs
Mobile Desktop Web

Average
Text Icon/Widget Text Icon/Widget Text Icon/Widget

InternVL-2-4B (Chen et al., 2024) 9.2 4.8 4.6 4.3 0.9 0.1 4.3
Fuyu (Bavishi et al., 2023) 41.0 1.3 33.0 3.6 33.9 4.4 19.5

Qwen2-VL-7B (Wang et al., 2024b) 61.3 39.3 52.0 45.0 33.0 21.8 42.9
CogAgent (Hong et al., 2024) 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick (Cheng et al., 2024) 78.0 52.0 72.2 30.0 55.7 32.5 53.4
OS-Atlas-4B (Wu et al., 2024) 85.7 58.5 72.2 45.7 82.6 63.1 70.1
UGround-7B (Gou et al., 2024) 82.8 60.3 82.5 63.6 80.4 70.4 73.3
OS-Atlas-7B (Wu et al., 2024) 93.0 72.9 91.8 62.7 90.9 74.3 82.5

+DiMo-GUI 96.2" 3.2 73.5" 0.6 96.4" 4.6 75.1" 12.4 89.7#1.2 75.4" 1.1 85.7" 3.2

UGround-V1-7B (Gou et al., 2024) 95.0 83.3 95.0 77.8 92.1 77.2 87.6
+DiMo-GUI 94.8#0.2 85.3" 2.0 94.3#0.7 82.1" 4.3 93.2" 1.1 80.3" 3.1 89.2" 1.6

Table 2:GUI Grounding Results of different GUI Agents on ScreenSpot-v2. Even though most models already
achieve high quantitative scores on this dataset, introducing DiMo-GUI still leads to noticeable performance
improvements across the vast majority of subsets.

save the file view more option of edit button view comments

Figure 5:Quantitative results on ScreenSpot-v2.On the Screenspot benchmark, which features relatively low
resolution and simple scenes, DiMo-GUI also enhances the model's localization capabilities.

agents and grounding models are based on existing
multimodal large models, and a common issue with
MLLMs is that their ability to process visual infor-
mation is weaker than their ability to handle text.
This causes the models to be more inclined to trust
textual information, a phenomenon known as hallu-
cinations in MLLMs. Since locating, recognizing,
and understanding icons is much more dif�cult
than processing text, GUI agents tend to rely more
on textual information during the grounding pro-
cess. The direct consequence is that if a screenshot
contains text related to the instruction, or even the
same text, GUI agents will almost completely aban-
don the search for icons and instead use the text as
the answer, even though it may not be helpful. The
modality decoupling approach we propose effec-
tively addresses this issue by allowing the model
to better consider both text and icon modalities,
which helps mitigate the drawbacks of the model's
weaker ability to process visual information.

As illustrated in the speci�c example in Fig. 6,
when the user instruction includes the word “edit,”
the agent tends to focus on elements related to edit-
ing during the search process. In this case, there
happens to be a text element labeled “Edit” in the
target region, which conveys a clearer semantic
meaning compared to the adjacent icon. Conse-
quently, the agent model is more likely to rely on
this text element, as it is not only easier to recog-
nize and understand but also highly relevant to the
instruction. However, this text element does not
actually ful�ll the intended function of the instruc-
tion. Its seemingly clear semantics, in this context,
become a source of distraction. When we modify
the prompt to explicitly direct the agent to focus
only on icon elements while ignoring text elements,
the model DiMo-GUIs selecting the “Edit” text
and instead searches for the appropriate icon. In-
terestingly, the “Edit” text then serves as valuable
contextual information that aids the model in locat-
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Focus on ICON elements. Ignore 
TEXT elements.

View more option of edit button.

Figure 6: Case Study. GUI agents often mistake
instruction-related text in the image as targets. Using
a divide-and-conquer approach with explicit modality
helps the agent locate the target accurately.

Table 3: Ablation on the number of iterative zooming
steps. Performance improves with more iterations, but
plateaus after 3 steps.

max_iter 0 1 2 3 4 5

acc (%) 18.4 18.7 40.2 46.7 48.848.9

ing the target icon—transforming from a source of
distraction into a helpful cue.

4.4 Ablation Study

Ablation on Dynamic Zooming To validate the
effectiveness of the proposed dynamic zooming
strategy, we compare DiMo-GUI with two base-
lines: (1) a no-zooming baseline where the model
directly predicts coordinates from the original
screenshot without any re�nement, and (2) a single-
pass static zooming variant that only zooms into
the region of interest once based on the initial pre-
diction. As shown in Tab. 3, the grounding perfor-
mance �rst improves and then declines with the
monotonic increase in iterations.This aligns with
intuition: in early stages, more zoom-in operations
help the model focus on target regions by �ltering
out irrelevant details. However, excessive zooming
can remove important context, hindering accurate
grounding. Our proposed dynamic iterative zoom-
ing approach signi�cantly improves grounding ac-
curacy over both baselines, which demonstrates the
importance of progressively re�ning the region of
interest.

Table 4: Ablation on Dynamic Grounding and Modali-
ties Dividing.

Method OS-Atlas-7B

vanilla 18.4
w DG 45.7
w MD 26.1
w DiMo-GUI 49.7

Ablation on Modality Decoupling We also in-
vestigate the impact of modality decoupling by
comparing the full DiMo-GUI framework with a
variant that treats all UI elements uniformly with-
out distinguishing between text and icon modali-
ties. The results in Tab. 4 show that modality-aware
processing leads to consistent performance gains.
This con�rms our hypothesis that different modal-
ities bene�t from specialized zooming strategies,
and that decoupling helps reduce visual ambiguity,
particularly in scenarios where icons are harder to
interpret than text.

5 Conclusion

DiMo-GUI is a training-free, plug-and-play frame-
work designed speci�cally for the GUI ground-
ing task. It incorporates two key components: dy-
namic zooming and modality decoupling, which
effectively address the challenges of handling high-
resolution screenshots and the limited visual un-
derstanding capability of existing GUI agents. By
progressively re�ning the focus region and treating
text and icon modalities separately, DiMo-GUI sig-
ni�cantly boosts grounding performance across var-
ious benchmarks and models, offering substantial
improvements with minimal computational over-
head.

6 Limitations

Currently our model employs a progressive expan-
sion strategy without any error correction or back-
tracking mechanisms. This can lead to early-stage
mistakes that propagate and become irrecoverable.
In future work, we plan to incorporate backtrack-
ing mechanisms using structures such as trees or
graphs, aiming to further improve the accuracy.
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