
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 26301–26332
November 4-9, 2025 ©2025 Association for Computational Linguistics

CopySpec: Accelerating LLMs with Speculative Copy-and-Paste

Razvan-Gabriel Dumitru1 Minglai Yang1 Vikas Yadav2 Mihai Surdeanu1

1University of Arizona 2ServiceNow Research
razvandumm@gmail.com

{mingly, msurdeanu}@arizona.edu
vikas.yadav@servicenow.com

Abstract

We introduce CopySpec, a simple yet effec-
tive technique to tackle the inefficiencies LLMs
face when generating responses that closely re-
semble previous outputs or responses that can
be verbatim extracted from context. CopySpec
identifies repeated sequences in the model’s
chat history or context and speculates that the
same tokens will follow, enabling seamless
copying without compromising output quality
and without requiring additional GPU mem-
ory. To evaluate the effectiveness of our ap-
proach, we conducted experiments using seven
LLMs and five datasets: MT-Bench, CNN/DM,
GSM8K, HumanEval, and our newly created
dataset, MT-Redundant. MT-Redundant, in-
troduced in this paper, transforms the second
turn of MT-Bench into a request for varia-
tions of the first turn’s answer, simulating real-
world scenarios where users request modifica-
tions to prior responses. Our results demon-
strate significant speed-ups: up to 2.35× on
CNN/DM, 3.08× on the second turn of se-
lect MT-Redundant categories, and 2.66× on
the third turn of GSM8K’s self-correction
tasks. Importantly, we show that CopySpec
integrates seamlessly with speculative decod-
ing, yielding an average 49% additional speed-
up over speculative decoding for the second
turn of MT-Redundant across all eight cat-
egories. While LLMs, even with specula-
tive decoding, suffer from slower inference
as context size grows, CopySpec leverages
larger contexts to accelerate inference, mak-
ing it a faster complementary solution. Our
code and dataset are publicly available at
https://github.com/RazvanDu/CopySpec.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing (NLP), enabling
great performance across a range of applications,
including code generation, machine translation,
and question answering. However, the computa-

The code with the correct indentation is:
```
def greet(name): 

return f"Hello, {name}!"
user_name = input("Enter your name: ") 
message = greet(user_name) 
print(message)
```

Correct the indentation for the following code: ```def
greet(name): return f"Hello, {name}!" user_name =
input("Enter your name: ") message =
greet(user_name) print(message)```

Figure 1: An example of redundant information, repre-
sented by blocks of the same color, that can be directly
copied during inference without re-computation. This
highlights the potential of our approach to make infer-
ence more efficient by leveraging repeated information,
reducing computational overhead, and improving speed.

tional demands of LLMs, particularly during in-
ference, pose significant challenges for real-time
applications and scalability in resource-constrained
environments. Sequential token generation, a core
bottleneck in standard decoding, limits through-
put and increases latency. Speculative Decoding
(Leviathan et al., 2022; Chen and Xu, 2023) has
emerged as a promising approach to mitigate this is-
sue by employing a smaller draft model to generate
multiple token sequences, which are then verified
by the larger target model. Despite its potential,
existing speculative decoding methods often fail
to fully exploit the inherent redundancies in pre-
viously LLM-generated outputs and context. For
example, in tasks such as summarization, retrieval
augmented generation (RAG), and multi-turn con-
versations, etc., response generations include sev-
eral text pieces verbatim from the context. In tasks
such as code fixing, error can be just from a spe-
cific line of code which requires editing and re-
generation while large portion of the code can be

26301

Input

Output

Extract a detailed description of the habitat of the
`wood duck` mentioned in the following text:
```
The mallard is a common duck found in freshwater 
wetlands, including ponds, lakes, marshes, and rivers, 
where it feeds on aquatic vegetation and small 
invertebrates. The wood duck thrives in wooded swamps, 
shaded ponds, and slow-moving streams surrounded by 
dense forest, often nesting in tree cavities. The eider duck 
inhabits coastal regions, preferring rocky shorelines and 
sheltered bays, where it dives for mollusks and 
crustaceans.
```

The wood duck thrives in wooded swamps, shaded
ponds, and slow-moving streams surrounded by dense
forest, often nesting in tree cavities. The eider duck

Let me know if you have other questions!

Figure 2: The figure illustrates the speculative copying process, CopySpec applied to extract the habitat description
of the "wood duck.". The input text provides the context and instructions. During generation, the system identifies
sequences of 3 consecutive tokens (we use words as tokens here for illustrative simplicity) that repeat within
the input. The blue rectangle in the input highlights the matching token sequence detected, which serves as the
starting point for speculative copying. From this match, the next 10 tokens are copied into the output. In the
output, the copied tokens are shown in blue and validated through speculative copying. Tokens accepted by the
model are highlighted in green, continuing the description seamlessly, while rejected tokens are shown in red with
a strikethrough. Extra tokens generated during the validation process are marked in yellow/gold, demonstrating
how the model extends the copied content as needed. This figure demonstrates how CopySpec efficiently leverages
repeated sequences to enhance text generation accuracy and speed by integrating both copied and dynamically
generated content. Accepted tokens are exactly those the target model would generate next under the same policy,
so the user-visible text is unchanged relative to standard decoding.

copy-pasted as it is. Further, only small edits are
required in previous generation for frequent queries
such as format changes, persona or style transfer,
etc and in case of improving LLM outputs such as
self-verification.

In this work, we present CopySpec, a mixed
speculative decoding framework designed to ex-
ploit redundancies or repeated generations from
previous iterations of responses or verbatim text
available in context. CopySpec incorporates a copy-
ing mechanism into the draft process, enabling the
model to detect and exploit predictable patterns
in token sequences (see Figure 2 for a summary
of the approach). By inferring subsequent tokens
directly from prior context, CopySpec reduces the
computational burden by simply copy pasting the
repeating response text instead of generating it. Im-
portantly, CopySpec can be combined with any
speculative decoding method to further improve
LLM inference speed. Basically, CopySpec com-
plements any existing speculative decoding method
by simply copy pasting text where repeated text
can be copied from context, or else response is
generated by the draft model. Our experiments on
various benchmarks—including HumanEval (Chen
et al., 2021), CNN/DM (See et al., 2017), GSM8K
(Cobbe et al., 2021), and MT Bench (Zheng et al.,
2023)—demonstrate that CopySpec delivers up to

an additional 49% speed-up over speculative de-
coding, without compromising output quality. In
fact, with greedy decoding (T=0), the final text is
identical to standard decoding, since only tokens
matching the target model’s decision are accepted
and all others are rolled back.

2 Related Work

2.1 Complementing Speculative Decoding
with Copying Mechanisms

Recent work has advanced speculative decoding
through multi-token verification (Leviathan et al.,
2022; Cai et al., 2024), adaptive pipelines (Liu
et al., 2024), token tree structures (Miao et al.,
2024), pipelined execution (Yang et al., 2024b),
draft–target distillation (Zhou et al., 2024), and
retrieval-based validation (He et al., 2024), with
further gains from optimal transport (Sun et al.,
2024) and early-layer reuse (He and Wang, 2023),
as well as decoding-time long-context mitigation
via positional contrastive decoding (PCD) (Xiao
et al., 2025).

Complementary efforts accelerate decoding via
prompt reuse: PLD and PLD+ copy prompt n-
grams (Saxena, 2023; Somasundaram et al., 2025),
PPD overlaps streams for GPU efficiency (Chen
et al., 2024), look-ahead decoding verifies disjoint
blocks (Fu et al., 2024), and token recycling repur-

26302

poses failed tokens (Luo et al., 2025). The closest
to our method is speculative decoding with suffix
alignment (Hu et al., 2024), though it introduces
significantly more algorithmic complexity and over-
head.

CopySpec complements all of the above with
minimal overhead. Instead of restricting reuse to
prompt-boundary n-grams, it uses a rolling hash to
find any repeated γ-token suffix in context and spec-
ulates on the next block. These candidate tokens
are verified directly, enabling integration with any
speculative decoding setup and yielding additional
speedups without compromising output quality.

2.2 Copying Mechanisms in Language Models

Copying mechanisms are widely adopted in NLP
to handle tasks that require replicating predictable
patterns or segments. Gu et al. (2016) introduced
CopyNet, a method that enables RNN sequence-to-
sequence models to predict words based on a mixed
probabilistic model of two modes, where one se-
lects words from the source sequence. Similarly,
in summarization tasks, Pointer Networks (Vinyals
et al., 2015) and Pointer-Generator Networks (See
et al., 2017) demonstrated the effectiveness of com-
bining copying and generation to improve output
fidelity and handle out-of-vocabulary tokens.

In line with motivations from previous ap-
proaches that have emphasized the importance
of copying mechanisms in various applications,
our work provides the simplest and most effective
method for LLM inference. CopySpec integrates
a copying mechanism into speculative decoding,
effectively reducing redundancy and enhancing ef-
ficiency across a wide range of tasks. By leveraging
repeated patterns in the model’s context, CopySpec
introduces a novel approach to accelerate inference
while maintaining high performance.

3 Method

Our method operates on the assumption that if the
last γ tokens generated by an LLM appear in the
context, the tokens that followed them in the input
context are likely to follow again in the output. Fig-
ures 1 and 2 illustrate this concept, By accurately
identifying the start of such a segment, we can
simply copy-paste all tokens within the block in a
single pass, bypassing the need for a draft model
to produce them incrementally. CopySpec accepts
a proposed token iff it equals the token the target
model would produce next under that policy; oth-

erwise it rejects and truncates the KV cache to the
accepted prefix. (Appendix B) Therefore, for any
prompt, CopySpec’s output is token-for-token iden-
tical to the baseline decoder under the same policy.
In the following subsections, we detail the imple-
mentation of this approach and its integration into
a Speculative Decoding framework, demonstrating
how it achieves substantial speed-ups.

3.1 Identifying the Tokens to Copy
To efficiently detect when the model begins gener-
ating a block that has already been produced ear-
lier, we maintain a hash map containing all subse-
quences of γ tokens from the context. During the
generation process, we search this hash map for
matches to the last γ tokens generated. Adding a
new tuple of tokens to the hash map and search-
ing for a match after each generated token has a
time complexity of O(γ). Since γ is typically set
to a small value (e.g., 3 or 5), the computational
overhead for processing new tokens and finding
matches is minimal and independent of the con-
text size. This stands in contrast to alternative ap-
proaches that require searching the entire context
for the last substring, which can become computa-
tionally expensive as the context grows.

Our technique efficiently leverages larger con-
texts, allowing inference to become faster as the
context size increases. By keeping γ fixed, we
ensure a balance between efficiency and precision.
Additionally, we explored methods to utilize partial
outputs without revealing the complete results and
investigated how the semantic relationship between
the preceding γ tokens and the subsequent token
can guide the optimal choice of γ. Further details
are provided in Appendix A.

3.2 Speculating on the Matched Tokens
After identifying a match of γ tokens in the con-
text, we extract the subsequent tokens from the
context, as shown in Figure 2. These extracted to-
kens, which we call Scopyspec, essentially simulate
the behavior of a draft model where the probability
for each token in Scopyspec is treated as 100%. But
instead of generating, CopySpec pastes the output
from context, thus avoiding the expensive compu-
tation of generation by draft model. 1

Scopyspec is then verified directly by the main
LLM. Each verification yields τ tokens that align
with the LLM’s ongoing generation, along with one

1If multiple matches exist for the last γ tokens, we simply
select the first, though more efficient strategies may exist.

26303

Model Variant Metric MT-Redundant CNN/DM GSM8K MT-Bench HumanEval
(Instruct) 0-shot 0-shot 3-turn 0-shot 0-shot

GPT-4 Score (↑) ROUGE-L (↑) Accuracy (↑) GPT-4 Score (↑) Accuracy (↑)

Qwen2.5-72B

CopySpec Tokens/Sec 6.42±0.01 8.68±0.01 7.01±0.01 5.55±0.01 7.01±0.01
Base model Tokens/Sec 4.82±0.01 3.70±0.01 4.55±0.01 4.83±0.01 4.98±0.01

Score 9.28 0.213 96% 9.18 87.8%

Qwen2.5-32B

CopySpec Tokens/Sec 13.82±0.01 18.34±0.03 14.84±0.01 12.15±0.01 14.41±0.01
Base model Tokens/Sec 10.26±0.01 7.79±0.01 9.76±0.01 10.29±0.01 10.46±0.01

Score 9.10 0.214 93% 8.97 89.6%

Qwen2.5-7B

CopySpec Tokens/Sec 54.05±0.11 47.15±0.08 63.37±0.54 46.85±0.08 48.79±0.01
Base model Tokens/Sec 39.88±0.02 25.25±0.05 38.58±0.03 39.98±0.01 33.63±0.06

Score 8.53 0.230 85% 8.41 82.3%

Llama3.1-70B

CopySpec Tokens/Sec 6.57±0.01 5.49±0.01 6.06±0.01 5.83±0.01 6.24±0.01
Base model Tokens/Sec 4.98±0.01 4.19±0.01 4.77±0.01 4.98±0.01 5.05±0.01

Score 8.74 0.204 90% 8.72 77.4%

Llama3.1-8B

CopySpec Tokens/Sec 49.28±0.08 37.44±0.19 49.60±0.01 45.84±0.07 46.49±0.48
Base model Tokens/Sec 35.51±0.01 26.57±0.11 35.19±0.09 35.43±0.01 37.57±0.22

Score 8.03 0.185 79% 7.54 65.9%

Table 1: Performance comparison across five instruct models (Qwen2.5-72B, Qwen2.5-32B, Qwen2.5-7B, Llama3.1-
70B, and Llama3.1-8B) using CopySpec versus baseline configurations on multiple datasets, including MT-
Redundant, CNN/DM, GSM8K, MT-Bench, and HumanEval. Metrics include model-specific scores (GPT-4, using
the 0613 checkpoint: Score, ROUGE-L, Accuracy), and token generation rates (tokens/sec). Results demonstrate
the effectiveness of CopySpec in enhancing computational efficiency without compromising quality, achieving
notable speed-ups and high token-copying rates in diverse tasks and model sizes.

additional guaranteed token. This approach mir-
rors vanilla speculative decoding (Leviathan et al.,
2022), where speculative tokens are appended to
the context, and the longest prefix matching the
LLM’s output is accepted. In Figure 2, Scopyspec

is highlighted in blue. The output shows the τ ac-
cepted tokens in green, the extra guaranteed token
in gold, and any rejected tokens in red.

After each newly pasted or generated token, or
copying attempt, we re-evaluate the last γ tokens
in the context to identify a new match, allowing the
model to utilize longer copyable blocks whenever
possible. This eliminates the need for manual token
generation between copying steps.

If any tokens in Scopyspec fail the verification
step, the model generates a new token that diverges
from the previously matched tokens. This ensures
that the next copying attempt yields a different
match, preventing the model from getting stuck in
repetitive loops.

3.3 Merging with Speculative Decoding

To further enhance our technique, we have inte-
grated it within a vanilla Speculative Decoding
framework. At each step of the generation pro-
cess, we attempt to find matches in the context.
If a match for the last γ tokens is found, we use
Scopyspec as draft tokens, effectively simulating a

draft model with perfect confidence in those tokens.
If no match is identified, we rely on a smaller draft
model to generate τ2 draft tokens. This dual ap-
proach allows us to dynamically choose between
leveraging repetitive patterns and utilizing specu-
lative decoding for efficient token generation in
contexts with little or no redundancy.

This integration provides the best of both worlds:
Speculative Decoding accelerates inference when
the context size is small or lacks redundancy, while
CopySpec builds on this speed-up in subsequent
steps by taking advantage of repetitive patterns as
the context size increases.

It is also worth noting that when used as a stand-
alone method, CopySpec does not require a draft
model. This eliminates the need for additional GPU
memory or modifications to the model, making it
lightweight and easy to deploy. We also explore
the interplay between these techniques in Section 6,
while Section B provides a detailed account of the
full implementation, including key-value caching.
Furthermore, we mainly focus on the integration
with vanilla speculative decoding(Leviathan et al.,
2022) in the paper for generalizability but we also
integrate it as part of the EAGLE(Li et al., 2025)
framework and compare it against baselines in Ap-
pendix C to showcase the technique’s potential.

26304

4 Experiments

4.1 Models and Hyperparameters

We evaluated our technique on five instruction-
tuned LLMs: Qwen2.5-72B, 32B, 7B (Yang et al.,
2024a), LLaMa3.1-70B, 8B (Grattafiori et al.,
2024), Vicuna-v1.3-13B, 7B(Zheng et al., 2023),
using 4 A100 GPUs with a batch size of 1 and tem-
perature 0. Unless stated, γ =3, |Scopyspec| =10,
and max generation length to 1024.

4.2 Evaluation Datasets

We evaluated our technique on five datasets, each
targeting specific aspects of model performance:
MT-Redundant, CNN/DM, GSM8K, MT-Bench,
and HumanEval. MT-Redundant was designed
to emphasize prompts requiring small variations
to previous outputs, while CNN/DM focuses on
extractive summarization. GSM8K evaluates the
model’s self-correction capabilities, MT-Bench
highlights scenarios with minimal copying poten-
tial to measure the technique’s overhead, and Hu-
manEval assesses coding capabilities. To accom-
modate the increased computational demands of
GSM8K and CNN/DM and our limited GPU re-
sources, we restricted these datasets to 100 sam-
ples, ensuring they were of comparable size to the
other datasets. For HumanEval, we employed the
same instruction format as presented in EvalPlus
(Liu et al., 2023). Detailed descriptions of all
prompts used in our experiments are provided in
Appendixes H and G.

4.3 Synergy with External Drafters

A detailed head-to-head between CopySpec
and the strongest publicly available accelera-
tors—EAGLE (Li et al., 2025), PLD (Soma-
sundaram et al., 2025) and SAM-D (Hu et al.,
2024)—appears in Appendix C. The headline fig-
ures (Table 7) show that combining EAGLE with
span-level copying lifts Vicuna-7B throughput on
MT-Redundant from 82→ 95 TPS, a 2.4× boost
over the greedy decoder.

4.4 MT-Redundant

Most existing NLP datasets focus on tasks in-
volving either single-turn interactions or scenarios
where the model must entirely change its response
in the second turn. These setups fail to capture
realistic use cases where a user might request slight
variations or refinements to a previous answer. To
address this gap and highlight the capabilities of

our technique, we introduce a new dataset, MT-
Redundant.

MT-Redundant is derived by modifying the sec-
ond turn of MT-Bench (Zheng et al., 2023). In our
dataset, the second turn replaces the original ques-
tion with a prompt asking the model to review its
previous answer and make specific adjustments or
variations. This modification simulates real-world
scenarios where incremental refinement or elabora-
tion is required. Example prompts from the dataset
are provided in Appendix G. For questions with
reference answers, we retained the original refer-
ence for the first turn and created a new reference
answer for the second turn to align with the revised
prompts.

Our dataset spans a diverse range of practical
use cases, categorized into eight groups: Coding,
Extraction, Humanities, Math, Reasoning, Role-
play, STEM, and Writing. These categories reflect
realistic tasks encountered in various domains. Ad-
ditionally, we adopted the same evaluation proce-
dure from MT-Bench to ensure consistency and
comparability of results.

By creating MT-Redundant, we aim to bridge
the gap between artificial benchmarks and practical
applications, providing a more representative eval-
uation for techniques like CopySpec in multi-turn
interactions with repetitive information.

5 Discussion of Results

We analyze our main results in Table 1 and Ta-
ble 2, which show the impact of our method on
performance and the percentage of tokens copied
across five LLMs and datasets. The results are
aggregated for all turns in MT-Redundant and MT-
Bench (two turns each) and the self-correction pro-
cess in GSM8K (three turns). Speedups range from
1.15× on MT-Bench, which has minimal redun-
dancy, using Qwen2.5-72B-Instruct, to 2.35× on
CNN/DM.

While these results are notable, the key strength
of our approach is its ability to enhance perfor-
mance as the context grows. To illustrate this, we
look at per-turn performance and analyze the ef-
fect of varying hyperparameters on the technique’s
effectiveness in a wide range of use-cases.

5.1 Speed-up by Turn and Category

We begin our analysis by examining the speedups
achieved on MT-Redundant for both the first and
second turns, as summarized in Table 3. The results

26305

Model MT-Redundant CNN/DM GSM8K MT-Bench HumanEval

Qwen2.5-72B 32.35% 82.48% 47.59% 20.53% 37.47%
Qwen2.5-32B 33.17% 81.82% 44.93% 22.61% 34.23%
Qwen2.5-7B 34.42% 65.67% 53.01% 22.86% 32.68%
Llama3.1-70B 31.42% 38.35% 30.07% 21.83% 27.54%
Llama3.1-8B 35.45% 38.32% 38.01% 30.01% 26.44%

Table 2: For each dataset, the share of tokens in the final model output that CopySpec successfully copied, expressed
as a percentage of the total number of tokens generated.

Turn 1 Turn 2

Category Base Model CopySpec Base Model CopySpec

Coding 5.12 ±0.01 5.62 ±0.01 4.61 ±0.01 9.33 ±0.01
Extraction 4.76 ±0.01 5.65 ±0.01 4.58 ±0.01 8.30 ±0.01
Humanities 5.09 ±0.01 5.33 ±0.01 4.55 ±0.01 5.45 ±0.01
Math 5.17 ±0.01 5.84 ±0.01 4.75 ±0.01 10.14 ±0.01
Reasoning 5.08 ±0.01 5.69 ±0.01 4.65 ±0.01 10.84 ±0.01
Roleplay 5.08 ±0.01 5.14 ±0.01 4.58 ±0.01 14.10 ±0.03
Stem 5.12 ±0.01 5.37 ±0.01 4.61 ±0.01 6.78 ±0.01
Writing 5.12 ±0.01 5.13 ±0.01 4.65 ±0.01 10.59 ±0.01
Average 5.07 ±0.01 5.47 ±0.01 4.62 ±0.01 9.44 ±0.01

Table 3: Comparison of model speeds measured in to-
kens/sec across two turns on MT-Redundant using Copy-
Spec (Qwen2.5-72B-Instruct, γ = 3). The technique
leads to an overall speed-up of 2.04 on the second turn.

indicate a substantial average speedup of 2.04×
for the second turn, compared to a more modest
speedup of 1.08× for the first turn. Notably, the per-
formance in tokens per second (TPS) achieved by
the model increases for the second turn, which fea-
tures a larger context size. In contrast, the baseline
model experiences a decline in TPS as the context
size increases. Another notable aspect is that the
observed speedup is highly dependent on the spe-
cific use case. For instance, we observe speedups
as low as 1.2× in the Humanities category and as
high as 3.08× for Roleplay. However, regardless
of the use case, the speedup for the second turn
remains consistently positive across all models for
both MT-Redundant and MT-Bench.

The results for all five models on MT-Redundant
and MT-Bench are detailed in Appendix D.2
and E.2 respectively. On average, the second
round of MT-Redundant achieves a significant 91%
speedup across all models, compared to 31% for
MT-Bench. Notably, even on MT-Bench, which
has less redundancy, the TPS achieved by Copy-
Spec in the second turn is almost always higher
than the baseline model’s TPS in the first turn.

5.2 The Effect of Gamma (γ)

We begin our analysis with Figure 3, which illus-
trates the tokens per second as a red line, alongside

the percentage of tokens copied out of the total
tokens generated, represented by a blue line for
the LLaMa3.1-8B-Instruct model on HumanEval.
The numbers adjacent to the dots indicate the num-
ber of attempts made to copy tokens. The figure
demonstrates that as γ increases, a smaller per-
centage of tokens is accepted, but the number of
copying attempts decreases exponentially, leading
to a significantly smaller overhead. A similar pat-
tern is observed for MT-Redundant and MT-Bench,
as presented in Figure 7 in the appendix.

1 2 3 4 5 6 7 8 9 10

Gamma ()

36

38

40

42

44

46

48

To
ke

ns
 p

er
 S

ec
on

d
(T

PS
)

24644

9815 5413
3684

2779 2194
1735 1402 1191

1009

10

15

20

25

30

35

40

45

Co
pi

ed
 T

ok
en

s P
er

ce
nt

ag
e (

%
)

Figure 3: This figure shows how the copying parameter
γ affects HumanEval performance using LLaMa3.1-8B-
Instruct. The solid red line indicates tokens per second
(TPS) with standard deviation shading; the dashed red
line marks baseline TPS. The blue line shows the per-
centage of successfully copied tokens, with adjacent
numbers indicating copying attempts.

Empirically, the optimal value of γ across
datasets is three, with two yielding similar perfor-
mance. It is also worth noting that all γ values
ranging from 2 to 10, consistently results in signifi-
cantly higher overall TPS, even across both turns
on MT-Redundant and MT-Bench.

5.3 Number of Tokens to Copy and Overhead
We evaluate the impact of the number of tokens
copied on performance and estimate CopySpec’s
overhead by setting the number of copied tokens to
zero, isolating the cost of token searching. Results
in Table 5 show minimal overhead with differences
from the base model nearly within the margin of

26306

Turn 1 Turn 2

Category Base Model Spec. Dec. Spec. Dec. Spec. Dec. Base Model Spec. Dec. Spec. Dec. Spec. Dec.
+ Copy (γ = 3) + Copy (γ = 5) + Copy (γ = 3) + Copy (γ = 5)

Coding 10.87 ±0.01 15.88 ±0.01 15.85 ±0.08 16.17 ±0.01 9.73 ±0.01 14.74 ±0.01 22.12 ±0.03 22.17 ±0.08
Extraction 10.09 ±0.01 14.07 ±0.02 15.49 ±0.08 15.41 ±0.01 9.79 ±0.01 14.50 ±0.02 18.56 ±0.10 18.69 ±0.01
Humanities 10.85 ±0.01 13.62 ±0.03 13.86 ±0.02 13.88 ±0.01 9.75 ±0.01 12.79 ±0.02 13.66 ±0.02 13.73 ±0.03
Math 11.01 ±0.01 16.94 ±0.05 17.23 ±0.01 17.30 ±0.02 10.05 ±0.01 15.45 ±0.01 24.28 ±0.03 24.11 ±0.04
Reasoning 10.80 ±0.02 13.96 ±0.02 14.18 ±0.20 14.24 ±0.07 10.05 ±0.01 14.20 ±0.01 21.56 ±0.09 20.35 ±0.07
Roleplay 10.90 ±0.01 12.80 ±0.04 12.84 ±0.01 12.97 ±0.01 9.93 ±0.01 15.14 ±0.03 29.02 ±0.01 27.95 ±0.09
Stem 10.90 ±0.01 14.25 ±0.03 14.33 ±0.01 14.56 ±0.01 9.83 ±0.01 13.94 ±0.01 17.22 ±0.02 17.26 ±0.02
Writing 10.92 ±0.01 12.56 ±0.05 12.64 ±0.01 12.73 ±0.01 9.94 ±0.01 14.96 ±0.02 26.64 ±0.04 25.08 ±0.08
Average 10.79 ±0.01 14.26 ±0.03 14.55 ±0.05 14.66 ±0.02 9.88 ±0.01 14.47 ±0.02 21.63 ±0.04 21.17 ±0.05

Table 4: Comparison of decoding strategies in MT-Redundant across two turns, using Qwen2.5-32B-Instruct as
the target model and Qwen2.5-7B-Instruct as the draft model. The table demonstrates the impact of CopySpec
integration at different parameter settings (γ = 3 and γ = 5), with the draft model generating 3 tokens. Results
highlight significant improvements in speed and token copying efficiency, particularly in the second turn, due to the
interplay between speculative copying and draft model generation.

error. Among the hyperparameters studied, setting
|Scopyspec = 10| delivers the best performance,
while larger values, such as 50 or 100, increase
overhead and reduce tokens-per-second efficiency.

Tokens Copied MT-Redundant MT-Bench

Base Model 35.63 ±0.04 35.30 ±0.16
0 35.46 ±0.01 35.22 ±0.04

5 47.64 ±0.11 44.69 ±0.11
10 49.52 ±0.01 45.74 ±0.01
50 45.56 ±0.08 41.59 ±0.04

100 39.41 ±0.06 35.76 ±0.05

Table 5: Tokens-per-second (TPS) on MT-Redundant
and MT-Bench with LLaMa3.1-8B-Instruct. Results
demonstrate that copying 10 tokens achieves optimal
performance, while larger copying attempts introduce
overhead, reducing overall efficiency.

Furthermore, we examine the effect of γ on τ
(the average number of tokens accepted). Figure 4
illustrates the average number of tokens accepted
per attempt on HumanEval using the LLaMA3.1-
8B-Instruct model. We observe an interesting pat-
tern: as γ increases, the average number of tokens
accepted per copying attempt also increases, in-
dicating that each attempt becomes more precise.
However, this comes at the cost of fewer overall
copying attempts, as demonstrated in Figure 3.

This finding is particularly relevant for integrat-
ing our technique into various speculative decod-
ing frameworks. If a framework already accepts a
high number of tokens per attempt, our technique
remains advantageous by increasing γ, enabling
more tokens to be copied with each attempt.

1 2 3 4 5 6 7 8 9 10

Gamma ()

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Ac
ce

pt
ed

 T
ok

en
s (

)

1.60

2.55

3.35

3.90
4.25

4.52
4.87

5.22
5.40

5.65

Figure 4: Average accepted tokens per copy attempt
against γ using LLaMa-8B-Instruct (|Scopyspec| = 10),
showcasing the correlation between γ and the accepted
tokens.

6 Analyses

6.1 Orthogonality with Vanilla Speculative
Decoding

We followed the steps outlined in section 3.3 to
integrate our technique into a vanilla speculative
decoding framework, as described in (Leviathan
et al., 2022). Based on our observations from sec-
tion 5.2, we experimented with two different values
of γ (3 and 5) to analyze their impact on perfor-
mance when used alongside speculative decoding.

We integrated CopySpec into a vanilla specula-
tive decoding framework, following the steps in sec-
tion 3.3 and the approach described in (Leviathan
et al., 2022). Experiments with γ values of 3 and 5,
summarized in table 4, show significant efficiency
improvements in the second turn of MT-Redundant.
A γ value of 5 achieves higher speedups in the first
turn, while γ = 3 provides better TPS in the second
turn, highlighting the need for task-specific tuning.

26307

Variant Turn 1 Turn 2 Turn 3

Copied Tokens/Sec τ1 τ2 Copied Tokens/Sec τ1 τ2 Copied Tokens/Sec τ1 τ2

Base Model – 10.25±0.01 – – – 10.17±0.01 – – – 8.68±0.01 – –
CopySpec (γ = 3) 5.76% 10.13±0.01 0.58 – 44.17% 15.72±0.01 4.90 – 82.79% 21.89±0.01 7.67 –
CopySpec (γ = 5) 1.01% 9.91±0.02 0.72 – 40.67% 14.79±0.01 6.96 – 82.78% 21.39±0.02 8.70 –
Spec. Dec. – 13.47±0.02 – 2.55 – 12.99±0.03 – 2.31 – 11.27±0.01 – 2.75
Spec. Dec. + Copy (γ = 3) 2.59% 13.09±0.02 0.60 2.52 41.70% 16.37±0.04 5.85 1.86 81.81% 21.23±0.04 7.70 2.39
Spec. Dec. + Copy (γ = 5) 0.49% 13.67±0.03 0.90 2.55 39.26% 16.59±0.03 7.89 1.92 82.58% 21.91±0.02 8.71 2.35

Table 6: Performance comparison for self-correcting tasks with the draft model generating 3 tokens at a time.
Qwen2.5-32B-Instruct is the target model, and Qwen2.5-7B-Instruct is the draft model. The Base Model averages
9.76 TPS, while Spec. Dec. + CopySpec (γ = 5) averages 16.75 TPS across all three rounds. τ1 is the average
tokens accepted by CopySpec, and τ2 is the average tokens accepted by the draft model. Self-correction leads to an
improvement in accuracy from 92% to 93%, for more details see table 24 in Appendix.

We also evaluated CopySpec with speculative
decoding using drafts of 5 tokens instead of 3, with
similar experiments conducted on MT-Redundant
(table 15, in Appendix) and with 3 and 5 draft
tokens on MT-Bench (table 21 and table 22, in
Appendix). These results confirm that γ = 5 often
outperforms γ = 3 when combined with Spec.
Dec., emphasizing the importance of tuning γ for
optimal performance. The results also show that
adding CopySpec to Spec. Dec. almost never leads
to a decrease in performance.

When paired with EAGLE, our verifier lifts
Vicuna-v1.3-13B throughput on GSM8K from 62
TPS (plain EAGLE) to 142 TPS (turn 3)—3.5×
the greedy baseline (Appendix C).

6.2 Complementarity with External Drafting
Frameworks

Coupling a strong drafter with CopySpec de-
livers the fastest runs across the board—up to
2.4× throughput on Vicuna-v1.3-7B and 3.1× on
Vicuna-v1.3-13B relative to the greedy decoder (Ta-
ble 7). Enlarging the speculation window from 10
to 50 tokens still yields an additional 15–40 % gain
on overlap-heavy tasks.

Method Tokens/Sec Speed-up

Base model 39.30± 0.18 1.00×
PLD (window= 5) 51.08± 0.11 1.30×
CopySpec (γ=5) 56.13± 0.01 1.43×
EAGLE 82.53± 0.18 2.10×
EAGLE + SAM-D 84.75± 0.05 2.16×
EAGLE + Copy (γ=5)* 94.84± 0.16 2.41×

Table 7: Throughput on MT-Redundant (0-shot) for
Vicuna-v1.3-7B. Speed-ups are versus the base model.
Complete per-task results appear in Tables 10–8. *
indicates that the speculation window was increased to
50 tokens instead of the default 10.

Our experiments reveal three take-aways. First,

coupling a strong drafter with span-level copy-
ing delivers the fastest runs across the board—up
to 2.9× throughput on Vicuna-v1.3-7B and 3.6×
on Vicuna-v1.3-13B relative to the greedy de-
coder(Appendix Table 10). Second, enlarging the
speculation window from 10 to 50 tokens adds a
further 15–40 % throughput when prompts contain
large verbatim spans (e.g., GSM8K turn 3 reaches
142 TPS on Vicuna-v1.3-13B). Third, competing
methods such as PLD and SAM-D trail by a wide
margin, underscoring that our lighter verifier inte-
grates more cleanly with external drafting.

6.3 Effect on Reasoning
An important aspect of our analysis is evaluating
the impact of our technique on the efficiency of
self-correction. To this end, we implemented a
self-refine framework, where the model generates
Python code and iteratively refines it in two steps,
following a process similar to (Madaan et al., 2023).
Details of the prompts and example outputs used
in our experiments are provided in Appendix H.1.
Table 6 presents the results of self-correction with
copying and Speculative Decoding (SD). Addition-
ally, Tables 25 and 26 extend our evaluation to
the more challenging AIME’24 (aim, 2024) and
AIME’25 (aim, 2025) benchmarks.

We also extended our analysis to cases where
the draft model generates 5 tokens at a time, as
shown in Table 23 in the appendix. Additionally,
Table 24 confirms that the tested models improve
their final accuracy, validating the effectiveness
of our self-correction implementation. Note that
accuracy is not reported for the second round, as
it focuses solely on critiquing the model’s prior
implementation. Across the entire self-correction
process, we achieve TPS improvements of 63%,
52%, and 54% for the Qwen2.5-7B, Qwen2.5-32B,
and Qwen2.5-72B instruct models, respectively.

26308

Our technique becomes more effective in later
turns as the model iterates over its prior reasoning.
This is reflected in a significant rise in the percent-
age of copied tokens, tokens per second (TPS), and
τ1, the average number of tokens accepted. Each
copying attempt also becomes more precise as the
model refines its reasoning and the context grows.

When combined with SD using γ = 5, our ap-
proach achieves better results across all three turns,
as shown in the table. The first turn benefits most
from SD due to minimal copying, while later turns
gain greater advantages from copying. This high-
lights the complementary nature of the two tech-
niques and their combined effectiveness in improv-
ing efficiency and performance. Notably, while
the TPS of the base model decreases by 0.85×
as context size grows, our technique reverses this
trend, increasing the TPS in the last turn by 2.52×,
showcasing its ability to leverage larger contexts.

We also extended our analysis to cases where
the draft model generates 5 tokens at a time, as
shown in table 23 in the appendix. Additionally,
table 24 confirms that the tested models improve
their final accuracy, validating the effectiveness
of our self-correction implementation. Note that
accuracy is not reported for the second round, as
it focuses solely on critiquing the model’s prior
implementation. Across the entire self-correction
process, we achieve TPS improvements of 63%,
52%, and 54% for the Qwen2.5-7B, Qwen2.5-32B,
and Qwen2.5-72B instruct models, respectively.

7 Conclusion

We introduced CopySpec, a method that identifies
repeated token sequences in a growing context and
copies them efficiently without additional GPU
memory or significant cost. Using a rolling hash
for γ tokens, CopySpec speculates on larger token
blocks to reduce redundant computation.

Results across five LLMs and datasets, including
MT-Redundant, show up to a 3.08× speed-up in
second-turn inference and a 49% boost when com-
bined with speculative decoding, without altering
output quality. Future work includes dynamically
tuning γ, refining match selection, and integrating
CopySpec with parallel decoding frameworks.

Limitations

CopySpec provides a lightweight and effective ap-
proach for accelerating LLM inference by leverag-
ing repeated patterns in the context. It integrates

seamlessly with speculative decoding and shows
consistent gains across models and tasks, particu-
larly in multi-turn settings with incremental refine-
ments. While MT-Redundant is designed to cover
a wide range of realistic scenarios—including code
revision, reasoning, summarization, and stylistic
rewriting—it still assumes that the repeated con-
tent appears in close proximity and with high lexi-
cal overlap. Future work will examine how Copy-
Spec performs under looser or cross-sentence re-
dundancy patterns, such as those found in long-
form document editing or open-ended dialogue.

The current approach uses fixed hyperparam-
eters for the copying window γ and speculative
block size |Scopyspec|, which may not be optimal
for all settings. Although our analysis in Ap-
pendix A shows that γ can be reliably selected
using a small number of samples based on cosine
similarity trends, more adaptive strategies that ad-
just γ and block length dynamically based on local
context or model uncertainty could further improve
generality and efficiency.

Finally, when multiple candidate matches exist
for the last γ tokens, the current system selects the
first match encountered without regard to seman-
tic alignment. To improve copy quality and avoid
suboptimal completions, future work will explore
context-aware ranking mechanisms that select the
most useful copy targets based on semantic or struc-
tural compatibility with the ongoing generation.

Ethical Considerations

Our proposed method, CopySpec, is intended as
a complementary addition to existing speculative
decoding techniques and does not introduce any
novel text generation of its own. Instead, it oper-
ates by selecting and copying text from context,
with the final output verified by the main LLM
used in the respective pipeline. Consequently, any
potential biases or hallucinations in the output are
attributable to the choice of the main LLM, which
remains an independent and external component.
While CopySpec inherently reduces hallucination
risk by copying existing context, it may still prop-
agate hallucinated content if such content exists
in the context itself. The responsibility for veri-
fying such content again lies with the main LLM
employed in the speculative decoding process.

26309

References
2024. American invitational mathematics exami-

nation (aime) 2024 — aime i & aime ii. https:
//artofproblemsolving.com/wiki/index.php/
2024_AIME_I; https://artofproblemsolving.
com/wiki/index.php/2024_AIME_II. AIME I
held Jan 31–Feb 1, 2024; AIME II held Feb 7, 2024.

2025. American invitational mathematics exami-
nation (aime) 2025 — aime i & aime ii. https:
//artofproblemsolving.com/wiki/index.php/
2025_AIME_I; https://artofproblemsolving.
com/wiki/index.php/2025_AIME_II. AIME I
held Feb 6, 2025; AIME II held Feb 12, 2025.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple LLM inference acceleration frame-
work with multiple decoding heads. In Forty-first
International Conference on Machine Learning.

Hao Mark Chen, Wayne Luk, Ka Fai Cedric Yiu, Rui
Li, Konstantin Mishchenko, Stylianos I. Venieris,
and Hongxiang Fan. 2024. Hardware-aware parallel
prompt decoding for memory-efficient acceleration
of llm inference. Preprint, arXiv:2405.18628.

Jia Chen and Hao Xu. 2023. Parallel decoding with
speculative sampling for large language models.
arXiv preprint arXiv:2306.15478.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Dvir Cohen, Lin Burg, Sviatoslav Pykhnivskyi, Hagit
Gur, Stanislav Kovynov, Olga Atzmon, and Gi-
lad Barkan. 2025. Wixqa: A multi-dataset bench-
mark for enterprise retrieval-augmented generation.
Preprint, arXiv:2505.08643.

Kuicai Dong, Yujing Chang, Xin Deik Goh, Dexun
Li, Ruiming Tang, and Yong Liu. 2025a. Mmdocir:
Benchmarking multi-modal retrieval for long docu-
ments. arXiv preprint arXiv:2501.08828.

Kuicai Dong, Yujing Chang, Shijie Huang, Yasheng
Wang, Ruiming Tang, and Yong Liu. 2025b. Bench-
marking retrieval-augmented multimomal generation
for document question answering. arXiv preprint
arXiv:2505.16470.

Kuicai Dong, Derrick Goh Xin Deik, Yi Quan Lee, Hao
Zhang, Xiangyang Li, Cong Zhang, and Yong Liu.
2024. MC-indexing: Effective long document re-
trieval via multi-view content-aware indexing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 2673–2691, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the sequential dependency of LLM
inference using lookahead decoding. In Forty-first
International Conference on Machine Learning.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Jiatao Gu, Zhaopeng Lu, Hang Li, and Victor OK Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1631–
1640.

Zhang He and Xin Wang. 2023. Speed: Speculative
pipelined execution for efficient decoding in large
language models. arXiv preprint arXiv:2310.12072.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and
Di He. 2024. REST: Retrieval-based speculative de-
coding. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 1582–1595,
Mexico City, Mexico. Association for Computational
Linguistics.

Yuxuan Hu, Ke Wang, Xiaokang Zhang, Fanjin Zhang,
Cuiping Li, Hong Chen, and Jing Zhang. 2024. Sam
decoding: Speculative decoding via suffix automaton.
Preprint, arXiv:2411.10666.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2022. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2025. Eagle: Speculative sampling re-
quires rethinking feature uncertainty. Preprint,
arXiv:2401.15077.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

26310

https://artofproblemsolving.com/wiki/index.php/2024_AIME_I
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I
https://artofproblemsolving.com/wiki/index.php/2024_AIME_II
https://artofproblemsolving.com/wiki/index.php/2024_AIME_II
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I
https://artofproblemsolving.com/wiki/index.php/2025_AIME_II
https://artofproblemsolving.com/wiki/index.php/2025_AIME_II
https://openreview.net/forum?id=PEpbUobfJv
https://openreview.net/forum?id=PEpbUobfJv
https://arxiv.org/abs/2405.18628
https://arxiv.org/abs/2405.18628
https://arxiv.org/abs/2405.18628
https://arxiv.org/abs/2306.15478
https://arxiv.org/abs/2306.15478
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2505.08643
https://arxiv.org/abs/2505.08643
https://doi.org/10.48550/arXiv.2501.08828
https://doi.org/10.48550/arXiv.2501.08828
https://doi.org/10.48550/arXiv.2501.08828
https://doi.org/10.48550/arXiv.2505.16470
https://doi.org/10.48550/arXiv.2505.16470
https://doi.org/10.48550/arXiv.2505.16470
https://doi.org/10.18653/v1/2024.findings-emnlp.150
https://doi.org/10.18653/v1/2024.findings-emnlp.150
https://openreview.net/forum?id=eDjvSFOkXw
https://openreview.net/forum?id=eDjvSFOkXw
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.12072
https://arxiv.org/abs/2310.12072
https://arxiv.org/abs/2310.12072
https://doi.org/10.18653/v1/2024.naacl-long.88
https://doi.org/10.18653/v1/2024.naacl-long.88
https://arxiv.org/abs/2411.10666
https://arxiv.org/abs/2411.10666
https://api.semanticscholar.org/CorpusID:254096365
https://api.semanticscholar.org/CorpusID:254096365
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2401.15077
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7

Xukun Liu, Yifan Zhang, Peiyi Wang, Tao Ge, Tianyu
Liu, Yongqi Li, and Zhifang Sui. 2024. Adaptive
draft-verification for efficient large language model
decoding. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 1234–1245.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming
Zhang, Xuanyu Zhang, Qing Yang, and Dongliang
Xu. 2025. Turning trash into treasure: Accelerat-
ing inference of large language models with token
recycling. In Proceedings of the 63rd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 6816–6831, Vienna,
Austria. Association for Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: It-
erative refinement with self-feedback. Preprint,
arXiv:2303.17651.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chu-
nan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. 2024. Specinfer: Accel-
erating large language model serving with tree-based
speculative inference and verification. In Proceed-
ings of the 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS ’24, page
932–949. ACM.

Apoorv Saxena. 2023. Prompt lookup decoding.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. CoRR, abs/1704.04368.

Shwetha Somasundaram, Anirudh Phukan, and Apoorv
Saxena. 2025. PLD+: Accelerating LLM inference
by leveraging language model artifacts. In Findings
of the Association for Computational Linguistics:
NAACL 2025, pages 6075–6089, Albuquerque, New
Mexico. Association for Computational Linguistics.

Ryan Sun, Tianyi Zhou, Xun Chen, and Lichao Sun.
2024. Spechub: Provable acceleration to multi-draft
speculative decoding. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28, pages
2692–2700.

Zikai Xiao, Ziyang Wang, Wen Ma, Yan Zhang, Wei
Shen, WangYan WangYan, Luqi Gong, and Zuozhu
Liu. 2025. Mitigating posterior salience attenuation

in long-context LLMs with positional contrastive de-
coding. In Proceedings of the 63rd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 724–733, Vienna,
Austria. Association for Computational Linguistics.

Qwen An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Jun-
yang Lin, and 25 others. 2024a. Qwen2.5 technical
report. ArXiv, abs/2412.15115.

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dimitris
Papailiopoulos, and Kangwook Lee. 2024b. Predic-
tive pipelined decoding: A compute-latency trade-off
for exact LLM decoding. Transactions on Machine
Learning Research.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv
Kumar, Jean-François Kagy, and Rishabh Agarwal.
2024. Distillspec: Improving speculative decoding
via knowledge distillation. In The Twelfth Interna-
tional Conference on Learning Representations.

A Gamma (γ) and Semantic Implications

In our framework, the generation speed of Copy-
Spec is intricately tied to the choice of γ, which
governs the length of the left context used to iden-
tify repeated sequences. The selection of an opti-
mal γ is critical, as it directly impacts the model’s
ability to efficiently reuse tokens from the context,
thereby accelerating generation. A carefully cho-
sen γ strikes a balance between providing sufficient
contextual information for accurate copying and
avoiding unnecessary computational overhead.

If γ is too small (e.g., γ = 1), the context provides
insufficient information to reliably identify repeti-
tions, resulting in missed reuse opportunities and
slower generation. Conversely, when γ is too large,
the excessive context introduces redundancy and
dilutes the immediate semantic relevance. While
the acceptance rate may increase, the total number
of tokens generated per second decreases because
the model spends more time processing generate
tokens itself and fewer tokens are copied in prac-
tice.

The challenge, therefore, lies in finding an opti-
mal γ that maximizes copying attempts while min-
imizing computational overhead. A well-chosen

26311

https://doi.org/10.18653/v1/2025.acl-long.338
https://doi.org/10.18653/v1/2025.acl-long.338
https://doi.org/10.18653/v1/2025.acl-long.338
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335
https://github.com/apoorvumang/prompt-lookup-decoding/
https://arxiv.org/abs/1704.04368
https://arxiv.org/abs/1704.04368
https://doi.org/10.18653/v1/2025.findings-naacl.338
https://doi.org/10.18653/v1/2025.findings-naacl.338
https://aclanthology.org/2024.emnlp-main.1148
https://aclanthology.org/2024.emnlp-main.1148
https://doi.org/10.18653/v1/2025.acl-short.58
https://doi.org/10.18653/v1/2025.acl-short.58
https://doi.org/10.18653/v1/2025.acl-short.58
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421
https://openreview.net/forum?id=yUmJ483OB0
https://openreview.net/forum?id=yUmJ483OB0
https://openreview.net/forum?id=yUmJ483OB0
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://openreview.net/forum?id=rsY6J3ZaTF
https://openreview.net/forum?id=rsY6J3ZaTF

γ ensures that the context is both semantically fo-
cused and computationally efficient, enabling the
Copy mechanism to fully exploit repeated patterns
in the generation process. This tradeoff under-
scores the importance of systematically tuning γ to
achieve the best performance across datasets.

To measure the semantic alignment between a
token w and its left-γ token context, we fine-tuned
the token embeddings using a left-γ skip-gram
model, a modification of the traditional skip-gram
approach. Unlike the standard skip-gram model,
which maximizes the probability of a target word
given a symmetric context window, our approach
considers only the preceding γ tokens as context.

Formally, instead of maximizing the proba-
bility

∏
(w,C)∈D P (w|C), where C represents a

symmetric context window around the word w,
our left-γ skip-gram model is trained to maxi-
mize

∏
(t,Cleft γ)∈D P (t|Cleft γ), where Cleft γ con-

sists only of the last γ tokens in the sequence to pre-
dict the next token t. This ensures that the learned
embeddings capture dependencies in a unidirec-
tional manner, aligning with the way generative
models process text.

By structuring the model in this way, we aim
to quantify how much semantic meaning from the
left-γ tokens contributes to predicting the next to-
ken. Cosine Similarity is particularly well-suited
for evaluating the semantic alignment between the
left-γ token context and the next token because it
captures the directional similarity between their
vector representations, regardless of magnitude.
Since word embeddings encode semantic mean-
ing in a high-dimensional space, CS provides a
robust way to measure how well the left context
conveys predictive information about the next to-
ken. Unlike Euclidean Distance, CS ensures that
we focus solely on semantic coherence rather than
raw frequency effects. This is crucial for CopySpec,
as effective token reuse depends on the ability to
recognize when a sequence of past tokens is not
just lexically repeated but also semantically rele-
vant to the next token. By analyzing trends in CS
across different γ-values, we can assess whether
increasing the context length improves meaningful
copying or merely introduces redundant informa-
tion, thereby helping us fine-tune γ for optimal
efficiency.

The cosine similarity (CS) is computed as:

CS(v⃗Cleft γ , v⃗t) =
v⃗Cleft γ · v⃗t
∥v⃗Cleft γ∥∥v⃗t∥

.

Here, v⃗Cleft γ = 1
γ

∑γ
i=1 v⃗ti represents the aver-

age embedding of the most recent γ tokens, where
{ti}γi=1 are the embeddings of the last γ tokens in
the context.

To validate our intuitions, we conducted experi-
ments to analyze the relationship between γ (con-
text length) and semantic alignment. Figure 5 illus-
trates the trends in Cosine Similarity and generation
speed (TPS) as γ varies.

By measuring Cosine Similarity and generation
speed across varying γ-token contexts, we pro-
vide empirical evidence that fine-tuning left-γ skip-
gram model for the best γ is essential for maximiz-
ing efficiency. Future work can explore adaptive
strategies that dynamically adjust γ in the same
hashmap based on context complexity, further opti-
mizing the balance between copying effectiveness
and computational cost.

B Copying and Speculative Decoding
with Truncated KV States

This appendix describes how our framework inte-
grates a copying mechanism with speculative de-
coding, including details on partial acceptance, key-
value (KV) cache truncation.

B.1 Notation and Variables

Sequence X1:t. Let X1:t be the currently ac-
cepted sequence of t tokens. Generating a new
token moves us to position t+ 1.

Dictionary D. D records repeated γ-length sub-
strings and their earlier occurrences. If Xt−γ+1:t

appears inD, we may copy subsequent tokens from
that match.

Subsequence length γ. We use γ tokens to detect
repeats. That is, the last γ tokens, s = Xt−γ+1:t,
determine if a copy event is possible.

Match location p. If D indicates Xt−γ+1:t ap-
pears at position p, we attempt to copy tokens start-
ing from p+ γ.

Chunk size m (copying). When a match is
found, we form a copied chunk

X̃1:m =
(
x̃1, . . . , x̃m

)
= X p+γ: p+γ+m−1.

Draft limit δ (speculative). If copying is not
used, we let the draft model propose up to δ to-
kens:

X̂1:δ =
(
x̂1, . . . , x̂δ

)
.

26312

1 2 3 4 5 6 7 8 9 10

Gamma ()

35.0

37.5

40.0

42.5

45.0

47.5

50.0

To
ke

ns
 p

er
 S

ec
on

d
(T

PS
)

67551

29866 17871
12698 9922

7992
6837 5968 5338 4845

35.885

36.985

38.085

39.185

40.285

41.385

Co
sin

e S
im

ila
rit

y

1 2 3 4 5 6 7 8 9 10

Gamma ()

38

40

42

44

46

To
ke

ns
 p

er
 S

ec
on

d
(T

PS
)

31670

13031 7252

4858
3339

2529
1969

1599 1267
1059

38.208

38.608

39.008

39.408

39.808

40.208

40.608

Co
sin

e S
im

ila
rit

y

Figure 5: We use Qwen2.5-7B on both MT-Bench and MT-Redundant dataset. Cosine Similarity and Tokens per
Second trends as a function of γ. The blue line indicates the Cosine Similarity, showing semantic alignment across
varying γ-token contexts. The red line illustrates the Tokens per Second, reflecting generation speed. γ denotes the
number of tokens considered in the context for each measurement. The left plot shows MT-Bench, and the right plot
shows MT-Redundant.

Acceptance and Draft Models. The target
model ptarget(· | X1:n) decides whether each new
token is accepted, while the draft model pdraft(Xt |
X1:n) only proposes tokens that must still pass
ptarget’s acceptance criterion.

Index i. In both copying and drafting, we iterate
over newly proposed tokens with an index i ∈
{1, . . . ,m} or i ∈ {1, . . . , δ}.

Accepted count k. Out of the m (copied) or δ
(drafted) tokens, only k ≤ m or k ≤ δ may be ac-
cepted under ptarget. Rejected tokens are removed,
and the key-value states are truncated to retain only
X1:t+k.

B.2 Acceptance Criterion and KV Truncation

Any new token xt+i must pass an acceptance cri-
terion under ptarget; for example, at temperature 0,
we only accept it if it is the argmax of the target
model’s conditional distribution. If the token fails,
we reject it (and all subsequent tokens in the same
chunk) and roll back to X1:t+i−1.

Each layer ℓ of the target model stores key-value
tensors (Kℓ,Vℓ) up to the final accepted token.
If k < i − 1 tokens in a chunk are accepted, we
truncate (Kℓ,Vℓ) to t+ k positions, ensuring the
model remains consistent with the final accepted
sequence.

B.3 Integrated Generation Procedure

Below is a single pseudocode listing that combines
both copying and speculative decoding.

1. Check for a Copy Opportunity:

(a) Let s = Xt−γ+1:t be the most recent γ
tokens of the accepted sequence X1:t.

(b) Check if s is in D (the dictionary of re-
peats).

• If no match exists, go to Step 3.
(c) Otherwise, let p be the first occurrence

in D(s) satisfying p+ γ− 1 < t− γ+1
(ensuring no overlap).

(d) Form a candidate chunk of length m:

X̃1:m = X p+γ: p+γ+m−1.

(e) Initialize k = 0, which tracks how
many tokens from X̃1:m are ultimately
accepted.

2. Attempt to Copy:

(a) For i = 1 to m:
• Evaluate x̃i (from X̃1:m) with the tar-

get model:

ptarget
(
Xt | X1:t+i−1

)
.

• If x̃i passes the acceptance criterion
(e.g. it is the argmax if temperature =
0), set k ← k + 1; otherwise, reject
x̃i and break out of this loop.

(b) If k < m:
• The final sequence is now X1:t+k,

which means only the first k tokens
from X̃1:m (i.e. x̃1, . . . , x̃k) are ac-
cepted.

• Truncate the target model’s KV
Cache states for all layers to length
t+ k to discard any rejected tokens
beyond position t+ k.

(c) Otherwise, if k = m, then all m
copied tokens are fully accepted, mak-
ing X1:t+m the new final sequence.

26313

(d) Update D with any newly formed γ-
subsequences ending at positions t + j
for 1 ≤ j ≤ k.

3. Speculative Decoding:

(a) If no copying occurred, generate δ tokens
from the draft model:

X̂1:δ ∼ pdraft
(
Xt | X1:t

)
.

(b) Let k = 0. For i = 1 to δ:
• Evaluate x̂i (from X̂1:δ) using

ptarget
(
Xt | X1:t+i−1

)
.

• If accepted, increment k. If rejected,
break immediately.

(c) If k < δ:
• Only x̂1, . . . , x̂k are accepted, so the

final sequence is X1:t+k.
• Truncate the target model’s and draft

model’s KV Cache states to reflect
X1:t+k only.

(d) If k = δ, the entire draft X̂1:δ is accepted,
making X1:t+δ the new final sequence.

(e) Update D with any newly formed γ-
length subsequences up to position t+ k.

4. Repeat: Increase t by the number of accepted
tokens (either k, m, or δ) in this iteration. Con-
tinue until a stopping criterion (e.g. end-of-
text token) is encountered.

Discussion of Truncation: Whenever fewer
than m (in copying) or δ (in drafting) tokens are
accepted, we roll back to the accepted prefix. The
target model’s key-value memory is truncated ac-
cordingly to reflect X1:t+k. Thus, any rejected
tokens do not affect the final context or the KV
states.

C Baseline Comparisons and EAGLE

The acceleration techniques discussed in the re-
lated works include PLD and PLD-copy (Saxena,
2023; Somasundaram et al., 2025), PPD (Chen
et al., 2024), look-ahead decoding (Fu et al., 2024),
token recycling (Luo et al., 2025), and SAM-D
(Hu et al., 2024). Of these, only PLD, PPD, and
SAM have official publicly available code. Using
the reference implementation from Somasundaram
et al., we were able to reproduce the throughput
improvements reported for PLD, observing compa-
rable end-to-end latency reductions relative to our

Variant Turn 1 Turn 2 Turn 3

Base Model 40.16±0.14 37.69±0.14 35.42±0.07
EAGLE 76.48±0.68 70.87±0.91 88.56±0.71
EAGLE + CopySpec(γ = 3) 80.85±0.68 75.04±0.56 101.60±0.40
EAGLE + CopySpec(γ = 5) 78.05±0.05 74.27±0.03 101.14±0.22
EAGLE + CopySpec(γ = 5)* 77.94±0.98 73.17±0.80 141.60±0.96
EAGLE + SAM-D 60.27±0.15 98.18±0.07 118.56±0.08
CopySpec(γ = 3) 49.89±0.24 41.70±0.28 96.85±0.44
CopySpec(γ = 5) 47.66±0.04 40.38±0.02 99.83±1.67
CopySpec(γ = 5)* 44.89±0.21 39.27±0.13 126.41±0.24
PLD(window=3) 45.74±0.10 56.48±0.06 59.05±0.02
PLD(window=5) 45.10±0.01 61.32±0.02 67.30±0.18

Table 8: We show the tokens/sec by turn on GSM8K
using the Vicuna-v1.3-7B model. γ denotes CopySpec’s
prompt lookup size; * indicates that the speculation
window was increased to 50 tokens instead of the default
10.

Variant Vicuna-7B-v1.3 Vicuna-13B-v1.3

Base Model 28.50 ± 0.10 17.47 ± 0.01
CopySpec (γ = 3) 38.46 ± 0.12 22.70 ± 0.06
CopySpec (γ = 5) 35.81 ± 0.01 21.29 ± 0.03
CopySpec (γ = 5)* 34.34 ± 0.02 20.22 ± 0.04
EAGLE 63.43 ± 0.07 47.17 ± 0.24
EAGLE + CopySpec (γ = 3) 66.92 ± 0.04 49.78 ± 0.12
EAGLE + CopySpec (γ = 5) 66.96 ± 0.15 48.95 ± 0.11
EAGLE + CopySpec (γ = 5)* 68.99 ± 0.68 49.90 ± 0.08
EAGLE + SAM-D 60.70 ± 0.08 37.43 ± 0.04

Table 9: WixQA (RAG): Throughput in tokens/s for
Vicuna-7B and Vicuna-13B with COPYSPEC alone and
combined with EAGLE speculative decoding. Greedy
decoding (T=0); outputs remain token-identical to base-
line. * indicates that the speculation window was in-
creased to 50 tokens instead of the default 10

baseline. In contrast, applying the PPD codebase
as described by Chen et al. consistently yielded
token-generation speeds below the unmodified de-
coder—i.e., worse-than-baseline performance in
our environment. For SAM, we used the authors’
implementation with the number of predicted to-
kens (npredicts) set to 15 and the default hyperpa-
rameters for EAGLE integration presented in (Hu
et al., 2024). The other methods—e.g. token recy-
cling—do not provide official open-source imple-
mentations, so we were unable to attempt replica-
tion of their reported results but our technique is
orthogonal to theirs.

For the EAGLE experiments, we omitted
key–value caching in the EAGLE heads due to
implementation challenges within our copy frame-
work. Instead, we set EAGLE to generate batches
of 20 tokens at a time; after each batch, we
check whether the copy mechanism can be applied.
Whenever copying is possible, we favor it over
EAGLE-generated tokens and continue copying
until no further matches are found; if copying is

26314

Model Variant MT-Redundant CNN/DM GSM8K MT-Bench HumanEval
0-shot 0-shot 3-turn 0-shot 0-shot

V
ic

un
a-

v1
.3

-7
B

EAGLE 82.53±0.18 56.87±0.14 80.45±0.75 81.78±0.40 87.76±0.11
EAGLE + CopySpec(γ = 3) 87.00±0.33 60.62±0.34 88.27±0.56 82.92±0.57 101.96±0.82
EAGLE + CopySpec(γ = 5) 84.80±0.39 61.96±0.41 87.37±0.07 83.79±1.37 104.77±0.53
EAGLE + CopySpec(γ = 5)* 94.84±0.16 65.63±0.18 108.07±1.02 87.39±1.59 108.39±0.96
EAGLE + SAM-D 84.75±0.05 50.04±0.02 85.18±0.13 73.51±0.66 90.00±0.10
CopySpec(γ = 3) 57.19±0.25 47.59±0.01 61.58±0.12 52.31±0.14 60.69±0.15
CopySpec(γ = 5) 56.13±0.01 42.95±0.14 60.30±0.30 50.40±0.03 57.00±0.05
CopySpec(γ = 5)* 55.79±0.04 41.18±0.08 61.71±0.23 49.02±0.07 54.64±0.03
PLD(window=3) 50.47±0.01 42.73±0.06 53.49±0.06 45.10±0.10 50.77±0.05
PLD(window=5) 51.08±0.11 44.45±0.04 56.93±0.05 45.05±0.12 51.50±0.09
Base model 39.30±0.18 31.36±0.01 37.48±0.11 39.48±0.09 40.40±0.09

V
ic

un
a-

v1
.3

-1
3B

EAGLE 62.31±0.18 43.23±0.25 68.35±0.29 62.83±0.42 69.34±0.45
EAGLE + CopySpec(γ = 3) 65.44±0.63 45.81±0.30 70.39±0.25 64.33±0.56 69.97±0.22
EAGLE + CopySpec(γ = 5) 66.11±0.74 45.08±0.52 71.88±0.48 63.58±0.99 73.18±0.97
EAGLE + CopySpec(γ = 5)* 73.20±0.34 46.94±0.21 82.27±0.75 65.52±0.78 74.16±0.68
EAGLE + SAM-D 50.85±0.13 27.63±0.02 47.31±0.01 45.10±0.01 50.17±0.03
CopySpec(γ = 3) 34.12±0.05 25.18±0.06 34.50±0.08 29.27±0.02 31.30±0.01
CopySpec(γ = 5) 32.96±0.06 22.98±0.01 33.49±0.05 28.19±0.06 30.67±0.02
CopySpec(γ = 5)* 32.24±0.03 21.42±0.01 33.31±0.02 26.96±0.05 29.16±0.05
PLD(window=3) 31.57±0.09 25.71±0.02 31.99±0.06 28.61±0.01 31.51±0.05
PLD(window=5) 31.10±0.02 25.56±0.02 31.77±0.02 27.57±0.04 30.10±0.05
Base model 23.30±0.01 18.42±0.04 22.61±0.01 23.48±0.07 24.25±0.05

Table 10: Performance comparison of Vicuna-1.3(7B and 13B) under baseline, EAGLE, CopySpec, and PLD
configurations measured by tokens/sec. Reported values are tokens per second (mean±std). γ denotes CopySpec’s
prompt lookup size; * indicates that the speculation window was increased to 50 tokens instead of the default 10.

not possible, we invoke EAGLE again to generate
the next 20-token batch, repeating this generate-
then-copy cycle until the desired output length is
reached.

For prompt-led decoding (PLD), we fixed the
prompt lookup window to three or five tokens,
matching the configuration used for CopySpec. All
experiments were conducted with Vicuna-1.3 in its
7B and 13B variants, since the models presented in
our paper lack pretrained EAGLE weights and we
experienced difficulties using the EAGLE weights
with LLaMa 3.1, as the model was broken and
failed to generate the correct text.

Tables 8 and 10 summarize our main results. We
also include WixQA(Cohen et al., 2025) in Table 9
to stress-test CopySpec in a retrieval-augmented
setting; recent benchmarks on long-document in-
dexing and multimodal DocRAG provide broader
context for this evaluation (Dong et al., 2024,
2025a,b). We highlight the following observations:
1. EAGLE + CopySpec synergy: Coupling a

strong drafter (EAGLE) with span-level copying
consistently yields the fastest runs—up to 2.9×
speed-up on 7 B and 3.6× on 13 B relative to
the plain decoder.

2. Speculation window matters: Expanding the
draft from 10 to 50 tokens (“*”) adds a further
15–40 % throughput, especially on tasks with

high intra-prompt overlap (GSM8K: +188% on
7 B; +264% on 13 B).

3. CopySpec alone is modest: Without a drafter,
CopySpec delivers only 40–60 % of the EAGLE-
backed gains, showing that copying and multi-
token drafting are complementary.

4. PLD and SAM-D lag: Prompt lookup (PLD)
and SAM-D trail by a wide margin—often not
surpassing plain EAGLE—hinting that our tech-
nique adds a smaller overhead and thus provides
better orthogonality with other speculative de-
coding frameworks.

5. Task-level variance: Benchmarks that reward
verbatim reuse (MT-Redundant, GSM8K) bene-
fit most, while abstractive CNN/DM summaries
see the smallest absolute gains, highlighting
content-overlap as a driver of copying efficiency.

6. Late-turn surge: With a 50-token draft, EA-
GLE + CopySpec(γ = 5) jumps to 142 TPS on
turn 3—3.5× the greedy baseline—showing that
long drafts pay off once the history is rich in
overlaps.

7. SAM-D’s crossover: SAM-D starts slower than
EAGLE on turn 1 but overtakes it by turn 2,
consistent with the O(1) suffix-extension cost
claimed in the SAM paper.

26315

D Extra Results on MT-Redundant

This appendix presents a detailed analysis of the
performance improvements achieved by the Copy-
Spec approach compared to baseline methods. The
tables provide comprehensive results across vari-
ous categories and model configurations, highlight-
ing the computational efficiency and speed-ups ob-
served on the MT-Redundant dataset.

D.1 Analysis of Gamma (γ) on
MT-Redundant

The analysis depicted in Figure 6 highlights the
impact of the copying parameter γ on both com-
putational performance and the model’s ability to
reuse tokens effectively. As γ increases, there is
a notable rise in the percentage of copied tokens,
demonstrating the model’s improved ability to ex-
ploit repeated patterns within the context. However,
this comes at the cost of reduced tokens per sec-
ond (TPS) for higher γ values, due to the increased
computational overhead associated with processing
larger context windows.

1 2 3 4 5 6 7 8 9 10

Gamma ()

35.0

37.5

40.0

42.5

45.0

47.5

50.0

To
ke

ns
 p

er
 S

ec
on

d
(T

PS
)

67551

29866 17871
12698 9922

7992
6837 5968 5338 4845

20

25

30

35

40

45

Co
pi

ed
 T

ok
en

s P
er

ce
nt

ag
e (

%
)

Figure 6: This figure illustrates the relationship between
the copying parameter γ and the model’s performance
on the MT-Redundant dataset with the LLaMa3.1-8B-
Instruct model. The notations are the same as in fig. 3.

D.2 Speed-up by Category on MT-Redundant

Table 11 summarizes the tokens-per-second (TPS)
performance for the Qwen-32B-Instruct model
across two turns. The first turn reflects scenar-
ios with minimal contextual information, while the
second turn demonstrates significant gains in speed
due to the larger context size and CopySpec’s abil-
ity to leverage repeated token patterns effectively.
Notably, categories such as Coding and Math ex-
hibit speed-ups exceeding 2× in the second turn.

In Table 12, we observe a similar trend for the
Qwen-7B-Instruct model, with CopySpec consis-

tently improving TPS across both turns. The sec-
ond turn results show substantial gains in categories
like Reasoning and Math, where repetitive patterns
in the context are more prominent.

Table 13 presents the results for the LLaMa3.1-
70B-Instruct model. Here, the impact of CopySpec
is evident, especially in the second turn, with speed-
ups reaching over 2× in categories such as Math.
These results highlight the scalability of CopySpec
across models of varying sizes.

The findings for the LLaMa3.1-8B-Instruct
model are detailed in Table 14. The speed-ups
in this case are slightly lower compared to larger
models but still demonstrate consistent improve-
ments across all categories, with notable efficiency
gains in the second turn.

D.3 Merging with Speculative Decoding on
MT-Redundant

Finally, Table 15 explores the integration of Copy-
Spec with speculative decoding for the Qwen2.5-
32B-Instruct model and Qwen2.5-7B-Instruct as
the draft model. The results highlight how combin-
ing these approaches can yield even greater compu-
tational efficiency. The analysis includes varying γ
values and draft token counts, showing that optimal
parameter tuning further enhances performance,
particularly in multi-turn scenarios.

E Extra Results on MT-Bench

This appendix presents a comprehensive evalua-
tion of the CopySpec approach on the MT-Bench
dataset across various configurations and cate-
gories. The results highlight the consistent im-
provements in tokens-per-second (TPS) perfor-
mance achieved by CopySpec compared to baseline
models, demonstrating its efficiency and scalabil-
ity.

E.1 Analysis of Gamma (γ) on MT-Bench
Figure 7 presents a comprehensive visualization
of how the copying parameter γ affects the per-
formance of the LLaMa3.1-8B-Instruct model on
the MT-Redundant dataset. The figure captures the
interplay between the percentage of tokens success-
fully copied, the number of copying attempts, and
the resulting tokens per second (TPS).

E.2 Speed-up by Category on MT-Bench
Table 16 provides the TPS performance of
Qwen2.5-72B-Instruct on two turns. The speed-
ups are most notable in categories such as Extrac-

26316

Turn 1 Turn 2

Category Base Model CopySpec Speed-up Base Model CopySpec Speed-up

Coding 10.86 ±0.01 11.66 ±0.02 1.07 9.72 ±0.01 19.47 ±0.01 2.01
Extraction 10.09 ±0.01 13.44 ±0.01 1.33 9.80 ±0.01 18.17 ±0.01 1.85
Humanities 10.85 ±0.01 11.57 ±0.01 1.07 9.75 ±0.01 11.67 ±0.01 1.20
Math 11.01 ±0.01 12.81 ±0.01 1.16 10.05 ±0.01 23.18 ±0.01 2.31
Reasoning 10.80 ±0.02 12.18 ±0.01 1.13 10.05 ±0.01 20.17 ±0.01 2.01
Roleplay 10.90 ±0.01 11.05 ±0.01 1.01 9.93 ±0.01 27.80 ±0.01 2.80
Stem 10.90 ±0.01 11.50 ±0.01 1.06 9.83 ±0.01 14.61 ±0.01 1.49
Writing 10.92 ±0.01 10.85 ±0.01 0.99 9.94 ±0.01 24.51 ±0.01 2.46

Average 10.89 ±0.01 11.88 ±0.01 1.10 9.88 ±0.01 19.52 ±0.01 1.98

Table 11: Tokens per second on two turns across categories on MT-Redundant using CopySpec and Baseline with
Qwen-32B-Instruct (γ = 3). Results follow the same notation as table 3.

Turn 1 Turn 2

Category Base Model CopySpec Speed-up Base Model CopySpec Speed-up

Coding 43.28 ±0.02 47.16 ±0.10 1.09 37.48 ±0.01 77.39 ±0.16 2.06
Extraction 39.45 ±0.01 44.38 ±0.07 1.12 39.34 ±0.01 73.79 ±0.15 1.88
Humanities 42.94 ±0.02 44.73 ±0.09 1.04 36.71 ±0.01 46.73 ±0.09 1.27
Math 44.27 ±0.02 49.49 ±0.10 1.12 39.85 ±0.01 84.93 ±0.43 2.13
Reasoning 43.06 ±0.02 46.51 ±0.09 1.08 39.67 ±0.03 86.13 ±0.14 2.17
Roleplay 43.14 ±0.11 45.12 ±0.13 1.05 38.63 ±0.02 108.37 ±0.18 2.81
Stem 42.96 ±0.04 45.41 ±0.07 1.06 37.06 ±0.01 57.54 ±0.11 1.55
Writing 43.50 ±0.01 44.79 ±0.10 1.03 38.40 ±0.01 87.91 ±0.12 2.29

Average 42.95 ±0.03 46.82 ±0.09 1.09 38.51 ±0.01 78.43 ±0.17 2.04

Table 12: Tokens per second on two turns across categories on MT-Redundant using CopySpec and Baseline with
Qwen-7B-Instruct (γ = 3). Results follow the same notation as table 3.

tion and Coding, where repetitive patterns allow
CopySpec to outperform the baseline consistently.
Average speed-ups for both turns reinforce the effi-
ciency gains achieved.

In Table 17, the performance of Qwen2.5-32B-
Instruct is evaluated. CopySpec achieves signif-
icant speed-ups, particularly in the second turn,
where contextual repetition becomes more preva-
lent. Categories like Math and Writing show
marked improvements, underscoring CopySpec’s
ability to handle computationally intensive tasks
effectively.

Table 18 highlights the results for Qwen2.5-7B-
Instruct. While the base model already performs
efficiently, CopySpec further enhances TPS, with
average speed-ups exceeding 1.3× in the second
turn. These results confirm that CopySpec scales
well across different model sizes.

The performance of LLaMa3.1-70B-Instruct is
detailed in Table 19. CopySpec achieves consistent
improvements across both turns, with substantial
gains in computationally intensive categories such
as Coding and Extraction. These results demon-
strate the robustness of CopySpec when applied to
larger models.

Table 20 evaluates LLaMa3.1-8B-Instruct.
While the model size is significantly smaller, Copy-
Spec still yields notable improvements, particularly
in the second turn, where repetitive token patterns
amplify the efficiency of speculative copying.

E.3 Merging with Speculative Decoding on
MT-Bench

Finally, Table 21 and Table 22 compares different
speculative decoding configurations with and with-
out CopySpec, using Qwen2.5-32B-Instruct as the
target model and Qwen2.5-7B-Instruct as the draft
model. This analysis explores the impact of varying
γ values and draft token counts, demonstrating that
the integration of CopySpec with speculative de-
coding consistently leads to enhanced performance.
The results emphasize the adaptability of CopySpec
across diverse operational settings.

These tables collectively validate the effective-
ness of CopySpec in accelerating large language
model inference while maintaining high output
quality. The findings in this appendix complement
those in Appendix D, reinforcing the method’s util-
ity across datasets and configurations.

26317

Turn 1 Turn 2

Category Base Model CopySpec Speed-up Base Model CopySpec Speed-up

Coding 5.17 ±0.01 5.94 ±0.01 1.15 4.81 ±0.01 10.76 ±0.01 2.24
Extraction 4.90 ±0.01 5.29 ±0.01 1.08 4.80 ±0.01 7.60 ±0.01 1.58
Humanities 5.20 ±0.01 5.39 ±0.01 1.04 4.78 ±0.01 5.72 ±0.01 1.20
Math 5.23 ±0.01 5.83 ±0.01 1.12 4.89 ±0.01 12.58 ±0.01 2.57
Reasoning 5.18 ±0.01 5.43 ±0.01 1.05 4.92 ±0.01 8.49 ±0.01 1.73
Roleplay 5.16 ±0.01 5.28 ±0.01 1.02 4.93 ±0.01 10.01 ±0.01 2.03
Stem 5.21 ±0.01 5.43 ±0.01 1.04 4.83 ±0.01 6.38 ±0.01 1.32
Writing 5.21 ±0.01 5.27 ±0.01 1.01 4.82 ±0.01 9.48 ±0.01 1.97

Average 5.16 ±0.01 5.48 ±0.01 1.06 4.85 ±0.01 8.88 ±0.01 1.83

Table 13: Tokens per second on two turns across categories on MT-Redundant using CopySpec and Baseline with
LLaMa3.1-70B-Instruct (γ = 3). Results follow the same notation as table 3.

Turn 1 Turn 2

Category Base Model CopySpec Speed-up Base Model CopySpec Speed-up

Coding 36.80 ±0.06 44.31 ±0.07 1.20 34.61 ±0.01 66.14 ±0.10 1.91
Extraction 35.49 ±0.01 46.27 ±0.08 1.30 33.78 ±0.01 71.84 ±0.07 2.13
Humanities 37.31 ±0.01 40.66 ±0.23 1.09 33.90 ±0.01 40.01 ±0.06 1.18
Math 37.02 ±0.07 52.60 ±0.08 1.42 34.94 ±0.05 64.90 ±0.07 1.86
Reasoning 36.83 ±0.01 53.24 ±0.01 1.45 34.77 ±0.04 60.76 ±0.09 1.75
Roleplay 36.85 ±0.02 40.85 ±0.11 1.11 34.70 ±0.02 64.18 ±0.13 1.85
Stem 37.28 ±0.04 41.01 ±0.10 1.10 34.49 ±0.06 45.01 ±0.09 1.31
Writing 36.94 ±0.02 39.87 ±0.10 1.08 33.87 ±0.02 48.01 ±0.09 1.42

Average 36.81 ±0.03 44.85 ±0.10 1.22 34.38 ±0.03 57.61 ±0.09 1.67

Table 14: Tokens per second on two turns across categories on MT-Redundant using CopySpec and Baseline with
LLaMa3.1-8B-Instruct (γ = 3). Results follow the same notation as table 3.

F Extra Results on GSM8K

This appendix provides an in-depth analysis of the
CopySpec approach applied to self-correcting tasks
and speculative decoding. The results demonstrate
the effectiveness of CopySpec in improving to-
ken processing speed, leveraging context repetition,
and enhancing self-correction efficiency without
compromising model accuracy.

Table 23 extends the analysis to speculative de-
coding scenarios, focusing on the performance of
CopySpec combined with speculative decoding
when the draft model drafts 5 tokens at a time for
self-correcting tasks. The table highlights the im-
pact of varying draft model outputs, where Copy-
Spec, combined with speculative decoding (γ = 5),
achieves the best overall performance. Metrics
such as TPS and τ show consistent improvements,
with the approach accepting a higher average num-
ber of tokens per attempt. This configuration effec-
tively balances the benefits of speculative decoding
with CopySpec’s ability to handle token repetition
efficiently.

Table 24 compares the performance of Copy-
Spec and baseline models across three turns using

the GSM8K dataset for self-correcting tasks. The
metrics include tokens-per-second (TPS), the per-
centage of tokens copied, and the number of tokens
successfully copied (τ) per attempt. CopySpec con-
sistently achieves significant improvements, par-
ticularly in the second and third turns, where a
larger context size enables better utilization of
repetitive patterns. Notable gains are observed in
TPS, with improvements exceeding 2× in some
configurations, and the percentage of copied to-
kens highlights CopySpec’s efficiency in refining
self-corrections.

These results underscore the versatility of Copy-
Spec in enhancing computational efficiency and
self-correction capabilities across multiple scenar-
ios. The combination of CopySpec with speculative
decoding demonstrates its adaptability to diverse
operational settings, paving the way for faster and
more accurate large language model inference in
tasks requiring iterative refinement.

G MT-Redundant Dataset Examples

This appendix provides one illustrative example
from each of the eight categories in our new MT-

26318

Turn 1 Turn 2

Category Base Model Spec. Dec. Spec. Dec. Spec. Dec. Base Model Spec. Dec. Spec. Dec. Spec. Dec.
+ Copy (γ = 3) + Copy (γ = 5) + Copy (γ = 3) + Copy (γ = 5)

Coding 10.87 ± 0.01 16.09 ± 0.13 15.88 ± 0.05 16.09 ± 0.04 9.73 ± 0.01 15.77 ± 0.09 22.02 ± 0.01 22.50 ± 0.01
Extraction 10.09 ± 0.01 14.20 ± 0.09 15.12 ± 0.09 15.26 ± 0.01 9.79 ± 0.01 15.17 ± 0.08 18.41 ± 0.05 18.45 ± 0.05
Humanities 10.85 ± 0.01 12.39 ± 0.10 12.52 ± 0.03 12.50 ± 0.01 9.75 ± 0.01 12.39 ± 0.07 13.01 ± 0.04 13.05 ± 0.01
Math 11.01 ± 0.01 17.61 ± 0.10 17.68 ± 0.06 18.10 ± 0.01 10.05 ± 0.01 16.70 ± 0.11 24.48 ± 0.07 24.84 ± 0.07
Reasoning 10.80 ± 0.02 13.09 ± 0.10 13.04 ± 0.04 13.21 ± 0.02 10.05 ± 0.01 14.74 ± 0.06 20.33 ± 0.07 21.12 ± 0.05
Roleplay 10.90 ± 0.01 11.14 ± 0.08 11.19 ± 0.04 11.17 ± 0.02 9.93 ± 0.01 16.19 ± 0.10 28.43 ± 0.01 28.44 ± 0.27
Stem 10.90 ± 0.01 13.33 ± 0.11 13.36 ± 0.06 13.45 ± 0.01 9.83 ± 0.01 14.16 ± 0.08 16.73 ± 0.02 16.95 ± 0.03
Writing 10.92 ± 0.01 11.30 ± 0.08 11.34 ± 0.03 11.33 ± 0.01 9.94 ± 0.01 15.59 ± 0.12 25.46 ± 0.01 25.16 ± 0.05

Average 10.79 ± 0.01 13.64 ± 0.10 13.77 ± 0.05 13.89 ± 0.01 9.88 ± 0.01 15.09 ± 0.09 21.11 ± 0.04 21.31 ± 0.07

Table 15: Tokens-per-second (TPS) performance on the MT-Redundant dataset, using Qwen2.5-32B-Instruct as the
target model and Qwen2.5-7B-Instruct as the draft model, where the draft model generates 5 tokens per attempt.
Results are presented using the same notation as Table 3 and a γ value of 3, highlighting the impact of varying the
draft token count on computational efficiency.

1 2 3 4 5 6 7 8 9 10

Gamma ()

34

36

38

40

42

44

46

48

To
ke

ns
 p

er
 S

ec
on

d
(T

PS
)

71424

31132 18108
12595

9313 7162
5969 5004 4320 3781

15

20

25

30

35

40

Co
pi

ed
 T

ok
en

s P
er

ce
nt

ag
e (

%
)

Figure 7: This figure illustrates the relationship between the copying parameter γ and the model’s performance on
the MT-Bench dataset with the LLaMa3.1-8B-Instruct model. The notations are the same as in fig. 3.

Redundant Dataset. MT-Redundant builds upon
MT-Bench by modifying the second turn of each
conversation into a request for variations or adjust-
ments of the first turn’s response, thus emulating
real-world scenarios in which users seek revisions
to previous outputs. Specifically, we replace the
original second-turn prompt in MT-Bench (Zheng
et al., 2023) with one that instructs the model to
revisit and refine its previous answer. All assis-
tant responses in this appendix are generated using
Qwen2.5-72B-Instruct.

H Prompts Used

H.1 Example of Self-Correction

This appendix presents an example of self-
correction in code generation on the GSM8K,
AIME2024, and AIME2025 datasets. The results
are presented in Table 24, Table 25, and Table 26.
We generate an initial solution and apply multi-
round prompting to iteratively refine and correct

the generated code.
To ensure direct answer generation, we prompt

the model to explicitly print the computed result,
reducing intermediate ambiguities and improving
overall accuracy.

H.2 Example of Extractive Summarization

This appendix provides an example of extractive
summarization, where key sentences are selected
directly from the original text to form a concise
summary. The example, generated using Qwen2.5-
72B-Instruct, demonstrates how to extract the most
relevant information while preserving the original
wording. Notably, the Qwen models show an inter-
esting trend on the CNN/DM dataset, where larger
models produce more extractive summaries that
achieve slightly lower ROUGE-L scores.

H.3 Code Generation on HumanEval

This section presents an example of code gen-
eration using Qwen2.5-72B-Instruct on the Hu-

26319

Turn 1 Turn 2

Category Baseline CopySpec Speed-up Baseline CopySpec Speed-up

Coding 5.12 ±0.01 5.62 ±0.01 1.10 4.62 ±0.01 7.10 ±0.01 1.54
Extraction 4.76 ±0.01 5.64 ±0.01 1.19 4.48 ±0.01 6.84 ±0.01 1.53
Humanities 5.09 ±0.01 5.32 ±0.01 1.04 4.54 ±0.01 4.98 ±0.01 1.10
Math 5.17 ±0.01 5.84 ±0.01 1.13 4.81 ±0.01 6.72 ±0.01 1.40
Reasoning 5.08 ±0.01 5.69 ±0.01 1.12 4.80 ±0.01 5.96 ±0.01 1.24
Roleplay 5.06 ±0.01 5.14 ±0.01 1.02 4.59 ±0.01 4.68 ±0.01 1.02
Stem 5.12 ±0.01 5.38 ±0.01 1.05 4.62 ±0.01 5.32 ±0.01 1.15
Writing 5.12 ±0.01 5.12 ±0.01 1.01 4.69 ±0.01 6.09 ±0.01 1.30

Average 5.07 ±0.01 5.47 ±0.01 1.08 4.64 ±0.01 5.96 ±0.01 1.28

Table 16: Tokens per second on two turns across categories on MT-Bench using CopySpec and Baseline with
Qwen2.5-72B-Instruct (γ = 3). Results follow the same notation as table 3.

Turn 1 Turn 2

Category Base Model CopySpec Speed-up Base Model CopySpec Speed-up

Coding 10.86 ±0.01 11.67 ±0.01 1.07 9.73 ±0.01 17.03 ±0.01 1.75
Extraction 10.09 ±0.01 13.39 ±0.04 1.33 9.59 ±0.01 15.40 ±0.04 1.61
Humanities 10.86 ±0.01 11.56 ±0.01 1.06 9.73 ±0.01 11.14 ±0.01 1.14
Math 11.01 ±0.01 12.77 ±0.07 1.16 10.15 ±0.01 13.35 ±0.03 1.32
Reasoning 10.82 ±0.01 12.18 ±0.01 1.13 10.22 ±0.01 11.54 ±0.01 1.13
Roleplay 10.90 ±0.01 11.04 ±0.01 1.01 10.16 ±0.01 10.37 ±0.01 1.02
Stem 10.89 ±0.01 11.51 ±0.01 1.06 9.84 ±0.01 11.50 ±0.01 1.17
Writing 10.90 ±0.01 10.82 ±0.02 0.99 9.99 ±0.01 13.25 ±0.01 1.33

Average 10.91 ±0.01 11.86 ±0.01 1.09 9.92 ±0.01 12.57 ±0.01 1.27

Table 17: Tokens per second on two turns across categories on MT-Bench using CopySpec and Baseline with
Qwen2.5-32B-Instruct (γ = 3). Results follow the same notation as table 3.

manEval dataset. The model generates an initial
code implementation based on a given problem
description and produces a self-contained Python
script that correctly solves the task. The input con-
sists of a problem description specifying the func-
tion signature, expected behavior, and an example
test case. The generated solution includes function
definitions, type hints, and example test cases to
ensure correctness.

26320

Turn 1 Turn 2

Category Base Model CopySpec Speed-up Base Model CopySpec Speed-up

Coding 43.04 ±0.25 47.22 ±0.02 1.10 37.43 ±0.08 60.06 ±0.01 1.60
Extraction 39.50 ±0.06 44.41 ±0.01 1.12 38.94 ±0.09 52.85 ±0.01 1.36
Humanities 43.06 ±0.07 44.79 ±0.01 1.04 36.82 ±0.08 43.05 ±0.01 1.17
Math 44.40 ±0.16 49.46 ±0.12 1.11 39.39 ±0.36 53.45 ±0.01 1.36
Reasoning 43.49 ±0.36 46.57 ±0.01 1.07 40.96 ±0.19 46.76 ±0.01 1.14
Roleplay 43.43 ±0.05 45.35 ±0.01 1.04 38.72 ±0.08 39.89 ±0.01 1.03
Stem 43.30 ±0.07 45.47 ±0.01 1.05 37.34 ±0.09 43.61 ±0.01 1.17
Writing 43.58 ±0.06 44.72 ±0.01 1.03 38.80 ±0.08 55.90 ±0.01 1.44

Average 42.80 ±0.13 46.98 ±0.03 1.10 38.25 ±0.13 49.57 ±0.01 1.30

Table 18: Tokens per second on two turns across categories on MT-Bench using CopySpec and Baseline with
Qwen2.5-7B-Instruct (γ = 3). Results follow the same notation as table 3.

Turn 1 Turn 2

Category Base Model CopySpec Speed-up Base Model CopySpec Speed-up

Coding 5.18 ±0.01 5.94 ±0.01 1.15 4.79 ±0.01 7.63 ±0.01 1.59
Extraction 4.91 ±0.01 5.28 ±0.01 1.08 4.65 ±0.01 7.03 ±0.01 1.51
Humanities 5.21 ±0.01 5.39 ±0.01 1.04 4.77 ±0.01 5.35 ±0.01 1.12
Math 5.23 ±0.01 5.83 ±0.01 1.12 4.96 ±0.01 6.57 ±0.01 1.32
Reasoning 5.16 ±0.01 5.43 ±0.01 1.05 4.96 ±0.01 5.56 ±0.01 1.12
Roleplay 5.17 ±0.01 5.28 ±0.01 1.02 4.94 ±0.01 5.90 ±0.01 1.19
Stem 5.22 ±0.01 5.41 ±0.01 1.04 4.85 ±0.01 5.54 ±0.01 1.14
Writing 5.21 ±0.01 5.27 ±0.01 1.01 4.81 ±0.01 6.42 ±0.01 1.33

Average 5.16 ±0.01 5.48 ±0.01 1.06 4.84 ±0.01 6.25 ±0.01 1.29

Table 19: Tokens per second on two turns across categories on MT-Bench using CopySpec and Baseline with
LLaMa3.1-70B-Instruct (γ = 3). Results follow the same notation as table 3.

Turn 1 Turn 2

Category Base Model CopySpec Speed-up Base Model CopySpec Speed-up

Coding 36.86 ±0.01 44.35 ±0.06 1.20 34.42 ±0.01 53.22 ±0.06 1.55
Extraction 35.32 ±0.07 46.27 ±0.03 1.31 33.71 ±0.01 51.48 ±0.06 1.53
Humanities 37.20 ±0.01 40.88 ±0.06 1.10 33.78 ±0.02 40.61 ±0.05 1.20
Math 36.99 ±0.01 52.46 ±0.24 1.42 34.96 ±0.01 58.47 ±0.07 1.67
Reasoning 36.70 ±0.04 53.33 ±0.06 1.45 34.76 ±0.01 53.86 ±0.06 1.55
Roleplay 36.77 ±0.01 40.89 ±0.06 1.11 34.56 ±0.01 49.16 ±0.06 1.42
Stem 37.19 ±0.01 41.06 ±0.06 1.10 34.47 ±0.01 41.88 ±0.06 1.21
Writing 36.85 ±0.01 39.91 ±0.06 1.08 33.78 ±0.01 38.72 ±0.06 1.15

Average 36.73 ±0.08 44.89 ±0.08 1.22 34.30 ±0.01 48.42 ±0.06 1.41

Table 20: Tokens per second on two turns across categories on MT-Bench using CopySpec and Baseline with
LLaMa3.1-8B-Instruct (γ = 3). Results follow the same notation as table 3.

26321

Turn 1 Turn 2

Category Base Model Spec. Dec. Spec. Dec. Spec. Dec. Base Model Spec. Dec. Spec. Dec. Spec. Dec.
+ Copy (γ = 3) + Copy (γ = 5) + Copy (γ = 3) + Copy (γ = 5)

Coding 10.86 ±0.01 15.97 ±0.01 15.91 ±0.06 16.16 ±0.05 9.73 ±0.01 14.81 ±0.01 19.94 ±0.01 19.97 ±0.11
Extraction 10.09 ±0.01 14.22 ±0.01 15.39 ±0.06 15.36 ±0.05 9.59 ±0.01 14.55 ±0.01 16.71 ±0.05 16.26 ±0.01
Humanities 10.86 ±0.01 13.66 ±0.01 13.89 ±0.01 13.87 ±0.04 9.73 ±0.01 12.30 ±0.01 12.93 ±0.02 12.85 ±0.01
Math 11.01 ±0.01 17.02 ±0.03 17.30 ±0.01 17.32 ±0.02 10.15 ±0.01 15.38 ±0.01 16.04 ±0.06 16.61 ±0.02
Reasoning 10.82 ±0.01 14.02 ±0.01 14.34 ±0.02 14.26 ±0.01 10.23 ±0.01 12.99 ±0.01 13.18 ±0.02 13.42 ±0.05
Roleplay 10.90 ±0.01 12.86 ±0.02 12.88 ±0.04 12.94 ±0.01 10.16 ±0.01 12.11 ±0.01 12.18 ±0.03 12.24 ±0.02
Stem 10.89 ±0.01 14.29 ±0.06 14.36 ±0.03 14.47 ±0.02 9.84 ±0.01 13.13 ±0.01 13.71 ±0.01 13.77 ±0.05
Writing 10.90 ±0.01 12.65 ±0.02 12.69 ±0.02 12.71 ±0.03 9.99 ±0.01 11.69 ±0.01 13.54 ±0.03 13.31 ±0.01
Average 10.79 ±0.01 14.34 ±0.02 14.60 ±0.03 14.64 ±0.03 9.93 ±0.01 13.37 ±0.01 14.78 ±0.03 14.80 ±0.04

Table 21: Tokens-per-second (TPS) performance on the MT-Bench dataset, using Qwen2.5-32B-Instruct as the
target model and Qwen2.5-7B-Instruct as the draft model, where the draft model generates 3 tokens per attempt.
Results are presented using the same notation as Table 3 and a γ value of 3, showcasing the improvements in speed
and efficiency enabled by CopySpec.

Turn 1 Turn 2

Category Base Model Spec. Dec. Spec. Dec. Spec. Dec. Base Model Spec. Dec. Spec. Dec. Spec. Dec.
+ Copy (γ = 3) + Copy (γ = 5) + Copy (γ = 3) + Copy (γ = 5)

Coding 10.86 ±0.01 16.09 ±0.09 15.89 ±0.02 16.06 ±0.05 9.73 ±0.01 15.72 ±0.06 20.08 ±0.03 20.22 ±0.13
Extraction 10.09 ±0.01 14.28 ±0.06 15.08 ±0.01 15.20 ±0.02 9.59 ±0.01 15.46 ±0.06 16.89 ±0.01 16.93 ±0.01
Humanities 10.86 ±0.01 12.41 ±0.07 12.52 ±0.01 12.45 ±0.04 9.73 ±0.01 11.67 ±0.04 12.08 ±0.01 12.02 ±0.02
Math 11.01 ±0.01 17.60 ±0.15 17.76 ±0.02 17.95 ±0.06 10.15 ±0.01 16.22 ±0.06 16.57 ±0.02 17.08 ±0.01
Reasoning 10.82 ±0.01 13.04 ±0.01 12.94 ±0.02 12.97 ±0.10 10.23 ±0.01 11.92 ±0.06 12.25 ±0.01 12.29 ±0.04
Roleplay 10.90 ±0.01 11.15 ±0.04 11.18 ±0.01 11.14 ±0.03 10.16 ±0.01 11.09 ±0.05 11.11 ±0.01 11.13 ±0.03
Stem 10.89 ±0.01 13.34 ±0.07 13.35 ±0.04 13.37 ±0.04 9.84 ±0.01 12.87 ±0.05 13.12 ±0.02 13.12 ±0.03
Writing 10.90 ±0.01 11.32 ±0.04 11.33 ±0.01 11.20 ±0.11 9.99 ±0.01 10.71 ±0.06 11.89 ±0.01 11.74 ±0.01
Average 10.79 ±0.01 13.65 ±0.07 13.76 ±0.02 13.79 ±0.06 9.93 ±0.01 13.21 ± 0.06 14.25 ± 0.02 14.32 ± 0.04

Table 22: Tokens-per-second (TPS) performance on the MT-Bench dataset, using Qwen2.5-32B-Instruct as the
target model and Qwen2.5-7B-Instruct as the draft model, where the draft model generates 5 tokens per attempt.
Results are presented using the same notation as Table 3 and a γ value of 3, illustrating the scalability and efficiency
of CopySpec under varied settings.

Variant Turn 1 Turn 2 Turn 3

% Copied Tokens/s τ1 τ2 % Copied Tokens/s τ1 τ2 % Copied Tokens/s τ1 τ2

Base Model – 10.25±0.01 – – – 10.17±0.01 – – – 8.68±0.01 – –
CopySpec (γ = 3) 5.76% 10.13±0.01 0.58 – 44.17% 15.72±0.01 4.90 – 82.79% 21.89±0.01 7.67 –
CopySpec (γ = 5) 1.01% 9.91±0.02 0.72 – 40.67% 14.79±0.01 6.96 – 82.78% 21.39±0.02 8.70 –
Spec. Dec. – 12.92±0.02 – 3.77 – 12.27±0.01 – 3.36 – 11.44±0.01 – 4.30
Spec. Dec. + Copy (γ = 3) 1.47% 12.67±0.02 0.53 3.77 40.23% 14.65±0.02 6.08 2.52 81.18% 20.81±0.01 7.71 3.39
Spec. Dec. + Copy (γ = 5) 0.30% 12.99±0.01 0.55 3.78 38.93% 14.95±0.01 7.81 2.59 81.84% 21.51±0.02 8.72 3.40

Table 23: Performance comparison for self-correcting tasks when the draft model generates 5 tokens at a time.
Qwen2.5-32B-Instruct is the target model, and Qwen2.5-7B-Instruct is the draft model. τ1 refers to the average
tokens accepted by CopySpec, and τ2 refers to the average number of tokens accepted by the draft model. The
accuracy of the model improves by from 92% to 93%. The average TPS is highest for Spec. Dec. + Copy(γ = 5) at
15.59 while CopySpec alone achieves 14.84 TPS on average.

26322

Model Variant Turn 1 Turn 2 Turn 3

(Instruct) % Copied Tokens/s τ Acc % Copied Tokens/s τ % Copied Tokens/s τ Acc

Qwen2.5-72B CopySpec 6.12% 4.71±0.01 0.63
94%

47.49% 7.49±0.01 4.35 88.68% 10.59±0.01 7.94 96%
Base Model – 4.74±0.01 – – 4.76±0.01 – – 3.98±0.01 –

Qwen2.5-32B CopySpec 5.76% 10.13±0.01 0.58
92%

44.17% 15.72±0.01 4.90 82.78% 21.89±0.01 7.67 93%
Base Model – 10.25±0.01 – – 10.17±0.01 – – 8.68±0.01 –

Qwen2.5-7B CopySpec 9.36% 41.01±0.44 0.87
84%

60.34% 75.34±0.68 5.65 84.23% 93.68±0.26 7.35 85%
Base Model – 40.29±0.02 – – 39.67±0.05 – – 35.63±0.01 –

Table 24: Performance comparison on the GSM8K dataset for self-correcting tasks across three turns, using
CopySpec and the base model with Qwen2.5-Instruct variants. The table highlights significant improvements
in tokens-per-second (TPS), percentage of tokens copied, and the number of tokens successfully copied (τ) per
attempt when attempting to copy 10 tokens, with γ = 3. These results demonstrate the effectiveness of CopySpec in
leveraging increased context size and refining self-correction efficiency without compromising accuracy.

Writing - Question (84): Write a persuasive email to convince your introverted friend, who dislikes
public speaking, to volunteer as a guest speaker at a local event. Use compelling arguments and address
potential objections. Please be concise.

Assistant:
Subject: An Opportunity to Shine and Inspire!

Hi Alex,

I hope this message finds you well! I wanted to share an exciting opportunity that I think would
be perfect for you. The Community Development Association is hosting an event next month and
they’re looking for guest speakers. I immediately thought of you because of your unique insights
and the inspiring journey you’ve had.

I understand that public speaking isn’t your favorite thing, but hear me out for a moment. This
could be a fantastic chance for you to:

1. **Share Your Expertise**: You have so much valuable knowledge and experience that [...]

Follow-up Question: Rewrite your answer and make sure to replace any placeholder with actual names.

Assistant:
Subject: An Opportunity to Shine and Inspire!

Hi [Friend's Name],

I hope this message finds you well! I wanted to share an exciting opportunity that I think would
be perfect for you. The [Local Organization] is hosting an event next month and they’re looking
for guest speakers. I immediately thought of you because of your unique insights and the inspiring
journey you’ve had.

I understand that public speaking isn’t your favorite thing, but hear me out on why this could be
a fantastic experience for you:

1. **Share Your Expertise**: You have so much valuable knowledge and experience to offer. [...]

GPT-4-0613 Judgment:

The assistant's response is excellent. It followed the user's instructions to rewrite the previous
message, replacing placeholders with actual names. The assistant used the name \"Alex\" for the

friend and \"Jamie\" for the sender, and replaced \"[Local Organization]\" with \"Community
Development Association\". The assistant also added specific details about Alex's expertise,
making the message more personalized and relevant. The assistant's response is accurate, relevant,
and detailed. It maintains the persuasive and supportive tone of the original message. Therefore,
the assistant's performance is commendable. Rating: [[10]]

Figure 8: Examples from the Writing category (Slides 81–90). This category focuses on creative and formal
writing tasks, such as rephrasing, summarizing, or generating alternative drafts. The second turn typically requests
modifications or alternate versions of the initial written piece. "[...]" represents truncated output that didn’t fit in the
image.

26323

Roleplay - Question (97): Act as a math teacher. I will provide some mathematical equations or
concepts, and it will be your job to explain them in easy-to-understand terms. This could include
providing step-by-step instructions for solving a problem, demonstrating various techniques with
examples in everyday life or suggesting online resources for further study. My first request is \"I need
help understanding how probability works.\"

Assistant:
Certainly! Here is the information from my last output formatted as a JSON object, where each
couple of lines represents an entry:

```json
{
  "Basic Concepts": {
    "Event": "An event is something that happens. For example, rolling a die and getting a 6 is an 
event.",
    "Outcome": "An outcome is a possible result of an event. For example, when you roll a die, the 
possible outcomes are 1, 2, 3, 4, 5, and 6.",
    "Sample Space": "The sample space is the set of all possible outcomes. For a die, the sample 
space is {1, 2, 3, 4, 5, 6}.",
    "Probability": "The probability of an event is a number between 0 and 1 that represents the 

likelihood of that event happening. A probability of 0 means the event will never happen, and a 
probability of 1 means the event will always happen."
  },
  "Calculating Probability": "The probability of an event is calculated using the formula: [...]

Follow-up Question: Return your last output as a JSON in which each couple of lines represent an 
entry.

Assistant: 
Absolutely, I'd be happy to help you understand probability! Probability is a way of quantifying 
the likelihood of an event happening. It's used in many areas, from weather forecasting to making 
decisions in games and even in everyday life.

### Basic Concepts

1. **Event**: An event is something that happens. For example, rolling a die and getting a 6 is an 
event.
2. **Outcome**: An outcome is a possible result of an event. For example, when you roll a die, the 

possible outcomes are 1, 2, 3, 4, 5, and 6. [...]

GPT-4-0613 Judgment:

The assistant's response is excellent. It provides a comprehensive and easy-to-understand 
explanation of the concept of probability. The assistant starts by defining the basic concepts 
related to probability, then moves on to explain how to calculate probability with clear examples. 
The assistant also provides real-life applications of probability and suggests online resources 
for further study. The assistant even provides practice problems for the user to test their 
understanding. The response is accurate, detailed, and highly relevant to the user's request. 
Therefore, I would rate this response as a perfect score. Rating: [[10]]

Figure 9: Examples from the Roleplay category (Slides 91–100). Tasks in this category simulate real-world or
imaginative scenarios, requiring the model to adjust its responses based on dynamic user requests and context shifts.
"[...]" represents truncated output that didn’t fit in the image.

Model Variant Turn 1 Turn 2 Turn 3 Avg (Tokens/s)

(Instruct) Tokens/s Acc Tokens/s Tokens/s Acc

Qwen2.5-32B
Base Model 10.30±0.01

13.33%
9.79±0.01 8.61±0.01

23.33%
9.44±0.01

PLD (Lookup=3) 10.35±0.01 12.14±0.01 12.42±0.01 11.82±0.01
COPYSPEC (γ = 3) 12.40±0.01 14.78±0.01 16.47±0.01 14.46±0.01

Qwen2.5-7B
Base Model 29.03±0.01

10.00%
28.55±0.01 27.05±0.01

10.00%
28.23±0.01

PLD (Lookup=3) 33.47±0.03 65.66±0.05 56.23±0.56 50.19±0.13
COPYSPEC (γ = 3) 32.41±0.02 132.45±0.17 106.43±0.01 62.47±0.03

Table 25: AIME 2024 (self-refine). Throughput (tokens/s) and accuracy grouped by turn. Turn 2 is a thinking-only
round (no accuracy). Accuracies are identical across variants under greedy decoding because the output is the same,
so we show them once per model. We see that our technique significantly outperforms PLD and the base model on
the later turns where we have repetition.

26324



Assistant: 
If David has four sisters, and each of them has one brother, that one brother is David himself. 
Therefore, David still does not have any other brothers. So, David has **0** brothers.

Follow-up Question: Repeat your reasoning but David has 4 sisters now.

Reasoning - Question (104): David has three sisters. Each of them has one brother. How many 
brothers does David have?

Assistant: 
David has three sisters, and each of them has one brother. Since David is that one brother, he 
does not have any other brothers. Therefore, David has **0** brothers.

GPT-4-0613 Judgment:

The assistant's response is correct. The assistant correctly reasoned that if each of David's 
sisters has one brother, then that brother is David himself. This is true regardless of whether 
David has three sisters or four. The assistant's response is clear and logically sound. However, 
the reference answer is incorrect, as it suggests that David would have two brothers if each of 
his sisters had two brothers, which is not the case. Therefore, the assistant's response is more 
accurate than the reference answer. \n\nRating: [[10]]

Figure 10: Examples from the Reasoning category (Slides 101–110). This category evaluates logical and analytical
thinking, with prompts asking models to refine prior explanations or provide additional clarifications in the second
turn.

Model Variant Turn 1 Turn 2 Turn 3 Avg (Tokens/s)

(Instruct) Tokens/s Acc Tokens/s Tokens/s Acc

Qwen2.5-32B
Base Model 10.14±0.01

16.66%
9.59±0.01 8.48±0.01

20.00%
9.35±0.01

PLD (Lookup=3) 10.95±0.01 11.92±0.02 13.52±0.01 12.07±0.02
COPYSPEC (γ = 3) 12.70±0.01 15.01±0.02 16.64±0.01 14.70±0.01

Qwen2.5-7B
Base Model 29.17±0.31

13.33%
28.68±0.31 27.41±0.28

13.33%
28.42±0.31

PLD (Lookup=3) 31.44±0.06 75.42±0.06 67.44±0.03 51.27±0.06
COPYSPEC (γ = 3) 31.66±0.05 122.08±0.07 104.85±0.22 62.00±0.05

Table 26: AIME 2025 (self-refine). Throughput (tokens/s) and accuracy grouped by turn. Turn 2 is a thinking-only
round (no accuracy). Accuracies are identical across variants under greedy decoding because the output is the same,
so we show them once per model. We see that our technique significantly outperforms PLD and the base model on
the later turns where we have repetition.

26325



Math - Question (119): Benjamin went to a bookstore and purchased a variety of books. He bought 5 
copies of a sci-fi novel, each priced at $20, 3 copies of a history book priced at $30 each, and 2 copies of a 
philosophy book for $45 each.
What was the total cost of his purchases?

Assistant: 
To find the total cost of Benjamin's purchases with the new prices, we will follow the same steps:

1. **Sci-fi novels:**
   - Number of copies: 5
   - Price per copy: $25
   - Total cost for sci-fi novels: \( 5 \times 25 = 125 \) dollars

2. **History books:**
   - Number of copies: 3
   - Price per copy: $35
   - Total cost for history books: \( 3 \times 35 = 105 \) dollars

3. **Philosophy books:**

   - Number of copies: 2
   - Price per copy: $50
   - Total cost for philosophy books: \( 2 \times 50 = 100 \) dollars [...]

Follow-up Question: Using the same reasoning as before, calculate the total cost of Benjamin's 
purchases if he bought 5 copies of a sci-fi novel priced at $25 each, 3 copies of a history book priced at 
$35 each, and 2 copies of a philosophy book priced at $50 each. Only change your answer by plugging in 
the new numbers.

Assistant: 
To find the total cost of Benjamin's purchases, we need to calculate the cost of each type of book 
and then sum these costs.

1. **Sci-fi novels:**
   - Number of copies: 5
   - Price per copy: $20
   - Total cost for sci-fi novels: \( 5 \times 20 = 100 \) dollars

2. **History books:**
   - Number of copies: 3
   - Price per copy: $30 [...]

GPT-4-0613 Judgment:
The assistant's response is correct and helpful. It accurately calculates the total cost of 
Benjamin's purchases with the new prices, following the same reasoning as in the previous 
question. The assistant breaks down the calculation for each type of book and then sums the costs, 
providing a clear and detailed explanation. The assistant's answer matches the user's request to 
\"only change your answer by plugging in the new numbers.\" The assistant's answer is also 
consistent with the reference answer, except that the reference answer incorrectly calculates the 
cost of the history books and philosophy books with a 25% markup. The assistant [...]

Figure 11: Examples from the Math category (Slides 111–120). This category challenges the model to revise or
elaborate mathematical solutions, often clarifying steps or offering alternative solution paths when asked. "[...]"
represents truncated output that didn’t fit in the image.

26326



Coding - Question (126): Implement a function to find the median of two sorted arrays of different 
sizes with O(1) space complexity and O(n) time complexity.

Assistant: 
Certainly! We can modify the function to include a check for empty arrays and print a message if 
either array is empty. Here's the updated implementation:

```python
def find_median_sorted_arrays(nums1, nums2):
 # Check if either array is empty
 if not nums1:
 print("The first array is empty.")
 if not nums2:

 print("Both arrays are empty. Cannot determine the median.")
 return None
 return find_median_single_array(nums2)

 if not nums2:
 print("The second array is empty.")
 return find_median_single_array(nums1)

 # Merge the two sorted arrays [...]

Follow-up Question: Modify the function to check if either array is empty and print a message if it is.

Assistant:
Finding the median of two sorted arrays of different sizes with O(1) space complexity and O(n)
time complexity is a challenging problem. The key idea is to use a linear-time selection
algorithm, such as the "median of medians" algorithm, to find the k-th smallest element in the
combined array. However, for simplicity and clarity, we can use a more straightforward approach
that merges the two arrays while keeping track of the median.

Here's a step-by-step implementation:

1. **Merge the two arrays**: We will merge the two arrays while keeping track of the elements in a

way that allows us to find the median.
2. **Find the median**: Depending on the total number of elements, the median will be either the
middle element (if the total number of elements is odd) or the average of the two middle elements
(if the total number of elements is even). [...]

GPT-4-0613 Judgment:

The assistant's answer is incorrect. The user asked for a solution with O(1) space complexity and
O(n) time complexity. The assistant's solution does not meet the space complexity requirement
because it creates a new list, `merged`, which stores all elements from the two input arrays. This
results in a space complexity of O(n), where n is the total number of elements in the two input
arrays. The reference answer correctly states that it's not possible to find the median of two
sorted arrays of different sizes with O(1) space complexity and O(n) time complexity. [...]

Figure 12: Examples from the Coding category (Slides 121–130). This category covers programming-related tasks
such as debugging, refactoring, or implementing variants of a provided code snippet in response to a user’s request.
"[...]" represents truncated output that didn’t fit in the image.

26327

Extraction - Question (135): Identify the countries, their capitals, and the languages spoken in the
following sentences. Output in JSON format.
a) Amidst the idyllic vistas, Copenhagen, Denmark's capital, captivates visitors with its thriving art scene
and the enchanting Danish language spoken by its inhabitants.
b) Within the enchanting realm of Eldoria, one discovers Avalore, a grandiose city that emanates an
ethereal aura. Lumina, a melodious language, serves as the principal mode of communication within this
mythical abode.
c) Nestled amidst a harmonious blend of age-old customs and contemporary wonders, Buenos Aires, the
capital of Argentina, stands as a bustling metropolis. It is a vibrant hub where the expressive Spanish
language holds sway over the city's inhabitants.

Assistant:
json
[
 {
 "country": "Denmark",
 "capital": "Copenhagen",
 "languages": ["Danish"],
 "is_real": true
 },
 {
 "country": "Eldoria",
 "capital": "Avalore",
 "languages": ["Lumina"],
 "is_real": false [...]

Follow-up Question: Update your output to include whether the country is real or fictional.

Assistant:
json
[
 {
 "country": "Denmark",
 "capital": "Copenhagen",
 "languages": ["Danish"]
 },

 {
 "country": "Eldoria",
 "capital": "Avalore", [...]

GPT-4-0613 Judgment:

The assistant's response is accurate, relevant, and helpful. The user asked for an update to the
previous JSON output to include whether the country is real or fictional. The assistant correctly
identified Denmark and Argentina as real countries and Eldoria as a fictional one, and updated the
JSON output accordingly. The assistant's response is detailed and directly addresses the user's

request, providing the information in the requested format. Therefore, the assistant's [...]

Figure 13: Examples from the Extraction category (Slides 131–140). This category focuses on pulling specific
information from the model’s previous response or restructuring it (e.g., lists, bullet points) according to user
specifications. "[...]" represents truncated output that didn’t fit in the image.

26328

Stem - Question (150): How have the Alps and Rhine River influenced settlement and agriculture in
Western Europe? List three impacts.

Assistant:
Certainly! Below is a summary of the impacts of the Alps and the Rhine River on settlement and
agriculture in Western Europe, followed by a proposed experimental design to validate the first
impact (settlement patterns influenced by the Alps).

Summary of Impacts

1. **Settlement Patterns:**
 - **Alps as a Natural Barrier:** The Alps have acted as a natural barrier, influencing where
and how settlements developed. Areas with more accessible passes and valleys, such as the Swiss

Plateau and the Alpine forelands, saw denser populations due to easier travel and communication.
Conversely, higher and more rugged areas remained sparsely populated.
 - **Rhine River as a Transportation Route:** The Rhine River has been a crucial transportation
route, facilitating trade and communication. Cities like Basel, Strasbourg, and Cologne grew along
its banks, becoming important economic and cultural centers. The river's navigability has made it
a vital artery for the movement of goods and people, supporting urban development. [...]

Follow-up Question: Include the impacts you described previously and propose a simple experimental
design to validate the first impact, using specific methods and metrics.

Assistant:
The Alps and the Rhine River have significantly influenced settlement and agriculture in Western
Europe in various ways. Here are three key impacts:

1. **Natural Barriers and Strategic Locations**:
 - **Alps**: The Alps have acted as a natural barrier, influencing the distribution of
settlements. Towns and cities often developed in valleys and passes, such as the Brenner Pass,
which served as important trade routes. These locations became strategic points for commerce and
defense.
 - **Rhine River**: The Rhine River has been a crucial transportation corridor, facilitating
trade and communication. Cities like Basel, Strasbourg, and Cologne grew along its banks, becoming
major economic and cultural centers. The river's navigability has made it a vital artery for the
movement of goods and people.

2. **Agricultural Practices and Land Use**: [...]

GPT-4-0613 Judgment:

The assistant's response is highly detailed, relevant, and accurate. It provides a comprehensive
experimental design to validate the first impact of the Alps and Rhine River on settlement and
agriculture in Western Europe. The assistant outlines a clear hypothesis, methods for data
collection and analysis, case studies, metrics, and expected outcomes. The assistant also uses
specific methods such as GIS, spatial analysis, network analysis, and statistical analysis, and
provides specific metrics like settlement density, trade route connectivity, defensive structures,
and economic indicators. The assistant's response is also creative in its approach to validating
the impact. However, the response is cut off at the end, which leaves the expected outcomes
section incomplete. Rating: [[9]]

Figure 14: Examples from the STEM category (Slides 141–150). This category addresses a variety of scientific and
technical topics, requiring models to adapt or refine explanations, data, or methodologies in the second turn. "[...]"
represents truncated output that didn’t fit in the image.

26329

Humanities - Question (159): What are some business etiquette norms when doing business in Japan?

Assistant:
Certainly! Here are the business etiquette norms for Japan, along with specific applications in a
car wash business setting to enhance customer satisfaction:

1. **Greetings and Bowing**:

 - **Application**: Greet customers with a polite bow and a smile as they arrive. This shows
respect and creates a welcoming atmosphere. For example, a slight bow and a warm "Irasshaimase"
(Welcome) can make customers feel valued from the moment they enter your premises.

2. **Business Cards (Meishi)**:
 - **Application**: While business cards might not be as relevant in a car wash setting, you can
still provide a professional and clean business card to regular customers or those who inquire
about services. Ensure the card is presented respectfully, with both hands, and includes all
necessary contact information.

3. **Dress Code**:
 - **Application**: Ensure that all staff members are dressed professionally and neatly.
Uniforms should be clean and well-maintained. This conveys a sense of professionalism and [...]

Follow-up Question: Repeat the business etiquette norms you described earlier and explain how each
of them can be specifically applied in a car wash business setting to enhance customer satisfaction.

Assistant:
Doing business in Japan requires an understanding of the country's unique cultural and social
norms. Here are some key business etiquette norms to keep in mind:

1. **Greetings and Bowing**:
 - **Bowing**: Bowing is a common form of greeting in Japan. The depth and duration of the bow
can vary depending on the situation and the relationship between the individuals. A slight bow is
generally appropriate for initial greetings.
 - **Handshakes**: While handshakes are becoming more common, especially with international
business partners, they are often accompanied by or followed by a bow.

2. **Business Cards (Meishi)**:

 - **Exchange**: Business cards are exchanged at the beginning of a meeting. Present your card
with both hands, holding it by the corners so that the text faces the recipient. [...]

GPT-4-0613 Judgment:

The assistant's response is highly detailed, relevant, and creative. It successfully translates
the general business etiquette norms in Japan to a specific context, which is a car wash business.
The assistant provides practical examples for each norm, showing how they can be applied to
enhance customer satisfaction in a car wash setting. The assistant's response is also accurate, as
it maintains the essence of the original norms while adapting them to a new context. The
assistant's response is thorough and demonstrates a deep understanding of both the general norms
and the specific business context. Therefore, the assistant's response is of high quality. Rating:

[[10]]

Figure 15: Examples from the Humanities category (Slides 151–160). This category includes topics like literary
analysis, historical context, or philosophical discussion, with the second turn often requesting deeper insight or
alternate perspectives. "[...]" represents truncated output that didn’t fit in the image.

26330

Question: Please produce an *extractive* summary of the article below by choosing 2 or 3 key
sentences from the original text:

(CNN)Five Americans who were monitored for three weeks at an Omaha, Nebraska, hospital after
being exposed to Ebola in West Africa have been released, a Nebraska Medicine spokesman said in an
email Wednesday. One of the five had a heart-related issue on Saturday and has been discharged but
hasn't left the area, Taylor Wilson wrote. The others have already gone home. They were exposed to
Ebola in Sierra Leone in March, but none developed the deadly virus. They are clinicians for Partners
in Health, a Boston-based aid group. They all had contact with a colleague who was diagnosed with the
disease and is being treated at the National Institutes of Health in Bethesda, Maryland. As of Monday,
that health care worker is in fair condition. The Centers for Disease Control and Prevention in Atlanta
has said the last of 17 patients who were being monitored are expected to be released by Thursday.
More than 10,000 people have died in a West African epidemic of Ebola that dates to December 2013,
according to the World Health Organization. Almost all the deaths have been in Guinea, Liberia and
Sierra Leone. Ebola is spread by direct contact with the bodily fluids of an infected person.

Return only sentences from the original text that best capture the main ideas.

Assistant:
Five Americans who were monitored for three weeks at an Omaha, Nebraska, hospital after being
exposed to Ebola in West Africa have been released, a Nebraska Medicine spokesman said in an email
Wednesday. They were exposed to Ebola in Sierra Leone in March, but none developed the deadly
virus. The Centers for Disease Control and Prevention in Atlanta has said the last of 17 patients

who were being monitored are expected to be released by Thursday.

Figure 16: An example of self-correction in code generation on CNN/DM using Qwen2.5-72B-Instruct, demonstrat-
ing abstractive summarization.

26331

Question: Please provide a self-contained Python script that solves the following problem in a
markdown code block:
```
from typing import List, Tuple

def rolling_max(numbers: List[int]) -> List[int]:
    """ From a given list of integers, generate a list of rolling maximum element found until given 
moment
    in the sequence.
    >>> rolling_max([1, 2, 3, 2, 3, 4, 2])
    [1, 2, 3, 3, 3, 4, 4]
    """
```
Assistant:
Below is a Python script with a self-contained function that solves the problem and passes
corresponding tests:
```python
from typing import List

def rolling_max(numbers: List[int]) -> List[int]:
    """ From a given list of integers, generate a list of rolling maximum element found until 

given moment
    in the sequence.
    >>> rolling_max([1, 2, 3, 2, 3, 4, 2])
    [1, 2, 3, 3, 3, 4, 4]
    """
    if not numbers:
        return []
    
    max_so_far = numbers[0]
    result = [max_so_far]
    
    for number in numbers[1:]:
        if number > max_so_far:

            max_so_far = number
        result.append(max_so_far)
    
    return result

# Example usage and test
if __name__ == "__main__":
    test_numbers = [1, 2, 3, 2, 3, 4, 2]
    print(rolling_max(test_numbers))  # Output: [1, 2, 3, 3, 3, 4, 4]
```

Figure 17: Example of code generation on the HumanEval dataset using Qwen2.5-72B-Instruct, demonstrating the
model’s ability to produce a self-contained Python solution with function definitions, type hints, and test cases.

26332

