GRASP: Replace Redundant Layers with Adaptive Singular Parameters
for Efficient Model Compression

Kainan Liu*?, Yong Zhang"', Ning Cheng'*, Zhitao Li!,
Shaojun Wang', Jing Xiao',
'Ping An Technology (Shenzhen) Co., Ltd., China
>The Hong Kong University of Science and Technology (Guangzhou)

{zhangyong203,

Abstract

Recent studies have demonstrated that many
layers are functionally redundant in large
language models (LLMs), enabling model
compression by removing these layers to re-
duce inference cost. While such approaches
can improve efficiency, indiscriminate layer
pruning often results in significant perfor-
mance degradation. In this paper, we pro-
pose GRASP (Gradient-based Retention of
Adaptive Singular Parameters), a novel com-
pression framework that mitigates this issue
by preserving sensitivity-aware singular val-
ues. Unlike direct layer pruning, GRASP
leverages gradient-based attribution on a small
calibration dataset to adaptively identify and
retain critical singular components. By re-
placing redundant layers with only a mini-
mal set of parameters, GRASP achieves effi-
cient compression while maintaining strong
performance with minimal overhead. Ex-
periments across multiple LLMs show that
GRASP consistently outperforms existing com-
pression methods, achieving 90% of the origi-
nal model’s performance under 20% compres-
sion ratio. The source code is available at
https://github.com/LyoAI/GRASP.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across a wide range
of tasks, including language generation, reason-
ing, and question answering (Brown et al., 2020;
Touvron et al., 2023b). However, their massive pa-
rameter sizes pose computational and memory chal-
lenges, hindering deployment on resource-limited
devices (Zhou et al., 2024). To address this, model
compression techniques such as quantization (Fran-
tar et al., 2022; Lin et al., 2024; Xiao et al., 2023),
knowledge distillation (Gu et al., 2023; Xu et al.,

T Equal contribution.

+ Corresponding author.

This work was done during Kainan Liu’s internship at
Ping An Technology.

chengning2113}@pingan.com.cn

Output

[LayerN] [LaycrN

[..

D
D(l
/

Leaving 10%

nghfwe ight
Parameters
o

[
Luyzr 1] [Layer 1

I |

Input Input

El
DE]

Figure 1: Unlike conventional layer pruning, which
either skips redundant layers—often causing moderate
performance drops—or replaces them with lightweight
modules that require additional training, GRASP (right)
retains only the most critical 10% of parameters within
the redundant layers, effectively preserving accuracy
with minimal overhead.

2024), and pruning(Sun et al., 2024; Ashkboos
et al., 2024) have been widely explored. Among
these, structured pruning methods remove entire
components such as neurons or layers to streamline
the model, thereby achieving hardware efficiency
and inference speedup.

In this work, we focus on structured layer prun-
ing, which builds on prior findings that certain con-
secutive layers in large language models (LLMs)
are functionally redundant. These findings have
inspired approaches that either remove such lay-
ers entirely (Men et al., 2024, Yang et al., 2024,
Kim et al., 2024) or replace them with lightweight
modules (Chen et al., 2024) to reduce inference
cost. Although layer removal is simple and com-
putationally efficient, it often results in significant
performance degradation. This degradation arises
from disrupted information flow and misaligned
intermediate representations (Liang et al., 2024),
suggesting that layer removal eliminates certain im-
portant components that contribute meaningfully to
maintaining model performance. Replacing redun-

26333

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 26333-26348
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/LyoAI/GRASP

dant layers with lightweight modules can mitigate
this issue to some extent, but such modules are typ-
ically randomly initialized, requiring substantial
computational resources for training.

In this paper, we propose GRASP (Gradient-
based Retention of Adaptive Singular Parameters),
a novel compression framework that replaces re-
dundant layers with adaptive singular parameters
for efficient LLM compression. Unlike direct layer
removal, GRASP exploits the low-rank structure in-
herent in redundant layers, replacing the redundant
layers with only a small subset of parameters while
maintaining strong model performance. Specif-
ically, GRASP operates in two key steps: First,
it identifies layers suitable for pruning based on
the cosine similarity of output hidden states be-
tween adjacent layers. Then, instead of relying
on magnitude-based heuristics, GRASP leverages
gradient attribution derived from a small calibra-
tion dataset to adaptively identify and retain the
singular values most critical for downstream task
performance.

To evaluate the effectiveness of GRASP, We con-
duct extensive experiments on 19 datasets and 5
models from two distinct LLM families (LLaMA
and Mistral). Notably, GRASP achieves strong per-
formance in a training-free setting, requiring no
additional optimization. Furthermore, when post-
training compensation is applied, only a small num-
ber of samples are needed to rapidly restore model
performance. This efficiency arises from retaining
critical components within redundant layers, rather
than relying on randomly initialized replacements.
Overall, this paper makes the following contribu-
tions:

* We propose GRASP, a novel training-free com-
pression framework that replaces redundant lay-
ers with adaptive singular parameters, leveraging
the low-rank structure within LLMs to preserve
performance with minimal overhead.

* We introduce a gradient-based singular value se-
lection mechanism, enabling efficient identifica-
tion of critical components without relying on
magnitude-based heuristics.

* We conduct extensive experiments across ten
datasets and five models from two major LLM
families (LLaMA and Mistral), demonstrating
that GRASP consistently achieves strong perfor-
mance under both training-free and low-resource
fine-tuning settings.

2 Method

Figure 1 illustrates the workflow of GRASP. The
method consists of two main steps: Identifying re-
dundant layers to be pruned (Sec 2.1) and replacing
redundant layers with critical singular components
guided by gradient-based attribution (Sec 2.2). Be-
low, we describe each step in detail.

2.1 Redundant Layer Selection

The first step in GRASP is identifying redundant
layers. These are layers that contribute minimally
to the transformation of hidden states, exhibiting
high redundancy and limited impact on overall
model performance. Following prior works (Song
et al., 2024; Chen et al., 2024), we use cosine simi-
larity to quantify the degree of transformation in a
given layer.

For a transformer layer with input hidden state
H; € R% and output hidden state H; 1 € R?, the
cosine similarity is computed as:

HI'H; 1y
| Hill2)| Hivll2

A high cosine similarity indicates minimal trans-
formation, suggesting that the layer is redundant.
Instead of directly removing these layers, GRASP
compresses weight matrices with a gradient-based
approach to retain critical internal transformations.

cos(H;, Hiy1) = €))

2.2 Layer Replacement with Adaptive
Singular Parameters

Motivation. GRASP operates under the hypoth-
esis that redundant layers exhibit an inherent low-
rank structure, allowing their functionality to be
effectively approximated using low-rank matrices.
Based on this insight, a straightforward approach
is to apply singular value decomposition (SVD)
to these layers. However, prioritizing components
solely based on singular value magnitude does not
necessarily correlate with downstream task perfor-
mance (Hsu et al., 2022; Hua et al., 2025). To val-
idate this point, we selectively zero out groups of
singular values in the weight matrices of large lan-
guage models and measure their impact on down-
stream tasks. As shown in Figure 2, we make two
key observations: (1) The contribution of a singular
value to downstream task performance is not solely
determined by its magnitude; smaller values can be
crucial for task performance in some cases. (2) Re-
dundant layers exhibit a highly low-rank structure,
where only a few singular directions dominate the
model performance.

26334

EXN Sensitivity

oy .
o w

Singular Value
o

\

HHSDDEEH

9 10 11 12 13 14 15 16
Rank Index

o
)

Figure 2: Sensitivity analysis of grouped singular value
truncation. While singular values are typically ordered
by magnitude, their impact on downstream performance
does not follow the same order.

Key Design. To address this limitation, GRASP
introduces gradient-based attribution to evaluate
the importance of each singular value by its contri-
bution to model performance, rather than relying
on magnitude alone. Formally, the singular value
decomposition of a weight matrix W € R™*" isg
given by W = UXV . Equivalently, W can be
expressed as the sum of its rank-one components:

l

W = Z ukakv,;r, 2)

k=1

where | = min(m,n), o} denotes the k-th singu-
lar value, and uy, vy are the k-th column vectors
of the orthogonal matrices U and V/, respectively.
For brevity, we use ®;, to represent the singular
group {ug, ok, v; }. GRASP estimates the impor-
tance of each ®; using a small, general-purpose
calibration dataset (e.g., WikiText-2), computing
a sensitivity-based score that reflects its effect on
model performance, given by:

where 7'(-) denotes the estimated loss change when
a certain parameter 6 is zeroed out. This can be
approximated by the second-order Taylor expan-
sion (LeCun et al., 1989), defined as:

1
T(0) = GTV9£+§9TH0+O(H9||3) 4)

== log Py | 2<) 5)
t

where VgL denotes the gradient of the standard
language modelin Ig{objective function £ w.r.t. the
parameter 6, and H represents the corresponding
Hessian matrix. To reduce computational overhead,
we omit the second-order term and approximate

the importance using only the first-order deriva-
tive (Hua et al., 2025, Kim et al., 2024):

I(q)k Vk, 7,

Uk ‘+Z

Ukz ‘+Z

The first term in Eq. 6 captures the gradient projec-

tion of the loss £ w.r.t. the singular value ;. The
proof is given in AppendixA.l. By aggregating
the first-order expansions across all components
within each singular group, our method effectively
captures the contribution of singular values, where
larger values indicate greater importance. This
gradient-oriented attribution moves beyond heuris-
tic magnitude-based criteria, enabling performance-
aligned importance evaluation. Under the hypoth-
esis that redundant layers exhibit an inherent low-
rank structure, we retain only the top-r% singular
values most critical to model performance based on
Eq. 6, and use them to replace the corresponding
redundant layer. The relationship between the sin-
gular group retain ratio (r%) and the overall target
compression ratio is detailed in Appendix A.3.

2.3 Detailed Implementation of GRASP

GRASP processes the redundant layers in a sequen-
tial manner, starting from the final redundant layer
and proceeding backward through the network. We
summarize the detailed algorithm in Algorithm 1.

Algorithm 1 GRASP: Gradient-based Retention of
Adaptive Singular Parameters

Require: Model M, Calibration set D, Retain ra-
tio r 3
Ensure: Compressed model M

1: Step 1: Redundant Layer Selection:

2: Compute cosine similarity cos(H;, H;11) for
all layers via Eq.1 using D

3: Select top-L layers with highest similarity as
redundant

Step 2: Gradient-Guided Compression:
for each redundant layer [(in reverse order) do
for each W € {attention, MLP} do
SVD: W =UxV’
Compute importance [(®) for each
O = {ug, ox, v,;r} via Eq.6 using D
9: Keep top-r% singular groups, recon-
struct W
10: end for
11: end for
12: return M

A

26335

3 Experiments

In this section, we conduct comprehensive experi-
ments to evaluate GRASP from three key perspec-
tives. (1) We first compare our method with exist-
ing pruning-based LLM compression approaches
to demonstrate its effectiveness (Section 3.2). (2)
Next, we analyze the inference speed-up achieved
by GRASP (Section 3.3). (3) Finally, we investi-
gate the factors influencing our approach by per-
forming ablation studies on the choice of calibra-
tion datasets and pruning strategies. (Section 3.4)

3.1 Experimental Setup

Below we detail the models, benchmarks, base-
lines and implementation details used in our exper-
iments, with more experimental setups provided in
Appendix A.2.

Models. We evaluate GRASP on a range of large
language models (LLMs) from two model families:
the LLaMA family, including LLaMA-7B (Tou-
vron et al.,, 2023a), LLaMA 2-7B, LLaMA 2-
13B (Touvron et al., 2023b), and LLaMA 3.1-8B-
Instruct (Dubey et al., 2024), as well as Mistral-
7B (Jiang et al., 2023) from the Mistral family.

Baselines. We compare GRASP against 8 struc-
tured pruning methods to substantiate its efficacy:

¢ Layer-pruning methods We consider three rep-
resentative layer-pruning methods as baselines:
ShortGPT (Men et al., 2024), LaCo (Yang et al.,
2024) and LLM-Streamline (Chen et al., 2024).

* Module-pruning methods We also select LLM-
Pruner (Ma et al., 2023) and SliceGPT (Ashk-
boos et al., 2024) which prune the redundant
modules in LLMs.

* Low-rank Pruning methods Considering our
method involves Gradient-based SVD, we also
compare with other low-rank pruning methods:
FWSVD (Hsu et al., 2022), ASVD (Yuan et al.,
2023) and SVD-LLM (Wang et al., 2024).

We provide a detailed comparison of these pruning-
based LLM compression methods in Appendix
A4,

Implementation Details. To ensure a fair com-
parison, we randomly sample 512 data points from
the WikiText-2 dataset as the calibration dataset.
All experiments are conducted on NVIDIA A100-
SXM4 (80GB) GPUs. Further experimental details
can be found in Appendix A.2.

3.2 Comparison with Pruning-based LLM
Compression Methods

3.2.1 Comparison without Post-Training
Compensation

Models and Benchmarks. In this experiment,
we evaluate GRASP against representative struc-
tured pruning baselines using a more modern LLM
architecture—LLaMA 3.1-8B-Instruct—without
applying any post-training compensation. The
model is compressed to 20% of its original size and
evaluated on seven commonsense reasoning bench-
marks, including WinoGrande (Sakaguchi et al.,
2020), HellaSwag (Zellers et al., 2019), Open-
BookQA (Mihaylov et al., 2018), PIQA (Bisk
et al., 2020), ARC-e, ARC-c (Clark et al., 2018),
and MathQA (Amini et al., 2019). All tasks
are tested in a zero-shot setting using the LM-
Evaluation-Harness framework (Gao et al., 2024).

Main Results. As shown in Table 1, GRASP
achieves the highest average accuracy across seven
commonsense reasoning benchmarks, consistently
outperforming all baseline methods. In particu-
lar, GRASP improves over SliceGPT by 34% in
average accuracy and outperforms LaCo by 12%.
To further evaluate the generalizability of GRASP
across different LLM architectures, we additionally
conduct experiments on LLaMA 2-7B, LLaMA 2-
13B, and Mistral-7B. Detailed results are presented
in Appendix A.5. Notably, GRASP demonstrates
significantly improved robustness across models,
effectively mitigating the variability in pruning sen-
sitivity across diverse architectures.

3.2.2 Comparison with Post-Training
Compensation

Models and Benchmarks. In this section, fol-
lowing prior research, we compress the LLaMA
2-7B model under a 25% compression ratio and
evaluate the compressed model on a broad set
of natural language understanding (NLU) and
question-answering (QA) benchmarks, including
CMNLI (Xu et al., 2020), HellaSwag (Zellers
et al., 2019), PIQA (Bisk et al, 2020),
CHID (Zheng et al., 2019), WSC (Levesque et al.,
2012), CommonsenseQA (Talmor et al., 2018),
BoolQ (Clark et al., 2019), MMLU (Hendrycks
et al., 2020), CMMLU (Li et al., 2023), Race (Lai
et al., 2017) and C3 (Sun et al., 2020). We utilized
the OpenCompass evaluation framework (Contrib-
utors, 2023) and report accuracy as the evaluation
metric for all benchmarks under the PPL mode, fol-

26336

Methods ‘OpenbookQA ARC_e WinoGrande HellaSwag ARC_c¢ PIQA MathQA ‘ Average Percentage

Dense ‘ 0.34 0.82 0.74 0.59 0.52 0.80 0.39 ‘ 0.60 100.0%
LaCo 0.26 0.49 0.65 0.33 0.30 0.65 0.30 0.42 70.9%
ShortGPT 0.21 0.57 0.66 0.42 0.32 0.67 0.26 0.44 74.1%
SliceGPT 0.15 0.43 0.51 0.30 0.23 0.58 0.22 0.35 57.7%
GRASP 0.22 0.60 0.70 0.44 0.37 0.69 0.28 0.47 78.6%

Table 1: Zero-shot performance of GRASP and structured pruning baselines without post-training under a 20%
compression ratio. Results are reported on seven reasoning datasets (individual and average accuracy). Bold values

indicate the best performance.

Method ‘ C3 CMNLI CHID BoolQ WSC CoQA HeSW PIQA Race-M Race-H MMLU CMMLU ‘ Avg. Per.
Dense ‘ 438 33.0 41.6 70.8 37.5 66.7 71.3 78.1 33.1 35.5 46.8 31.8 ‘ 49.2 100.0%
LLMPruner* 29.7 334 284 58.7 40.4 48.5 54.6 72.0 22.9 22 25.3 25.0 384 78.1%
SliceGPT* 31.5 31.6 18.5 59.9 43.3 49.6 475 68.3 27.0 29.4 28.8 24.8 384 78.0%
LaCo* 39.7 344 36.1 64.1 40.4 45.7 55.7 69.8 23.6 22.6 26.5 25.2 403 82.0%
ShortGPT* 40.2 344 21.5 67.3 40.4 51.7 59.7 69.0 352 34.7 44.6 28.9 440 89.4%
LLM-Streamline-FEN* | 40.7 33.0 22.8 65.9 38.5 60.6 61.2 71.2 38.0 38.7 47.0 31.7 458 93.1%
LLM-Streamline-Layer* | 43.3 33.0 24.1 67.5 36.5 59.2 61.1 71.5 34.8 37.0 45.5 29.4 452 92.0%
GRASP ‘ 44.6 35.1 26.2 68.4 41.4 63.2 62.7 73.3 35.1 36.1 43.1 30.7 ‘ 46.7 94.9%

Table 2: Comparison between GRASP and structured pruning baselines with post-training compensation under a
25% compression ratio. Results marked with * are reported from (Chen et al., 2024). Bold values indicate the best

performance.

lowing the same evaluation protocol as LaCo (Yang
et al., 2024).

Main Results. To ensure a fair comparison, we
constrain the number of trainable parameters to re-
main approximately the same across all methods
by retaining only 10% of the parameters in each
redundant layer and allowing only these parame-
ters to be trainable. Notably, for GRASP’s post-
training compensation process, we fine-tune the
compressed model on Alpaca (Taori et al., 2023)
for only one epoch to guarantee efficiency. Addi-
tional implementation details are provided in Ap-
pendix A.2. As shown in Table 2, GRASP consis-
tently outperforms the best-performing baselines
LLM-Streamline on average and achieves a 94.9 %
of the original model performance at a 25% com-
pression ratio. In addition to achieving superior
accuracy, GRASP also demonstrates more stable
and faster convergence during post-training, which
we attribute to its preservation of critical singular
components.

3.2.3 Comparison with Low-Rank Pruning
Methods

Models and Benchmarks. In this section, we
further compare our method against state-of-the-art
structured low-rank pruning approaches—FWSVD
(Hsu et al., 2022), ASVD (Yuan et al., 2023) and
SVD-LLM (Wang et al., 2024) on the LLaMA-7B
model under various compression ratio. 8 datasets
are used as evaluation benchmarks including seven

commonsense reasoning datasets as Experiment 1
and one natural language generation (NLG) bench-
mark GSMS8K (Cobbe et al., 2021). For all bench-
marks, we report the zero-shot accuracy as the eval-
uation metric.

Main Results. To evaluate the performance and
stability of our proposed method, we conduct exper-
iments under various compression ratios ranging
from 20% to 50%. Table 3 summarizes the results
for different methods. The results demonstrate that
our proposed GRASP consistently outperforms the
baseline methods on most benchmarks. Specifi-
cally, GRASP retains more than 91% of the orig-
inal performance at a 20% compression ratio and
87% under the compression ratio of 30%. More
importantly, with fast and resource-efficient post-
training compensation, GRASP enables rapid accu-
racy recovery, achieving 70% of the original model
performance even at a 50% compression ratio.

Furthermore, to assess the generalizability of
GRASP across different LLM architectures, we
compare its performance against structured low-
rank pruning baselines under a 20% compression
ratio on four models from two distinct LLM fami-
lies: LLaMA 2-7B, LLaMA 2-13B, LLaMA 3.1-
8B-Instruct, and Mistral-7B. As shown in Figure 3,
GRASP consistently outperforms all baseline meth-
ods across architectures and exhibits greater robust-
ness across different model families. The only
exception is on LLaMA 2-13B, where GRASP

26337

Ratio

Method ‘Openb. ARC_e WinoG. HeSW ARC_c PIQA MathQA GSMSK ‘ Average Percentage

0% | Original | 028 067 067 056 038 078 027 0.09 | 046 100.0
FWSVD | 015 031 050 026 023 056 021 0.00 0.28 60.8
ASVD | 025 053 064 041 027 068 024 0.04 0.38 82.6

200 | SVD-LLM | 022 058 063 043 029 069 024 0.05 0.39 84.7
Ours 022 052 064 043 032 070 024 0.03 0.39 84.7
Ours* 024 059 063 05 035 073 025 0.04 0.42 91.3
FWSVD | 017 026 049 026 022 051 019 0.00 0.26 56.5
ASVD | 018 043 053 037 025 065 021 0.00 033 71.7

30% | SVD-LLM | 020 048 059 037 026 065 022 0.03 035 76.1
Ours 019 042 062 039 028 064 023 0.02 035 76.1
Ours* 024 054 064 046 032 069 024 0.04 0.40 87.0
FWSVD | 016 026 051 026 022 053 021 0.00 0.27 58.7
ASVD | 013 028 048 026 022 055 019 0.00 0.26 56.5

409 | SVD-LLM | 019 042 058 033 025 060 021 0.02 033 71.7
Ours 018 037 057 035 027 061 021 0.01 032 69.6
Ours* 022 049 063 043 03 068 023 0.02 0.38 82.6
FWSVD | 012 026 050 026 023 053 020 0.00 0.26 56.5
ASVD | 012 026 051 026 022 052 019 0.00 0.26 56.5

so% | SVD-LLM | 016 033 054 029 023 056 021 0.00 0.29 63.0
Ours 013 029 053 028 023 053 020 0.01 0.28 60.9
Ours* 0.18 04 056 035 026 061 021 0.02 0.32 69.6

Table 3: Performance of LLaMA-7B compressed by GRASP (Ours* denotes the version with post-training compen-
sation) and low-rank pruning baselines under 20% to 50% compression ratio on seven common sense reasoning
datasets (measured by accuracy?) and GSM8K dataset (measured by Exact Match Accuracyt). Percentage
represents the proportion of the original model’s performance retained by the pruned method. The best performance

is marked in bold.

0.7
Original SVD-LLM
FWSVD GRASP
. 0.61 ASVD GRASP*
()
(@]
©
[0.5
2 o.
<
0
@ 0.4
o
>
|9
B4
0.3
0.2 ‘ ; ' .
Mistral-7B LLaMA2-7B LLaMA2-13B LLaMA3.1-8B-it

Figure 3: Comparison between our method and low-
rank pruning baselines on four different LLMs. Av-
erage accuracy is reported across seven commonsense
reasoning benchmarks: OpenBookQA, WinoGrande,
HellaSwag, ARC-easy, ARC-challenge, PIQA, and
MathQA.

slightly underperforms SVD-LLM. However, this
performance gap can be quickly recovered through
lightweight compensation. The detailed results are
provided in Appendix A.6.

3.3 Compression Costs and Inference
Efficiency of GRASP

GRASP enables low-cost compression of LLMs
while improving inference efficiency on real hard-

ware. To evaluate its acceleration benefits, we
measure the throughput (tokens per second) of the
original LLaMA2-7B and its GRASP-compressed
counterpart under varying sequence lengths and
batch sizes. As shown in Figure 5, GRASP con-
sistently improves generation speed and achieves
acceleration comparable to direct layer removal.
Notably, although GRASP retains a small subset of
parameters within redundant layers to mitigate the
performance drop caused by layer removal, these
retained components are extremely low-rank and in-
cur negligible inference overhead while preserving
task performance. Additionally, we measure the
compression time of GRASP and other structured
pruning baselines when compressing LLaMA2-7B
on an NVIDIA A100 GPU under a 25% compres-
sion ratio. As reported in Table 4, Pruning Time
refers to the time required to perform model com-
pression up to the target sparsity, excluding any
compensation. Compensation Time refers to the
time spent on post-compression procedures—such
as fine-tuning or parameter updates—aimed at re-
covering model performance. The results show that
GRASP is able to compress the model efficiently
while maintaining strong performance, demonstrat-
ing its practicality for real-world deployment.

26338

WikiText-2

WikiTXt-2 —— WikiText-2 —— WikiText-512
—— WikiText-256
c4 PTB —— WikiText-128
WikiText-64
PIQA OpenbookQA PIQA OpenbookQA

ARC_chalenge

HellaSwag WinoGrande HellaSwag WinoGrande

Figure 4: Performance of GRASP on LLaMA3.1-8B-Instruct under 20% compression using (a) different calibration
datasets (WikiText-2, C4) and (b) varying amounts of calibration data from WikiText-2. GRASP demonstrates
limited sensitivity to calibration data changes, with final task performance varying within 4%.

B Dense Layer Removal GRASP
3 600
2 450
@ 300
% 150
=0 32 64 128 256
Sequence Length
3 800
2 600
@ 400
% 200
S 16 32 64 128

Batch Size

Figure 5: Throughput of LLaMA2-7B and GRASP com-
pressed model under 25% compression ratio on a single
A100 GPU. Top: Throughput across different sequence
lengths (batch size = 32). Bottom: Throughput across
different batch sizes (sequence length = 32).

Model ‘ Pruning Time (h) ‘ Compensation Time (h)
LaCO 0.05 12
SliceGPT 0.6 0.76
LLM-Streamline 0.03 0.7
GRASP 0.16 X
GRASP* 0.16 0.66

Table 4: Compression time of GRASP and structured
pruning baselines on LLaMA?2-7B under a 25% com-
pression ratio on a single A100 GPU. “x” indicates that
GRASP does not require post-training compensation.

3.4 Ablation Study

Calibration Data. We conduct ablation studies
to assess the sensitivity of GRASP to the choice
and size of the calibration dataset used for gradient-

based singular value attribution. Table 5 and Fig-
ure 4 present the results on LLaMA3.1-8B-Instruct
when varying the calibration dataset and the num-
ber of samples drawn from WikiText-2. The re-
sults indicate that GRASP remains robust across
different calibration dataset choices and performs
reliably even with limited calibration data. Remark-
ably, the method achieves strong performance with
as few as 64 samples, demonstrating its effective-
ness in low-data regimes.

Ablation Type | CAiPration | gipevio prp Average
Dataset Accuracy
_ WikiText-2 | 37.86 6397 47.12
Varying Dataset c4 4054 7142 4617
64 465 8651 47.06
. 128 3991 7641 4693
Varying Number 256 3873 79.13 46.67
512 3786 6397 4712

Table 5: Comparison of GRASP using different types
and amounts of data for compressing LLaMA3.1-8B-
Instruct at a 20% compression ratio. Results are re-
ported on the WikiText-2, PTB datasets (measured by
perplexity|) and the average accuracy across seven
commonsense reasoning benchmarks: OpenBookQA,
WinoGrande, HellaSwag, ARC-easy, ARC-challenge,
PIQA, and MathQA.

Retain Ratio 7%. We further explore the im-
pact of the retain ratio » on GRASP’s performance.
As shown in Table 6 and Figure 6, performance
improves rapidly when increasing r from 0% to
10%, after which the gains largely saturate. This
indicates that a retain ratio of 10% serves as a
practical inflection point, providing a strong trade-
off between compression and accuracy. In prac-

26339

tice, we therefore adopt a fixed retain ratio of
10%, which consistently yields stable performance
across benchmarks while maintaining high com-
pression efficiency. These results further confirm
that the selected redundant layers contain substan-
tial redundancy, as even a small fraction of retained
singular components suffices to recover most of the
original performance.

ey
(<))

IS
o
)

I
I
L

N
W
L

IN
¥}
!

Average Performance

»
an
L

00 25 50 75 100 125 15.0 17.5 20.0
Retain Ratio (%)

Figure 6: Effect of the retain ratio on average per-
formance when compressing 8 redundant layers of
LLaMAZ2-7B. The results show a sharp improvement
up to a 10% retain ratio, after which performance gains
plateau, indicating 10% as a practical inflection point.

One-shot Pruning vs Iterative Pruning As de-
tailed in Section 2.3, GRASP processes the redun-
dant layers in a sequential manner, starting from
the final redundant layer and proceeding backward
through the network. This can be done using one-
shot pruning, which identifies and decomposes all
redundant layers in a single step, or iterative prun-
ing, which processes layers one at a time to account
for interactions between layers. We present the ab-
lation results in Table 7, which shows that both
approaches achieve similar performance, with one-
shot pruning being more efficient.

. _ Average Compression
Pruning Strategy ‘ WikiText-2 PTB Accuracy Time(h)
One-shot Pruning 37.86 63.97 47.12 0.16
Iterative Pruning 38.39 72.18 47.13 0.22

Table 7: Comparison of one-shot pruning and iterative
pruning for LLaMA3.1-8B-Instruct under 20% com-
pression ratio.

4 Discussion

The effectiveness of GRASP stems from two key
design principles that distinguish it from conven-
tional structured pruning methods.

Leveraging Low-Rank Redundancy. GRASP
builds on the observation that the redundant layers
in LLMs exhibit inherent low-rank characteristics.

Rather than removing these layers entirely, which
can lead to information loss and degraded perfor-
mance, GRASP retains a small subset of critical sin-
gular directions identified through a gradient-based
attribution mechanism. This approach allows the
model to retain essential functional capacity while
discarding non-informative parameters, leading to
efficient yet accurate compression.

Preserving Informative Subspaces for Fast Re-
covery. By maintaining only the most influen-
tial parameters within redundant layers, GRASP
avoids the need for costly retraining while facilitat-
ing faster convergence when post-training compen-
sation is applied. This contrasts with approaches
like LLM-Streamline (Chen et al., 2024) that in-
sert randomly initialized or dense lightweight mod-
ules, which require more data and training time
to approximate the original function. GRASP’s
retention of critical low-rank components allows
it to preserve the spectral alignment of the origi-
nal model (Oymak et al., 2019, Kamalakara et al.,
2022, Shuttleworth et al., 2024), resulting in more
stable optimization dynamics and enhanced sample
efficiency during post-training compensation.

5 Related Work

Structured pruning aims to reduce the size and com-
putational cost of large language models (LLMs)
by removing entire components such as layers, neu-
rons, or dimensions, while maintaining model per-
formance. Among this, layer pruning is a kind of
structured pruning technique that eliminates redun-
dant layers within Large Language Models (LLMs).
Methods such as ShortGPT (Men et al., 2024) intro-
duce a metric called Block Influence to assess the
significance of individual layers, enabling efficient
one-shot removal of less important layers. SLEB
(Song et al., 2024) improves this by employing
an iterative pruning strategy, evaluating the impor-
tance of each layer based on the current state of the
layer-removed LLMs. LaCo (Yang et al., 2024),
on the other hand, proposes a gradual compression
approach, progressively merging redundant layers
from deeper to shallower parts of the network.
Although effective in reducing model size, layer
pruning disrupts representation coherence, leading
to performance degradation and increased perplex-
ity, as analyzed by (Liang et al., 2024). To mitigate
this, post-training compensation methods have
been proposed. Kim et al., 2024 introduced Short-
ened LLaMA, which employs LoRA (Hu et al.,

26340

Retain Ratio Ove.rall . Openb. ARC_e ARC_c WinoGrande PIQA MathQA Average
Compression Ratio
0% 24.0% 20.2 45.1 30.9 61.3 67.0 222 41.1
5% 22.8% 224 54.9 31.8 66.0 70.0 23.8 44.8
10% 21.6% 232 56.1 32.7 66.2 70.7 239 45.5
15% 20.4% 234 56.3 329 65.6 70.7 24.1 45.5
20% 19.2% 234 56.5 334 65.6 71.5 24.3 45.8

Table 6: Ablation results on LLaMA2-7B by replacing 8 redundant layers with sensitivity-aware singular parameters
while varying the retain ratio. The table reports the resulting overall compression ratio and downstream task

performance across multiple benchmarks.

2022) to restore pruned models’ capabilities. How-
ever, LORA modifies the singular value spectrum,
potentially weakening pre-trained features (Shuttle-
worth et al., 2024). LLM-Streamline (Chen et al.,
2024) addresses this by training a lightweight mod-
ule, such as an FFN or transformer layer, to approx-
imate the removed layers. While effective, these
methods impose high computational and data costs,
limiting feasibility in resource-constrained settings.

Another line of structured pruning research fo-
cuses on low-rank approximation, where Singular
Value Decomposition (SVD) is widely used to de-
compose weight matrices into low-rank structures,
typically selecting top-k singular values based on
Frobenius norm reconstruction loss. Recent meth-
ods have enhanced SVD to reduce LLM compres-
sion error. FWSVD (Hsu et al., 2022) incorporates
Fisher information to reweight the importance of
parameters before applying SVD. ASVD (Yuan
et al., 2023) uses activation patterns from a cali-
bration dataset to scale weight matrices, reducing
compression-induced activation errors. SVD-LLM
(Wang et al., 2024) applies truncation-aware data
whitening and layer-wise updates to ensure a di-
rect relationship between singular values and com-
pression loss. Additionally, (Yu and Wu, 2023;
Chavan et al., 2024; Ji et al., 2024) present an-
other paradigm for low-rank compression of LLMs,
where eigenvalue decomposition is applied to out-
put activations, approximating the output activa-
tions with low-rank matrices. However, SVD-
based methods require truncating at least 50% of
singular values to reduce parameters of square ma-
trices (which are common in LLMs like Llama),
which often leads to significant information loss.
In contrast to these approaches, GRASP integrates
gradient-based attribution into the low-rank decom-
position process and replaces redundant layers with
only a small fraction of parameters (typically 10%),
thereby enabling efficient compression while re-
taining critical information.

6 Conclusion

In this work, we proposed GRASP, a novel com-
pression framework that replaces redundant layers
in large language models with a small set of adap-
tively selected singular parameters. By leverag-
ing the low-rank structure of redundant layers and
incorporating gradient-based attribution, GRASP
identifies critical components that preserve model
functionality with minimal parameter overhead. It
operates in a training-free manner and enables effi-
cient post-training recovery with limited data. Ex-
tensive experiments across diverse LLM architec-
tures and benchmarks demonstrate that GRASP
consistently outperforms existing structured prun-
ing methods in both accuracy and efficiency.

7 Limitations

While GRASP achieves competitive performance
and compression efficiency, it also has several limi-
tations that merit further exploration.

First, our method relies on the assumption that
layer redundancy can be identified via output simi-
larity (e.g., cosine similarity between hidden states).
While effective in practice, this heuristic may over-
look more nuanced forms of redundancy that arise
from distributed or task-specific behaviors within
deeper model layers.

Second, GRASP depends on access to gradient
information and a small calibration dataset to com-
pute attribution scores. Although the data require-
ment is minimal and the method is training-free in
its core form, this may limit applicability in strictly
black-box or privacy-sensitive settings where gra-
dients or internal representations are inaccessible.

We also note that our experiments are conducted
on models up to 13B parameters and primarily in
English-language tasks. Extending GRASP to mul-
tilingual or much larger-scale models is a promis-
ing direction for future work, especially as the scale
and diversity of LLMs continue to grow.

26341

Ethical Considerations

Our research adheres to the ACL Code of Ethics,
ensuring transparency, responsible use of data,
and consideration of potential social impacts. All
datasets used in this work are publicly available
and have been appropriately cited, ensuring com-
pliance with data usage agreements and privacy
regulations.

While GRASP is designed to optimize the ef-
ficiency and scalability of large language models,
we recognize that such technologies could be mis-
used in applications that may perpetuate harmful bi-
ases or deploy models in contexts lacking adequate
oversight. To mitigate these risks, we advocate for
responsible deployment practices, including thor-
ough testing and monitoring for unintended biases.

Moreover, we acknowledge the computational
resources required for training and testing large
language models. To minimize environmental im-
pact, we conducted experiments on energy-efficient
hardware (NVIDIA A100 GPUs) and report our
computational cost transparently. Further details
can be found in the Appendix.

References

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357-2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-
nari do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. arXiv preprint
arXiv:2401.15024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432-7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec

Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Arnav Chavan, Nahush Lele, and Deepak Gupta. 2024.
Surgical feature-space decomposition of LLMs: Why,
when and how? In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2389-2400,
Bangkok, Thailand. Association for Computational
Linguistics.

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. 2024.
Compressing large language models by stream-
lining the unimportant layer. arXiv preprint
arXiv:2403.19135.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International conference on machine
learning, pages 10323-10337. PMLR.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

26342

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. Knowledge distillation of large language mod-
els. arXiv preprint arXiv:2306.08543.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou,
Yilin Shen, and Hongxia Jin. 2022. Language model
compression with weighted low-rank factorization.
In International Conference on Learning Representa-
tions.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Ting Hua, Xiao Li, Shangqgian Gao, Yen-Chang Hsu,
Yilin Shen, and Hongxia Jin. 2025. Dynamic low-
rank estimation for transformer-based language mod-
els. US Patent App. 18/669,413.

Yixin Ji, Yang Xiang, Juntao Li, Qingrong Xia, Zi Ye,
Xinyu Duan, Zhefeng Wang, Kehai Chen, and Min
Zhang. 2024. Adaptive feature-based low-rank com-
pression of large language models via bayesian op-
timization. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pages 4152—
4168.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat
Venkitesh, Jimmy Ba, Yarin Gal, and Aidan N
Gomez. 2022. Exploring low rank training of deep
neural networks. arXiv preprint arXiv:2209.13569.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault
Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. 2024. Shortened LLaMA: A simple depth
pruning for large language models. In ICLR 2024
Workshop on Mathematical and Empirical Under-
standing of Foundation Models.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. arXiv
preprint arXiv: 1704.04683.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. Advances in neural information
processing systems, 2.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. KR,
2012:13th.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2023. Cmmlu: Measuring massive multitask
language understanding in chinese. arXiv preprint
arXiv:2306.09212.

Xun Liang, Shichao Song, Zifan Zheng, Hanyu Wang,
Qingchen Yu, Xunkai Li, Rong-Hua Li, Yi Wang,
Zhonghao Wang, Feiyu Xiong, et al. 2024. Inter-
nal consistency and self-feedback in large language
models: A survey. arXiv preprint arXiv:2407.14507.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
Awq: Activation-aware weight quantization for on-
device 1lm compression and acceleration. Proceed-
ings of Machine Learning and Systems, 6:87-100.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
LLM-pruner: On the structural pruning of large lan-
guage models. In Thirty-seventh Conference on Neu-
ral Information Processing Systems.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language
models are more redundant than you expect. arXiv
preprint arXiv:2403.03853.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381-2391, Brussels, Belgium. Association
for Computational Linguistics.

Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi
Soltanolkotabi. 2019. Generalization guarantees for
neural networks via harnessing the low-rank structure
of the jacobian. arXiv preprint arXiv:1906.05392.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adversar-
ial winograd schema challenge at scale. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):8732-8740.

26343

Reece Shuttleworth, Jacob Andreas, Antonio Torralba,
and Pratyusha Sharma. 2024. Lora vs full fine-
tuning: An illusion of equivalence. arXiv preprint
arXiv:2410.21228.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun
Kim, Yulhwa Kim, and Jae-Joon Kim. 2024. Sleb:
Streamlining 1lms through redundancy verification
and elimination of transformer blocks. arXiv preprint
arXiv:2402.09025.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2020. In-
vestigating prior knowledge for challenging chinese
machine reading comprehension. Transactions of the

Association for Computational Linguistics, 8:141—
155.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.
2024. A simple and effective pruning approach for
large language models. In The Twelfth International
Conference on Learning Representations.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang.
2024. Svd-llm: Truncation-aware singular value de-
composition for large language model compression.
arXiv preprint arXiv:2403.07378.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087-38099. PMLR.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie
Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
Cong Yu, et al. 2020. Clue: A chinese language
understanding evaluation benchmark. arXiv preprint
arXiv:2004.05986.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. 2024. A survey on knowledge dis-
tillation of large language models. arXiv preprint
arXiv:2402.13116.

Yifei Yang, Zouying Cao, and Hai Zhao. 2024. Laco:
Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187.

Hao Yu and Jianxin Wu. 2023. Compressing transform-
ers: features are low-rank, but weights are not! In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 11007-11015.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang
Wu, Yan Yan, and Guangyu Sun. 2023. Asvd:
Activation-aware singular value decomposition for
compressing large language models. arXiv preprint
arXiv:2312.05821.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791-4800, Florence,
Italy. Association for Computational Linguistics.

Chujie Zheng, Minlie Huang, and Aixin Sun. 2019.
Chid: A large-scale chinese idiom dataset for cloze
test. arXiv preprint arXiv:1906.01265.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Ji-
aming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. 2024. A survey on
efficient inference for large language models. arXiv
preprint arXiv:2404.14294.

26344

A Appendix

A.1 The gradient of singular values

For a weight matrix W € R”*™ in the selected
redundant layers, its differential form can be ex-
pressed as:

ow =oUuxv? +voxvT 4+ uzov”

Urowv =UToux + 0% + xvTov

Since both U and V' are orthogonal matrices, we
have:

vt =1, Viv=I,

oauvTu+uToUu = 0,,, avI'v+vTov =0,

This implies that U7 dU and dVT'V are asymmet-
ric matrices. Therefore, the diagonal elements of
UTdUY and VT dV are zero, leading to the diag-
onal elements of UTOWV being:

I, oUTOWV = 9%

where I represents the k X k identity matrix, ©
denotes element-wise multiplication.

For a singular value o, its differential form can
be written as:

Oo; = uiTani
Since o; is a scalar, we have:

Oo; = tr((‘)ai)
= tr(u! OWv;)
= tr[(uvl)T OW]
thereby, the derivative of o; with respect to W is:

For a calibration dataset D, the gradient of a
singular value o; with respect to the task loss can be
interpreted as the projection of the weight gradient
matrix (G onto the corresponding singular direction,
given by:

oL 7 OL
- U,L' —U;
80' i 8 w

Then, for all the singular values ¥, we have:

L r(OL

A.2 Experimental Setup and
Hyperparameters Configuration

To ensure a fair comparison, all experimental se-
tups are consistent across all methods. In the fol-
lowing, we describe the experimental setup and
hyperparameters configuration in detail.

Hyperparameters Configurations For post-
training compensation, all models compressed by
GRASP are trained on the Alpaca (Taori et al.,
2023) dataset for 1 epoch with a batch size of 32.
We use AdamW (Loshchilov and Hutter, 2019) as
our optimizer and set the learning rate to 3 x 1074,
All our experiments are conducted on a single A100
GPU with mixed precision enabled. Table 8 pro-
vides the detailed configurations of post-training
compensation.

HyperParameters Setting
Dataset Alpaca
Huggingface Dataset Path yahma/alpaca-cleaned
Batch Size 32
Micro Batch Size 4
Epochs 1
Learning Rate 3.00E-04
Max Length 256
Train on Inputs TRUE
Add EOS Token FALSE
LoRA-Rank 256
LoRA-Alpha 16
LoRA-Dropout 0.05
LoRA-Target-Modules 4_proj ,.k_proj ’ v_p.roj, o_projj
up_proj, down_proj, gate_proj
Prompt-Template Alpaca Template

Table 8: Experimental setup and hyperparameters con-
figurations.

A.3 Relationship between Singular Group
Retail Ratio and Target Overall
Compression Ratio

In GRASP, the retain ratio 7% denotes the propor-
tion of singular components preserved within each
weight matrix of the selected redundant layers. The
target overall model compression ratio, which is
jointly determined by (i) the number of layers se-
lected in Step 1, and (ii) the retain ratio % applied
in Step 2.

In practice, we adopt a fixed retain ra-
tio—typically 10%—as ablation studies (Sec-
tion 3.4) show it achieves a favorable trade-off
between compression and performance. Table 6
further illustrates how varying the retain ratio in-
fluences the overall compression ratio and down-
stream performance across several benchmarks

26345

Method ‘ Metric ‘ Calibration Data ‘ Need Post-Training ‘ Training Data ‘ Training Dataset Size ‘ Training Module
ShortGPT | Cosine Similarity |~ WikiText-2 | | None | None | None
LaCo ‘ Cosine Similarity ‘ WikiText-2 ‘ Optional ‘ Unpublished ‘ 1B ‘ Full Parameters
SliceGPT PCA WikiTexi-2 Optional Alpaca 5k Full Parameters
Alpaca
Taylor . SlimPajama 6278 Full Parameters
Shortened LLaMA ‘ Perplexity ‘ BookCorpus ‘ Optional ‘ Alpaca ‘ 50Kk ‘ LoRA-Adapter
. . T - . . Lightweight
LLM-Streamline | Cosine Similarity WikiText-2 Yes SlimPajama 30k
Network
GRASP Cosine Similarit WikiText-2 Optional Alpaca 50k Low-rank
‘ y P P Modules

Table 9: Comparison of pruning-based LLM compression methods, where the metric indicates the criterion used
to identify redundant modules. "Optional" refers to methods that can either work without post-training or recover
performance through post-training. Shortened LLaMA consists of two training stages: initial continual pre-training
on the SlimPajama dataset, followed by LoRA fine-tuning on the Alpaca dataset.

when compressing 8 layers of LLaMA2-7B. These
results highlight the high redundancy of the se-
lected layers: even a small fraction of retained
singular components is sufficient to recover most
of the original performance.

A.4 Comparison of Concurrent Structured
Pruning Methods

We provide a detailed comparison of concurrent
structured pruning LLM compression methods, and
the results are summarized in Table 9.

A.5 Detailed Results on Commonsense
Reasoning Benchmarks

In this section, we provide detailed results for
GRASP and baseline methods on the common-
sense reasoning benchmarks using LLaMA2-7B,
LLaMAZ2-13B, and Mistral-7B. These results ex-
tend the main experiments presented in Table 1,
offering a comprehensive view of GRASP’s perfor-
mance across different model architectures.

Table 10 reports accuracy without post-training
compensation. The results demonstrate that
GRASP consistently maintains strong accuracy and
demonstrates robustness across model scales and
families.

A.6 More Results on Other Models

To further validate the generalizability of GRASP
across diverse LLM architectures, we present ad-
ditional results under a 20% compression ratio
on three representative models beyond LLaMA-
7B, LLaMA2-13B, LLaMA3.1-8B-Instruct, and
Mistral-7B. Table 11 summarizes the performance
comparison between GRASP and structured low-
rank pruning baselines, including FWSVD, ASVD,

and SVD-LLM, across eight evaluation bench-
marks.

Consistent with our findings in the main text,
GRASP achieves superior or comparable accu-
racy across most benchmarks. While SVD-
LLM slightly outperforms GRASP on LLaMA2-
13B, our method demonstrates stronger robustness
across model families and benefits from more sta-
ble post-compensation recovery. These results
highlight GRASP’s effectiveness as a generalizable
and architecture-agnostic compression strategy.

A.7 Evaluation Results on LongBench

In this section, we present the detailed results of
LLaMA3.1-8B-Instruct and its compressed version
by GRASP under 20% compression ratio on Long-
Bench, which are presented in Table 12. The re-
sults illustrate that GRASP with post-training com-
pensation still maintains superior performance on
long-form reasoning and complex generative tasks.

A.8 Robustness of GRASP towards different
calibration Dataset

In this section, we provide details of the ablation
studies conducted to investigate the impact of cal-
ibration datasets and the amount of data used for
singular value gradient attribution. Specifically,
we selected 512 samples from WikiText-2 (Merity
et al., 2017) and C4 (Raffel et al., 2020) as cali-
bration data to assess the performance of GRASP
when compressing LLaMA3.1-8B-Instruct under
20% compression ratio. Additionally, we selected
64, 128, 256 and 512 samples from WikiText-2 to
examine the robustness of GRASP to the change in
the number of calibration data. All calibration data
were randomly selected from the training splits of
the downstream datasets, ensuring no data leakage.

26346

Model

Method ‘ Ratio ‘Openb. ARC_e WinoG. HeSW ARC_c PIQA MathQA ‘ Average

Dense | 00% | 033 081 074 061 050 081 036 0.59

LaCo |21.1% | 020 035 058 026 025 053 024 0.34

Mistral-7B-v0.1 ShortGPT | 21.1% | 0.19 057 0.68 046 037 071 026 0.46
SliceGPT | 20.0% | 0.19 051 059 035 025 061 023 0.39

GRASP [200% | 021 056 068 043 038 067 026 0.46

Dense | 00% | 032 069 067 057 040 078 028 0.53

LaCo | 18.1% | 026 048 059 042 032 069 024 0.43

LLaMA2-7B ShortGPT | 21.1% | 023 049 0.63 042 031 068 023 0.43
SliceGPT | 21.5% | 022 054 061 037 028 063 023 0.41

GRASP |21.6% | 024 054 063 043 033 071 023 0.44

Dense | 00% | 032 073 070 060 046 079 030 0.56

LaCo | 195% | 028 052 063 043 033 070 025 0.45

LLaMA-2-13B ShortGPT | 22.1% | 024 050 063 046 033 07 024 0.44
SliceGPT | 20.0% | 0.29 059 065 039 032 064 024 0.45

GRASP [200% | 026 061 066 047 035 073 024 0.47

Dense | 00% | 034 08 074 059 052 080 039 0.60

LaCo | 190% | 026 049 065 033 030 065 030 0.42

LLaMA3.1-8B-Instruct | ShortGPT | 21.7% | 021 057 066 042 032 067 026 0.44
SliceGPT | 20.0% | 0.5 043 051 030 023 058 022 0.35

GRASP |200% | 022 060 070 044 037 069 028 0.47

Table 10: Zero-shot performance of GRASP and pruning-based without post-training baselines under 20% compres-
sion ratio. Results are reported on seven reasoning datasets (individual and average accuracy). Bold values indicate

the best performance.

Mistral-7B LLaMA2-7B LLaMA2-13B LLaMA3.1-8B-Instruct
Method PPL | Acc 1 PPL | Acc 1 PPL | Acc 1 PPL | Acc 1
(WikiText-2) Average | (WikiText-2) Average | (WikiText-2) Average | (WikiText-2) Average
Original 5.25 0.59 5.68 0.52 5.47 0.53 7.21 0.60
FWSVD 6357 0.32 1727 0.32 2360 0.31 3256.7 0.29
ASVD 19.28 0.4 11.14 0.44 9.70 0.46 2443.99 0.30
SVD-LLM 10.21 0.41 7.94 0.44 8.50 0.47 - -
Ours 18.42 0.45 14.79 0.44 16.12 0.44 37.86 0.47
Ours* 11.62 0.51 10.19 0.47 9.59 0.48 14.13 0.53

Table 11: Perplexity(]) of GRASP and low-rank pruning baselines on the WikiText-2 datasets and the average
accuracy(T) on seven common sense reasoning datasets for four different LLMs under 20% compression ratio. "f"
indicates that we refer to the results in the original paper..The best performance is marked in bold.

As shown in Figure 4, we can observe that GRASP
consistently achieves strong performance, indicat-
ing that our method is robust to variations in both
the calibration dataset and the number of data. Ta-
bles 13 and 14 summarize the results of GRASP
when compressing LLaMA3.1-8B-Instruct with
different calibration datasets (WikiText-2, C4) and
varying numbers of calibration data.

A.9 Comparison with Unstructured Pruning
Methods

To provide a more comprehensive picture of
model compression, we have included comparisons
with two widely used unstructured pruning meth-
ods, SparseGPT (Frantar and Alistarh, 2023) and
Wanda (Sun et al., 2023) in our experiments. While
unstructured pruning introduces fine-grained spar-

sity in weight matrices, it typically requires dedi-
cated sparse formats to realize storage or runtime
benefits, which complicates direct comparison un-
der the same compression ratio. To ensure a fair
evaluation, we adopt the commonly used 2:4 spar-
sity pattern (i.e., 50% sparsity) for both methods,
and compare them against GRASP at a 20% struc-
tured compression ratio. The results are summa-
rized in Table 15, indicating that GRASP achieves
competitive or superior performance against un-
structured pruning methods across all benchmarks.

26347

LLaMA3.1-8B-Instruct
GRASP

996 6.04 1875 14.27
1532 20.47 3452 16.46

11.27 11.57 7.65 34.16
31.33 26.18 10.28 29.86

56.47 51.34 26.09
33.74 38.09 26.26

‘ Summarization ‘ Few-shot Learning ‘ Synthetic Task
Model 11 12 13 14 | 11 21 22 23 | 24 34 32
LLaMA3.1-8B-Instruct | 28.35 20.04 25.85 14.51 | 63 513 39.29 L. 4 9 67 17.17
GRASP 2576 1941 2597 899 | 595 6744 3841 8 18
‘ One-Doc QA ‘ Multi-Doc QA ‘ Code Completlon ‘ Average
Model | 42 43 44 | 51 52 53 54 | 6 62 | ALL

Table 12: Performance comparison of LLaMA3.1-8B-Instruct and its compressed version by GRASP under
20% compression ratio on LongBench. The datasets are grouped as follows: (1-1 to 1-4) denote GovReport,
QMSum, MultiNews, and VCSUM; (2-1 to 2-4) denote TREC, TriviaQA, SAMSum, and LSHT; (3-1 to 3-3)
denote PassageCount, PassageRetrieval-en, and PassageRetrieval-zh; (4-1 to 4-4) denote NarrativeQA, Qasper,
MultiFieldQA-en, and MultiFieldQA-zh; (5-1 to 5-4) denote HotpotQA, 2WikiMultihopQA, MuSiQue, and
DuReader; (6-1 to 6-2) denote LCC and RepoBench-P.

Calibration Dataset | WikiText-2 PTB | Openb. ARC_e WinoG. HeSW ARC_c PIQA MathQA | Average
WikiText-2 37.86 63.97 21.6 59.85 70.48 4421 37.12 68.66 27.94 47.12
C4 40.54 71.42 24 57.91 67.72 42.11 36.69 67.25 27.5 46.17

Table 13: Zero-shot performance of LLaMA3.1-8B-Instruct compressed by GRASP under 20% compression using
512 samples from WikiText-2 and C4 as calibration datasets.

Calibration Dataset | WikiText-2 PTB | Openb. ARC_e WinoG. HeSW ARC_c PIQA MathQA | Average
WikiText-2-64 46.5 86.51 22.6 59.97 69.3 4436 37.29 68.5 27.37 47.06
WikiText-2-128 3991 76.41 22.8 60.23 69.93 4424 3592 67.9 27.5 46.93
WikiText-2-256 38.73 79.13 | 21.8 59.89 70.24 44.23 36.26 67.19 27.07 46.67
WikiText-2-512 37.86 63.97 | 21.6 59.85 70.48 44.21 37.12 68.66 27.94 47.12

Table 14: Zero-shot performance of LLaMA3.1-8B-Instruct compressed by GRASP under 20% compression with
varying calibration data sizes (64, 128, 256, 512) from WikiText-2.

Method | Openb. ARC_e ARC_c WinoG. HeSW PIQA MathQA | Average

Dense 32.12 72.69 39.87 67.33 57.16 78.46 26.02 53.38
SparseGPT(2:4) | 2440 64.10 30.80 66.61 43.09 70.73 24.25 46.28
wanda(2:4) 24.60 62.75 30.80 62.67 4138 7029 23.62 45.16
GRASP 2480 56.02 32.68 66.14 4257 70.74 2392 45.27
GRASP* 2820 68.73 37.63 67.88 5098 7247 24.19 50.01

Table 15: Comparison between GRASP and unstructured pruning methods under the 2:4 sparsity pattern (50%
sparsity). GRASP is applied at a 20% structured compression ratio. GRASP* denotes the variant with light
performance compensation

26348

