
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 26349–26368
November 4-9, 2025 ©2025 Association for Computational Linguistics

GraphAgent: Agentic Graph Language Assistant

Yuhao Yang1, Jiabin Tang1, Lianghao Xia1, Xingchen Zou2,
Yuxuan Liang2, Chao Huang†1

1The University of Hong Kong, 2HKUST (GZ)

Abstract
Real-world data combines structured (e.g.,
graph connections) and unstructured (e.g., text,
visuals) formats, capturing explicit relation-
ships (e.g., social links) and implicit seman-
tic interdependencies (e.g., knowledge graphs).
We propose GraphAgent, an automated agent
pipeline addressing both explicit and implicit
graph-enhanced semantic dependencies for pre-
dictive (e.g., node classification) and generative
(e.g., text generation) tasks. GraphAgent inte-
grates three components: (i) a Graph Generator
Agent creating knowledge graphs for semantic
dependencies; (ii) a Task Planning Agent inter-
preting user queries and formulating tasks via
self-planning; and (iii) a Task Execution Agent
automating task execution with tool matching.
These agents combine language and graph lan-
guage models to reveal complex relational and
semantic patterns. Extensive experiments on di-
verse datasets validate GraphAgent’s effective-
ness in graph-related predictive and text gen-
erative tasks. GraphAgent is open-sourced at:
https://github.com/HKUDS/GraphAgent.

1 Introduction
Real-world data exists in a complex ecosystem
of interconnected types. Structured data, such
as graph-based connections, captures explicit rela-
tionships like social networks and user interaction
patterns (Fey et al., 2023). Unstructured data, in-
cluding text and visual content, reveals implicit
semantic relationships among entities (Zhong and
Mottin, 2023). Integrating these diverse data for-
mats is critical for modern applications, enabling
comprehensive and nuanced analysis of complex
real-world scenarios (Lu et al., 2024).

Graphs effectively represent relational informa-
tion across domains. In academic networks, ci-
tation graphs connect papers (nodes) through ci-
tations (edges) (Chen et al., 2023; Wang et al.,
2022), with paper content providing unstructured

† Chao Huang is the corresponding author.

E-Commerce

Finance

Academic

Real-world data in diverse scenarios

? ?

?

Link & Node Pred

Structured Graph Data
Unstructured Text Data

Relation Discovery Text Generation

Title: Approximate Nearest
Neighbor Negative Contrastive
Abstract: Conducting text
retrieval in a dense learned
representation space has many..

Semantic

Knowl.
Graph

Q: I am writing a
“related works”
section for…

A: Dense passage
retrieval (DPR) has
recently attracted a
lot of attention in
the IR community,
which aims to …

Figure 1: GraphAgent processes structured and unstruc-
tured data, adapting to diverse downstream tasks.

data for analyzing themes, methodologies, and find-
ings. Combining structured citation data with text
enables trend identification and supports Graph-
enhanced Text Generative Tasks, such as knowl-
edge summaries and scientific question-answering.
In e-commerce, user behavior graphs, paired with
textual data like product reviews and descriptions,
improve recommendation accuracy (Shuai et al.,
2022; Li et al., 2023), framing Graph-related Pre-
dictive Tasks for user-item interaction forecasting.

Graph learning methods, particularly Graph Neu-
ral Networks (GNNs), excel at mapping nodes and
edges into latent representations through message-
passing (Hamilton, 2020; Dai et al., 2022; Liu et al.,
2022). However, GNNs primarily focus on explicit
graph connections, often neglecting complex se-
mantic dependencies in linked textual data, and
show limited generalization in zero-shot real-world
tasks due to task-specific training needs (Xia and
Huang, 2024; Mao et al., 2024). Recent LLM-
based approaches, like GraphGPT (Tang et al.,
2024a) and LLaGA (Chen et al., 2024a), convert
graph data into LLM-compatible tokens but fo-
cus on conventional tasks like node classification
and link prediction, limiting their ability to handle
diverse structured and unstructured data flexibly.
This raises a key question: How can individuals
without graph theory or machine learning exper-
tise analyze graph data using natural language to
obtain predictions and insights?

26349

https://github.com/HKUDS/GraphAgent

In this paper, we propose GraphAgent, a fully
automated framework to analyze structured and
unstructured data, addressing both graph-related
predictive and generative tasks. Built on an agen-
tic architecture, GraphAgent enables natural lan-
guage interaction, empowering non-experts to de-
rive tailored insights from graph-structured data.
We tackle three challenges: i) Constructing Se-
mantic Relationships: Deriving latent semantic
connections from complex data; ii) Automating
Query Understanding: Interpreting user queries
and formulating them into predictive or genera-
tive tasks; iii) Efficient Task Execution: Accu-
rately implementing tasks to deliver correct results.
GraphAgent addresses these with three compo-
nents: a Graph Generator Agent that constructs
Semantic Knowledge Graphs (SKGs) from text, a
Task Planning Agent that interprets queries and
plans tasks, and a Graph Action Agent that auto-
mates task execution.

In summary, our contributions are:
• Complex Practical Data Integration. Our

framework handles real-world scenarios by merg-
ing structured and unstructured data with graph-
based relationships, supporting predictive and
text generation tasks.

• Multi-Agent Workflow. We introduce GraphA-
gent, an automated graph language assistant, in-
tegrates structured and unstructured data analysis.
It constructs semantic knowledge graphs (SKGs)
from text, formulates predictive and generative
tasks, and executes them, uncovering relational
and semantic dependencies for diverse tasks.

• Experimental Evaluation. GraphAgent excels
on diverse data in graph predictive and text gen-
erative tasks, with ablation studies confirming
component effectiveness. Using small open-
source LLMs (e.g., LLaMA-3-8B), it outper-
forms closed-source models (e.g., GPT-4, Gem-
ini) in generation tasks.

2 Methodology

2.1 Preliminaries

Graph-empowered Agents. Our GraphAgent in-
troduces an automated agentic pipeline for graph
predictive and text generation tasks, formulated as
Y = f(O;LLM). Here, the agentic function f(·)
processes an Observation O, comprising struc-
tured (e.g., explicit graph connections) or unstruc-
tured data (e.g., text), to produce an Action Y , such
as node classifications or text summarization with

implicit entity interdependencies.

Graph-Structured Data. In GraphAgent, struc-
tured and unstructured data are represented as het-
erogeneous graphs, G = (V, E ,N ,R), where V
denotes entities, E represents edges, and N and R
indicate node and edge types, respectively. Each
edge has a meta-type (nh, ri, nt) for the head node
nh, relation ri, and tail node nt.

2.2 Graph Generation Agent

To uncover the rich contextual information within
unstructured data, GraphAgent designs a Graph
Generation Agent that automatically constructs
meaningful Semantic Knowledge Graphs (SKGs)
from any textual input. For example, for a paper
abstract that includes the sentence, “Contrastively
trained text-image models have the remarkable abil-
ity to perform zero-shot classification”, the model
can extract relevant entity nodes such as “text-
image models” and “zero-shot classification”.
Iterative Two-Phase Graph Generation Work-
flow. To capture complex implicit entity-wise de-
pendencies, our graph generation agent operates
through an automated two-phase workflow: (1)
Scaffold Knowledge Entity Extraction and (2)
Knowledge Description Augmentation. The first
phase is dedicated to identifying key knowledge
entities or concepts as scaffold knowledge nodes
from the provided text, regardless of its format.
Specifically, this phase can be formulated as:

Vk=0
scaffold = LLM(xsys_sk,gs), (1)

where gs represents the input unstructured text
data, while xsys_sk denotes the system prompt for
extracting scaffold knowledge nodes. We adopt
an iterative approach to capture both high-level
and fine-grained semantic dependencies among
multi-grained entities. For example, in an aca-
demic paper, high-level entities might include "Ma-
chine Learning," while fine-grained entities could
be "Self-Supervised Learning" and "Graph Neural
Network". Specifically, Vk=0

scaffold refers to the gener-
ated vertices during the initial iteration (k = 0).

The second phase of knowledge augmentation
centers on enhancing and enriching the textual de-
scriptions of the generated entity nodes to ensure
accurate, comprehensive, and contextually appro-
priate language modeling. This critical step ensures
that each entity is represented with sufficient de-
tail and semantic clarity. Formally, we define this

26350

I have uploaded an academic
graph which includes… Can
you tell me what’s the most
possible category for paper
with ID [239]?

I have a paper submitted to
an AI conference. Here are
the reviews I received. Can
you help me judge whether my
paper would be accepted?

I am writing a “related work”
section for my paper titled…
Here are some papers I would
like to cite:… Can you write
the whole section for me?

Text-enhanced predictive tasks
open-ended text
generation with graphs

pre-defined graph

GraphAgent

i) Graph Generation Agent

ii) Task Planning Agent

LLM

Linear Layer

GNN

reasoning generated
content

answer

embedded
graph tokens

language
tokens

language
tokens

iii) Graph Action Agent

text with knowledge

semantic
knowledge graph

scaffold node extraction

k iter.

knowledge description
augmentation

Intent and
Task Parsing

Graph
Grounding

Graph
Tokenizing

User Prompt

Figure 2: The overall framework of the proposed GraphAgent.

phase as follows:

Ck=0
scaffold = LLM(xsys_ka,gs,Vk=0

scaffold). (2)

where Ck=0
scaffold denotes the node-specific descrip-

tions, while xsys_ka denotes the system prompt for
knowledge augmentation. To iteratively execute
this two-phase workflow, GraphAgent uses the tex-
tual augmentation output from the previous round
as the implicit graph input for the next round:

Vk=j
scaffold = LLM(xsys_sk, Ck=j−1

scaffold) (3)

Ck=j
scaffold = LLM(xsys_ka, Ck=j−1

scaffold ,V
k=j−1
scaffold). (4)

We then merge the nodes and descriptions gener-
ated across different iterations to form the final
node set: Vskg =

⋃Vk
scaffold and Cskg =

⋃ Ck
scaffold.

The relationships among these nodes, denoted as
Eskg, are established based on their derivation: if
a new node is generated from the textual descrip-
tion of a node in the previous iteration, we connect
these two nodes in the semantic knowledge graph.
The system prompts used for graph generation are
detailed in Table 8 in the Appendix.

2.3 Task Planning Agent

With both structured and unstructured data repre-
sented as graphs, GraphAgent employs a task plan-
ning agent to automatically interpret user queries
and transform the graph data into a unified embed-
ding structure. This facilitates easier utilization by
the subsequent predictive and generative modules.
Input-output examples of the task planning agent
is provided in Table 14 in the Appendix.

2.3.1 Intent Identification and Task
Formulation

The task planning agent is initially tasked with
formulating meaningful predictive or generative
tasks based on the user query prompt. Given a

user query prompt xusr_p and a predefined system
prompt for task parsing xsys_tp, the task planning
agent formulates the intended task as follows:

gs,xusr_ann, tusr = LLM(xsys_tp,xusr_p), (5)

This intent identification and task formulation pro-
cedure generates three fundamental types of task
attributes within our agent architecture, which is
specifically defined as follows:
• Source graph gs represented by formatted files,

textual graph descriptions, or plain documents.
• Task type tusr is inferred from the query prompt

and can be one of "predictive_predefined",
"predictive_wild", or "open_generation".
This task type symbol is used to automatically
select system prompt templates during training
or inference for different tasks.

• User annotation xusr_ann includes additional task
information, such as task descriptions, label can-
didates for predictive tasks, and generation re-
quirements for generative tasks.

To construct grounded graph tokens that can be
understood by the subsequent action agent, the
task planning agent follows two stages: i) Graph-
Token Grounding, converting graphs with nodes
and edges into grounded Python objects; ii) Graph
Tokenization, generating tokens from the input that
preserve complex interdependencies among graph-
structured entities.

2.3.2 Graph-Token Grounding
Our framework reads graph nodes and edges and
converts them into grounded Python objects using
a graph-building and wrapping tool. Notably, our
model can handle diverse graph inputs, regardless
of whether an explicit graph with predefined nodes
and edges is present. For simplicity, we will demon-
strate a scenario where the user uploads a prede-
fined graph. For example, the query prompt might

26351

be: "...I want to know which category is correct for
the node with ID [305]..." with uploaded graph files
such as ["node_list.txt", "edge_list.txt"]. To build
a grounded graph object in Python, we utilize the
graph-building and wrapping tool (GBW_Tool(·))
with PyG (Fey and Lenssen, 2019) to add nodes
and construct edges. Since user-uploaded graphs
can have arbitrary node and edge types, we stan-
dardize the graphs as heterogeneous graphs, where
si and ri represent the types of each node and edge,
respectively. Formally, a heterogeneous graph is
constructed as:

Gexp = GBW_Tool(V, E ,N ,R) (6)

Gskg = GBW_Tool(Vskg, Eskg,Nskg,Rskg) (7)

where V, E ,N ,R represent the nodes, edges, node
types, and edge types of the explicit graph, respec-
tively. They are obtained by parsing the graph
input gs. Similarly, Vskg, Eskg,Nskg,Rskg denote
the corresponding graph components generated by
the aforementioned Graph Generation Agent. This
graph grounding module enables our model to con-
vert graph data from various representations and
forms into unified Python objects, facilitating their
subsequent utilization.

2.3.3 Graph Tokenization
The Task Planning Agent converts discrete nodes
and edges into embedded representations suitable
for action agents based on graph LLMs. This tok-
enization process consists of two stages: first, en-
coding the graph into embeddings, and second, re-
trieving the nodes and their neighbors to create
input graph tokens. For the embedding process, we
employ a pre-trained text encoder ftext_enc and a
pre-trained GNN fgnn. Graph tokens are generated
by initially encoding the textual features c of the
graph nodes and their meta types using the text
encoder, followed by modeling geometric features.

etext
i = ftext_encoder(ci); e

text
si|ri = ftext_encoder(csi|ri)

(8)

e
gnn
i = fgnn(e

text
i , etext

si , etext
ri ,V, E). (9)

For each central node i in our heterogeneous graph,
we systematically apply a graph sampling tool to
create the subgraph input for the subsequent action
agent, which can be formulated as follows:

[e
gnn
Ni

] = Sampling_Tool(G,Egnn, i) (10)

2.4 Graph Action Agent

To enhance the capabilities of graph encoding and
prediction/generation, we incorporate a trainable
Graph Action Agent into our GraphAgent frame-
work, based on the Graph LLM architecture (Tang
et al., 2024b; Chen et al., 2024a). This Graph Ac-
tion Agent is specifically trained to optimize per-
formance for both predictive and text generation
tasks involving graph data.

2.4.1 Cross-Task Graph Agent
The graph action agent is capable of handling two
categories of diverse tasks, as shown below. The
details on the system prompt builder and examples
of system prompts are shown in Table 8.

• Predictive Graph-Language Tasks. These
tasks focus on generating predictions based on
user prompts, utilizing both structured and un-
structured data. Examples include node classi-
fication and link prediction for explicit graph
data, as well as document classification based on
extracted implicit semantic knowledge graphs
(SKGs), such as categorizing news articles.
When using implicit SKGs to complement ex-
plicit graphs, the graph generator agent uses the
observed explicit nodes as initial scaffold nodes
to build the SKG. Specifically, for these tasks,
our model constructs a system prompt that ef-
fectively guides the LLM toward task-specific
objectives:

xsys_pred_i = fsys(tusr,xusr_ann,gs), (11)

where the prompt builder function fsys creates
an appropriate system prompt based on the task
type and user annotations, incorporating gs for
node or graph textual information. The predictive
graph-language tasks are then defined as follows:

ypred,yreasoning = LLM(xsys_pred_i, {Gexp|Gskg}),
(12)

where {Gexp|Gskg} indicates that the agent can
utilize either Gexp,Gskg or both. In this context,
the LLM generates accurate predictions and rea-
soning in response to the user’s query prompt.

• Generative Graph-Language Tasks. The dis-
covered SKGs can serve as robust and com-
prehensive references for generative language
tasks, such as text generation and summarization.
These open-ended tasks are typically prompted in

26352

Table 1: Dataset details for training and evaluation. "NC" is short for node classification.
IMDB ACM Arxiv-Papers ICLR-Peer Reviews Related Work Generation GovReport Summarization

Task Type Predictive Predictive Predictive Predictive Generative Generative
Sub-Task NC NC Paper Classification Paper Judgement Prediction Text Generation Text Summarization

Pre-defined Graph? ✓ ✓ × × × ×
#Train Samples 2,400 - 5,175 3,141 4,155 -
#Eval Samples - 1000 500 500 500 304

#Tokens 10M 0.8M 30M 45M 93M 2M
#Pre-defined Graph Nodes 11,616 10,942 - - - -

SKG Source People Entities Paper Paper Paper, Reviews Multiple Papers Documents
#SKG Nodes 57,120 20,388 153,555 161,592 875,921 15,621

a direct text format that implicitly contains knowl-
edge, without the need for predefined graphs. For
example, to summarize a news article, an SKG
Gskg is automatically constructed from the arti-
cle’s content, which includes rich entities and
connections that aid in the summarization task.
Additionally, a system prompt is automatically
generated to enhance the content generation qual-
ity using the graph-structured information:

xsys_gen_i = fsys(tusr,xusr_ann,gs) (13)

ygen = LLM(xsys_gen_i,Gskg), (14)

where ygen is the generated textual output, with
input parameters consistent with those used in
predictive tasks. In this context, the LLM focuses
on producing coherent and contextually accurate
content based on both text and graph inputs.

2.4.2 Graph-Instruction Alignment
To teach our agent in comprehending graph-
structured data, we implement graph-instruction
alignment in the initial fine-tuning stage. Inspired
by the work of (Tang et al., 2024b), we utilize
the efficient, effective, and easily scalable task of
graph-instruction matching as our alignment tar-
get. Specifically, we present a set of graph token-
instruction pairs:

Dg = [(e0, s0), (e1, s1), ...], (15)

Dc = [(c0, cs0), (c1, cs1), ...] (16)

where (ei, si) denotes the i-th graph token with
meta type si, and (ci, csi) denotes the text descrip-
tion of the i-th graph token and its meta type, corre-
spondingly. We devise two general tasks to achieve
fine-grained and comprehensive alignment between
the graph tokens and the textual instructions:

• Intra-type alignment. This alignment task aims
to strengthen the capability of LLMs to inter-
pret graph embedding tokens of certain meta-
types through promoting their alignment with
the relevant texts. This is conducted by train-
ing LLMs to output correct sequence of the texts
given a sequence of graph tokens. Specifically,

we construct a dataset Dintra with each entry con-
sists of two sequences of graph tokens and texts,
separately: dintra

i = ([(ej , si), ...], [(ck, csi), ...]).
Then, we train the alignment with a next-token-
prediction Cross-Entropy objective as follows:

argminΘCE_Loss(dintra
i [0]|LLM(dintra

i [1])),
(17)

where Θ denotes the learnable parameters of the
large language model LLM(·). And indices [0]
and [1] indicate the text sequence and the graph
token sequence, respectively.

• Inter-type alignment. As introducing multiple
meta-types in the alignment task can further em-
power the LLM’s comprehension of complex het-
erogeneous relations, we devise another align-
ment training objective using inter-type graph
tokens. Technically, the dataset Dinter is con-
structed by sampling entries that consist graph to-
kens of different meta-types in the first sequence:

dinter
i = ([(em, sm), (en, sn), . . .],

[(cn, csn), (cq, csq), . . .])

(18)

Then, the LLM is trained to predict the text se-
quence and the meta-type sequence of the pro-
vided graph tokens:

argminΘCE_Loss(dinter
i [0]|dinter

i [1])). (19)

2.4.3 Agent Task Finetuning
To enhance GraphAgent’s performance on different
agent tasks, we propose to finetune the action agent
with diverse graph-language instructions covering
different agent tasks. Recall that with the task plan-
ning agent we have the user requested task t ∈ T
from the query prompt. For each t in the instruc-
tion dataset, we pair it with a special systematic
prompt to distinguish between various tasks during
training. The systematic prompt contains brief de-
scription of the task being handled. Formally, the
agent task finetuning dataset is constructed as:

Dmulti =

{
(
{
(xpred,xreasoning) | xgen

}
,

{
Gexp | Gskg}, ti,ai)

}
.

(20)

26353

For each instruction-output pair, the graph provided
can be an explicit graph, an automatically discov-
ered SKG, or both. For predictive tasks, the output
includes a prediction and reasoning, while for gen-
erative tasks, the output is the objective.

Further, to facilitate a smooth learning curve for
multi-tasking the graph language model, we take in-
spiration from curriculum learning techniques (Xu
et al., 2020; Bengio et al., 2009) and sort our train-
ing tasks into different difficulty levels. We start
training with easier tasks to build the model’s foun-
dational graph-language understanding. As train-
ing progresses, we gradually introduce more com-
plex tasks to refine the model’s capabilities. The
details are demonstrated in Table 6.

3 Evaluation
We evaluate the effectiveness of our GraphAgent
framework through a focused evaluation addressing
key Research Questions (RQs):

• RQ1: How well does GraphAgent capture graph
relational information and textual semantic inter-
dependencies for graph-related predictive tasks?

• RQ2: How effectively does GraphAgent perform
predictive tasks by leveraging implicit textual
semantic interdependencies?

• RQ3: How does GraphAgent perform in graph-
enhanced text generation with implicit depen-
dency understanding compared to SOTA LLMs?

• RQ4: How do GraphAgent’s key components
impact its performance in ablation studies?

3.1 Experimental Settings

3.1.1 Implementation Details

In GraphAgent, task planning and graph gen-
eration agents use GPT3.5-Turbo with few-
shot prompts to enhance query handling and
semantic knowledge graph (SKG) discovery.
PyG converts structural data into graph ob-
jects for grounding. Text-attributed graph
embeddings are created with Sentence-BERT
(all-mpnet-base-v2). The graph action agent
employs Llama3-8b (Llama Team, 2024). A learn-
able linear layer connects textual and graph repre-
sentations (Liu et al., 2024; Tang et al., 2024a). A
pre-trained heterogeneous graph model (Tang et al.,
2024b) encodes text-graph node pairs, projected
through the adaptation layer and processed with
the LLM for integrated reasoning.

3.1.2 Datasets
A summary of the diverse datasets used is provided
in Table 1. We place detailed discussion on the
datasets in Appendix A.1.

3.1.3 Baseline Methods
We compare GraphAgent against a diverse set
of baseline models across graph-related predic-
tive tasks and text generation, including homoge-
neous GNNs, heterogeneous graph models, graph
LLMs, and state-of-the-art LLMs with retrieval-
augmented generation (RAG) systems.
• Graph-Related Predictive Tasks. We eval-

uate: i) Homogeneous GNNs, including
SAGE (Hamilton et al., 2017) and GAT (Velick-
ovic et al., 2018); ii) Heterogeneous Graph
Models, such as HAN (Wang et al., 2019b),
HGT (Hu et al., 2020), and HetGNN (Zhang
et al., 2019); and iii) Graph LLMs, using
HiGPT (Tang et al., 2024b), a state-of-the-art
model for complex heterogeneous graphs.

• Graph-Enhanced Text Generation. We com-
pare with: i) Open-Source LLMs, including
Llama 3 series (Llama Team, 2024), Mistral
NeMo1, and Qwen2-72b (Yang et al., 2024);
ii) Closed-Source LLMs, such as Deepseek-
Chat-V2, GPT4o-mini, and Gemini-1.5-Flash via
their APIs; iii) LLM-empowered RAG Systems,
specifically GraphRAG2, which enhances LLMs
with graph-based RAG.

3.2 Evaluation Protocols
We implement comprehensive and consistent train-
ing strategies across all models. We apply full fine-
tuning for our model and all baseline models requir-
ing supervised fine-tuning. For model selection,
we utilize validation sets with early-stopping for
predictive tasks, while monitoring training loss de-
creasing rate for alignment training and generative
tasks. To ensure fair comparison, we maintain con-
sistent feature encoder (all-mpnet-base-v2) across
all models including GNNs and Graph LLMs. We
use identical prompt templates across all LLM-
based models, with GraphLLMs receiving addi-
tional graph tokens for embedding injection and
basic meta type descriptions (detailed in Table 8).
The iterative steps are set to 2 for discovering two-
hop knowledge graphs per query prompt.

For evaluation, we adopt different metrics based
on task types. In graph-related predictive tasks with

1https://mistral.ai/news/mistral-nemo/
2https://github.com/microsoft/graphrag

26354

https://github.com/microsoft/graphrag

Table 2: Zero-shot learning performance evaluation: We assess our model’s transfer capabilities by training on
IMDB dataset with few-shot learning, then evaluating node classification performance on ACM dataset under
zero-shot conditions, utilizing both graph structural and textual information.

Metric Trained on SAGE GAT HAN HGT HetGNN HiGPT GraphAgent Imprv.
Micro-F1 IMDB-1 32.93±4.18 35.67±0.53 34.07±1.11 32.40±0.14 37.43±4.34 45.40±0.89 51.21±1.32 12.8%

(%) IMDB-40 31.73±0.05 23.93±1.44 26.97±1.94 35.60±0.99 31.80±0.16 50.50±0.77 74.98±1.24 48.5%
Macro-F1 IMDB-1 26.47±2.69 29.08±1.31 22.50±4.16 16.31±0.05 31.39±4.68 41.77±1.24 46.82±1.43 12.1%

(%) IMDB-40 31.17±0.17 21.41±0.71 23.13±1.32 27.49±1.22 31.44±0.17 45.85±0.89 74.98±1.12 63.5%
AUC IMDB-1 49.34±2.47 52.48±0.38 51.28±0.86 50.00±0.00 53.18±2.95 59.69±0.82 64.10±1.25 7.4%
(%) IMDB-40 48.67±0.13 43.20±1.08 45.45±1.46 51.48±0.43 48.72±0.06 63.60±0.51 80.90±1.01 27.2%

ground truth, we use Micro-F1 (Mi-F1), Macro-F1
(Ma-F1), and AUC metrics. For graph-enhanced
generative tasks that are open-ended, we primar-
ily rely on the PPL score using state-of-the-art
models (Llama3-70b, Qwen2-72b) to measure flu-
ency, rather than reference-based similarity metrics
which can be misleading due to their limitations
in text generation evaluation. Additionally, we in-
corporate the LLM-as-judge approach for better
approximation of human judgment. This compre-
hensive evaluation framework ensures robust and
meaningful comparison across different model ar-
chitectures while addressing the limitations of con-
ventional evaluation metrics for generative tasks.
3.3 Graph Prediction Task with Explicit and

Implicit Graph Contexts (RQ1)
We evaluate GraphAgent’s performance on node
classification with explicit graph structures, enhanc-
ing methods by integrating semantic knowledge
graphs from node text, using both semantic KG
and explicit connections as dual graph token in-
puts. Following prior work (Tang et al., 2024a,b;
Chen et al., 2024a), we adopt a zero-shot evaluation
framework for real-world applicability. Models are
trained on IMDB under few-shot settings (1 and
40 shots) and tested on 1,000 unseen ACM dataset
nodes. We apply Chain-of-Thought (Wei et al.,
2022) for inference in GraphAgent and other LLM-
enhanced methods.

Table 2 shows GraphAgent outperforms the state-
of-the-art graph language model, HiGPT, by over
28% across metrics. This improvement results
from integrating a graph generation agent, an au-
tomated task planning agent, and dual fine-tuning
(graph-text alignment and agent task fine-tuning).
These components enable GraphAgent to construct
rich semantic knowledge graphs, capture inter-
dependencies, and understand complex relation-
ships in structured and unstructured graph contexts,
leading to superior downstream task performance.
3.4 Graph Prediction with Implicit Semantic

Interdependencies (RQ2)
We assess GraphAgent’s performance on predic-
tive tasks requiring complex semantic interde-

pendency understanding, comparing against state-
of-the-art LLMs. GraphAgent constructs se-
mantic knowledge graphs (SKGs) using a dual-
agent system for task planning and graph gener-
ation, with SKG nodes serving as semantic an-
chors for enriched input representation. Eval-
uations on Arxiv-Papers and ICLR-Peer Re-
views datasets (Table 4) test GraphAgent across
task-specific (GraphAgent-Task Expert), com-
prehensive (GraphAgent-General), and zero-shot
(GraphAgent-Zero-Shot) settings. Unlike GNNs
and GraphLLMs needing explicit graphs, GraphA-
gent competes with fine-tuned and GraphRAG-
augmented LLMs:
• High Performance with Smaller Size. With

8B parameters, GraphAgent outperforms larger
LLMs like Llama3-70b and Qwen2-72b by
31.9% across metrics on both datasets. By captur-
ing interdependencies via SKGs and maintaining
contextual awareness, GraphAgent integrates lo-
cal and global patterns, enabling robust reasoning
for complex tasks.

• Strong Generalization in Multi-task and Zero-
shot Settings. GraphAgent-General surpasses
task-specific models on Arxiv-Papers, lever-
aging SKGs for enhanced text-graph reason-
ing, with competitive results on ICLR-Peer
Reviews. In zero-shot settings, GraphAgent
matches Deepseek-Chat-V2 and Gemini-1.5-
Flash, showcasing robust generalization through
SKG integration and specialized tuning.

• Advantages over SFT and RAG. GraphAgent
outperforms vanilla SFT LLMs and GraphRAG
by leveraging SKG integration for better knowl-
edge utilization. By using graph embedding to-
kens for efficient, consolidated representation, it
reduces token overhead and mitigates hallucina-
tion, ensuring reliable performance.

3.5 Graph-Enhanced Text Generation (RQ3)
We evaluate GraphAgent’s graph-enhanced text
generation using perplexity (PPL) and LLM-based
assessment. Results are shown in Table 3, Figure 4,
and zero-shot GovReport data in Table 5.

26355

Table 3: Performances on ACL-EMNLP related works
content generation. Light grey denotes that the score is
computed with the same-family model.

Method Model Size
PPL-Llama3-70b PPL-Qwen2-72b

Mean Max Mean Max

Open-sourced LLMs

Llama3-8b 8B 7.016 13.061 7.491 12.787
Mistral-Nemo 12B 7.367 15.967 6.872 12.065
Llama3-70b 70B 6.168 14.436 5.877 12.897
Qwen2-72b 72B 6.043 11.675 5.325 11.302

API-based Commercial LLMs

Deepseek-Chat-V2 236B→21B 5.632 13.483 5.144 10.337
GPT4o-mini - 7.277 15.480 6.818 13.267
Gemini-1.5-Flash - 5.188 10.399 5.377 10.779

Finetuned LLMs

Llama3-8b Finetuned 8B 7.682 19.452 7.629 18.757

GraphRAG Implementations

Llama3-8b + GraphRAG 8B 7.098 18.092 6.539 14.722
Llama3-70b + GraphRAG 70B 6.590 14.827 6.135 14.163

GraphAgent-Task Expert 8B 3.805 10.316 4.069 11.685
GraphAgent-General 8B 3.618∗ 8.000∗ 3.867∗ 8.775∗

Table 4: Performance comparison with state-of-the-art
LLMs on complex graph prediction tasks involving im-
plicit semantic relationships. Results marked with *
indicate statistical significance (p<0.01) compared to
the second-best performer.

Method Model Size
Arxiv-Papers ICLR-Peer Reviews

Mi-F1 Ma-F1 AUC Mi-F1 Ma-F1 AUC

Open-sourced LLMs

Llama3-8b 8B 0.514 0.289 0.527 0.402 0.394 0.502
Mistral-Nemo 12B 0.510 0.292 0.615 0.272 0.246 0.380
Llama3-70b 70B 0.630 0.330 0.635 0.434 0.421 0.551
Qwen2-72b 72B 0.632 0.472 0.700 0.344 0.277 0.509

API-based Commercial LLMs

Deepseek-Chat-V2 236B→21B 0.746 0.580 0.757 0.362 0.312 0.516
GPT4o-mini - 0.592 0.343 0.634 0.692∗ 0.592 0.591
Gemini-1.5-Flash - 0.748 0.504 0.714 0.684 0.487 0.533

Finetuned LLMs

Llama3-8b Finetuned 8B 0.794 0.593 0.736 0.620 0.554 0.553

GraphRAG Implementations

Llama3-8b + GraphRAG 8B 0.516 0.288 0.601 0.430 0.427 0.517
Llama3-70b + GraphRAG 70B 0.603 0.324 0.623 0.308 0.296 0.401

GraphAgent-Task Expert 8B 0.820 0.620 0.768 0.686 0.620∗ 0.615∗
GraphAgent-General 8B 0.840∗ 0.621∗ 0.769∗ 0.667 0.604 0.607
GraphAgent-Zero-Shot 8B 0.739 0.512 0.701 0.538 0.531 0.563

• Improved Generation via Lower Perplex-
ity. Table 3 shows GraphAgent’s lower PPL scores
compared to baselines, validated by Llama3-70b
and Qwen2-72b, with enhanced fluency and clarity.
SFT and GraphRAG variants underperform, failing
to capture complex reasoning. Our semantic knowl-
edge graphs improve GraphAgent’s reasoning and
comprehension.
• Enhanced Quality via LLM-based Evalua-

tion. Using LLM-as-judge (Zheng et al., 2024),
which correlates strongly with human judgment
compared to BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004), we evaluated GraphAgent
with GPT-4 (prompts in Table 13) against Llama3-
8b, its fine-tuned version, Mistral Nemo, and
Llama3-70b. On 200 test samples (Figure 4),

GraphAgent achieves 114% quality improvement
over Llama3-8b and 45% over Llama3-70b, outper-
forming same-sized models in 67% of cases and
leading open-source models in 58%, despite 8B
parameters and low input overhead.
• Cross-domain Document Summarization.

GraphAgent excels in GovReport summarization
(Table 9 in Appendix), producing well-organized
summaries (green) without task-specific optimiza-
tion. Table 5 shows GraphAgent achieves lower
PPL scores than Llama3-8b and Mistral-Nemo,
matching the fluency of leading LLMs in zero-shot
tasks. Our approach, leveraging semantic knowl-
edge graphs and multi-task graph-based training,
ensures robust generalization.

3.6 Ablation Study

To evaluate each component in GraphAgent, we
conducted an ablation study with the following
variants: • (-) SKG removes the graph generation
agent and excludes semantic knowledge graph to-
kens from LLM input. • (-) Alignment omits the
graph-instruction alignment tuning described in
Section 2.4.2. • (-) Cur. Strategy eliminates the
curriculum learning strategy for agent task training
(Section 2.4.3), instead training all tasks simulta-
neously across all epochs. Figure 3 presents the
comparative results between GraphAgent and its
variants on both predictive and generative tasks.
Our analysis reveals two key findings:
• For predictive tasks, semantic knowledge

graphs generated by the graph generation agent
show the strongest impact, as their supplementary
information substantially enhances model perfor-
mance. In contrast, for generative tasks, the align-
ment stage proves crucial for maintaining high
performance, likely because these tasks demand
sophisticated reasoning capabilities, making align-
ment essential for learning deeper graph-instruction
understanding.
• The curriculum training strategy shows con-

sistent improvements across both task types. By
enabling gradual progression from simpler predic-
tive tasks to more complex generative ones, this
approach allows the model to effectively assimilate
knowledge from various graph-instruction pairs,
resulting in stronger performance.

4 Related Work
Graph Representation Learning models com-
plex relationships using graph embedding tech-
niques (Chen et al., 2020; Wu et al., 2020). Graph

26356

Gra
ph

Age
nt

(-)
 SK

G

(-)
 Alig

nm
en

t

(-)
 Cu

r. S
tra

te
gy

0.0

0.2

0.4

0.6

0.8

M
i-F

1

0.840

-15.2% -12.3%
-4.0%

Predictive Performance

Gra
ph

Age
nt

(-)
 SK

G

(-)
 Alig

nm
en

t

(-)
 Cu

r. S
tra

te
gy

0

2

4

6

8

10

12

14

16

PP
L

3.618

+9.812

+11.282

+0.503

Generative Performance

Figure 3: Ablation study comparing GraphAgent with
its variants on both graph-related prediction and graph-
enhanced text generation tasks.

0 40 80 120 160 200
Count

Llama3-70b

Mistral-Nemo

LLama3-8b-sft

LLama3-8b

116 4 80

131 2 67

129 1 70

135 2 63

Ours Wins On Par Ours Loses

Figure 4: Comparative evaluation results: GPT-4o as
judge assessing our proposed GraphAgent framework
against state-of-the-art open-source LLMs.

Neural Networks (GNNs) capture node dependen-
cies via message-passing (Dwivedi et al., 2023;
Huang et al., 2024a). Architectures like Graph Con-
volutional Networks (GCNs) (Kipf and Welling,
2017; Jin et al., 2020; Wu et al., 2024) aggregate
neighbors through localized convolutions, while
Graph Attention Networks (GAT) (Veličković et al.,
2018; Zhang et al., 2022; Hao et al., 2023) use
attention to weigh neighbor importance. In our
GraphAgent, GNNs serve as graph tokenizers for
LLM integration.
Graph Language Models. Recent works enhance
graph model generalization by combining Large
Language Models (LLMs) with GNNs (Tang et al.,
2024b). GraphGPT (Tang et al., 2024a) integrates
graph encoders with LLMs via an alignment pro-
jector. LLaGA (Chen et al., 2024b) reorganizes
nodes into structure-aware sequences for LLMs.
ZeroG (Li et al., 2024) enables zero-shot transfer
learning for cross-dataset generalization. Unlike
these models, which focus on explicit graph topol-
ogy, our framework addresses both explicit and
implicit graph-enhanced semantic dependencies,
supporting diverse predictive and generative tasks.
LLM-empowered Agents improve user interac-
tion by integrating diverse data with intuitive com-
munication (Shinn et al., 2023; Xie et al., 2023).
Language-based assistants enhance reasoning and
decision-making (Yao et al., 2023; Jimenez et al.,
2024), while vision-based assistants provide con-
textual insights from visual data (Koh et al., 2024;

Hong et al., 2024). Embodied agents leverage
LLMs for navigation and interaction in robotics and
smart systems (Brehmer et al., 2024; Huang et al.,
2024b). However, few agents handle relational
data alongside textual information. Our framework
bridges this gap, integrating for both predictive and
generative tasks.

5 Conclusion
We present GraphAgent, a multi-agent framework
that integrates graph-based reasoning with ad-
vanced language modeling to address complex
scenarios involving relational and textual data.
GraphAgent’s automated pipeline, comprising a
graph generator agent for semantic interdependen-
cies, a task planning agent for query interpretation,
and a task execution agent, enhances large language
models’ adaptability across diverse datasets. It ex-
cels in graph prediction and open-ended text gener-
ation tasks. Future work will extend GraphAgent
to incorporate visual information from multi-modal
data, improving its ability to handle relational, tex-
tual, and visual content.

6 Limitations

While GraphAgent demonstrates strong perfor-
mance in integrating structured and unstructured
data for predictive and generative tasks, it has some
limitations. First, the framework relies on specific
LLMs (e.g., LLaMA-3-8B, GPT3.5-Turbo) for its
agents, which may limit adaptability to other mod-
els without further fine-tuning. Second, the current
implementation focuses on text and graph data,
lacking integration of visual information, which
we plan to address in future work.

References
Yoshua Bengio, Jérôme Louradour, Ronan Collobert,

and Jason Weston. 2009. Curriculum learning. In
ICML, pages 41–48.

Johann Brehmer, Joey Bose, Pim De Haan, and Taco S
Cohen. 2024. Edgi: Equivariant diffusion for plan-
ning with embodied agents. NeurIPS, 36.

Bo Chen, Jing Zhang, Fanjin Zhang, Tianyi Han, Yuqing
Cheng, Xiaoyan Li, Yuxiao Dong, and Jie Tang.
2023. Web-scale academic name disambiguation:
the whoiswho benchmark, leaderboard, and toolkit.
In KDD, pages 3817–3828.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding,
and Yaliang Li. 2020. Simple and deep graph con-
volutional networks. In ICML, pages 1725–1735.
PMLR.

26357

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and
Zhangyang Wang. 2024a. Llaga: Large language and
graph assistant. ICML.

Runjin Chen, Tong Zhao, AJAY KUMAR JAISWAL,
Neil Shah, and Zhangyang Wang. 2024b. Llaga:
Large language and graph assistant. In ICML.

Enyan Dai, Wei Jin, Hui Liu, and Suhang Wang. 2022.
Towards robust graph neural networks for noisy
graphs with sparse labels. In WSDM, pages 181–191.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan
Luu, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. 2023. Benchmarking graph neural net-
works. JMLR, 24(43):1–48.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric
Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
Ying, Jiaxuan You, and Jure Leskovec. 2023.
Relational deep learning: Graph representation
learning on relational databases. arXiv preprint
arXiv:2312.04615.

Matthias Fey and Jan Eric Lenssen. 2019. Fast
graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King.
2020. Magnn: Metapath aggregated graph neural
network for heterogeneous graph embedding. In
Proceedings of the web conference 2020, pages 2331–
2341.

William L Hamilton. 2020. Graph representation learn-
ing. Morgan & Claypool Publishers.

William L. Hamilton, Zhitao Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. In NeurIPS, pages 1024–1034.

Qianyue Hao, Wenzhen Huang, Tao Feng, Jian Yuan,
and Yong Li. 2023. Gat-mf: Graph attention mean
field for very large scale multi-agent reinforcement
learning. In KDD, pages 685–697.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam
Perold, Yann LeCun, and Bryan Hooi. 2023. Harness-
ing explanations: Llm-to-lm interpreter for enhanced
text-attributed graph representation learning. arXiv
preprint arXiv:2305.19523.

Wenyi Hong and 1 others. 2024. Cogagent: A visual lan-
guage model for gui agents. In CVPR, pages 14281–
14290.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou
Sun. 2020. Heterogeneous graph transformer. In
WWW, pages 2704–2710. ACM / IW3C2.

Kexin Huang, Ying Jin, Emmanuel Candes, and Jure
Leskovec. 2024a. Uncertainty quantification over
graph with conformalized graph neural networks.
NeurIPS, 36.

Wenlong Huang and 1 others. 2024b. Grounded decod-
ing: Guiding text generation with grounded models
for embodied agents. NeurIPS, 36.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? In ICLR.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang
Wang, and Jiliang Tang. 2020. Graph structure learn-
ing for robust graph neural networks. In KDD, pages
66–74.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram
Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and
Daniel Fried. 2024. Visualwebarena: Evaluating mul-
timodal agents on realistic visual web tasks. ACL.

Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen,
Jingbo Shang, and Julian McAuley. 2023. Text is
all you need: Learning language representations for
sequential recommendation. In KDD, pages 1258–
1267.

Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu,
and Jia Li. 2024. Zerog: Investigating cross-dataset
zero-shot transferability in graphs. In KDD, pages
1725–1735.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024. Visual instruction tuning. NeurIPS, 36.

Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei.
2022. Revisiting graph contrastive learning from the
perspective of graph spectrum. NeurIPS, 35:2972–
2983.

AI @ Meta Llama Team. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Yujie Lu, Xianjun Yang, Xiujun Li, Xin Eric Wang,
and William Yang Wang. 2024. Llmscore: Unveiling
the power of large language models in text-to-image
synthesis evaluation. NeurIPS, 36.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao,
Yao Ma, Tong Zhao, Neil Shah, Michael Galkin,
and Jiliang Tang. 2024. Graph foundation models.
ICML.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In ACL, pages 311–318.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. NeurIPS, 36.

26358

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Jie Shuai, Kun Zhang, Le Wu, Peijie Sun, Richang
Hong, Meng Wang, and Yong Li. 2022. A review-
aware graph contrastive learning framework for rec-
ommendation. In SIGIR, pages 1283–1293.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su,
Suqi Cheng, Dawei Yin, and Chao Huang. 2024a.
Graphgpt: Graph instruction tuning for large lan-
guage models. In SIGIR, pages 491–500.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Long Xia,
Dawei Yin, and Chao Huang. 2024b. Higpt: Hetero-
geneous graph language model. In KDD.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. In ICLR.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, and 1 others. 2018. Graph attention
networks. In ICLR (Poster). OpenReview.net.

Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yan-
fang Ye, and S Yu Philip. 2022. A survey on het-
erogeneous graph embedding: methods, techniques,
applications and sources. TBD, 9(2):415–436.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang
Ye, Peng Cui, and Philip S Yu. 2019a. Heteroge-
neous graph attention network. In WWW, pages
2022–2032.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang
Ye, and 1 others. 2019b. Heterogeneous graph atten-
tion network. In WWW, pages 2022–2032. ACM.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. NeurIPS,
35:24824–24837.

Zhihao Wu, Zhao Zhang, and Jicong Fan. 2024. Graph
convolutional kernel machine versus graph convolu-
tional networks. NeurIPS, 36.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and S Yu Philip. 2020. A com-
prehensive survey on graph neural networks. TPAMI,
32(1):4–24.

Lianghao Xia and Chao Huang. 2024. Anygraph:
Graph foundation model in the wild. arXiv preprint
arXiv:2408.10700.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Lu-
oxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao,
Qian Liu, Che Liu, and 1 others. 2023. Openagents:
An open platform for language agents in the wild. In
COLM.

Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan
Wang, Hongtao Xie, and Yongdong Zhang. 2020.
Curriculum learning for natural language understand-
ing. In ACL, pages 6095–6104.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, and 1 others.
2024. Qwen2 technical report. arXiv preprint
arXiv:2407.10671.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In ICLR.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram
Swami, and Nitesh V. Chawla. 2019. Heterogeneous
graph neural network. In KDD, pages 793–803.
ACM.

Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen
Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang, and Bin
Cui. 2022. Graph attention multi-layer perceptron.
In KDD, pages 4560–4570.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
2024. Judging llm-as-a-judge with mt-bench and
chatbot arena. NeurIPS, 36.

Zhiqiang Zhong and Davide Mottin. 2023. Knowledge-
augmented graph machine learning for drug discov-
ery: From precision to interpretability. In KDD,
pages 5841–5842.

26359

A Appendix

Table 5: GovReport summarization performance. Eval-
uation scores are presented with same-family model
comparisons highlighted in light grey.

Method Model Size
PPL-Llama3-70b PPL-Qwen2-72b

Mean Max Mean Max

Llama3-8b 8B 9.476 25.355 7.564 17.443
Mistral-Nemo 12B 9.333 28.537 7.194 19.347
Llama3-70b 70B 6.473 14.724 5.629 11.813
Qwen2-72b 72B 7.134 16.075 5.494 11.294
Deepseek-Chat-V2 236B→21B 8.246 21.176 7.311 18.092
GPT4o-mini - 10.332 23.300 6.576 10.213
Gemini-1.5-Flash - 7.374 18.408 6.133 9.237

GraphAgent-General 8B 6.736 20.362 5.936 27.196

A.1 Dataset Details.
• Graph-Related Predictive Tasks. For tasks that

involve explicit graph relational information, we
utilize two benchmark datasets: IMDB (Fu et al.,
2020) and ACM (Wang et al., 2019a). In con-
trast, for predictive tasks that do not depend on
explicit graph structures, we have curated two ad-
ditional datasets: Arxiv-Papers (He et al., 2023)
and ICLR-Peer Reviews3. The Arxiv-Papers
dataset comprises published papers from Arxiv
in 2023, from which we randomly sampled a sub-
set. This dataset is created by analyzing the titles
and abstracts of these papers to classify whether
they are likely to be accepted. The ICLR-Peer
Reviews dataset features pairs of papers and their
corresponding reviews from ICLR 2024, specifi-
cally focusing on borderline cases that pose chal-
lenges in determining acceptance. This dataset is
used for both training and testing purposes.

• Graph-Enhanced Text Generation. To demon-
strate the text generation capabilities of model,
we evaluate its performance in generating re-
lated work for research papers and summarizing
lengthy documents using graph-enhanced seman-
tic dependencies. First, we collected datasets
from the ACL and EMNLP conferences, cov-
ering the years 2020 to 2023, including both
the "main" and "findings" tracks. We extracted
the related work sections from these papers
and organized them into approximately 5,000
topic-content pairs. For generating related work,
GraphAgent takes a list of paper titles and their
corresponding abstracts-input that can be pro-
vided by users. Using this information, scaffold
knowledge graphs are created and subsequently

3https://github.com/ranpox/
iclr2024-openreview-submissions

processed by the Graph Action Agent, which
comprehends the data to produce comprehensive
related work for the specified papers. Second,
we utilize the GovReport dataset 4 to evaluate
GraphAgent as a language assistant for document
summarization. This dataset comprises detailed
reports from government research agencies, in-
cluding the Congressional Research Service and
the U.S. Government Accountability Office. It
necessitates the summarization of longer docu-
ments, maintaining richer context and semantic
interdependencies, unlike other summarization
datasets.

A.2 Detailed Implementation of GraphAgent
To ensure reproducibility of our experimental re-
sults, we provide comprehensive implementation
details and technical specifications of our GraphA-
gent framework in this section.

A.2.1 System prompts of GraphAgent
Tables 8 and 13 present the comprehensive system
prompts used in our framework. Specifically, Ta-
ble 8 details the system prompts for the three core
components: the Task Planning Agent, the Graph
Generation Agent, and the task-specific prompt
builders for the Multi-Task Agent. Additionally,
Table 13 outlines the system prompts employed in
our LLM-as-judge evaluation protocol.
Table 6: Curriculum training strategy in terms of epochs
and different ratios of data mixing.

Alignment Data Predictive Data Generative Data

Epoch 1 10% 70% 20%
Epoch 2 5% 60% 35%
Epoch 3 0% 50% 50%
Afterwards 0% 40% 60%

A.2.2 Curriculum training strategy
We employ a curriculum learning strategy to effec-
tively train our graph language model for multi-task
scenarios. As shown in Table 6, the training process
begins with fundamental tasks to establish basic
graph-language understanding, then progressively
introduces more challenging components - advanc-
ing from predictive tasks to generative tasks. This
graduated approach ensures robust model develop-
ment and optimal performance across diverse task
requirements.

4https://huggingface.co/datasets/ccdv/
govreport-summarization

26360

https://github.com/ranpox/iclr2024-openreview-submissions
https://github.com/ranpox/iclr2024-openreview-submissions
https://huggingface.co/datasets/ccdv/govreport-summarization
https://huggingface.co/datasets/ccdv/govreport-summarization

Table 7: Examples for the system prompts and system prompt builder we used in GraphAgent

System prompt for intent and task parsing [xsystem_tp]
You are very powerful assistant for graph-related tasks for diverse user inputs. You can do great in parsing the following
important properties from the user input: 1. "graph source". This is either the uploaded file paths if the user uploads pre-defined
graph for the task, or the user input contents as texts or documents that contain knowledge. 2. "graph task". the graph task type
to handle, must be one of "predictive_predefined", "predictive_wild", "open_generation". You should infer the graph task to
handle from the user input. 3. "user annotations". Any additional information the user provided in the query prompt. Could be
task description, label candidates or specific requirements. You are provided with two realistic examples to help you excel in the
task: <few shot examples>.

System prompt for scaffold knowledge node extraction at the 0-th step of the Graph Generation Agent [xsystem_sk_0]
You are very powerful assistant for graph-related tasks for diverse user inputs. You can do great in detecting and extracting the
important scaffold nodes from the user input. A list of scaffold nodes reflect the top-level concepts or entities in the content, that
are useful to form a knowledge graph for the content. You should carefully examine the input content to decide your extraction
strategy. 1. For a general long document of a certain scenario, consider several most high-level aspects that are useful to grasp
the key concepts in the document. Do not propose too specific concepts as scaffold nodes. It is very vital to be general and be
abstract in your proposed scaffold nodes. 2. For inputs that are more formatted and contain specific entities, relationships, or
concepts, you can directly adopt the key entities or concepts listed in the input as scaffold nodes. In this case, it is essential to
accurately concentrate on the high-level formatted concepts or entities. For your output, use auto-increment ids to number the
scaffold nodes, and infer the general type for each. You are provided with several examples to help you excel in the task: <few
shot examples>.

System prompt for scaffold knowledge node extraction after the 0-th step of the Graph Generation Agent [xsystem_sk_1]
You are very powerful assistant for graph-related tasks for diverse user inputs. You can do great in detecting and extracting the
important scaffold nodes from the user input. A list of scaffold nodes should be informative and representative of the key points
in the text, that are useful to form a knowledge graph for the content. You should carefully examine the input content to decide
your extraction strategy. You also need to provide a description of the extracted keywords for each scaffold node. The description
should be detailed and informative, and can contain two parts: 1) a brief description of the keywords based on the contexts in the
text, and 2) a detailed description of the keywords based on your own knowledge. You are provided with several examples to
help you excel in the task: <few shot examples>.

System prompt for knowledge description augmentation of the Graph Generation Agent [xsystem_ka]
You are a powerful assistant in generating information textual descriptions for a list of scaffold nodes. Each scaffold node
represents a high-level key point or topic in the text, and your goal is to provide comprehensive and detailed texts related to each
scaffold node. The texts can be from your own knowledge base with references to the original input content. Texts should be
detailed and you should never miss any important information. You can never miss any node in the input. You should parse
corresponding texts for each scaffold node in the input. You should always return the same number of scaffold nodes as the input.
You are provided with several examples to help you excel in the task: <few shot examples>.

System prompt builder template for graph multi task agent [xsystem_ka]
You are a powerful assistant in accomplishing diverse user required tasks with the help of structured knowledge as graphs. The
current user requested task is of type: <tuser>. The detailed request or provided information is: <xuser_ann,gs>. [If predictive
in the wild or open generation:] For the required task, a heterogeneous knowledge graph is built to assist you as useful and
informative knowledge references. There are <num. of meta types> types of nodes and edges in the graph, separately: <meta
types>. The graph tokens for each type are: [<meta type>: <graph>]. [If predictive with pre-defined graphs:] For the required
task, a pre-defined heterogeneous graph is provided as information reference. There are <num. of meta types> types of nodes
and edges in the graph, separately: <meta types>. The graph tokens for each type are: [<meta type>: <graph>]. Additionally, a
heterogeneous knowledge graph is also constructed to augment your knowledge for the task. There are <num. of meta types>
types of nodes and edges in the graph, separately: <meta types>. The graph tokens for each type are: [<meta type>: <graph>].
Please generate response that satisfies the user’s request.<xuser_ann>. Provide concise reasoning if the task involves certain
prediction.

26361

Table 8: Examples for the system prompts and system prompt builder we used in GraphAgent

System prompt for intent and task parsing [xsystem_tp]
You are very powerful assistant for graph-related tasks for diverse user inputs. You can do great in parsing the following
important properties from the user input: 1. "graph source". This is either the uploaded file paths if the user uploads pre-defined
graph for the task, or the user input contents as texts or documents that contain knowledge. 2. "graph task". the graph task type
to handle, must be one of "predictive_predefined", "predictive_wild", "open_generation". You should infer the graph task to
handle from the user input. 3. "user annotations". Any additional information the user provided in the query prompt. Could be
task description, label candidates or specific requirements. You are provided with two realistic examples to help you excel in the
task: <few shot examples>.

System prompt for scaffold knowledge node extraction at the 0-th step of the Graph Generation Agent [xsystem_sk_0]
You are very powerful assistant for graph-related tasks for diverse user inputs. You can do great in detecting and extracting the
important scaffold nodes from the user input. A list of scaffold nodes reflect the top-level concepts or entities in the content, that
are useful to form a knowledge graph for the content. You should carefully examine the input content to decide your extraction
strategy. 1. For a general long document of a certain scenario, consider several most high-level aspects that are useful to grasp
the key concepts in the document. Do not propose too specific concepts as scaffold nodes. It is very vital to be general and be
abstract in your proposed scaffold nodes. 2. For inputs that are more formatted and contain specific entities, relationships, or
concepts, you can directly adopt the key entities or concepts listed in the input as scaffold nodes. In this case, it is essential to
accurately concentrate on the high-level formatted concepts or entities. For your output, use auto-increment ids to number the
scaffold nodes, and infer the general type for each. You are provided with several examples to help you excel in the task: <few
shot examples>.

System prompt for scaffold knowledge node extraction after the 0-th step of the Graph Generation Agent [xsystem_sk_1]
You are very powerful assistant for graph-related tasks for diverse user inputs. You can do great in detecting and extracting the
important scaffold nodes from the user input. A list of scaffold nodes should be informative and representative of the key points
in the text, that are useful to form a knowledge graph for the content. You should carefully examine the input content to decide
your extraction strategy. You also need to provide a description of the extracted keywords for each scaffold node. The description
should be detailed and informative, and can contain two parts: 1) a brief description of the keywords based on the contexts in the
text, and 2) a detailed description of the keywords based on your own knowledge. You are provided with several examples to
help you excel in the task: <few shot examples>.

System prompt for knowledge description augmentation of the Graph Generation Agent [xsystem_ka]
You are a powerful assistant in generating information textual descriptions for a list of scaffold nodes. Each scaffold node
represents a high-level key point or topic in the text, and your goal is to provide comprehensive and detailed texts related to each
scaffold node. The texts can be from your own knowledge base with references to the original input content. Texts should be
detailed and you should never miss any important information. You can never miss any node in the input. You should parse
corresponding texts for each scaffold node in the input. You should always return the same number of scaffold nodes as the input.
You are provided with several examples to help you excel in the task: <few shot examples>.

System prompt builder template for graph multi task agent [xsystem_ka]
You are a powerful assistant in accomplishing diverse user required tasks with the help of structured knowledge as graphs. The
current user requested task is of type: <tuser>. The detailed request or provided information is: <xuser_ann,gs>. [If predictive
in the wild or open generation:] For the required task, a heterogeneous knowledge graph is built to assist you as useful and
informative knowledge references. There are <num. of meta types> types of nodes and edges in the graph, separately: <meta
types>. The graph tokens for each type are: [<meta type>: <graph>]. [If predictive with pre-defined graphs:] For the required
task, a pre-defined heterogeneous graph is provided as information reference. There are <num. of meta types> types of nodes
and edges in the graph, separately: <meta types>. The graph tokens for each type are: [<meta type>: <graph>]. Additionally, a
heterogeneous knowledge graph is also constructed to augment your knowledge for the task. There are <num. of meta types>
types of nodes and edges in the graph, separately: <meta types>. The graph tokens for each type are: [<meta type>: <graph>].
Please generate response that satisfies the user’s request.<xuser_ann>. Provide concise reasoning if the task involves certain
prediction.

26362

Table 9: Qualitative comparison for a GovReport task between GraphAgent, llama3-8b and Llama3-70b.

[User]
Here is a government report concerning specific topics. Your task is to write a paragraph that highly condenses the content
without losing any important information.
Consistent with the discretion afforded by the APA, Regulations.gov and agency-specific comment websites use required
and optional fields on comment forms to collect some identity information from commenters. In addition to the text of
the comment, agencies may choose to collect identity information by requiring commenters to fill in other fields, such
as name, address, and email address before they are able to submit a comment. Regardless of the fields required by the
comment form, the selected agencies all accept anonymous comments in practice. Specifically, in the comment forms
on Regulations.gov and agency- specific comment websites, a commenter can submit under a fictitious name, such as
Änonymous Anonymous,ënter a single letter in each required field, or provide a fabricated address. In each of these
scenarios, as long as a character or characters are entered into the required fields, the comment will be accepted. Further,
because the APA does not require agencies to authenticate submitted identity information, neither Regulations.gov nor the
agency-specific comment websites contain mechanisms to check the validity of identity information that commenters
submit through comment forms. Regulations.gov and agency-specific comment websites also collect some information
about public users’ interaction with their websites through application event logs and proxy server logs, though the APA
does not require agencies to collect or verify it as part of the rulemaking process. This information, which can include a
public user’s Internet Protocol (IP) address, browser type and operating system, and the time and date of webpage visits,
is collected separately from the comment submission process as part of routine information technology management
for system security and performance, and cannot be reliably connected to specific comments. Seven of the 10 selected
agencies have documented some internal guidance associated with the identity of commenters during the three phases
of the public comment process: intake, analysis, and response to comments. However, the focus and substance of this
guidance varies by agency and phase of the comment process. As shown in Table 1, for selected agencies that have
guidance associated with the identity of commenters, it most frequently relates to the comment intake or response to
comment phases of the public comment process. The guidance for these phases addresses activities such as managing
duplicate comments (those with identical or near-identical comment text but varied identity information) or referring to
commenters in a final rule...

[GraphAgent]
The report examines how government agencies manage and disclose identity information associated with public
comments on proposed regulations. It finds that while agencies are not required to collect or verify identity information,
they do collect some information from commenters and accept anonymous comments. However, the report notes

inconsistencies in how agencies post identity information, particularly with duplicate comments. It also highlights a lack
of transparency in disclosing these practices to the public, potentially hindering meaningful participation in the rulemaking
process. The report recommends that agencies establish clear policies for posting comments and communicate these

practices to the public more effectively. Since issuing the report , some agencies have begun implementing these
recommendations, but others have not yet done so.

[Llama3-8b]
The Government Accountability Office (GAO) report examines the treatment of identity information by 10 federal agencies
during the public comment process. While agencies are not required to collect or verify identity information, they may
choose to do so through comment forms. However, the report finds that agencies vary in their treatment of identity
information, with some accepting anonymous comments and others requiring commenters to provide name, address,
and email address. The report also notes that agencies do not consistently post duplicate comments, which can lead to
inconsistent presentation of identity information to the public. Additionally, agencies do not provide clear information
about their posting practices, which can limit public users’ ability to explore and use the data. The GAO recommends
that agencies establish policies for posting comments and provide clear communication to the public about their posting
practices, particularly with regard to identity information and duplicate comments. Since the report’s issuance, some
agencies have taken steps to address these recommendations.

[Llama3-70b]
The government’s public comment process, facilitated by Regulations.gov and agency-specific websites, collects identity
information from commenters, but allows anonymous comments and does not verify submitted information. While
agencies may require certain fields to be filled, commenters can submit fictitious information or minimal data, and
comments will still be accepted. The treatment of identity information varies across agencies, with some posting all
comments and others posting only a sample of duplicate comments, which can lead to inconsistent presentation of identity
information to the public. Furthermore, agencies do not effectively communicate their posting practices and limitations to
the public, potentially leading to inaccurate conclusions about the comments submitted. To address this, recommendations
have been made to establish policies for posting comments and clearly communicate them to the public, with some
agencies having taken action to implement these changes.

26363

Table 10: Qualitative comparison for a NLP-Related Works task between GraphAgent, fine-tuned llama3-8b and
Llama3-70b.

[User]
I am writing a "related works" section for my research paper in the NLP domain. The topic to cover is "Dense Passage
Retrieval". I would like to discuss the following papers in the section:
Title: Representation Degeneration Problem in Training Natural Language Generation Models. Abstract: ...
Title: Deeper Text Understanding for IR with Contextual Neural Language Modeling. Abstract: ...
Title: Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval. Abstract: ...
Title: Unsupervised Corpus Aware Language Model Pre-training for Dense Passage Retrieval. Abstract: ...
Title: PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval. Abstract:...
Further, Use @CITE[id]@ to cite a paper in the paragraph. For example, @CITE[1]@ will be replaced by the citation of
the paper with id 1. At the end of the generated content, list all the references in the format of ID: Title.

[GraphAgent]
Dense passage retrieval (DPR) has recently attracted a lot of attention in the IR community, which aims to retrieve relevant
passages from a large corpus with the help of a query. DPR is based on the neural network, which can learn query
and passage representations from the corpus and query separately. The retrieval model is usually trained by contrastive
loss, which is to pull the query representation close to the passage representation when they are relevant, and push them
apart when they are irrelevant. In the early stage , DPR is mainly based on the BERT model @CITE[4]@, which is

pre-trained by masked language modeling. However, BERT is prone to degenerate into a linear mapping to the word

embeddings @CITE[5]@, which leads to a performance drop. To alleviate this problem , several methods are proposed

to train DPR model. For example , @CITE[3]@ propose the use of the negative sampling strategy, which is to sample a
negative passage from the corpus to calculate the contrastive loss. @CITE[1]@ propose the use of the nearest neighbor
negative sampling strategy, which is to sample a negative passage from the corpus with the nearest distance to the query.
@CITE[2]@ propose the use of the contrastive loss with the corpus-level information, which is to pull the passage
representation close to the corpus-level representation when they are relevant.
References: ID: 1. Title: Representation Degeneration Problem in Training Natural Language Generation Models
ID: 2. Title: Deeper Text Understanding for IR with Contextual Neural Language Modeling
ID: 3. Title: Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
ID: 4. Title: Unsupervised Corpus Aware Language Model Pre-training for Dense Passage Retrieval
ID: 5. Title: PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval

[Llama3-70b]
Dense passage retrieval has gained significant attention in recent years, leveraging the power of neural networks to learn
complex language patterns and query-document relations @CITE[2]@. This approach has many intriguing advantages
over sparse retrieval, such as better capturing of language structures and improved performance on queries written in
natural languages @CITE[2]@. However, the effectiveness of dense retrieval often requires combination with sparse
retrieval, and the training mechanisms used in dense retrieval can be a bottleneck @CITE[3]@. To address this, various
techniques have been proposed, including Approximate Nearest Neighbor Negative Contrastive Learning @CITE[3]@,
unsupervised corpus-aware language model pre-training @CITE[4]@, and leveraging passage-centric similarity relations
@CITE[5]@. These advancements have significantly improved the performance of dense passage retrieval models, making
them a promising approach for various natural language processing tasks.

[Llama3-8b Fine-tuned]
Recent advancements in PLMs such as BERT (De- vlin et al., 2018), Roberta (@CITE[1]@, and GPT (@CITE[3]@
have enabled numerous unsupervised techniques to derive dense represen- tations of queries and passages for retrieval.
These approaches primarily use a Bi-Encoder structure to embed text in a low-dimensional space and learn similarity
relations via contrastive learning, con- trasting traditional sparse retrieval methods like BM25 or DeepCT (@CITE[2]@;.
DPR (pi- oneered an unsupervised dense passage retrieval framework, affirming the feasibility of using dense repre-

sentations for retrieval independently. This efficient and operational approach was further refined by subsequent studies
(@CITE[4]@; ; ; @CITE[5]@ that focused on high-quality negative sample min- ing, additional passage relation analy-

sis, and extra training. The essence of these methods is to repre- sent texts in a target space where queries are closer to
relevant and distant from irrelevant passages.
References: ID: 1. Title: Representation Degeneration Problem in Training Natural Language Generation Models ID: 2.
Title: Deeper Text Understanding for IR with Contextual Neural Language Modeling ID: 3. Title: Approximate Nearest
Neighbor Negative Contrastive Learning for Dense Text Retrieval ID: 4. Title: Unsupervised Corpus Aware Language
Model Pre-training for Dense Passage Retrieval ID: 5. Title: PAIR: Leveraging Passage-Centric Similarity Relation for
Improving Dense Passage Retrieval

26364

Table 11: Visualization examples for automatically discovered semantic knowledge graphs for a GovReport sample.

[Original Text with Knowledge]
In our June 2019 report, we found that, while abuse deficiencies cited in nursing homes were relatively rare from 2013
through 2017, they became more frequent during that time, with the largest increase in severe cases. Specifically, abuse
deficiencies comprised less than 1 percent of the total deficiencies in each of the years we examined, which is likely
conservative. Abuse in nursing homes is often underreported by residents, family, staff, and the state survey agency,
according to CMS officials and stakeholders we interviewed. However, abuse deficiencies more than doubled–from 430 in
2013 to 875 in 2017–over the 5-year period. (See appendix II.) In addition, abuse deficiencies cited in 2017 were more
likely to be categorized at the highest levels of severity– deficiencies causing actual harm to residents or putting residents
in immediate jeopardy–than they were in 2013. In light of the increased number and severity of abuse deficiencies, it is
imperative that CMS have strong nursing home oversight in place to protect residents from abuse; however, we found
oversight gaps that may limit the agency’s ability to do so. Specifically, we found that CMS: (1) cannot readily access
data on the type of abuse or type of perpetrator, (2) has not provided guidance on what information nursing homes should
include in facility-reported incidents, and (3) has numerous gaps in its referral process that can result in delayed and
missed referrals to law enforcement. In our June 2019 report, we found that CMS’s data do not allow for the type of abuse
or perpetrator to be readily identified by the agency. Specifically, CMS does not require the state survey agencies to record
abuse and perpetrator type and, when this information is recorded, it cannot be easily analyzed by CMS. Therefore, we
reviewed a representative sample of 400 CMS narrative descriptions–written by state surveyors–associated with abuse
deficiencies cited in 2016 and 2017 to identify the most common types of abuse and perpetrators. From this review,
we found that physical abuse (46 percent) and mental/verbal abuse (44 percent) occurred most often in nursing homes,
followed by sexual abuse (18 percent). Furthermore, staff, which includes those working in any part of the nursing home,
were more often the perpetrators (58 percent) of abuse in deficiency narratives, followed by resident perpetrators (30
percent) and other types of perpetrators (2 percent). (See appendix III for examples from our abuse deficiency narrative
review.)...

[Scaffold Node k = 0] (top-level aspects or concepts)
Node meta type: Policy Objectives And Goals
Text attribute: The policy objectives and goals of this report are to ensure that CMS has strong nursing home oversight in
place to protect residents from abuse. The report aims to identify and address the gaps in CMS’s ability to monitor and
respond to abuse deficiencies effectively.
Node meta type: Stakeholder Impact and Implications
Text attribute: Stakeholders impacted by this report include nursing home residents, their families, staff, state survey
agencies, and CMS officials. The implications are that without proper oversight and reporting mechanisms, abuse in nursing
homes may continue to be underreported and inadequately addressed. Node meta type: Methodology and Evidence
Text attribute: The methodology involved reviewing a representative sample of 400 CMS narrative descriptions associated
with abuse deficiencies cited in 2016 and 2017. This review aimed to identify the most common types of abuse and
perpetrators. Additionally, interviews with CMS officials and stakeholders provided insights into the underreporting and
handling of abuse incidents.
Node meta type: Findings and Recommendations
Text attribute: Key findings include the underreporting of abuse in nursing homes, the doubling of abuse deficiencies from
2013 to 2017, and the increased severity of these deficiencies. Recommendations include requiring state survey agencies
to report abuse and perpetrator type, providing guidance on facility-reported incidents, and improving the referral process
to law enforcement.
Node meta type: Implementation and Evaluation
Text attribute: As of November 2019, the Department of Health and Human Services (HHS) had not implemented
the recommendations made in the report. The implementation and evaluation of these recommendations are crucial to
improving CMS’s oversight and protecting nursing home residents from abuse.

[Scaffold Node k = 1] (Fine-grained concepts as keywords. Text attributes are omitted.)
abuse deficiencies in nursing homes ; Centers for Medicare & Medicaid Services (CMS) ;

oversight gaps ; recommendations for improvement ; nursing home oversight ; resident protection ;

abuse deficiencies ; CMS’s ability to monitor ; nursing home residents ; abuse in nursing homes ;

state survey agencies ; CMS officials ; CMS narrative descriptions ; abuse deficiencies ;

underreporting of abuse incidents ; CMS officials and stakeholders ; underreporting of abuse ; abuse deficiencies ;

state survey agencies ; referral process to law enforcement ; Department of Health and Human Services ;

Centers for Medicare & Medicaid Services ; nursing home residents ; abuse ;

26365

Table 12: Visualization examples for automatically discovered semantic knowledge graphs for an Arxiv sample,
similarly for NLP-Related Works data.

[Original Text with Knowledge]
Title: A Simple Zero-shot Prompt Weighting Technique to Improve Prompt Ensembling in Text-Image Models. Abstract:
Contrastively trained text-image models have the remarkable ability to perform zero-shot classification, that is, classifying
previously unseen images into categories that the model has never been explicitly trained to identify. However, these zero-
shot classifiers need prompt engineering to achieve high accuracy. Prompt engineering typically requires hand-crafting a
set of prompts for individual downstream tasks. In this work, we aim to automate this prompt engineering and improve
zero-shot accuracy through prompt ensembling. In particular, we ask "Given a large pool of prompts, can we automatically
score the prompts and ensemble those that are most suitable for a particular downstream dataset, without needing access
to labeled validation data?". We demonstrate that this is possible. In doing so, we identify several pathologies in a
naive prompt scoring method where the score can be easily overconfident due to biases in pre-training and test data,
and we propose a novel prompt scoring method that corrects for the biases. Using our proposed scoring method to
create a weighted average prompt ensemble, our method outperforms equal average ensemble, as well as hand-crafted
prompts, on ImageNet, 4 of its variants, and 11 fine-grained classification benchmarks, all while being fully automatic,
optimization-free, and not requiring access to labeled validation data.

[Scaffold Node k = 0] (top-level aspects or concepts)
Node meta type: Research Background
Text attribute: Contrastively trained text-image models possess the ability to perform zero-shot classification, which
involves categorizing unseen images into untrained categories. However, achieving high accuracy in zero-shot classification
often requires meticulous prompt engineering, typically involving hand-crafted prompts tailored for specific downstream
tasks.
Node meta type: Research Question
Text attribute: The research question addressed in this work is whether it is possible to automatically score and ensemble
the most suitable prompts from a large pool for a particular downstream dataset, without relying on labeled validation data.
This question stems from the need to automate and improve the accuracy of zero-shot classification through better prompt
engineering.
Node meta type: Methodology
Text attribute: The methodology involves identifying and addressing pathologies in a naive prompt scoring method, which
can be overly confident due to biases in pre-training and test data. The authors propose a novel prompt scoring method
that corrects for these biases, enabling the creation of a weighted average prompt ensemble that is fully automatic and
optimization-free.
Node meta type: Key Results
Text attribute: The key results demonstrate that the proposed prompt weighting technique outperforms both equal average
ensemble and hand-crafted prompts on ImageNet, four of its variants, and 11 fine-grained classification benchmarks. The
method achieves this while remaining fully automatic, not requiring optimization, and without access to labeled validation
data.
[Scaffold Node k = 1] (Fine-grained concepts as keywords. Text attributes are omitted.)
zero-shot prompt weighting ; automating prompt engineering ; zero-shot classification accuracy ;

zero-shot classification ; meticulous prompt engineering ; automatic scoring ; ensemble prompts ;

zero-shot classification ; prompt engineering ; naive prompt scoring method ; novel prompt scoring method ;

weighted average prompt ensemble ; prompt weighting technique ; fully automatic ;

26366

A.3 Qualitative Analysis of Graph-enhanced
Text Generation Tasks

We evaluated GraphAgent against Llama3-8b and
Llama3-70b on two distinct graph-enhanced text
generation tasks, with results presented in Ta-
bles 10 and 9 (Appendix). The experiments demon-
strate GraphAgent’s significant performance advan-
tages over Llama3-8b while achieving comparable
results to the much larger Llama3-70b. Notably, in
academic writing tasks (Table 10), GraphAgent ef-
fectively leverages knowledge graphs to capture
citation relationships and research development
paths, producing well-organized summaries (high-
lighted in green). In contrast, Llama3-8b exhibits
notable limitations in both instruction following
and citation formatting accuracy (highlighted in
red).

This section presents our automatically gener-
ated semantic knowledge graphs (SKGs) through
two visualized examples in Tables 11 and 12 from
GovReport and Arxiv datasets. We visualize each
SKG at two levels: k = 0 hop showing high-level
aspect nodes (highlighted in green) and k = 1 hop

displaying keyword nodes (highlighted in blue),
along with augmented textual attributes for k = 0

scaffold nodes. These examples demonstrate our
Graph Generation Agent’s capability in extract-
ing crucial information, revealing multi-hop rela-
tionships, and generating coherent semantic rep-
resentations. For the related work text generation,
while containing paper-based SKGs as multiple
sub-graphs, individual papers follow similar SKG
patterns to the Arxiv examples.

Table 14 demonstrates the multi-agent collabora-
tion workflow using the IMDB movie classification
dataset as an example. The process begins when the
Task Planning Agent receives a user request, per-
forming request decomposition and task planning,
while also processing graph data in scenarios with
pre-defined graphs. Next, the Graph Generation
Agent constructs a task-relevant semantic knowl-
edge graph. Finally, the Multi-Task Agent automat-
ically constructs a system prompt based on the task
type and executes task inference. This workflow
highlights GraphAgent’s versatility in automati-
cally adapting to different scenarios, whether han-
dling pre-defined graphs or generating new ones,
while maintaining consistent performance across
various task types.

26367

Table 13: System Prompts for LLM-based Performance Evaluation.

You are a professional researcher in computer science, AI. You are good at reading and judging written drafts of research
papers. Now, your task is to judge between two paragraphs of "related work" section of the same topic. You have to decide
which paragraph is written in a better way in terms of the following criteria: 1. It should strictly cover all the references
provided. It is not acceptable if only part of the references is cited. 2. It is encouraged that the written content discusses
how the related works differ from each other. 3. It is encouraged that detailed technical information is discussed for each
reference. 4. It is encouraged that concise, neutral, and objective language is used. Here are the two paragraphs with the
same topic <topic>: A:<content a>; B:<content b> Directly give your answers as “‘A is better“‘, “‘B is better“‘ or “‘On
par“‘(Use this very sparingly). Then, give a very short reasoning and reflection on why you think so.

Table 14: Illustrative Examples of GraphAgent’s Multi-Agent Pipeline.

[User]
Here I have uploaded a relational graph involving movies, directors and actors. Can you tell me which
category does the movie with node <GRAPH_NODE_ID_[7]> belong to? Is it action, comedy or drama?

[Predictive Task with Pre-defined Graph Relations]

[Agent (Task Planning Agent)]
Sure! I will first decompose your request as follows for further actions:
<graph source: [uploaded files]>, <task type: predictive_predefined>, <user annotation>: <"Can you tell me which category
does the movie with the target node? Is it action, comedy or drama?">

[Agent (Task Planning Agent)]
Since pre-defined graphs are given, I will try to ground the edge and node list files into readable objects. Then I will encode the
graph and index the neighbors for node ID [7] for further actions.
[Function Call: <Graph Grounding> GBW_Tool(·)] → Gexp,Egnn

[Agent (Graph Generation Agent)]
Now the graph tokens for the pre-defined graph are ready. I will further try to discover a semantic knowledge graph for the target
node and the sampled neighbors.

[Detecting and extracting scaffold nodes for the texts of the nodes...] → Vk=0
scaffold

[Augmenting textual descriptions for the scaffold nodes] → Ck=0
scaffold

[Iteratively performing until a two-hop knowledge graph is constructed.]

[Function Call: GBW_Tool(·)] → Gskg,Egnn_skg

[Agent (Graph Action Agent)]
Since we already have the pre-defined graph and the built SKG, I will construct an appropriate system prompt according to the
user request.
<xsystem_pred>: You are a powerful assistant in accomplishing diverse user required tasks with the help of graphs...

[Agent (Graph Action Agent)]
According to the provided information, the neighbor nodes and the semantic knowledge graph nodes, the most likely category
for the movie is ... The reasoning process behind is...

26368

