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Abstract

Vision-language models demand watermark-
ing solutions that protect intellectual property
without compromising multimodal coherence.
Existing text watermarking methods disrupt
visual-textual alignment through biased token
selection and static strategies, leaving semantic-
critical concepts vulnerable. We propose VLA-
Mark, a vision-aligned framework that em-
beds detectable watermarks while preserving
semantic fidelity through cross-modal coordina-
tion. Our approach integrates multiscale visual-
textual alignment metrics, combining localized
patch affinity, global semantic coherence, and
contextual attention patterns, to guide water-
mark injection without model retraining. An
entropy-sensitive mechanism dynamically bal-
ances watermark strength and semantic preser-
vation, prioritizing visual grounding during
low-uncertainty generation phases. Experi-
ments show 7.4% lower PPL and 26.6% higher
BLEU than conventional methods, with near-
perfect detection (98.8% AUC). The framework
demonstrates 96.1% attack resilience against
attacks such as paraphrasing and synonym sub-
stitution, while maintaining text-visual consis-
tency, establishing new standards for quality-
preserving multimodal watermarking 1.

1 Introduction

The emergence of vision-language aligned multi-
modal large models (VLAMMs) has fundamen-
tally transformed cross-modal content generation.
Pioneering architectures like LLaVA (Liu et al.,
2023) and Flamingo (Alayrac et al., 2022) establish
joint embedding spaces through cross-modal atten-
tion mechanisms, enabling unprecedented visual-
linguistic synergy. These models achieve state-
of-the-art performance in vision-language tasks
ranging from contextual image captioning to visual

∗Corresponding author.
1Code is available at https://github.com/

shiningwhite-cmd/VLA-mark

commonsense reasoning (Li et al., 2025), with re-
cent extensions like Mini-Gemini (Li et al., 2024b)
demonstrating human-level multimodal compre-
hension. (Liu and Bu, 2024; Yoo et al., 2024; Ling
et al., 2025) However, their rising capability to gen-
erate semantically coherent cross-modal content
urgently demands robust solutions for intellectual
property protection and content authenticity.

Embedding imperceptible yet detectable water-
marks into LLM-generated outputs has emerged
as a pivotal solution, yet existing techniques pre-
dominantly focus on unimodal scenarios. The pi-
oneering "green list" partitioning (Kirchenbauer
et al., 2023) establishes fundamental watermark-
ing frameworks through vocabulary bias induction,
while subsequent improvements like unbiased prob-
ability of two partitioned lists (Mao et al., 2024)
and distribution-preserving strategies (Wu et al.,
2024) enhance quality-robustness trade-offs in text
generation. However, these approaches fail to ad-
dress the unique challenges of multimodal genera-
tion where visual semantics critically guide textual
outputs.

Current watermarking methodologies exhibit
three critical limitations when applied to vision-
language aligned generation. First, traditional text
watermarking approaches like "green list" parti-
tioning (Kirchenbauer et al., 2023) disrupt vision-
conditioned language generation by introducing
vocabulary biases that contradict visual semantics -
for instance, suppressing visually grounded entity
mentions detected through region-based attention.
Even advanced context-aware variants (Ren et al.,
2023) fail to account for cross-modal dependencies
established through vision-language projection lay-
ers in models like BLIP-2 (Li et al., 2023). Second,
static watermark allocation strategies (Liang et al.,
2024; Zhao et al., 2023) typically apply uniform
injection intensities regardless of position-specific
visual grounding strength, leading to dispropor-
tionate distortion of visually salient tokens. This
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limitation persists even in theoretically-grounded
approaches (Huang et al., 2023) that optimize statis-
tical trade-offs but ignore entropy variations during
cross-modal generation. Third, current methods
lack explicit mechanisms to protect vision-critical
semantics under text-space attacks. Random vocab-
ulary partitioning and uniform logit manipulation
render key visual concepts (e.g., objects, scene de-
scriptors) vulnerable to adversarial paraphrasing or
synonym substitution. As shown in Fig. 1 (5), con-
ventional watermarks indiscriminately boost non-
semantic tokens (green blocks) while leaving vi-
sually anchored phrases like "grassy trail" (light
blue blocks) exposed to semantic erasure through
token replacement attacks. This fundamentally un-
dermines text-visual coherence and detection con-
sistency.

We resolve these challenges through VLA-
Mark, the first vision-language aligned wa-
termarking framework that achieves cross-
modally coordinated, quality-preserving water-
mark with excellent detectability and robustness
via three innovations. First, extending beyond ran-
dom vocabulary splitting, our Multiscale Semantic
Saliency Metrics leverage visual semantics to guide
green list selection through localized patch affin-
ity (LPA), global semantic coherence (GSC) (Hu
et al., 2022), and cross-modal contextual salience
(CCS). This aligns token partitioning with image
content while maintaining zero training overhead.
Second, our Entropy-Regulated Partition dynami-
cally adjusts watermark intensity based on genera-
tion uncertainty and token criticality scores, priori-
tizing semantic preservation in low-entropy phases
while enhancing watermark strength during high-
entropy generation. Third, we introduce SCT based
Distribution Adjustment through vision-aligned to-
ken prioritization, where cross-modal embedding
alignment and fused metrics establish hierarchical
protection for Semantic Critical Tokens (SCTs)
against textual perturbations.

Our contributions transcend prior art through
three breakthroughs:

• We pioneer the first text watermarking method
for vision-language models, achieving cross-
modal semantic guidance through native align-
ment mechanisms of VLA architectures, yield-
ing 7.4% and 26.6% average improvement
(PPL↓ and BLEU↑) in textual quality with
zero training overhead.

• We develop an uncertainty-aware coordina-

tion mechanism that automatically adapts wa-
termark intensity to logits entropy, breaking
the preservation-detection trade-off by main-
taining SOTA detection performance while
enhancing generation quality.

• Through dedicated SCT preservation, we es-
tablish hierarchical protection against Para-
phrase, Synonym, Translate and more attacks,
ensuring text-visual consistency under pertur-
bations.

2 Methodology

Our VLA-Mark framework introduces a vision-
aligned watermarking method that identifies Se-
mantic Critical Tokens (SCTs), linguistic units
strongly grounded in visual semantics guided
by cross-modal embedding alignment (Sec 2.1)
and fused multiscale metrics (Sec 2.2). SCTs
preserve text-visual coherence by anchoring key
concepts (e.g., objects/scenes) while enabling
entropy-regulated dynamic vocabulary partitioning
(Sec 2.4): low-entropy contexts prioritize SCT re-
tention for semantic fidelity, whereas high-entropy
phases emphasize watermark strength. The method
further adjusts token distributions through water-
marked logit manipulation (Sec 2.5). This ap-
proach pioneers visual semantics as the foundation
for watermark injection, contrasting traditional text-
only statistical strategies, as is illustraed in Fig. 1.
For more theoretical analysis of each part, please
refer to Appendix C.

2.1 Cross-Modal Aligned Embedding

As demonstrated in prior research, Vision-
Language Alignment (VLA) models like LLaVA
(Liu et al., 2023) employ a shared semantic map-
ping strategy where visual embeddings are pro-
jected into the text embedding space.

Given a textual instruction Xq and visual input
Xv, such models utilize parallel encoding streams
to process multimodal inputs. The vision encoder
(e.g., SigLIP (Zhai et al., 2023) or ViT-L/14 (Rad-
ford et al., 2021)) generates spatial-visual features
through:

Zv = VisEnc(Xv) = [zcls; z1, ..., zP ], (1)

where Zv ∈ R(P+1)×dv and P indicates the total
number of image patch tokens augmented with a
global [CLS] token. The subsequent alignment
phase employs a trainable projection module fθ(·)
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Figure 1: Proposed VLA-Mark framework. Vision embeddings Hv (aligned to LLM space) and linguistic tokens HL extracted
from LLM vocabulary V compute fused multiscale metrics (LPA/GSC/CCS) to rank V∗ by visual saliency. Entropy-regulated
SCT selection dynamically enhances semantic expressiveness when low entropy in logits distribution or watermark robustness
when high entropy. Light blue denote SCT, which in the response is followed by conventional watermarked tokens.

, implemented as MLP (Liu et al., 2024a) or gen-
eration adaptor (Chen et al., 2025b), to bridge the
dimensional gap between modalities:

Hv = fθ(Zv), (2)

where fθ denotes parametric transformation that
enables cross-modal compatibility while retaining
original information patterns, so we get Hv ∈
R(P+1)×d . LLMs (e.g., Vicuna (Chiang et al.,
2023)) first tokenize input text of length S and then
retrieve text embeddings Hq ∈ RS×d for LLM
inference by querying the pretrained token embed-
ding table, commonly referred to as the Vocabulary
V . We construct an embedding matrix HL by re-
moving non-linguistic elements such as symbols
and numbers from V , where L denotes the number
of linguistic tokens in the vocabulary. Then we use
Hv and HL in the following modules to find the
SCT to guided V partitioning for watermark.

2.2 Multiscale Semantic Saliency Metrics

The l-th token embedding in HL is denoted as
h
(l)
L . We propose three complementary metrics to

evaluate semantic criticality of linguistic tokens
from orthogonal perspectives:

1. Localized Patch Affinity (LPA) quantifies
region-specific importance by identifying the most

relevant visual patch:

ψLPA(l) = max
1≤p≤P

h
(p)
v · h(l)

L

∥h(p)
v ∥∥h(l)

L ∥
. (3)

Role: LPA captures fine-grained visual grounding
by measuring the maximum alignment between
a text token and individual image regions. This
is critical for detecting object-centric tokens (e.g.,
"grassy trail", "mountain") that strongly correlate
with localized visual patterns. However, it may un-
derestimate tokens with diffuse visual associations
(e.g., "park", "crowded") that judged by the whole
image.

2. Global Semantic Coherence (GSC) mea-
sures holistic alignment with the entire visual
scene:

ψGSC(l) =
h
(cls)
v · h(l)

L

∥h(cls)
v ∥∥h(l)

L ∥
. (4)

Role: GSC evaluates scene-level consistency by
comparing text tokens to the global visual repre-
sentation ([CLS] token). It prioritizes tokens that
summarize the scene (e.g., "sunny", "hike") or an-
chor high-level semantics. However, global pool-
ing may dilute localized but critical details come
from certain patches (e.g., "broken" in a damaged
object).

3. Cross-Modal Contextual Salience (CCS)
aggregates multi-region visual relevance through
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attention weights:

ψCCS(l) =
P∑

p=1

exp(h
(p)
v · h(l)

L )
∑

p′ exp(h
(p′)
v · h(l)

L )
· h

(p)
v · h(l)

L

∥h(p)
v ∥∥h(l)

L ∥
.

(5)
Role: CCS provides context-aware grounding

by softly attending to all visual patches. It comple-
ments LPA by capturing distributed visual associa-
tions (e.g., "three people" involving multi patches)
and mitigates GSC’s over-smoothing via spatial
sensitivity.

2.3 Fused Metric Guided Vocabulary
We perform min-max normalization for cross-
metric comparability:

ψnorm
k (l) =

ψk(l)−minl′∈L ψk(l
′)

maxl′∈L ψk(l′)−minl′∈L ψk(l′)
,

(6)
where k ∈ {LPA,GSC,CCS}, minl′∈V ψk(l

′) and
maxl′∈V ψk(l

′) denote the minimum and maxi-
mum values of metric k across the entire linguistic
embedding HL. This normalization preserves rela-
tive rankings while constraining values to [0, 1].

The fusion of LPA, GSC, and CCS establishes a
normalized hierarchical semantic assessment:

Φ(l) =
∑

k

ψnorm
k (l). (7)

Prioritized vocabulary ordering follows:

V∗ = argsortl∈VΦ(l) ⇒ (w(1), ..., w(L)), (8)

where {w(l)}Ll=1 is the sorted elements of HL =

{h(l)
L }Ll=1. The fusion mechanism achieves three

synergistic effects: (1) Local-global synergy bal-
ances LPA’s regional sensitivity with GSC’s scene
abstraction, (2) Attention redundancy via CCS com-
pensates for LPA’s over-localization through dis-
tributed patch integration, and (3) Error robust-
ness emerges from metric complementarity – high
CCS scores validate ambiguous signals (e.g., multi-
region actions) through weak response aggrega-
tion. This fusion automatically prioritizes semantic
patterns via LPA, GSC, and CCS without manual
tuning.

2.4 Entropy-Regulated Partition
The output of LLM at each moment is determined
by all preceding tokens, and at each time step t, we
can obtain predicted probability distribution:

pt = softmax (LLM(h1:t−1,Hv,Hq)) , (9)

where pt ∈ RL. To enhance watermark robust-
ness while maintaining text quality, we propose
an entropy-adaptive watermarking scheme that dy-
namically adjusts token partitioning based on pre-
diction uncertainty. For each token position t with
pt, we calculate:

Ht = −
L∑

l=1

p̂
(l)
t log p̂

(l)
t , p̂

(l)
t =

p
(l)
t + ϵ

1 + Lϵ
, (10)

where ϵ = 10−8 prevents numerical instability
and Lϵ ensures the sum of p̂(l)t is still 1. The nor-
malized entropy, which quantifies the "decision dif-
ficulty" at each generation step is then determined
by:

Hnorm =
Ht

Hmax
=

Ht

logL
, (11)

whereHmax = logL is proved in Appendix B. The
Semantic Critical Tokens ratio ηt and the dynamic
green list ratio γt follows:

ηt = α(1−Hnorm),

γt = γ − ηt,
(12)

where hyper-parameter α ∈ [0.01, 0.1] controls
the base Semantic Critical Tokens proportion, thus
ηt ∈ [0, α), γ ∈ [α, 1) and γt ∈ (0, 1 − α). The
vocabulary partition construction follows:

GSCT
t = {w(1), ..., w(⌊ηtL⌋)}, (13)

GGREEN
t = Sample

γt

(
V∗ \ (GSCT

t )
)
, (14)

Rt = V∗ \
(
GSCT
t ∪ GGREEN

t

)
. (15)

The sample strategy of selecting GGREEN
t here is to

generate random seeds according to the ht−1 token
and randomly sample γt tokens from V∗ \ (GSCT

t ).
This kind of vocabulary division ensures that the
red green vocabulary still accounts for the vast
majority, and also ensures that SCT can play an
important role only when the entropy is low and to-
ken importance needs to be distinguished, thereby
ensuring text quality and watermark strength.

2.5 SCT based Distribution Adjustment

We reformulate the watermark injection through
logit-space manipulation, preserving the semantic-
critical tokens (SCT) while introducing detectable
biases. Let Gt = GSCT

t ∪ GGREEN
t denote the

union of SCTs and sampled green list. The wa-
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termarked probability distribution is computed fol-
lowing Kirchenbauer et al. (2023) as:

p
(k)
t =





exp(p
(k)
t +δ)

∑
i∈Rt

exp(p
(i)
t )+

∑
i∈Gt exp(p

(i)
t +δ)

, k ∈ Gt

exp(p
(k)
t )

∑
i∈Rt

exp(p
(i)
t )+

∑
i∈Gt exp(p

(i)
t +δ)

, k ∈ Rt

(16)
where p(k)t denotes the original logit value for

token k at step t, and δ > 0 controls the watermark
intensity. This formulation applies: 1. Logit boost-
ing (+δ) for Gt tokens (SCT + green list) 2. Neutral
treatment for Rt tokens (remaining vocabulary).

The denominator ensures proper normalization
by aggregating adjusted and unadjusted logits sep-
arately. The final token selection follows:

wt ∼ Categorical
(
{p(k)t }Lk=1

)
. (17)

This mechanism creates statistically detectable
signatures in Gt tokens while maintaining the se-
mantic integrity of SCT tokens owing to the guar-
anteed logit boosting in SCTs, the context-sensitive
enhancement in green list tokens and the original
distribution patterns in Rt. The watermark detec-
tion process is followed as (Kirchenbauer et al.,
2023) thanks to the similar vocabulary partition.

3 Experiments

Our experiments comprehensively assessed VLA-
Mark’s performance on detection accuracy, text
quality maintenance, and robustness across four
multimodal language models using the AM-
BER (Wang et al., 2023) dataset. We compared
VLA-Mark with five baseline methods and con-
ducted an ablation study to evaluate the impact of
entropy adaptation and multi-scale semantic seg-
mentation. Additionally, we assessed robustness
against varied attacks, confirming VLA-Mark as a
resilient and efficient watermarking solution. The
latency overhead of the algorithm, additional re-
sults on attack robustness, and evaluations on more
datasets can be found in the Appendix D.

3.1 Experiment Setup

Backbone models and datasets. We assess our
method on four state-of-the-art multimodal lan-
guage models: LLaVA-v1.5 (Liu et al., 2024a,b),
LLaVA-Next (Li et al., 2024a), Qwen2-VL (Wang
et al., 2024), and DeepSeek-VL (Lu et al., 2024a),
utilizing their corresponding vision models for im-
age feature extraction. Performance is evaluated

using the AMBER (Wang et al., 2023) dataset, tai-
lored for image description tasks.

Baselines approaches. We compare our ap-
proach with five baselines: KGW (Kirchenbauer
et al., 2023), SWEET (Lee et al., 2023), EWD (Lu
et al., 2024b), unbiased (Hu et al., 2023), and
DiP (Wu et al., 2023), chosen for their focus on
detection performance and text quality. Implemen-
tations are facilitated by the MarkLLM (Pan et al.,
2024) repository.

Evaluation metrics Our evaluation spans detec-
tion performance (AUC and accuracy), text quality
(PPL and BLEU), semantic alignment (STS and
BertScore), and robustness against A1 attack (alter
text through word additions, removals, or substitu-
tions) and A2 attacks (translate and paraphrase text
using LLM) proposed by Lau et al. (2024).
3.2 Results

3.2.1 Watermark
Table 1 provides a detailed performance compari-
son of VLA-Mark with several baseline methods
across four multimodal language models. The eval-
uation metrics include AUC, Accuracy, and PPL,
which measure watermark detection effectiveness
and text quality. VLA-Mark is tested in two config-
urations: normal (VLA-M) and without semantic
critical tokens (VLA-M w/o SCT), the latter rely-
ing on a random token list for detection without
calculation of SCT. The length of all responses is
limited at 200 tokens.

The results highlight the performance of VLA-
Mark. VLA-Mark achieves AUROC above 99.8%
and accuracy above 98.1% in the three models,
indicating high detection accuracy. This perfor-
mance is comparable to or exceeds other state-of-
the-art methods such as KGW, SWEET, and EWD.
Notably, the PPL metric shows that VLA-Mark
outperforms all baseline methods, highlighting its
ability to maintain high-quality text while embed-
ding watermarks. All baseline methods exhibit a
trade-off between detection performance (AUC)
and text quality (PPL), whereas our method is the
only one that consistently achieves strong perfor-
mance on both metrics.These results substantiate
VLA-Mark’s efficacy in balancing high detection
precision with high-quality text across a range of
multimodal language models.

Furthermore, it is particularly remarkable that
VLA-Mark sustains robust detection performance
even in the absence of Semantic Critical Tokens
(SCT). Specifically, the VLA-Mark variant without
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LLaVA-v1.5 LLaVA-Next Qwen2-VL DeepSeek-VL

AUC ACC PPL AUC ACC PPL AUC ACC PPL AUC ACC PPL

KGW 99.98 99.55 6.21 99.99 99.80 6.04 99.99 99.60 5.27 99.81 98.00 6.99
EWD 99.99 99.90 6.51 100.0 100.0 6.05 100.0 100.0 5.24 99.99 99.80 7.00
SWEET 99.99 99.95 6.30 100.0 100.0 6.04 100.0 100.0 5.17 99.92 99.05 7.00
unbiased 88.27 80.87 6.05 92.54 85.20 5.56 96.99 91.13 5.00 79.65 66.98 6.18
DiP 88.58 80.82 6.03 92.66 85.60 5.57 97.25 91.13 5.02 79.60 67.33 6.17

VLA-M 99.99 99.80 4.84 99.95 98.95 5.32 99.89 98.43 4.97 97.36 92.72 5.73
w/o SCT 99.99 99.75 - 96.08 89.39 - 99.76 98.45 - 94.52 90.78 -

Table 1: Performance comparison of VLA-M and baseline methods across different multimodal language models in metrics
AUC, Accuracy, and Perplexity. Our approach shows high detection performance and and competitive text quality across the
majority of models. Cells highlighted in green denote superior performance, whereas red cells signify underperformance.
The notation "w/o SCT" indicates results without using Semantic Critical Tokens. (See Appendix D.6 for additional performance
on MS COCO dataset.)

SCT (w/o SCT) attains noteworthy AUROC scores
above 99.7% for both LLaVA-v1.5 and Qwen2-VL
models. For Accuracy, VLA-Mark (w/o SCT) de-
livers commendable results above 98.4% for mod-
els mentioned above. However, its performance is
less satisfactory on LLaVA-Next and DeepSeek-
VL. This discrepancy may stem from the fact that
the outputs of these latter models are enriched with
a higher proportion of semantic critical tokens,
which could potentially diminish the detection ef-
ficacy of the SCT-less approach.The outcomes un-
derscore our method’s versatility and robustness
across diverse scenarios. The capability of reli-
able detection without SCT enhances our water-
marking technique’s applicability by eliminating
the requirement for original input during detection.
This is particularly advantageous when the origi-
nal data is unavailable or needs to be safeguarded
against unauthorized access. To further validate
the generalizability of our approach, we evaluated
VLA-Mark on the MS COCO captioning bench-
mark across multiple VLA models, with detailed
results provided in Appendix D.6.

3.2.2 Ablation Study

Ablation None Entropy LPA GSC CCS

PPL(↓) 4.84 6.14 5.61 5.02 5.37
STS 92.13 90.89 91.98 91.02 91.88
BertScore 91.13 90.75 90.96 88.63 90.91

Table 2: Ablation study comparing the full VLA-M algorithm
(None) to its variants lacking specific components. The sub-
sequent columns indicate the algorithm’s performance after
removing a specific component.

Our ablation study, detailed in Table 2, validates
the critical roles of individual components in VLA-

Mark’s design. Removing Localized Patch Affin-
ity (LPA) leads to a significant 15.9% increase in
perplexity (PPL: 5.61 vs. 4.84), underscoring its
necessity for preserving fluency and fine-grained
visual-text alignment by prioritizing object-centric
tokens. Excluding Global Semantic Coherence
(GSC) causes the sharpest decline in BertScore
(88.63 vs. 91.13), highlighting its irreplaceable
function in maintaining scene-level semantic con-
sistency through holistic visual-language ground-
ing. While the absence of Cross-Modal Contextual
Salience (CCS) moderately degrades all metrics
(PPL: 5.37, STS: 91.88, BertScore: 90.91), its dis-
tributed attention mechanism proves vital for aggre-
gating multi-region visual associations, bridging
localized and global semantics.

These findings demonstrate the complementary
strengths of multiscale metrics: LPA anchors pre-
cise visual details, GSC ensures high-level coher-
ence, and CCS integrates contextual dependen-
cies. Combined with entropy-regulated partition-
ing, the framework achieves an optimal equilib-
rium—preserving multimodal fidelity while em-
bedding robust watermarks. The full model’s su-
perior performance across all metrics (PPL: 4.84,
STS: 92.13, BertScore: 91.13) confirms the ne-
cessity of unified vision-language alignment for
quality-preserving watermarking.

3.2.3 Hyperparameter analysis

As shown in Table 3, the SCT ratio controller α
exhibits a clear non-monotonic relationship with
generation quality. Performance peaks at α=0.025,
achieving optimal balance with the lowest perplex-
ity (4.84) and highest semantic similarity (92.13).
Below or above this threshold, insufficient SCT al-
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Ablation of α 0.01 0.015 0.025 0.05 0.1

PPL(↓) 6.23 5.86 4.84 5.71 5.91
STS 85.15 90.71 92.13 91.83 90.76
BertScore 91.48 94.05 91.13 94.27 94.16

Table 3: Ablation study on the hyper-parameter α controlling
Semantic Critical Tokens (SCT) ratio. Results show α=0.025
achieves optimal balance between text quality (PPL) and wa-
termark metrics (STS, BertScore).

location degrades both fluency and semantic align-
ment, confirming that weak semantic token empha-
sis compromises multimodal fidelity. The default
α=0.025 optimally complements VLA-M’s multi-
scale components by dynamically balancing local
fluency and global semantic preservation. Even
under the least favorable choice of α , the perfor-
mance of PPL remains comparable to or better than
that of KGW, with limited variation, demonstrating
the robustness of our method to hyperparameter
selection.

3.2.4 Text quality maintenance
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Figure 2: Left: Boxplots of perplexity scores for different
watermarking methods. Right: Average BLEU scores over
increasing token lengths. Our approach maintains lower per-
plexity with competitive BLEU performance even as genera-
tion length grows.

In Figure 2 (left), we observe that our proposed
approach exhibits lower median perplexity com-
pared to other watermarking methods, indicating
that it remains closer to the natural language dis-
tribution. This stems from our “semantic critical
tokens,” which preserve core meanings and reduce
unnecessary perturbations in high-salience tokens.
In Figure 2 (right), average BLEU scores show
that while all methods degrade as token length in-
creases, our dynamic partitioning strategy and SCT
protection help maintain relatively higher BLEU.
By boosting tokens critical to the overall semantics,
we minimize the distortion of fluency and coher-
ence, leading to more faithful long generations.

3.3 Attack

In our robustness experiments, we tested VLA-
Mark against attacks A1 and A2 as defined by
Lau et al. (2024). Attack type A1 encompasses

random word insertions, deletions, and synonym
substitutions, with 5% of the text undergoing al-
teration. Attack type A2 involves translation and
paraphrasing using the Llama-3.1 model. For trans-
lation, texts are first translated to Spanish and then
back into English. These attacks were applied to
responses consisting of 50 tokens in length.

Figure 3 illustrates VLA-Mark’s superior re-
silience, maintaining high AUC scores under all
attacks. Notably, VLA-Mark sustains an AUC
of 96.96% under A1 and only experiences mini-
mal drops of 2.90% and 2.47% during A2 transla-
tion and paraphrasing attacks, respectively. This
contrasts with significant performance declines
in DiP (69.78%-77.57% AUC) and the unbiased
method (70.03%-77.35% AUC) during paraphras-
ing. SWEET and EWD also underperform com-
pared to VLA-Mark in translation attacks (94.10%-
94.68% vs. 95.04% AUC). See Appendix D.3
for relative performance drop comparison. Ap-
pendix D.5 provides additional robustness evalua-
tions covering novel adversarial attack types.

VLA-Mark’s robustness is attributed to its
entropy-adaptive mechanism and multiscale se-
mantic guidance, which effectively counter lexical
and structural distortions, especially in A2 attacks.
These features, along with the use of Semantic Crit-
ical Tokens (SCTs), ensure watermark detectability
even when the text undergoes semantically preserv-
ing transformations, setting VLA-Mark apart as a
reliable watermarking solution.

4 Related Work
Our work advances three interconnected research
frontiers: text watermarking foundations, ro-
bustness against adversarial attacks, and vision-
language aligned generation paradigms.

4.1 Text Watermarking Fundamentals

Contemporary watermarking techniques predom-
inantly focus on unimodal text generation. The
pioneering "green list" paradigm (Kirchenbauer
et al., 2023) partitions vocabulary through hash-
based promotion, while other methods focus on
sentence-level cohesion (Zhang et al., 2025b), and
entropy-aware variants (Mao et al., 2024) modulate
injection strength probabilistically. Distribution-
preserving approaches (Wu et al., 2024) main-
tain statistical fidelity through reweighting yet ne-
glect semantic grounding. However, while wa-
termarking is being explored for other modali-
ties like video (Huang et al., 2025), such uni-
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Figure 3: AUC matrix for six watermarking methods under various attacks scenarios, with AUC values in parentheses. The
proposed VLA-M retains high detection performance even under heavy text transformations such as paraphrasing and translation.

modal designs fundamentally conflict with vision-
conditioned generation: random vocabulary parti-
tioning disrupts visual-semantic alignment by sup-
pressing image-grounded tokens (He et al., 2024),
while static allocation strategies (Liang et al., 2024)
fail to adapt to cross-modal entropy variations
(Huang et al., 2023). Recent benchmarks and toolk-
its (Qiu et al., 2024; Pan et al., 2024) reveal 41%
robustness degradation when deploying these meth-
ods in multimodal contexts, underscoring the ne-
cessity for vision-aligned watermark formulation.

4.2 Robustness Challenges and Attacks
Emerging adversarial attacks expose vulnerabili-
ties through multimodal exploitation. (Rastogi and
Pruthi, 2024) demonstrates 63% efficacy gain via
black-box analysis-driven paraphrases, while (He
et al., 2024) reveals cross-lingual leakage during
translation. Frameworks like DE-MARK (Chen
et al., 2024) remove watermarks via probabilistic n-
gram erasure. Existing defenses remain unimodally
confined—semantic preservation (Ren et al., 2023)
enhances robustness, and related safety measures
involve unlearning (Chen et al., 2025a), but can-
not counter cross-modal attacks that jointly ma-
nipulate vision-text interdependencies, a challenge
highlighted in recent surveys (Liu et al., 2025). Our
approach uniquely addresses this gap through hier-
archical protection of vision-anchored SCT tokens,
ensuring text-visual coherence under perturbations.

4.3 Vision-Language Aligned Architectures
State-of-the-art VLAMMs, which represent a sig-
nificant paradigm shift compared to earlier bidirec-

tional models (Zhang et al., 2025a), like LLaVA
(Liu et al., 2023) and BLIP-2 (Li et al., 2023) es-
tablish cross-modal fusion through architectural
innovations—gated cross-attention in Flamingo
(Alayrac et al., 2022) enables visual reasoning,
while CogVLM2 (Hong et al., 2024) leverages tem-
poral grounding for scene understanding, with re-
lated work extending multimodality to speech (Hei
et al., 2025). Yet these models lack native au-
thentication mechanisms, rendering generated con-
tent susceptible to adversarial attacks (Rastogi
and Pruthi, 2024). Recent efforts (Yoo et al.,
2024) incorporate entropy adaptation but neglect
alignment layers critical for coordinated embed-
ding. Our framework bridges this gap by explic-
itly integrating watermarking with cross-modal
projection mechanisms and semantic fusion met-
rics—securing generation authenticity without ar-
chitectural modification.

Our methodology synthesizes these advances
through: (1) Visual-semantic vocabulary align-
ment supplanting random partitioning, (2) Entropy-
regulated intensity modulation synchronized with
cross-modal saliency, and (3) Architectural
synergy with vision-language fusion mecha-
nisms—resolving inherent limitations across these
research streams.

5 Conclusion

We present VLA-Mark, a vision-language aligned
watermarking framework that harmonizes intellec-
tual property protection with cross-modal semantic
fidelity. By integrating multiscale visual-textual
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alignment metrics and entropy-regulated token par-
titioning, our method dynamically balances water-
mark detectability and semantic preservation. Ex-
periments across four multimodal models demon-
strate VLA-Mark’s superiority: near-perfect de-
tection (98.8% AUC), 7.4% lower perplexity, and
96.1% robustness against paraphrasing and trans-
lation attacks. Unlike prior unimodal approaches,
VLA-Mark anchors watermark injection to vision-
critical semantics through SCT prioritization, en-
suring text-visual coherence under perturbations.
This work establishes a new paradigm for quality-
preserving watermarking in multimodal generation,
bridging a critical gap in content authenticity for
evolving VLAMMs. Future work will extend this
framework to video-language and low-resource set-
tings.

Limitation

While VLA-Mark demonstrates robust watermark-
ing capabilities, several limitations remain. First,
the framework assumes that the visual-text align-
ment remains stable across diverse multimodal
models, which may not hold in cases of highly dy-
namic or domain-specific models. Additionally, de-
spite the strong resistance to attacks like paraphras-
ing and synonym substitution, VLA-Mark may still
be susceptible to adversarial methods specifically
designed to target cross-modal dependencies. Fur-
thermore, although the method does not require
model retraining, its reliance on entropy-sensitive
watermark injection might introduce computational
overhead in environments with limited resources
(see Appendix D.1 and Appendix D.2). Finally, the
approach primarily focuses on static visual content
and may not perform as effectively with real-time,
highly dynamic visual inputs.
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A Implementation Details

A.1 Hyperparameters setting
For fair comparison, the hyperparameters of each
method are standardized:

1. Hyperparameter γ is set to 0.5 to keep the
green vocabulary size consistent across differ-
ent watermarking methods;

2. Hyperparameter δ is set to 2.0 to keep the per-
turbation level consistent and avoid imbalance
in watermark intensity;

3. Hyperparameter α , which controls the base
Semantic Critical Tokens proportion of VLA-
Mark method, is set to 0.025 to ensure that
only the most semantically relevant tokens are
selected to maintain text quality and detection
performance; and

4. For other hyperparameters, we follow the de-
fault settings of the MarkLLM (Pan et al.,
2024) repository.

B Proof of Maximum Entropy

Consider the entropy function Ht defined over a
discrete probability distribution {p̂(l)t }Ll=1:

Ht = −
L∑

l=1

p̂
(l)
t log p̂

(l)
t (18)

We aim to find the probability distribution that max-
imizes Ht subject to the constraint:

L∑

l=1

p̂
(l)
t = 1 (19)

To solve this constrained optimization problem, we
employ the method of Lagrange multipliers. Intro-
ducing a Lagrange multiplier λ for the constraint,
we construct the Lagrangian function:

L = −
L∑

l=1

p̂
(l)
t log p̂

(l)
t + λ

(
L∑

l=1

p̂
(l)
t − 1

)
(20)

Taking the partial derivative of L with respect to
each p̂(l)t and setting it to zero yields:

∂L
∂p̂

(l)
t

= − log p̂
(l)
t − 1 + λ = 0 (21)

Solving for p̂(l)t gives:

log p̂
(l)
t = λ− 1 ⇒ p̂

(l)
t = eλ−1 (22)

This implies that all p̂(l)t are equal. Let p̂(l)t = 1
L for

all l. Substituting into the constraint
∑L

l=1 p̂
(l)
t = 1

confirms that this distribution is valid:

L∑

l=1

1

L
= 1 (23)

Substituting p̂(l)t = 1
L into the entropy function Ht:

Hmax
t = −

L∑

l=1

1

L
log

1

L

= −L ·
(
1

L
log

1

L

)

= logL

(24)

Since the entropy function Ht is concave in {p̂(l)t },
the critical point corresponds to the global maxi-
mum. Therefore, the maximum entropy is logL,
achieved when the distribution is uniform.

C Theoretical Analysis and Proof

We present formal analysis of VLA-Mark’s design
principles and theoretical guarantees with proofs.
Our theoretical analysis establishes a rigorous foun-
dation for VLA-Mark’s design principles through
four interconnected components formalized in The-
orems 1-4 and Lemmas 1-2:

• Cross-Modal Alignment: Theorem 3 val-
idates the geometric consistency of vision-
language embeddings through orthogonal pro-
jection invariance.

• Entropy-Regulated Watermarking: The-
orem 1 quantifies the entropy preservation
bound, while Theorem 2 establishes linear
detection advantage scaling.

• Semantic Metric Fusion: Lemma 1 guaran-
tees fused metric fidelity through Lipschitz-
constrained error propagation.

• Adversarial Robustness: Lemma 2 proves
exponential attack resistance against textual
edits, complemented by Theorem 4’s visual
perturbation stability.

C.1 Entropy-Adaptive Partitioning

Theorem 1 (Partition Entropy Bound) The dy-
namic green list ratio γt maintains bounded en-
tropy:
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H(pwm
t ) ≥ H(pt)− δ(α, γ), (25)

where δ(α, γ) = log
(
1 + αL

γ

)
quantifies maxi-

mum entropy loss from watermarking.

Implication: This formalizes the trade-off be-
tween watermark strength (controlled by α, γ) and
text quality preservation. The adaptive ηt automati-
cally minimizes δ in high-entropy scenarios where
semantic preservation is critical.

Proof C.1 Let pt and pwm
t denote the original and

watermarked distributions respectively. The en-
tropy difference can be bounded as:

H(pt)−H(pwm
t ) = Ept [logpt]− Epwm

t
[logpwm

t ]

= DKL(p
wm
t ∥pt) + logD

(26)
where D =

∑
k∈Gt

eδpt(k) +
∑

k∈Rt
pt(k) is

the partition function. Using the log-sum inequal-
ity:

logD ≤ log
(
1 + γ(eδ − 1)

)
≤ γ(eδ − 1) (27)

The KL divergence term satisfies:

DKL(p
wm
t ∥pt) ≤ δγ(eδ − 1) (28)

Combining these with the dynamic partition ratio
γ = α(1 − Hnorm) + γt, we obtain the entropy
bound:

H(pwm
t ) ≥ H(pt)−

[
γ(eδ − 1)(1 + δ)

]

︸ ︷︷ ︸
δ(α,γ)

(29)

Substituting γ ≤ α+ γt completes the proof.

C.2 Watermark Detectability

Theorem 2 (Detection Advantage) Let null hy-
pothesis H0: no watermark (δ = 0), H1: wa-
termark present (δ > 0). The detection Z-score
satisfies:

E[Z|H1]− E[Z|H0] ≥
δ
√
Nγ(1− γ)

2
, (30)

where N is token count. The advantage grows
linearly with δ and

√
N .

Role: This quantifies how our logit boosting
strategy (δ > 0) enables statistical detection while
guiding parameter selection (watermark intensity
vs. stealthiness).

Proof C.2 LetX =
∑N

t=1 I(wt ∈ Gt) be the green
list hit count. Under H0 (no watermark):

E[X|H0] = Nγ, Var[X|H0] = Nγ(1− γ)
(31)

Under H1 (watermark present), the logit boost δ
increases hit probabilities:

E[X|H1] = N

(
γ +

γδ

1 + γ(eδ − 1)

)

≥ Nγ(1 + δ/2)

(32)

The detection Z-score becomes:

Z =
X −Nγ√
Nγ(1− γ)

(33)

The expected detection advantage is:

E[Z|H1]− E[Z|H0] ≥
Nγδ/2√
Nγ(1− γ)

=
δ
√
Nγ(1− γ)

2

(34)

This linear advantage in δ and square-root de-
pendence on N establishes reliable detection.

C.3 Semantic Consistency of Cross-Modal
Alignment

Theorem 3 (Projection Invariance) Let
fθ : Rdv → Rd be the vision-text projection
with rank(fθ) = d. For aligned embeddings
Hv = fθ(Zv), there exists an orthogonal matrix
Q ∈ Rd×d such that:

∀zv ∈ Zv,∃hL ∈ HL : ∥Qfθ(zv)− hL∥2 ≤ ϵ
(35)

where ϵ bounds the alignment error from VLA
training.

This establishes that vision embeddings reside in
a rotated version of the LLM’s semantic space, en-
abling cross-modal similarity computation. The or-
thogonality preservation ensures angle-based met-
rics (LPA/GSC/CCS) remain valid.
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Proof C.3 Let fθ : Rdv → Rd be the vision-text
projection matrix with rank(fθ) = d. Through sin-
gular value decomposition (SVD), we can express:

fθ = UΣV⊤ (36)

where U ∈ Rd×d and V ∈ Rdv×dv are orthog-
onal matrices, and Σ ∈ Rd×dv contains singular
values. The rank condition ensures Σ has exactly
d non-zero singular values.

Define the orthogonal matrix Q = U⊤. For
any visual embedding zv ∈ Zv, the transformed
embedding becomes:

Qfθ(zv) = ΣV⊤zv (37)

From Vision-Language Alignment (VLA) train-
ing objectives (Liu et al., 2023), we know the pro-
jected visual embeddings are optimized to align
with linguistic embeddings HL through contrastive
learning. Formally, the training ensures:

min
Q

Ezv

[
min

hL∈HL

∥Qfθ(zv)− hL∥2
]
≤ ϵ (38)

where ϵ represents the alignment error bound
from imperfect training. The orthogonality of Q
preserves angular relationships:

cos∠(Qfθ(zv),hL) = cos∠(fθ(zv),Q⊤hL)
(39)

Thus, the angle-based metrics (LPA/GSC/CCS)
remain valid under this orthogonal transformation.

C.4 Metric Fusion Optimality

Lemma 1 (Metric Completeness) The fused met-
ric Φ(l) achieves ϵ-approximation of the ideal se-
mantic relevance function Φ∗(l):

|Φ(l)− Φ∗(l)| ≤ ϵ

3

3∑

k=1

∥ψnorm
k − ψ∗

k∥ (40)

where ψ∗
k are optimal unimodal metrics under

Lipschitz continuity.

Significance: The triangular error bound guar-
antees that our multi-scale fusion approach never
deviates catastrophically from ideal semantic as-
sessment, even with imperfect individual metrics.

Proof C.4 Let Φ∗(l) =
∑3

k=1 ψ
∗
k(l) be the ideal

semantic relevance function with optimal unimodal
metrics ψ∗

k. Under the Lipschitz continuity assump-
tion, each normalized metric satisfies:

∥ψnorm
k (l)− ψ∗

k(l)∥ ≤ ϵ

3
Lk (41)

where Lk is the Lipschitz constant for metric
k. The fusion error can be bounded via triangle
inequality:

|Φ(l)− Φ∗(l)| ≤
3∑

k=1

|ψnorm
k (l)− ψ∗

k(l)| (42)

≤
3∑

k=1

ϵ

3
Lk (43)

=
ϵ

3

3∑

k=1

Lk (44)

Substituting Lk = ∥ψnorm
k − ψ∗

k∥ completes the
proof. This bound ensures that even if one met-
ric deviates significantly, the others provide error
compensation through summation. The worst-case
error grows linearly with metric deviations rather
than exponentially, guaranteeing robustness.

Interpretation: 1. The projection proof estab-
lishes that cross-modal similarity computations are
geometrically valid through VLA’s inherent orthog-
onality. 2. The metric fusion proof demonstrates
that our multi-scale approach provides formal error
guarantees compared to an ideal semantic assessor.
3. Both proofs justify the theoretical soundness of
using vision-aligned embeddings and fused metrics
for vocabulary partitioning.

C.5 Robustness to Token Editing

Lemma 2 (Edit Resistance) After K token ed-
its, watermark detection power remains lower-
bounded by:

Power ≥ 1− exp

(
−N(γ −K/N)2

2γ(1− γ)

)
(45)

requiring K > N(1 − −1
√
(1− γ)) to defeat

detection.

Significance: Formalizes robustness against
content-preserving edits - attackers must alter a
linear fraction of tokens (∝ N ) to remove the wa-
termark, inevitably damaging content integrity.
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Proof C.5 Let N be the total tokens and T be the
observed green list count. The watermark detector
uses the hypothesis test:

H0 : T ∼ Bin(N, γ) vs H1 : T > γN (46)

AfterK edits replacing green list tokens with red
list ones, the distribution becomes:

T ∼ Bin(N −K, γ) + Bin(K, 0) (47)

The expectation and variance are:

E[T ] = γ(N −K) (48)

Var(T ) = γ(1− γ)(N −K) (49)

Using the Chernoff bound for binomial distribu-
tions:

P(T ≤ γN − δ) ≤ exp

(
− δ2

2γ(1− γ)N

)
(50)

Set δ = γN − E[T ] = γK. Substitution gives:

Power = 1− P(T ≤ γN − γK)

≥ 1− exp

(
− (γK)2

2γ(1− γ)N

) (51)

Simplify to obtain the stated bound:

≥ 1− exp

(
−N(γ −K/N)2

2γ(1− γ)

)
(52)

For successful attack, require:

exp

(
−N(γ −K/N)2

2γ(1− γ)

)
≥ α

⇒ K > N
(
1− −1

√
(1− γ)

)

(53)
where α is the significance level. This shows linear
dependence on N .

C.6 Visual-Semantic Coupling
Theorem 4 (SCT Invariance) Semantic Critical
Tokens maintain relative rankings under visual per-
turbations ∆Xv:

P(rank(Φ(l)|Xv+∆Xv) = rank(Φ(l)|Xv))

≥ 1− C∥∆Xv∥F
(54)

where C depends on VLA model Lipschitz con-
stants.

Demonstrates that our visual grounding mecha-
nism resists moderate adversarial image perturba-
tions, as SCT rankings remain stable under con-
trolled visual changes.

Proof C.6 Let Zv = VisEnc(Xv) and Z′
v =

VisEnc(Xv + ∆Xv). The visual encoder’s Lips-
chitz continuity gives:

∥Z′
v − Zv∥F ≤ Lv∥∆Xv∥F (55)

Projection layer fθ with Lipschitz constant Lp

preserves:

∥H′
v −Hv∥F ≤ LpLv∥∆Xv∥F (56)

For any token l, the metric difference is bounded
by:

|Φ(l|∆Xv)− Φ(l)| ≤
3∑

k=1

|ψnorm
k (l|∆Xv)−

ψnorm
k (l)|

≤ 3LΦLpLv∥∆Xv∥F

(57)

where LΦ is the Lipschitz constant of metric fu-
sion.

Rank preservation occurs when:

|Φ(l)−Φ(l′)| > 6LΦLpLv∥∆Xv∥F ∀l, l′ (58)

The probability of rank change is bounded by:

P(rank change) ≤ C∥∆Xv∥F (59)

where C = 6LΦLpLv/minl ̸=l′ |Φ(l) − Φ(l′)|.
Thus:

P(rank preserved) ≥ 1− C∥∆Xv∥F (60)

Interpretation: 1. The edit resistance proof
shows watermark robustness grows exponentially
with document length N , forcing attackers to com-
promise content quality through extensive edits.
2. The SCT invariance proof reveals visual pertur-
bations must exceed threshold ∥∆Xv∥F > 1/C
to disrupt rankings - typically requiring perceptu-
ally significant image alterations. 3. Combined,
these proofs formalize VLA-Mark’s dual robust-
ness against both textual and visual attacks while
maintaining semantic fidelity.

The theoretical framework demonstrates how
VLA-Mark’s components interact synergistically:
Theorem 1’s entropy regulation explains the em-
pirical 7.4% perplexity reduction (Table 1), while
Theorem 2’s

√
N -scaling advantage manifests in

the 98.8% AUC detection rate. The 96.1% attack
resilience (Fig. 3) directly reflects Lemma 2’s edit
resistance bound, and Theorem 4’s ranking sta-
bility underpins the preserved text-visual consis-
tency under perturbations. Crucially, Theorem 3
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Time(seconds) VLA-Mark KGW SWEET EWD DiP Unbiased w/o watermark

Llava-1.5 10.6907 10.6392 10.6556 10.5249 10.6989 10.7005 10.5230
Llava-next 6.8845 6.8160 6.8475 6.7109 6.8999 6.8864 6.7009
Qwen2VL 10.3430 10.1872 10.2062 10.0791 10.2485 10.2410 10.0758
Deepseek-VL 6.0687 6.0092 6.0261 5.9101 6.0563 6.0793 5.8691

Table 4: End-to-end latency (seconds) for different watermarking methods across VLAMs.

Time
(seconds)

VLA-
Mark

Cross
Modal

Aligned
Embedding

Multiscale
Semantic
Saliency
Metrics

Entropy
Regulated
Partition

Fused
Metric
Guided

Vocabulary

SCT
Distribution
Adjustment

All
Components

w/o
watermark

Llava-1.5 10.6907 0.0282 0.0019 0.0539 0.0185 0.0179 0.1204 10.5230
Llava-next 6.8845 0.0527 0.0034 0.0604 0.0174 0.0181 0.1520 6.7009
Qwen2VL 10.3430 0.0988 0.0020 0.0668 0.0185 0.0198 0.2059 10.0758
Deepseek-VL 6.0687 0.0755 0.0004 0.0569 0.0173 0.0180 0.1681 5.8691

Table 5: Per-component inference overhead (seconds) for LLaVA-1.5 under a 200-token setting.

and Lemma 1 jointly validate the framework’s core
innovation - using vision-language alignment as
both semantic anchor and watermark carrier. These
formal guarantees address the reproducibility crisis
in neural watermarking by establishing mathemati-
cally grounded performance boundaries, while the
tight integration with empirical results sets a new
standard for accountable multimedia authentication
systems.

D Additional Experimental Results

D.1 Inference Latency

Table 4 shows the end-to-end generation latency for
50 images and 200 tokens on four VLAMs. VLA-
Mark adds only a small overhead over existing
text-only watermarking methods.

Table 4 quantifies the end-to-end generation la-
tency across four vision-language models under
standardized conditions. The results reveal that
VLA-Mark introduces only a 1–2.5% latency in-
crease compared to text-only watermarking base-
lines, with absolute overheads ranging from 0.12
to 0.21 seconds depending on the model architec-
ture. This minimal cost stems from the frame-
work’s lightweight design: entropy-regulated to-
ken partitioning operates on pre-computed logits
without iterative optimization, while cross-modal
alignment leverages existing projection layers in
VLAMs rather than introducing new computations.
For instance, the DeepSeek-VL model exhibits a
total overhead of 0.168 seconds, which constitutes
just 2.8% of its baseline inference time (5.87 sec-

onds).
These findings confirm that the added mod-

ules impose negligible runtime penalties even for
large-scale deployments. The consistency of over-
heads across architectures—from LLaVA’s linear
projection-based alignment to Qwen2-VL’s hy-
brid attention mechanisms—further validates VLA-
Mark’s architectural neutrality. Crucially, the over-
head remains orders of magnitude smaller than
the inherent latency of VLAM inference pipelines,
which typically involve computationally intensive
vision encoders (e.g., ViT-L/14) and autoregressive
text generation. This efficiency is achieved without
sacrificing detection performance or text quality,
as evidenced by the framework’s 98.8% AUC and
7.4% PPL reduction relative to baselines.

D.2 Inference Latency Breakdown

Table 5 details the runtime contribution of each
VLA-Mark component under a 200-token genera-
tion setting on LLaVa-1.5.

Cross-Modal Aligned Embedding, which
projects visual features into the LLM’s se-
mantic space, accounts for 23–47% of total
overhead depending on the model. This variation
stems from architectural differences: LLaVA-
Next’s lightweight adaptors reduce projection
costs (0.0527s) compared to Qwen2-VL’s
higher-dimensional alignment (0.0988s). Entropy-
Regulated Partitioning contributes 32–40% of
overhead through its dynamic token selection
mechanism. Despite this, its per-step computa-
tional cost remains minimal (0.0569–0.0668s)
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Performance drop Unattacked Insert Attack Delete Attack Synonym Attack Translate Attack Paraphrase Attack

KGW 0.00(98.75) 1.21(97.54) 0.65(98.1) 0.83(97.92) 5.12(93.63) 8.22(90.53)
EWD 0.00(99.57) 0.94(98.63) 0.64(98.93) 0.65(98.92) 5.47(94.1) 4.67(94.9)
SWEET 0.00(99.06) 1.72(97.34) 1.08(97.98) 0.91(98.15) 4.38(94.68) 4.98(94.08)
unbiased 0.00(82.52) 8.01(74.51) 4.95(77.57) 5.17(77.35) 5.36(77.16) 12.49(70.03)
DiP 0.00(82.76) 7.72(75.04) 5.83(76.93) 5.19(77.57) 5.61(77.15) 12.98(69.78)
VLA-M 0.00(97.51) 0.87(96.64) 0.22(97.29) 0.55(96.96) 2.47(95.04) 2.90(94.61)

Table 6: Relative performance drop (%) from unattacked baseline under adversarial attacks.

due to optimized entropy calculations using
pre-softmax logits. Notably, the Multiscale
Semantic Saliency Metrics (LPA/GSC/CCS)
impose near-negligible costs (0.0004–0.0034s),
as they operate on cached embeddings rather
than recomputing cross-modal similarities. The
SCT Distribution Adjustment, which applies logit
boosting via parallelizable matrix operations,
adds just 0.0179–0.0198s. Collectively, these
components add less than 0.2 seconds overhead
per generation, reinforcing VLA-Mark’s design
goal of runtime efficiency with negligible impact
on user experience.

D.3 Relative Performance Drop Under
Attacks

We reorganized the data from Figure 3 into Ta-
ble 6, showing relative performance drops from the
unattacked baseline under various adversarial sce-
narios. Smaller drops indicate stronger robustness.

Table 6 quantifies VLA-Mark’s resilience
through relative AUC drops under six attack sce-
narios. The framework’s maximum degradation
of 2.90% under paraphrasing attacks contrasts
sharply with baselines like DiP (12.98% drop),
highlighting the effectiveness of Semantic Crit-
ical Tokens (SCTs) in anchoring watermarks to
vision-grounded semantics. For instance, during
synonym substitution attacks, VLA-Mark’s SCT
protection ensures that visually anchored phrases
(e.g., "grassy trail") resist replacement with non-
salient synonyms, preserving both watermark sig-
nals and text-visual coherence.

The entropy-adaptive mechanism further en-
hances robustness by concentrating watermark
strength on high-uncertainty tokens less critical to
core semantics—a strategy validated by the mere
0.55% drop under synonym attacks versus KGW’s
0.83%. The framework’s superior performance
against structural perturbations (e.g., 0.22% drop
under deletions vs. SWEET’s 1.08%) stems from
its multiscale metrics, which ensure distributed

watermark signatures across local and global se-
mantics. Even under aggressive translation attacks,
where baseline methods lose 5.12–5.47% AUC,
VLA-Mark retains 95.04% detection accuracy by
preserving SCTs’ cross-lingual visual grounding.

D.4 Average Performance Comparison

Table 9 complements Table 1 by comparing the
average detection performance of VLA-Mark and
baseline methods across multiple backbone mod-
els.

Method AUC ACC PPL

KGW 99.94 99.24 6.13
EWD 100.00 99.93 6.20
SWEET 99.98 99.75 6.13
unbiased 89.36 81.05 5.70
DiP 89.27 81.22 5.70
VLA-M 98.77 96.64 5.27

Table 9: Average detection performance metrics across
VLAMs for different watermarking methods.

The averaged metrics reveal VLA-Mark’s bal-
anced performance profile. VLA-Mark achieves
a strong balance between detection performance
and text quality, attaining the best perplexity (PPL)
while maintaining high AUC and accuracy (ACC)
scores. While EWD achieves marginally higher
AUC (100.00% vs. 98.77%), this comes at the cost
of 17.6% higher perplexity (6.20 vs. 5.27), under-
scoring VLA-Mark’s unique ability to harmonize
detection and quality. The slight AUC reduction
for DeepSeek-VL (96.32% vs. 99.93% on LLaVA)
stems from its non-linear alignment mechanism,
which compresses visual features through dynamic
routing rather than linear projection. Nonetheless,
these model-specific variations are limited, and
overall, VLA-Mark delivers consistently competi-
tive and robust performance. Crucially, VLA-Mark
maintains superior PPL across all models, includ-
ing a 15.3% reduction compared to KGW (5.27
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Attack Type KGW EWD SWEET unbiased DiP VLA-M

Word Vector Substitution 0.88 (97.87) 0.73 (98.84) 1.02 (98.04) 4.79 (77.73) 4.98 (77.78) 0.41 (97.10)
Noise Injection 0.60 (98.15) 0.55 (99.02) 0.72 (98.34) 3.90 (78.62) 4.22 (78.54) 0.20 (97.31)
Text Style Transfer 7.90 (90.85) 4.43 (95.14) 5.05 (94.01) 12.70 (69.82) 13.45 (69.31) 2.67 (94.84)
Entity Replacement 2.13 (96.62) 2.35 (97.22) 3.14 (95.92) 5.75 (76.77) 6.20 (76.56) 1.08 (96.43)
Frequency Perturbation 4.95 (93.80) 5.22 (94.35) 4.40 (94.66) 6.45 (76.07) 6.70 (76.06) 2.38 (95.13)

Table 7: Robustness of VLA-M and baseline methods across additional adversarial attacks.

LLaVA LLaVA-Next Qwen2-VL DeepSeek-VL

AUC PPL AUC PPL AUC PPL AUC PPL

KGW 99.65 7.15 99.80 6.95 99.70 6.15 98.55 8.20
EWD 99.78 7.55 99.75 7.00 99.95 6.10 99.15 8.30
SWEET 99.81 7.48 99.85 7.10 99.90 6.20 98.80 8.15
Unbiased 86.70 7.25 91.10 6.70 95.90 6.20 78.36 7.65
DiP 87.10 7.22 91.50 6.75 96.20 6.18 78.52 7.60
VLA-M 99.93 5.92 99.85 6.02 99.70 5.35 96.32 5.84

Table 8: Performance of VLA-M and baseline watermarking methods on the MS COCO dataset across multiple model
architectures. The metrics include Area Under Curve (AUC) and Perplexity (PPL) measured on LLaVA, LLaVA-Next, Qwen2-
VL, and DeepSeek-VL models. VLA-M demonstrates consistently superior perplexity and competitive AUC across diverse
architectures.

vs. 6.13). This fluency preservation arises from
the framework’s explicit avoidance of low-salience
token manipulation, which in baselines often intro-
duces grammatical artifacts (e.g., KGW’s biased
"green list" sampling).

D.5 Additional Robustness Evaluations

Beyond the initial robustness tests, we conducted
five additional novel adversarial attack evaluations
summarized in Table 7.

VLA-Mark demonstrates superior robustness
across all attacks, maintaining both high detec-
tion accuracy and low perturbation. Under style
transfer attacks, which alter lexical patterns while
preserving meaning, VLA-Mark’s AUC drops by
just 2.67% versus SWEET’s 5.05%, as SCTs like
"broken bench" remain anchored to visual patches
regardless of syntactic variations. The framework’s
resilience to frequency perturbation—a worst-case
scenario where attackers systematically replace
common words—is particularly notable (2.38%
drop vs. KGW’s 4.95%). Even under adversarial
entity replacement, which directly targets SCTs,
VLA-Mark retains 96.43% AUC by leveraging
CCS metrics to maintain contextual coherence.

VLA-Mark’s resilience to complex transforma-
tions such as style transfer and semantic rewriting
underscores the effectiveness of its cross-modal
semantic anchoring and entropy-aware watermark

embedding, which dynamically adapt watermark
strength according to token saliency and generation
uncertainty. These results validate the method’s ap-
plicability to real-world scenarios with diverse and
unpredictable text modifications.

D.6 Evaluation on Additional Dataset: MS
COCO

To demonstrate dataset-agnostic performance, we
evaluate watermarking methods on the MS COCO
captioning benchmark across four VLAMs. Table 8
reports AUC and PPL across four VLAMs.

Table 8 presents the performance of VLA-Mark
and baseline watermarking methods evaluated on
the MS COCO dataset across four state-of-the-
art vision-language architectures. The metrics re-
ported include Area Under the Curve (AUC) for
detection accuracy and Perplexity (PPL) for text
generation quality.

VLA-M consistently achieves the lowest per-
plexity scores across all tested models, indicating
superior preservation of natural language fluency
compared to competing methods. Its AUC values
remain near the highest observed levels, demon-
strating robust and reliable watermark detectability
without compromising semantic quality.

The slightly lower AUC for DeepSeek-VL aligns
with its known behavioral patterns on AMBER
and similar datasets, reflecting model-specific nu-
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ances rather than limitations of the watermarking
approach itself.

These results confirm VLA-M’s scalability and
generalizability beyond the originally used dataset,
supporting its retraining-free applicability across
diverse multimodal language models and datasets.
The strong balance between detection robustness
and text quality underscores the effectiveness of
the entropy-regulated watermark injection and the
semantic-critical-token preservation mechanisms
detailed in Sections 2.1 and 2.4.

This evaluation further reinforces VLA-M’s suit-
ability for real-world deployments where models
and data distributions vary, addressing reviewer
concerns about extending watermarking strategies
to new domains without extensive retraining or loss
of performance.
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