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Abstract
Reasoning-based large language models have
excelled in mathematics and programming, yet
their potential in knowledge-intensive medical
question answering remains underexplored and
insufficiently validated in clinical contexts. To
bridge this gap, we introduce ReasonMed, the
largest medical reasoning dataset to date, com-
prising 370k high-quality examples distilled
from 1.75 million initial reasoning paths gen-
erated by complementary LLMs and curated
through a cost-efficient easy-medium-difficult
(EMD) pipeline. ReasonMed is built through
a multi-agent generation, verification, and re-
finement process, in which an Error Refiner
improves reasoning paths by correcting error-
prone steps identified by a verifier. Using Rea-
sonMed, we investigate effective strategies for
training medical reasoning models and find that
integrating detailed CoT reasoning with con-
cise answer summaries yields the most robust
fine-tuning results. Models trained on Rea-
sonMed set a new benchmark: ReasonMed-
7B surpasses the prior best sub-10B models
by 4.17% and even exceeds LLaMA3.1-70B
on PubMedQA by 4.60%. When scaled to
ReasonMed-14B, it remains highly competi-
tive, underscoring consistent scaling potential.1

1 Introduction

Recent reasoning-oriented large language models
(LLMs; DeepSeek-AI (2025); Team (2025)) have
garnered significant attention due to their remark-
able capabilities in logical reasoning (Liu et al.,
2025; Chen et al., 2025), mathematics (Ahn et al.,
2024), query optimization (Tan et al., 2025; Huan-
shuo et al., 2025), and programming (OpenAI et al.,
2025) tasks.

1The codes and datasets are available at https://github.
com/YuSun-Work/ReasonMed.

Despite their effectiveness, LLMs encounter
distinct challenges in the medical domain due
to its knowledge-intensive nature, which requires
extensive, high-quality, and accurately curated
data. Existing medical reasoning datasets, such as
medical-o1-reasoning-SFT and Medical-R1-Distill-
Data (Chen et al., 2024), remain limited in scale
and typically derived from a single teacher model,
restricting knowledge coverage. Moreover, prior
work lacks a systematic analysis of the trade-
offs between resource-intensive, multi-step reason-
ing (Wei et al., 2023) and more compact, summary-
based strategies. Whether the added computational
cost of explicit reasoning outweighs its benefits
over efficient summarization in medical QA sys-
tems remains an open question.

To tackle these challenges, we present Reason-
Med, a large-scale medical reasoning dataset con-
taining 370k rigorously verified examples–an order
of magnitude larger than prior efforts (Chen et al.,
2024). Curated from multiple advanced LLMs,
ReasonMed captures diverse medical insights with
broad depth and coverage. Each entry provides de-
tailed multi-step CoT reasoning alongside a concise
answer summary, facilitating analysis of effective
reasoning strategies in the medical domain.

Dataset scale plays a crucial role in enhancing
model performance. To this end, we adopt a large-
scale, high-quality data generation paradigm using
a multi-agent system (MAS). We first aggregate ap-
proximately 195k questions (excluding test splits)
from four benchmarks: MedQA (Jin et al., 2020),
MMLU (Hendrycks et al., 2021), PubMedQA (Jin
et al., 2019), and MedMCQA (Pal et al., 2022).
Our MAS integrates three strong LLMs, i.e., two
general-purpose (Qwen2.5-72B (Team, 2024) and
DeepSeek-R1-Distill-Llama-70B (DeepSeek-AI,
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2025)) and one medical-specific (HuatuoGPT-o1-
70B (Chen et al., 2024)). By varying sampling
hyperparameters (e.g., temperature, top-p) across
agents, we generate ∼1.75 million diverse, multi-
step reasoning paths. This combination of scale and
methodological rigor ensures higher data quality
and, in turn, stronger clinical QA performance.

Beyond data scale, training efficacy is highly
sensitive to data quality. Prior work (Muennighoff
et al., 2025) shows that even 1, 000 well-curated ex-
amples can yield strong results. To ensure precision
in medical QA, we devise a rigorous quality con-
trol pipeline that validates each reasoning chain for
answer correctness, logical coherence, and medi-
cal factuality. Based on validation pass rates, ques-
tions are classified into three tiers: easy (≥5 correct
paths), medium (2∼4 correct paths), and difficult
(<2 correct paths). For easy cases, the two top-
ranked reasoning paths verified by a quality ranker
are retained. For medium cases, where subtle er-
rors are more common, an error refiner, guided by
verifier logs and powered by GPT-4o-mini, revises
and expands the paths. For difficult cases, GPT-o1
is employed with a structured multi-step process
to directly generate valid reasoning. This multi-
stage refinement yields a polished dataset of 370k
high-quality medical reasoning samples.

In addition to curating high-quality reasoning
data, we examine how different training strate-
gies affect model performance. Specifically, we
compare fine-tuning methods, including traditional
CoT, summary-based responses, and a hybrid CoT-
summary approach. Using the lm_eval frame-
work (Gao et al., 2024), we identify the most ef-
fective strategies for enhancing medical LLMs on
complex questions. Results show that the hybrid
method achieves the best accuracy, while summary-
only responses provide competitive results with
lower computational cost, underscoring the value
of strategy selection based on application needs.

To ensure medical validity beyond LLM-as-a-
judge, we conduct a pilot review of 100 randomly
sampled cases by board-certified physicians. Their
evaluations align with our automatic scores and
surface concrete strengths, such as structured rea-
soning (87%) and systematic distractor elimina-
tion (82%), alongside actionable gaps, including
insufficient external citations (68%) and limited
clinical specifics (35%). We further demonstrate
favorable scaling: a 14B model fine-tuned on Rea-
sonMed surpasses competitive 14B/32B baselines
and approaches 70B performance across 9 medical

benchmarks. We release complete training and in-
ference details, along with a temperature sensitivity
analysis indicating peak accuracy at 0.5 ∼ 0.7.

Our main contributions are fourfold:

• We release the largest open-source medical
reasoning dataset, containing 1.29M validated
paths, distilled to 370k high-quality examples
through targeted optimization.

• We design a multi-agent framework for gener-
ating, filtering, and refining reasoning paths.
GPT-4o evaluations on random subsets of
1, 000 and 3, 000 entries confirm Reason-
Med’s superior quality over data generated
by GPT-4o and DeepSeek-R1.

• We present the first controlled study in
knowledge-intensive medical QA using an
identical data source, isolating the contribu-
tions of multi-step reasoning versus dense
knowledge injection, and systematically as-
sessing their effects on accuracy and effi-
ciency.

• We train the ReasonMed-7B on reasoning-
augmented data, achieving 82.0% on Pub-
MedQA, surpassing LLaMA3.1-70B by
+4.6%. Scaling to 14B, ReasonMed-14B out-
performs Qwen2.5-14B by +3.8%, exceeds
Qwen2.5-32B, and approaches LLaMA3.1-
70B, demonstrating stable scaling potential.

2 Related Work

Multi-Agent-based Data Curation. Multi-agent
frameworks have proven effective and robust for
dataset generation and optimization across diverse
domains. These systems assign specialized roles to
agents that collaborate in a team-like manner (Hong
et al., 2023; Li et al., 2025b; Gu et al., 2025a; Qi
et al., 2024). For instance, DialogueAgents (Li
et al., 2025a) employs scriptwriters, synthesizers,
and critics to produce diverse, high-quality dia-
logue data, while AgentCoder (Huang et al., 2024)
leverages programmers, test designers, and ex-
ecutors to iteratively refine code datasets through
agent-driven feedback. Similarly, BOLT (Pang
et al., 2025) integrates multi-agent frameworks
with LLMs to generate long-chain reasoning data,
underscoring their utility in structured, reasoning-
intensive tasks. Distinct from prior work, our
framework targets medical reasoning datasets, com-
bining domain-specific and general-purpose lan-
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Figure 1: (1) show composition of the dataset. (2) present the Multi-Agent System for generating and validating
Complex CoT. (3) outline strategy schemes (Easy/Medium/Difficult Pipeline) based on CoT validation counts.
For 0-4 errors, select top two CoTs using the Quality Ranker. For 5-7 errors, optimize the top two CoTs with
GPT-4o-mini, addressing identified weak points. For 8-9 errors, generate high-quality answers using GPT-o1.

guage models to generate, validate, and refine rea-
soning paths tailored for medical QA.

Medical Reasoning Dataset & Model. Recent
work demonstrates the effectiveness of chain-of-
thought (CoT) prompting for medical QA (Wei
et al., 2022; Liévin et al., 2023). Adaptive rea-
soning models, such as medical language agents,
have been proposed to address complex clinical
tasks (Dutta and Hsiao, 2024). Multi-agent frame-
works further enhance reliability and interpretabil-
ity by coordinating specialized medical reason-
ing agents (Zuo et al., 2025). HuatuoGPT (Chen
et al., 2024) exemplifies the integration of rich med-
ical knowledge with multi-step reasoning in large
models. In parallel, Lingshu introduces a unified
multimodal foundation model that jointly handles
text- and image-based clinical problems, achiev-
ing strong performance on multimodal QA and
related benchmarks (Xu et al., 2025). While Ling-
shu emphasizes unified modeling and evaluation,
our work targets the creation of high-quality CoT
datasets for medical QA through rigorous verifica-
tion and staged optimization. Existing datasets typ-
ically lack systematic verification and structured
optimization tailored to medical reasoning. We
address this gap with a multi-stage pipeline that
evaluates, verifies, and refines reasoning paths, pro-
ducing datasets with substantially improved fidelity
and applicability.

LLM-as-a-Judge. Large language models are
increasingly adopted as evaluators (LLM-as-a-
Judge), offering scalable and consistent assessment
across domains (Gu et al., 2025b; Zeng et al., 2024).
In medical QA, they improve evaluation reliability
and accuracy (Krolik et al., 2024; Zhao et al., 2024).

By iteratively reviewing reasoning steps, LLM eval-
uators guide models toward coherent and correct
solutions (Qin et al., 2024). Frameworks such as
QuRating (Tang et al., 2024) highlight their util-
ity in systematically selecting high-quality training
data. Distinct from prior work, our method evalu-
ates language-model-generated CoT reasoning for
both correctness and factual fidelity, while explic-
itly identifying errors to support targeted optimiza-
tion. We further introduce a score-based evaluator
that quantifies reasoning improvements after refine-
ment and measures overall dataset quality.

3 Multi-Agent Reasoning Pipeline

3.1 Dataset Composition

In this section, we present the composition of
the dataset used for the Multi-Agent Reasoning
Pipeline, along with an analysis of the dataset’s
structure and the benchmarks involved. The dataset
consists of various medical question-answering
datasets. Table 1 shows a summary of the dataset
composition.

3.2 Multi-Agent System for Complex CoT
Generation

We employ a multi-agent framework—compris-
ing Qwen2.5-72B, HuatuoGPT-o1-70B, and
DeepSeek-R1-Distill-Llama-70B—to generate
1.755 million reasoning paths. Each model
produces three CoT trajectories at different
temperatures (0.7, 0.9, and 1.0). We then assemble
the complex CoTs by following these steps:

(i) Rewrite the question.
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Dataset Composition Count

MedQA (train/dev) 10178/1272
MedMCQA (train) 182822
PubMedQA (train/val) 450/50

MMLU
Anatomy (dev/val) 5/14
Clinical Knowledge (dev/val) 5/29
College Biology (dev/val) 5/16
College Medicine (dev/val) 5/22
Medical Genetics (dev/val) 5/11
Professional Medicine (dev/val) 5/31

Total Count 194925

Table 1: Summary of ReasonMed Question Count Com-
position.

(ii) Highlight key clinical details and background
information.

(iii) Evaluate each answer choice and discuss sup-
porting evidence and potential traps.

(iv) Systematically eliminate choices inconsistent
with the clinical context.

(v) Reassess each option, eliminating inconsisten-
cies.

(vi) Conclude with a final answer, supported by a
concise explanation of the reasoning.

As shown in Figure 2, we present a pairwise
comparison among DeepSeek-R1-Distill-Llama-
70B, HuatuoGPT-o1-70B, and Qwen2.5-72B on
the Medical QA task. Specifically, we compare the
number of questions correctly answered by each
model individually. The results reveal that differ-
ent models exhibit distinct strengths across vari-
ous medical knowledge domains. The observed
differences in knowledge domains across models
highlight the necessity of a multi-agent system that
integrates diverse model outputs.

3.3 Component Design
This section provides an overview of the compo-
nents developed in this paper and their respective
functions. (2)-(6) of Figure 3 visualize the structure
and workflow of each component.

Verifier: This component constructs a verifier
(based on Qwen2.5-72B) to validate the correctness
of CoT paths generated by the Multi-Agent system.

4.19 9.76 5.14

81.78
78.3 82.07

14.03 11.94 12.79

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DeepSeek-R1-Distill-Llama-70B
vs HuatuoGPT-o1-70B

DeepSeek-R1-Distill-Llama-70B
vs Qwen2.5-72B

Qwen2.5-72B vs  HuatuoGPT-o1-
70B

Knowledge Domain Difference
Only 
HuatuoGPT 
Correct

Only 
DeepSeek 
Correct

Both  
Correct or 
Incorrect

Only 
Qwen
Correct

Only 
DeepSeek 
Correct

Both  
Correct or 
Incorrect

Only 
HuatuoGPT 
Correct

Only 
Qwen 
Correct

Both  
Correct or 
Incorrect

Figure 2: Knowledge domain differences among
DeepSeek-R1-Distill-Llama-70B, HuatuoGPT-o1-70B
and Qwen2.5-72B.

The model not only checks whether the answer is
correct or incorrect, but also evaluates whether the
key clinical factors have been accurately identified,
whether all answer choices have been analyzed,
and whether there are any factual errors in the med-
ical knowledge. The model outputs a JSON object
with two keys: one indicating the verdict (Correct
or Error), and the other providing the reason for
the error. For example, “The CoT analysis con-
tains inaccuracies regarding vasopressin’s role in
glycogenolysis and incorrectly dismisses oxytocin
without full consideration of its potential regula-
tory effects.” Figure 4 presents a bar chart showing
the number of correct versus incorrect reasoning
paths—after Verifier validation—for each model
and CoT configuration across the nine generated
paths. DeepSeek-R1-Distill-Llama-70B achieves
the highest overall accuracy; Qwen2.5-72B retains
the most correct paths at a temperature of 0.9, while
the optimal temperature for the other two models
is 0.7.

Response Summarizer: To construct a response
with reasoning similar to o1 answers, we use GPT-
4o-mini as a summarization assistant. The model
generates a summary for each complex CoT, which
represents a step-by-step reasoning process. This
summary is presented as the final output to the user,
focusing on the reasoning aspect of the response.

Quality Ranker: Balancing dataset size and
quality is crucial. Among the many correct CoT
paths, we aim to select the two most optimal ones
for subsequent training. The Quality Ranker, based
on Qwen2.5-72B, plays a critical role here. The
model reads the correct CoT paths and outputs
the top two, such as “top2”: [“modelX_COTY”,
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Figure 4: Bar chart illustrating the correct and incorrect
counts for each model and CoT configuration across
9 generated paths in a Multi-Agent System, totaling
192,628.

“modelZ_COTW”], along with the rationale for ex-
cluding the other options. Initially, we considered
using a Score Evaluator to rate each CoT, but this
approach was challenging due to cases where mul-
tiple CoTs might have identical scores, making it
difficult to select the best. Therefore, we opted
for directly outputting the two best paths by their
CoT names. Figure 5 shows the distribution of the
top two CoT paths selected by the Quality Ranker
in both Easy Pipeline and Medium Pipeline, illus-
trating the sampling proportions across different
models and temperature settings.

Error Refiner: This component handles ques-
tions of moderate difficulty. Using the Quality
Ranker, it first selects the two most optimal rea-
soning paths (if only two chains of thought are
correct, they are chosen by default), and then per-
forms a secondary optimization. Concretely, the
refiner applies targeted edits to the flagged steps
while preserving correct substeps and conclusions,

100802
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45675
14.39%

10604
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27544
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Figure 5: Distribution of the top two CoT paths selected
by the Quality Ranker in Easy Pipeline and Medium
Pipeline, showing sampling proportions across models
and temperature settings.

thereby reducing unnecessary changes and mitigat-
ing drift from the original rationale. Its design also
includes storing the models error reasons during the
verification stage and leveraging a stronger model
to supplement and address those weak points-an
approach that effectively corrects the models error-
prone knowledge. During this pass, the refiner pri-
oritizes issues surfaced by the Verifier (e.g., miss-
ing clinical factors, incomplete option analysis, or
factual slips) and amends only the implicated seg-
ments, followed by a brief self-consistency check to
ensure the final answer and supporting evidence re-
main aligned. Empirically, Medium-pipeline refine-
ment raises the Score-Evaluator average from 7.37
to 8.17 (+0.80), validating the Error Refiner’s con-
tribution. Overall, this localized, feedback-driven
correction improves coherence and factual fidelity
without overhauling well-formed reasoning, yield-
ing higher-quality supervision signals for subse-
quent fine-tuning.
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Score Evaluator: This component utilizes the
GPT-4o API to score the dataset quality on a scale
from 0 to 10. We conducted two main experiments:
the first compared the scores of the same question
before and after CoT optimization to validate the
effectiveness of the Error Refiner; the second in-
volved comparing our final ReasonMed with other
open-source medical reasoning datasets through
random sampling to assess the effectiveness of our
Multi-Agent approach.

3.4 ReasonMed Build Pipeline

Based on the number of errors detected in the rea-
soning paths, three distinct pipelines were created
to process CoTs at varying levels of difficulty:

Easy Pipeline (Error 0-4): This pipeline han-
dles paths with few errors (0-4), which are rela-
tively easy for the model to answer correctly. Here,
we use Quality Ranker to rank the correct paths,
selecting the top two from the 5-9 correct options.
Additionally, the model provides brief explanations
as to why it did not choose other CoT paths.

Medium Pipeline (Error 5-7): For paths with
moderate errors (5-7), we assume that the model
has partial knowledge but may miss certain fine-
grained details. Thus, the top two CoT paths are
selected using the Quality Ranker and then refined
using the Error Refiner based on the pitfalls pro-
vided by the Verifier, focusing on correcting those
errors to enhance the original correct reasoning
chains.

Difficult Pipeline (Error 8-9): For difficult ques-
tions with significant errors (8-9), the GPT-4o
model may not be sufficient to correct the mis-
takes. Therefore, we use GPT-o1 to optimize these
paths. For entirely incorrect paths, GPT-o1 gener-
ates high-quality CoTs from scratch, following the
six-step reasoning process.

Lastly, Figure 6 presents the different pipeline
quantity statistics, showing the distribution of paths
handled by Easy, Medium, and Difficult pipelines.

By analyzing the number of correct paths val-
idated by the Verifier, we can approximate each
questions difficulty. Accordingly, we design three
distinct pipelines to tackle problems of varying
complexity, systematically correcting errors in
complex CoTs and refining the original dataset to
strike an optimal balance between scale and quality.
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Figure 6: Different Pipeline Quantity Statistics.

4 Multiscale Supervised FineTuning

To assess the impact of explicit reasoning supervi-
sion on a downstream medical QA task, we propose
a multiscale fine-tuning strategy leveraging three
variants of our high-quality dataset. These variants
are based on different granularities of reasoning, as
outlined below:

• CoT: A complex chain of thought consisting
of six reasoning steps,

• Response: A concise response generated by
a Response Summarizer from the CoT,

• Reason: A combination of the complex CoT
and its corresponding summarized response.

4.1 Data Preparation

Leveraging the 370K ReasonMed introduced in
Section 3, we employ a Response Summarizer to
condense each chain-of-thought into a succinct
answer explanation. For every question q and
its corresponding CoT path Multi − step =
[step1, . . . , step6], we generate the following in-
stances:

• CoT instance:

[ q; step1, step2, . . . , step6 ] 7→ CoT,

• Response instance:

Response Summarizer(CoT) 7→ Response,
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• Reason instance:

<think>{CoT}</think>Response 7→ Reason.

The CoT, Response, and Reason instances are
designed to encapsulate different levels of reason-
ing and summarization, providing a different scale
of data for training.

4.2 Fine-Tuning and Training

We fine-tune the open-source Qwen2.5-7B model
using three different fine-tuning regimes, with each
regime corresponding to a different data scale.
Specifically, we utilize LlamaFactory (Zheng et al.,
2024) to perform 3 epochs of supervised fine-
tuning on the following datasets:

• CoTMed-7B: Fine-tuned with the CoT in-
stances, focusing on reproducing the reason-
ing trace and generating the final answer.

• ResponseMed-7B: Fine-tuned with the Re-
sponse instances, where the model is trained
to generate concise summaries of the reason-
ing path.

• ReasonMed-7B: Fine-tuned with the Reason
instances, combining detailed reasoning with
summarized feedback.

Figure 3(1) illustrates the SFT process. For
evaluation, we use the lm_eval framework to an-
alyze the performance of these models on bench-
mark tasks, examining whether multi-step reason-
ing could enhance the model’s ability to perform
medical QA. We also train models with fewer
epochs, including a variant trained for only one
epoch, to assess performance differences and inves-
tigate the effect of fewer training steps. The results
of these experiments will be discussed in detail in
the experimental section.

4.3 Training Details

We perform full-model fine-tuning of the Qwen2.5-
7B checkpoint using the LLaMA-Factory frame-
work on a 16 x H20 GPU cluster. The Re-
sponseMed configuration completed in approxi-
mately 9 hours, whereas CoTMed and ReasonMed
required roughly 25 hours and 28 hours, respec-
tively.

5 Experiments

5.1 Dataset Quality Evaluation
Medium Pipeline Validity Verification: To eval-
uate the effectiveness of the Medium Pipeline, we
sample 1, 000 questions + CoT and use the Score
Evaluator to assess the quality of answers both
before and after applying the Medium Pipeline
(GPT-4o-mini corrections). For each item, we con-
duct a paired evaluation using the same rubric and
prompts, ensuring that pre- and post-optimization
scores are directly comparable under identical con-
ditions.

The results show a significant improvement,
with an average score increase of 0.8 points post-
optimization. This paired setup isolates the con-
tribution of the Error Refiner step, indicating that
targeted edits improve coherence, factual fidelity,
and option analysis without altering the underlying
question distribution. The specific scores are as
follows:

Dataset Samples Avg. Score

Medium Pipeline (pre-opt) 1,000 7.37
Medium Pipeline (post-opt) 1,000 8.17

Table 2: Score Evaluator results for Medium Pipeline
validity.

Comparison with Open-Source Datasets: We
compare the ReasonMed with two publicly open-
source medical reasoning corpora: medical-o1-
reasoning-SFT and Medical-R1-Distill-Data.
For a fair comparison, we sample 1, 000 instances
from each of these datasets and extend Reason-
Med with an additional 3, 000 samples. The re-
sults demonstrate that ReasonMed outperforms
both baselines, achieving an average score of 8.45
for the 1, 000 sample subset and 8.50 for the 3, 000
sample subset. This represents an improvement
of 3.9% and 5.9% over the other datasets, respec-
tively.

Dataset Samples Avg. Score

medical-o1-reasoning-SFT 1,000 8.03
Medical-R1-Distill-Data 1,000 8.18
ReasonMed 1,000 8.45
ReasonMed 3,000 8.50

Table 3: Score Evaluator results for comparison with
other datasets.
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MedQA MedMCQA (val) PubMedQA
MMLU

Total Acc Avg. token
Anatomy CK C-Bio C-Med Med-Gene P-Med

Dataset_Count 1273 4183 1000 135 265 144 173 100 272 - -

Models < 10B
BioMistral-7B 45.6 ±1.4 41.5 ±0.8 71.0 ±2.0 76.3 ±3.7 63.0 ±3.0 62.5 ±4.1 53.8 ±3.8 67.0 ±4.7 53.3 ±3.0 48.9 60.1
Llama3-OpenBioLLM-8B 57.9 ±1.4 57.7 ±0.8 76.0 ±6.1 68.9 ±4.0 77.7 ±2.6 83.3 ±3.1 69.4 ±3.5 83.0 ±3.8 79.0 ±2.5 62.9 75.1
Llama-3-8B-UltraMedical 63.2 ±1.4 57.7 ±0.8 78.0 ±5.9 67.4 ±4.1 74.3 ±2.7 75.7 ±3.6 61.9 ±3.7 73.0 ±4.5 78.7 ±2.5 63.5 5177.7
Mistral-7B-Instruct-v0.3 52.2 ±1.4 48.2 ±0.8 82.0 ±5.5 59.3 ±4.2 69.4 ±2.8 72.9 ±3.7 56.7 ±3.8 70.0 ±4.6 66.5 ±2.9 55.9 111.8
Yi-1.5-9B-Chatbot 49.8 ±1.4 47.0 ±0.8 69.0 ±2.1 67.5 ±3.8 63.9 ±2.8 70.3 ±3.8 51.2 ±4.0 68.8 ±4.5 66.7 ±3.1 52.9 162.2
HuatuoGPT-o1-7B 68.4 ±1.3 57.5 ±0.8 74.0 ±2.0 71.9 ±3.9 78.5 ±2.5 88.2 ±2.7 67.6 ±3.6 80.0 ±4.0 77.6 ±2.5 64.4 446.0
HuatuoGPT-o1-8B 65.4 ±1.3 61.0 ±0.8 74.6 ±2.0 69.6 ±4.0 77.7 ±2.6 81.3 ±3.3 69.9 ±3.5 78.0 ±4.2 71.0 ±2.8 65.5 468.9
ResponseMed-7B (1epoch) 62.2 ±1.4 57.6 ±0.8 84.0 ±5.2 75.6 ±3.7 77.7 ±2.6 81.3 ±3.3 69.9 ±3.5 87.0 ±3.4 76.8 ±2.6 64.8 -
CoTMed-7B (1epoch) 64.3 ±1.3 62.4 ±0.8 82.0 ±5.5 77.0 ±3.6 80.8 ±2.4 81.3 ±3.3 72.8 ±3.4 90.0 ±3.0 79.4 ±2.5 67.8 -
ReasonMed-7B (1epoch) 65.3 ±1.3 62.3 ±0.8 82.0 ±5.5 74.8 ±3.7 80.0 ±2.5 81.3 ±3.3 74.0 ±3.4 86.0 ±3.5 79.0 ±2.5 67.7 -
ResponseMed-7B 67.5 ±1.3 60.9 ±0.8 80.0 ±5.7 74.8 ±3.7 77.4 ±2.6 84.0 ±3.1 71.1 ±3.5 88.0 ±3.3 76.5 ±2.6 67.0 225.2
CoTMed-7B 66.3 ±1.3 64.7 ±0.7 80.0 ±5.7 75.6 ±3.7 79.6 ±2.5 82.1 ±3.2 71.7 ±3.4 86.0 ±3.5 79.9 ±2.6 69.1 555.4
ReasonMed-7B 66.9 ±1.3 65.1 ±0.7 82.0 ±5.5 75.6 ±3.7 79.3 ±2.5 79.2 ±3.4 73.4 ±3.4 85.0 ±3.6 80.9 ±2.4 69.6 626.0

Scaling: Models > 10B
LLaMA3.1-70B 76.8 ±0.1 67.9 ±0.7 77.4 ±0.2 81.5 ±0.3 89.1 ±0.2 96.5 ±0.1 80.9 ±0.3 90.0 ±0.3 93.0 ±0.2 72.9 -
Qwen2.5-14B 75.6 ±0.1 63.4 ±0.8 75.6 ±0.4 75.6 ±0.4 84.9 ±0.2 88.9 ±0.3 75.7 ±0.3 90.0 ±0.3 84.2 ±0.2 69.0 -
Qwen2.5-32B 79.3 ±0.1 67.6 ±0.7 77.6 ±0.2 79.3 ±0.3 86.8 ±0.2 93.8 ±0.2 79.8 ±0.3 91.0 ±0.3 87.5 ±0.2 72.6 -
QwQ-32B 78.1 ±0.1 65.5 ±0.7 76.4 ±0.2 75.6 ±0.4 86.8 ±0.2 93.8 ±0.2 77.5 ±0.3 92.0 ±0.3 88.2 ±0.2 72.0 -
CoTMed-14B 73.5 ±1.2 66.7 ±0.7 80.0 ±5.7 72.6 ±3.9 83.0 ±2.3 88.2 ±2.7 78.6 ±3.1 86.0 ±3.5 84.9 ±2.2 71.9 -
ReasonMed-14B 74.2 ±1.2 67.6 ±0.7 82.0 ±5.5 74.1 ±3.8 83.0 ±2.3 88.9 ±2.6 76.3 ±3.2 86.0 ±3.5 86.4 ±2.1 72.8 -

Table 4: Performance comparison of various models on MedQA, MedMCQA, PubMedQA, and MMLU benchmarks
with total accuracy and average token length, where CK, C-Bio, C-Med, Med-Gene, and P-Med denote Clinical
Knowledge, College Biology, College Medicine, Medical Genetics, and Professional Medicine, respectively. We
present two clearly separated blocks: Models < 10B and Scaling: Models > 10B.

Pilot Expert Validation: To establish baseline
medical quality independent of LLM assessments,
we conduct a pilot review of 100 randomly sampled
examples by board-certified physicians. Strengths
included structured reasoning (87%) and system-
atic elimination of distractors (82%), with frequent
use of core medical concepts (78%). Areas for im-
provement were redundancy/verbosity (21%), lack
of external validation/citations (68%), and miss-
ing clinical specifics (35%, e.g., dosing, routes,
sequencing). These findings closely aligned with
our automatic scores, validating their directional re-
liability and guiding targeted improvements (read-
ability, RAG integration, and more “human-like”
clinical reasoning).

5.2 Multiscale Supervised Fine-Tuning

In this section, we present a comprehensive anal-
ysis of the experimental results obtained by fine-
tuning the Qwen2.5-7B model using our proposed
multiscale supervised fine-tuning (SFT) strategy.
Performance comparisons across various medical
question-answering (QA) benchmarks, including
MedQA, MedMCQA, PubMedQA, and MMLU,
are detailed in Table 4. Our results demonstrate the
effectiveness of incorporating explicit reasoning
supervision at multiple granularities:
CoTMed-7B consistently outperforms baseline
models across most benchmarks, achieving no-
tably higher scores in MedQA (66.3%), MedM-
CQA (64.7%), and PubMedQA (80.0%). This
indicates that fine-tuning on complex reasoning

chains substantially enhances the model’s capacity
to perform medical reasoning tasks.
ResponseMed-7B focuses solely on generating
concise summaries, achieving competitive results,
with notable performance on MedQA (67.5%) but
slightly lower overall accuracy (67.0%) compared
to CoTMed-7B (69.1%). This suggests that while
response summarization captures key information
effectively, it may miss nuanced reasoning steps
critical for complex questions.
ReasonMed-7B combines detailed reasoning
chains and concise summaries, yielding the high-
est total accuracy (69.6%), particularly excelling
in MedMCQA (65.1%) and PubMedQA (82.0%).
This hybrid approach appears to effectively lever-
age the strengths of both granularities, achieving
balanced and robust performance across diverse
question types.

To explore the impact of training duration, we
also compare model performances trained for dif-
ferent epochs:
One Epoch Training: Models trained for one
epoch showed promising yet suboptimal perfor-
mance compared to their three-epoch counter-
parts. CoTMed-1epoch achieved an overall accu-
racy of 67.8%, slightly outperforming ReasonMed-
7B-1epoch (67.7%) and significantly surpassing
ResponseMed-7B-1epoch (64.8%).
Three Epoch Training: Models trained for three
epochs consistently improved across benchmarks,
clearly illustrating the benefit of extended training,
with overall accuracy improved from 67.71% (1
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epoch) to 69.63% (3 epochs).
Under limited training steps, CoTMed-7B out-

performs ReasonMed-7B. However, as the number
of training steps increases, ReasonMed-7B ulti-
mately surpasses CoTMed-7B by 0.54%. Addi-
tional training may enable the model to more ef-
fectively learn the internal connections between
complex CoT reasoning and concise summariza-
tion, resulting in further performance gains.

Analysis of Average Token Length: To com-
pute these averages, each model was evaluated in
inference mode across the entire test set, and the
mean number of generated tokens was recorded.
CoTMed-7B (≈ 555 tokens) and ReasonMed-7B
(≈ 626 tokens) consistently produced substantially
longer outputs than ResponseMed-7B (≈ 225 to-
kens), suggesting a more elaborate reasoning pro-
cess at the expense of conciseness. Relative to
HuatuoGPT-o1-7B (≈ 446 tokens), our CoTMed
and ReasonMed variants demonstrate even more
expansive chains of thought. Notably, although
ResponseMed-7B generates significantly fewer to-
kens, it still surpasses the HuatuoGPT-o1 models
in overall accuracy, underscoring the decisive role
of dataset scale and quality in shaping model per-
formance.

Compared with other biomedical LLMs such
as BioMistral-7B, Llama3-OpenBioLLM-8B, and
HuatuoGPT-o1, our ReasonMed-7B exhibits supe-
rior performance on medical QA tasks, attaining
the highest aggregate metrics across benchmarks. It
surpasses the strongest model of comparable scale
by 4.17%, and even exceeds the performance of
certain ten-billion-parameter systems on multiple
evaluations (see Appendix). These findings high-
light the critical role of both dataset quality and
scale, while further emphasizing the effectiveness
of explicit multi-step reasoning in advancing med-
ical QA. Moreover, with extended training itera-
tions, ReasonMed-7B increasingly internalizes the
linkage between elaborate reasoning chains and
succinct answer formulations, thereby yielding no-
table gains in overall capability.

Scaling Beyond 7B: To rigorously evaluate scal-
ability under practical computational constraints,
we expand our investigation from 7B to 14B pa-
rameter backbones while preserving an identi-
cal training protocol. On nine medical bench-
marksincluding MedQA, MedMCQA,(val), Pub-
MedQA, and six MMLU medical sub-domains
(Anatomy, Clinical Knowledge, College Biology,

College Medicine, Medical Genetics, and Profes-
sional Medicine)ReasonMed-14B attains an over-
all accuracy of 72.8%. This performance reflects
a +3.8% gain over Qwen2.5-14B (69.0%), sur-
passes Qwen2.5-32B (72.6%), and nearly matches
LLaMA3.1-70B (72.9%). These findings under-
score that our data-centric paradigm delivers con-
sistent scaling improvements and exceptional data
efficiency at the 14B scale, substantially narrow-
ing the gap to considerably larger models while
avoiding their prohibitive training costs.

Implementation, Cost, and Decoding Summary
(see Appendix): For reproducibility and practi-
cal budgeting, we provide in the Appendix a consol-
idated set of implementation details. Specifically,
we report: (i) a compute profile covering data gen-
eration, training, and inference (A.3, Table 5); (ii)
the complete training and default inference hyper-
parameters (A.4, Table 6); (iii) a decoding sweep
demonstrating that accuracy stabilizes at temper-
atures within [0.5, 0.7] (A.5, Table 7); and (iv) a
cost analysis comparing direct GPT-o1 distillation
against our selective EMD pipeline, which achieves
a ∼3.6× reduction in expense (A.6, Table 8). Full
numerical results and operational specifications are
included in the cited Appendix sections.

6 Conclusion

In this work, we present ReasonMed, the largest
open-source dataset dedicated to medical reason-
ing, developed to advance model performance on
complex medical question answering tasks. Lever-
aging a multi-agent framework, we systematically
generate, validate, and refine 1.291 million rea-
soning trajectories, distilling them into 370k high-
quality exemplars. Extensive experiments confirm
that explicit multi-step reasoning yields substan-
tial performance gains, with our hybrid paradigm,
integrating Chain-of-Thought reasoning and sum-
marization, achieving state-of-the-art results. Re-
markably, ReasonMed-7B/14B models consistently
surpass strong baselines, even outperforming coun-
terparts with significantly larger parameter scales.
These results highlight the pivotal role of reasoning
in medical QA and establish a scalable, data-centric
methodology for future research in knowledge-
intensive domains. Beyond the medical field, our
framework offers a transferable blueprint for con-
structing domain-specific reasoning datasets, lay-
ing the foundation for broader applications across
diverse scientific and technical disciplines.
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Limitations

While we extend our study beyond 7B to a 14B
backbone and report competitive results against
14B/32B and even 70B models on multiple bench-
marks, our analysis still has several limitations.
We have not conducted full ablations for models
above 14B (e.g., 32B/70B) under identical training
recipes. Thus, the scalability of our data-centric ap-
proach at frontier scales remains partially assessed.
Portions of our filtering (Verifier, Quality Ranker)
and automatic quality assessment (Score Evaluator)
rely on strong LLM judges (Qwen2.5-72B, GPT-
4o). Despite pilot physician review, such reliance
can propagate judge biases and systematic errors.
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A Appendix

A.1 Ethical Statement
The ReasonMed-7B/14B model presented in this
paper has demonstrated strong performance in han-
dling complex medical reasoning tasks. Nonethe-
less, it still carries a risk of generating inaccurate
information, incomplete explanations, or hallucina-
tions, which could potentially mislead users. There-
fore, we strongly advise against the direct use of
this model in clinical settings or any real-world
applications where errors might lead to significant
negative consequences. To ensure responsible us-
age, we restrict the model exclusively to academic
research purposes. It is essential for users to rec-
ognize and respect these guidelines, thus avoid-
ing situations in which the dissemination of incor-
rect medical information could compromise patient
safety, treatment accuracy, or clinical judgment.

A.2 Component Prompt Design
CoT Generate This component is used to gener-
ate medical MCQ analysis prompts with detailed
chain thinking (CoT) to guide the model for step-
by-step reasoning.

CoT Generate

You are a highly knowledgeable medical
expert. You are provided with a clinical
multiple-choice question along with
several candidate answers.
Your task is to carefully analyze the
clinical scenario and each option by
following these steps:
1. Restate the question in your own
words.
2. Highlight the key clinical details
and relevant background information
(e.g., pathophysiology, anatomy, typical
presentations, diagnostic tests).
3. Evaluate each candidate answer,
discussing supporting evidence and
potential pitfalls.
4. Systematically rule out options that
do not align with the clinical context.
5. Compare any remaining choices based
on their merits.
6. Conclude with your final answer
accompanied by a clear and concise
summary of your reasoning.

Please note: Your response should be
based solely on the current question and
candidate answers. Do not consider any
previous context or prior interactions.

Question:
{question}

Candidate Answers:
{options}

Please provide your detailed
chain-of-thought reasoning followed by
your final answer.

Verifier This component is used to evaluate the
chain-of-thoughts generated by the Multi-Agent
system to determine whether their reasoning is cor-
rect and output JSON results.

Verifier

You are a medical evaluation expert.
Analyze if the Chain-of-Thought (CoT)
analysis correctly leads to the answer.

[Question]
{question}

[Options]
{options_str}

[Correct Answer]
{answer}

[CoT Analysis]
{cot_content}

Evaluate the CoT analysis following
these criteria:
1. Does the analysis correctly identify
key clinical factors?
2. Are all options appropriately
considered and evaluated?
3. Does the reasoning logically lead to
the correct answer?
4. Are there any factual errors in
medical knowledge?

Output a JSON object with:\\
- "verdict": "Correct" if the CoT
analysis is valid and reaches the
correct answer, otherwise "Error"
- "reason": Brief explanation of your
evaluation (1-2 sentences)

Response Summarizer This component is used
to refine long-form CoT reasoning into concise
summaries.

Response Summarizer

Summarize the following chain-of-thought
reasoning:
{cot}

Quality Ranker This component is used to sort
the correct chain of thought after Verifier is filtered
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by quality.

Quality Ranker

You are a medical reasoning evaluator.
Given the question, options, and known
answer, review the following
chains-of-thought (CoTs) labeled by
their keys.
Select the two most sound and useful
CoTs, then provide brief justifications
for why each of the other CoTs were not
chosen.

[Question]
{question}

[Options]
A) {optA}
B) {optB}
C) {optC}
D) {optD}

[Correct Answer]
{answer}

[CoTs]
{cot_block}

Respond with a JSON object with exactly
two keys:
"top2": ["modelX_COTY", "modelZ_COTW"],
"reasons": {<label>: <one-sentence
justification> for every CoT not in
top2}

Error Refiner The Error Refiner improves
moderate-difficulty items by selecting the top two
CoT paths via the Quality Ranker and applying
verifier-guided, targeted editsleveraging a stronger
model when neededto correct factual/logical issues
while preserving valid reasoning, thereby boosting
coherence and producing higher-quality supervi-
sion for fine-tuning.

Error Refiner

You are an expert clinician-educator AI
tutor. Your mission is to generate an
exceptionally comprehensive, in-depth
chain-of-thought explanation that
rigorously justifies the correct answer
for the given clinical MCQ, while
specifically addressing and integrating
provided error feedback to eliminate
previous reasoning flaws. Adhere closely
to these instructions to maximize
completeness:

1. **Error-Driven Refinement**
- Review the provided **Error Reasons
from Other Attempts**.

- Identify logical gaps, factual
mistakes, omissions, or misleading
inferences in the original
chainofthought.
- Explicitly incorporate corrections
and clarifications derived from these
error reasons.

2. **Structured, Layered Reasoning**
Organize your explanation into clear
sections:
a. Restate the question in your own
words.
b. Highlight the key clinical details
and relevant background information
(e.g., pathophysiology, anatomy,
typical presentations, diagnostic
tests).
c. Evaluate each candidate answer,
discussing supporting evidence and
potential pitfalls.
d. Systematically rule out options
that do not align with the clinical
context.
e. Compare any remaining choices
based on their merits.
f. Conclude with your final answer
accompanied by a clear and concise
summary of your reasoning.

**Inputs**
- **Question:** '{question}'
- **Options:** '{options}'
- **Correct Answer:** '{answer}'
- **Original Chain-of-Thought:**
'{original_cot}'
- **Error Reasons from Other Attempts:**
'{error_reasons}'

**Output:**
Please optimized Original
Chain-of-Thought. Ensure that you
explicitly address and rectify each
error reason provided.

Score Evaluator The Score Evaluator uses GPT-
4o to assign 010 quality scores, enabling pre/-
post comparisons to validate the Error Refiner
and randomized benchmarking to assess Reason-
Med against other datasets and our multi-agent
approach.

Score Evaluator

You are a medical reasoning evaluator.
Assess the following response based on
the following criteria:

1. **Clinical accuracy**: Does the
response correctly incorporate medical
facts, clinical guidelines, and
evidence-based practices? Are the
clinical details provided accurate,
relevant, and appropriate for the given
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situation?
2. **Logical reasoning**: Does the
response logically follow the reasoning
process required to arrive at the
answer? Is the reasoning chain coherent
and well-supported by evidence or
clinical knowledge?
3. **Factual correctness**: Are there
any factual errors in the response? Are
all statements factually correct and
consistent with established medical
knowledge?
4. **Completeness**: Does the response
cover all necessary aspects of the
question? Is it thorough and detailed,
addressing the key points without
missing critical information?

[Question]
{question}

[Response]
{response}

Please evaluate the response on the
above criteria and provide a JSON object
with two keys:
"score": integer between 1 and 10,
"justification": A concise explanation
of your score.

A.3 Training and Inference Compute Profile

Table 5 summarizes the wall-clock compute for
data generation, training, and inference of REA-
SONMED–7B. These numbers complement the
pipeline description in the main text and help esti-
mate practical budgets.

Interpretation. Training dominates the model-
side compute. Data generation time reflects the ag-
gregate of multi-agent sampling, verification, rank-
ing, and medium-path refinement.

A.4 Complete Training and Default Inference
Hyperparameters

Table 6 lists the hyperparameters referenced in
the supplementary notes (all other settings follow
LLaMA-Factory defaults).

A.5 Decoding Temperature Sweep (T ∈ [0, 1])

We evaluate REASONMED–7B across eleven tem-
peratures with all other parameters fixed. Consis-
tent with the main text, overall accuracy plateaus
around T ∈ [0.5, 0.7], while greedy decoding
(T = 0.0) underperforms.

Takeaway. Moderate diversity improves aggre-
gate accuracy relative to greedy decoding, with a
plateau around T ∈ [0.5, 0.7].

A.6 Selective EMD Pipeline vs. Direct
GPT–o1 Distillation: Cost Comparison

Table 8 contrasts a naive “distill-everything-with-
GPT-o1” baseline against our selective Easy-
Medium-Difficult (EMD) pipeline. The EMD
pipeline is ∼ 3.6× cheaper by invoking GPT-o1
only on the long tail of difficult items, while re-
lying on local models and lightweight refinement
elsewhere.

Assumptions and notes. GPU-hour line items
are priced at the same rate as in the supplementary
notes. API costs use the stated per-million-token
prices. Totals match the values reported in the
supplementary notes.

A.7 Additional Experiments

In Table 9, we presented pairwise (1-vs-1) dif-
ferences among DeepSeek-R1-Distill-Llama-70B,
HuatuoGPT-o1-70B, and Qwen2.5-72B, showing
for each pair the count of questions one model
answered correctly but the other did not. To fur-
ther explore complementary coverage, Table 10
summarizes the one-vs-two scenario: for each
model, the number of questions it missed while
the other two both answered correctly. DeepSeek-
R1-Distill-Llama-70B failed only 3,430 (1.76%)
questions that HuatuoGPT-o1-70B and Qwen2.5-
72B both got right; HuatuoGPT-o1-70B missed
9,352 (4.80%); and Qwen2.5-72B missed 5,280
(2.71%), out of 194,925 total. Together, these re-
sults confirm that each model contributes unique
strengths and gaps, underscoring the value of en-
semble or multi-agent approaches in medical QA.

Table 11 compares the performance of various
LLaMA3.1 and Qwen2.5 models on several key
medical benchmarks, including MedQA, MedM-
CQA, PubMedQA, and six sub-domains of MMLU.
Our model, ReasonMed-7B, consistently achieves
competitive performance and even outperforms
much larger models on several benchmarks. Most
notably, on PubMedQA, ReasonMed-7B surpasses
LLaMA3.1-70B by 4.60%, demonstrating the ef-
fectiveness of our dataset and fine-tuning strat-
egy. Moreover, the model delivers strong results
on MedMCQA and multiple MMLU medical sub-
domains, highlighting its superior reasoning capa-
bilities in knowledge-intensive tasks. These find-
ings validate our multi-stage data refinement and
Chain-of-Thought optimization strategy, establish-
ing ReasonMed-7B as a new state-of-the-art among
sub-10B models, and narrowing the performance
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Stage What was done Duration / Hardware Notes

Data generation 1.75M reasoning paths with Qwen2.5–72B,
HuatuoGPT–o1–70B, DeepSeek–R1–Distill–Llama–70B
Path validation with Qwen 2.5-72B
Ranking & refinement with Easy + Medium pipelines

≈ 122 h (end-to-end) End-to-end pipeline runtime

Training Full-parameter SFT for REASONMED–7B 448 GPU-hours (H20) See Table 6
Inference Serve REASONMED–7B 1× H20 GPU (fp16, bs=1) Avg. response length ≈ 626 tokens

Table 5: Compute profile for data generation, training, and inference serving.

Setting Value

Base model Qwen2.5–7B
Fine-tuning regime Full-parameter SFT, 3 epochs
Learning rate schedule 1× 10−5 (cosine), warmup 10%
Effective batch size 4 samples/GPU × grad-acc 2⇒ 8
Context length 4096 tokens
Precision / engine bf16, DeepSpeed ZeRO-2 on 2× 8 H20
Default inference T = 0.6, top-p = 0.95, max_tokens= 1024

Table 6: Fine-tuning and default inference hyperparameters for REASONMED–7B.

gap with frontier 70B+ models.

A.8 Example of model output

We report single-run, non-cherry-picked examples
to transparently illustrate the variability of gener-
ative outputs under different sampling strategies
and temperatures. This practice supports scientific
reproducibility and honest appraisal, enabling read-
ers to assess both the strengths and the limitations
of current methods in realistic settings. To miti-
gate this variability and improve reasoning consis-
tency, we are developing a reinforcement learning
approach tailored to medical QA that guides mod-
els toward more convergent, clinically accurate rea-
soning paths. The resulting medical-RL-enhanced
model will be released as open source to facilitate
independent validation and broader adoption by the
research community.

Prompt

Please answer the following
multiple-choice question:
Which of the following is not true about
glomerular capillaries?
A. The oncotic pressure of the fluid
leaving the capillaries is less than
that of fluid entering it
B. Glucose concentration in the
capillaries is the same as that in
glomerular filtrate
C. Constriction of afferent arteriole
decreases the blood flow to the
glomerulus

D. Hematocrit of the fluid leaving the
capillaries is less than that of the
fluid entering it

ReasonMed (temperature 0.4)

To answer this question, let's break
down the components step-by-step:

1. Restate the question: We need to
identify which statement about
glomerular capillaries is incorrect.

2. Key clinical details and relevant
background information:

- Glomerular capillaries are part of
the kidney's filtration system.
- They filter blood to form urine.
- Oncotic pressure is the pressure
exerted by proteins in the blood.
- Glomerular filtrate is the fluid
that passes through the glomerulus.
- Afferent arterioles supply blood to
the glomerulus.
- Hematocrit refers to the proportion
of blood volume occupied by red blood
cells.

3. Evaluate each candidate answer:
- "The oncotic pressure of the fluid
leaving the capillaries is less than
that of fluid entering it": This is
true because as fluid leaves the
capillaries, it carries away
proteins, reducing the oncotic
pressure.
- "Glucose concentration in the
capillaries is the same as that in
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T MedQA MedMCQA (val) PubMedQA Anatomy Clinical C–Bio C–Med Med–Gen P–Med Total Acc

0.0 66.3± 1.3 64.8± 0.7 80.0± 5.7 74.8± 3.8 79.2± 2.5 79.9± 3.3 73.4± 3.4 85.0± 3.6 80.9± 2.4 69.1
0.1 66.5± 1.3 64.7± 0.7 82.0± 5.5 74.8± 3.8 79.2± 2.5 78.5± 3.4 73.4± 3.4 85.0± 3.6 80.9± 2.4 69.3
0.2 66.2± 1.3 64.8± 0.7 82.0± 5.5 74.8± 3.8 79.2± 2.5 78.5± 3.4 73.4± 3.4 85.0± 3.6 80.9± 2.4 69.3
0.3 66.3± 1.3 64.8± 0.7 82.0± 5.5 74.8± 3.8 79.2± 2.5 79.2± 3.4 73.4± 3.4 85.0± 3.6 80.9± 2.4 69.3
0.4 66.3± 1.3 64.8± 0.7 82.0± 5.5 74.8± 3.8 79.2± 2.5 78.5± 3.4 73.4± 3.4 85.0± 3.6 81.2± 2.4 69.3
0.5 66.5± 1.3 64.8± 0.7 82.0± 5.5 74.8± 3.8 79.2± 2.5 77.8± 3.4 73.4± 3.4 85.0± 3.6 81.2± 2.4 69.4
0.6 66.4± 1.3 64.9± 0.7 82.0± 5.5 74.8± 3.8 79.2± 2.0 78.5± 3.4 73.4± 3.4 85.0± 3.6 81.2± 2.4 69.4
0.7 66.4± 1.3 64.8± 0.7 82.0± 5.5 74.8± 3.8 79.2± 2.5 79.2± 3.4 73.4± 3.4 85.0± 3.6 81.2± 2.4 69.4
0.8 66.4± 1.3 64.7± 0.7 82.0± 5.5 74.8± 3.8 79.2± 2.5 79.2± 3.4 73.4± 3.4 85.0± 3.6 81.2± 2.4 69.3
0.9 66.4± 1.3 64.7± 0.7 82.0± 5.5 74.8± 3.8 79.2± 2.5 79.2± 3.4 73.4± 3.4 85.0± 3.6 81.2± 2.4 69.3
1.0 66.4± 1.3 64.8± 0.7 82.0± 5.5 74.8± 3.8 79.2± 2.0 79.2± 3.4 72.8± 3.4 85.0± 3.6 81.2± 2.4 69.3

Table 7: Decoding temperature sweep for REASONMED–7B across nine medical benchmarks. Bold entries indicate
the highest group (plateau) across the sweep.

Phase Input (M tok) Output (M tok) Model $ /M in $ /M out GPU-h (H20) Cost ($)

Direct GPT–o1 (distill everything)
Direct GPT–o1 24.49 286.88 GPT–o1 15.00 60.00 – 16,631

Our EMD pipeline (selective)
Reasoning path generation – – Qwen2.5 + HuatuoGPT–o1 + DeepSeek–R1 – – 592 574.24
Quality ranker – – Qwen2.5–72B – – 384 372.48
Error Refiner & Response Summarizer 0.41 27.29 GPT–4o–mini 0.15 0.60 – 9.86
“Difficult” problem regeneration 2.13 57.87 GPT–o1 15.00 60.00 – 3,595.89

Total EMD – – mixed – – 976 4,552.47

Table 8: Cost comparison between distilling everything with GPT–o1 and the selective EMD pipeline. EMD
concentrates GPT–o1 usage on the difficult subset, yielding a ∼3.6× reduction in total spend.

glomerular filtrate": This is false.
Glucose is actively reabsorbed in the
proximal tubule, so its concentration
in the filtrate is lower than in the
capillaries.
- "Constriction of afferent arteriole
decreases the blood flow to the
glomerulus": This is true.
Constriction reduces blood flow,
which can decrease filtration rate.
- "Hematocrit of the fluid leaving
the capillaries is less than that of
the fluid entering it": This is true.
As fluid leaves the capillaries, it
carries away proteins, including red
blood cells, reducing hematocrit.

4. Rule out options that do not align
with the clinical context:

- We can rule out the first, third,
and fourth options as they align with
known physiological processes.

5. Compare any remaining choices:
- The second option stands out as the
only one that contradicts known
physiology.

6. Final answer:
The statement that is not true about
glomerular capillaries is: ``Glucose
concentration in the capillaries is
the same as that in glomerular
filtrate.'' This is because glucose
is actively reabsorbed in the
proximal tubule, leading to a lower
concentration in the filtrate

compared to the capillaries.
</think>
The chain-of-thought reasoning breaks
down the process of identifying the
incorrect statement about glomerular
capillaries step-by-step. It involves
restating the question, providing key
clinical details and background
information, evaluating each candidate
answer, ruling out options that do not
align with the context, comparing
remaining choices, and arriving at the
final answer. The incorrect statement
identified is that the glucose
concentration in the capillaries is the
same as that in glomerular filtrate,
which is false because glucose is
actively reabsorbed in the proximal
tubule.

ReasonMed (temperature 0.5)

To answer this question, let's break
down the key concepts related to
glomerular capillaries and evaluate each
statement accordingly.

1. **Restating the Question**: We need
to identify which statement about
glomerular capillaries is incorrect.

2. **Key Clinical Details and Background
Information**:

- Glomerular capillaries are part of
the kidney's filtration system.
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Comparison Correct by Model 1 but Incorrect by Model 2 Incorrect by Model 1 but Correct by Model 2 Total Questions

DeepSeek-R1-Distill-Llama-70B vs HuatuoGPT-o1-70B 8,168 (4.19%) 27,339 (14.03%) 194,925
DeepSeek-R1-Distill-Llama-70B vs Qwen2.5-72B 19,017 (9.76%) 23,267 (11.94%) 194,925
Qwen2.5-72B vs HuatuoGPT-o1-70B 10,018 (5.14%) 24,939 (12.79%) 194,925

Table 9: Pairwise (1-vs-1) Knowledge Domain Differences among the three models.

Model Questions Missed by This Model but Correct by Both Others Total Questions

DeepSeek-R1-Distill-Llama-70B 3,430 (1.76%) 194,925
HuatuoGPT-o1-70B 9,352 (4.80%) 194,925
Qwen2.5-72B 5,280 (2.71%) 194,925

Table 10: Collective (1-vs-2) Miss Rates: questions each model failed while the other two both answered correctly.

MedQA MedMCQA (val) PubMedQA MMLU Total Acc

Anatomy Clinical Knowledge College Biology College Medicine Medical Genetics Professional Medicine

Dataset_Count 1273 4183 1000 135 265 144 173 100 272 -

LLaMA3.1-70B 76.8 ±0.1 67.9 ±0.7 77.4 ±0.2 81.5 ±0.3 89.1 ±0.2 96.5 ±0.1 80.9 ±0.3 90.0 ±0.3 93.0 ±0.2 72.9
Qwen2.5-14B 75.6 ±0.1 63.4 ±0.8 77.6 ±0.2 75.6 ±0.4 84.9 ±0.2 88.9 ±0.3 75.7 ±0.3 90.0 ±0.3 84.2 ±0.2 69.0
Qwen2.5-32B 79.3 ±0.1 67.6 ±0.7 77.6 ±0.2 79.3 ±0.3 86.8 ±0.2 93.8 ±0.2 79.8 ±0.3 91.0 ±0.3 87.5 ±0.2 72.6
Qwen2.5-72B 81.5 ±0.1 71.2 ±0.1 76.4 ±0.2 75.6 ±0.4 86.8 ±0.2 93.8 ±0.2 77.5 ±0.3 92.0 ±0.3 88.2 ±0.2 75.6
QwQ-32B 78.1 ±0.1 65.5 ±0.7 76.4 ±0.2 75.6 ±0.4 86.8 ±0.2 93.8 ±0.2 77.5 ±0.3 92.0 ±0.3 88.2 ±0.2 72.0

Table 11: Performance Comparison of LLaMA3.1 and Qwen2.5 Series Models(over 10B) on MedQA, MedMCQA,
PubMedQA, and MMLU Benchmarks.

- They are responsible for filtering
blood to form urine.
- Key processes include filtration,
reabsorption, and secretion.
- Oncotic pressure, glucose
concentration, blood flow, and
hematocrit are important parameters
in this context.

3. **Evaluating Each Candidate Answer**:
- **The oncotic pressure of the fluid
leaving the capillaries is less than
that of fluid entering it**: This
statement is true. As blood passes
through the glomerular capillaries,
proteins are filtered out, reducing
the oncotic pressure of the fluid
leaving the capillaries compared to
the fluid entering them.
- **Glucose concentration in the
capillaries is the same as that in
glomerular filtrate**: This statement
is false. Glucose is actively
reabsorbed in the proximal tubule, so
the glucose concentration in the
capillaries is higher than in the
glomerular filtrate.
- **Constriction of afferent
arteriole decreases the blood flow to
the glomerulus**: This statement is
true. Constriction of the afferent
arteriole reduces blood flow into the
glomerulus, thereby decreasing
glomerular filtration rate (GFR).
- **Hematocrit of the fluid leaving
the capillaries is less than that of
the fluid entering it**: This
statement is true. As blood passes
through the glomerular capillaries,
plasma proteins are filtered out,

leading to a decrease in hematocrit
in the fluid leaving the capillaries.

4. **Systematically Ruling Out Options**:
- The first, third, and fourth
statements align with the known
physiology of glomerular capillaries.
- The second statement contradicts
the known physiology, as glucose is
actively reabsorbed, making its
concentration higher in the
capillaries than in the glomerular
filtrate.

5. **Comparing Remaining Choices**:
- Only the second statement does not
align with the expected physiological
behavior of glomerular capillaries.

6. **Final Answer**:
- The statement that is not true
about glomerular capillaries is:
"Glucose concentration in the
capillaries is the same as that in
glomerular filtrate."

**Summary of Reasoning**:
The correct answer is that the glucose
concentration in the capillaries is not
the same as that in the glomerular
filtrate. This is because glucose is
actively reabsorbed in the proximal
tubule, resulting in a higher glucose
concentration in the capillaries
compared to the filtrate. All other
statements accurately describe aspects
of glomerular capillary function.
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ReasonMed (temperature 0.6)

To determine which statement is not true
about glomerular capillaries, let's
analyze each option step-by-step.

1. **The oncotic pressure of the fluid
leaving the capillaries is less than
that of fluid entering it:**

- Oncotic pressure is the colloid
osmotic pressure exerted by proteins
in the blood plasma. In the
glomerulus, as fluid passes through
the fenestrated endothelium and the
glomerular basement membrane, some
plasma proteins are too large to pass
through. Therefore, the oncotic
pressure of the fluid that leaves the
capillaries (glomerular filtrate) is
indeed lower than the oncotic
pressure of the fluid entering the
capillaries (plasma). This statement
is true.

2. **Glucose concentration in the
capillaries is the same as that in
glomerular filtrate:**

- Glucose is freely filtered by the
glomerulus, meaning that it passes
from the capillaries into the
glomerular filtrate without being
reabsorbed or secreted. Thus, the
glucose concentration in the
capillaries should be equal to the
glucose concentration in the
glomerular filtrate. This statement
is true.

3. **Constriction of afferent arteriole
decreases the blood flow to the
glomerulus:**

- The afferent arteriole supplies
blood to the glomerulus. Constriction
of this arteriole reduces the amount
of blood flowing into the glomerulus,
thereby decreasing the blood flow.
This statement is true.

4. **Hematocrit of the fluid leaving the
capillaries is less than that of the
fluid entering it:**

- Hematocrit refers to the proportion
of red blood cells in a given volume
of blood. As fluid leaves the
capillaries and enters the glomerular
filtrate, plasma proteins are
retained in the capillaries while
water and small molecules are
filtered out. Since plasma proteins
contribute to the hematocrit, the
hematocrit of the fluid leaving the
capillaries (glomerular filtrate) is
actually higher than the hematocrit
of the fluid entering the capillaries
(plasma). This statement is false.

Based on this analysis, the statement
that is not true about glomerular

capillaries is:

**Hematocrit of the fluid leaving the
capillaries is less than that of the
fluid entering it.**
</think>
The reasoning process involves
evaluating statements about glomerular
capillaries to identify which one is not
true.

1. The oncotic pressure of the fluid
leaving the capillaries is lower than
that of the fluid entering due to the
retention of plasma proteins. This
statement is true.
2. Glucose concentration in the
capillaries is the same as in glomerular
filtrate because glucose is freely
filtered. This statement is true.
3. Constriction of the afferent
arteriole decreases blood flow to the
glomerulus, which is accurate. This
statement is true.
4. The hematocrit of the fluid leaving
the capillaries is actually higher than
that of the fluid entering because
plasma proteins remain in the
capillaries. This statement is false.

Thus, the incorrect statement is that
the hematocrit of the fluid leaving the
capillaries is less than that of the
fluid entering it. <system />

CoTMed (temperature 0.4)

Let's break down the question and
evaluate each candidate answer
step-by-step.

### Restated Question:
Which statement about glomerular
capillaries is incorrect?

### Key Clinical Details and Relevant
Background Information:
1. **Glomerular Filtration**: Glomerular
capillaries are part of the kidney's
filtration system where blood is
filtered to form urine.
2. **Oncotic Pressure**: This is the
osmotic pressure exerted by proteins in
the blood plasma.
3. **Glucose Concentration**: Glucose is
filtered through the glomerulus but is
reabsorbed in the proximal tubule.
4. **Afferent and Efferent Arterioles**:
These regulate blood flow into and out
of the glomerulus.
5. **Hematocrit**: The proportion of
blood volume occupied by red blood cells.

### Evaluation of Each Candidate Answer:
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1. **The oncotic pressure of the fluid
leaving the capillaries is less than
that of fluid entering it.**

- **Supporting Evidence**: As blood
passes through the glomerular
capillaries, water and small
molecules are filtered out, leaving
behind a higher concentration of
proteins (and thus higher oncotic
pressure). Therefore, the oncotic
pressure of the fluid leaving the
capillaries is indeed higher than
that of the fluid entering it.
- **Potential Pitfall**: This
statement is incorrect because the
oncotic pressure increases as the
fluid leaves the capillaries.

2. **Glucose concentration in the
capillaries is the same as that in
glomerular filtrate.**

- **Supporting Evidence**: Glucose is
freely filtered through the
glomerulus, so the initial
concentration in the capillaries
should match the concentration in the
glomerular filtrate.
- **Potential Pitfall**: While this
is generally true, glucose is
actively reabsorbed in the proximal
tubule, so the concentration in the
filtrate will be lower than in the
capillaries after filtration.

3. **Constriction of afferent arteriole
decreases the blood flow to the
glomerulus.**

- **Supporting Evidence**:
Constriction of the afferent
arteriole reduces blood flow into the
glomerulus, thereby decreasing
glomerular filtration rate (GFR).
- **Potential Pitfall**: This
statement is correct and aligns with
physiological principles.

4. **Hematocrit of the fluid leaving the
capillaries is less than that of the
fluid entering it.**

- **Supporting Evidence**: As blood
passes through the glomerular
capillaries, water and small
molecules are filtered out, leaving
behind a higher concentration of red
blood cells (and thus a lower
hematocrit). Therefore, the
hematocrit of the fluid leaving the
capillaries is indeed lower than that
of the fluid entering it.
- **Potential Pitfall**: This
statement is correct and aligns with
physiological principles.

### Systematic Ruling Out Options:
- Option 1 is incorrect because the
oncotic pressure increases as the fluid
leaves the capillaries.

- Option 2 is generally true but has a
potential pitfall regarding active
reabsorption.
- Option 3 is correct.
- Option 4 is correct.

### Comparison of Remaining Choices:
- Option 1 is clearly incorrect based on
the physiological principles of oncotic
pressure.

### Final Answer:
The statement that is not true about
glomerular capillaries is:
- **The oncotic pressure of the fluid
leaving the capillaries is less than
that of fluid entering it.**

This is because the oncotic pressure
increases as the fluid leaves the
capillaries due to the filtration of
water and small molecules.

CoTMed (temperature 0.5)

Let's break down the question and
evaluate each candidate answer
step-by-step:

1. **Restate the Question:**
- Which statement about glomerular
capillaries is incorrect?

2. **Key Clinical Details and Background
Information:**

- Glomerular capillaries are part of
the kidney's filtration system.
- They are responsible for filtering
blood to form urine.
- Key processes include filtration,
reabsorption, and secretion.
- Oncotic pressure, glucose
concentration, blood flow, and
hematocrit are important parameters.

3. **Evaluate Each Candidate Answer:**

- **The oncotic pressure of the fluid
leaving the capillaries is less than
that of fluid entering it:**
- Oncotic pressure is primarily due
to proteins in the plasma.
- As fluid leaves the capillaries
into the Bowman's capsule, most of
the proteins remain in the
capillaries.
- Therefore, the oncotic pressure
of the fluid leaving the
capillaries is indeed lower than
that of the fluid entering it.
- This statement is true.

- **Glucose concentration in the
capillaries is the same as that in
glomerular filtrate:**
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- Glucose is filtered from the
blood into the glomerular filtrate.
- However, glucose is also
reabsorbed in the proximal tubule.
- Initially, the glucose
concentration in the capillaries
and filtrate might be similar, but
as filtration occurs, the filtrate
will have more glucose.
- This statement is false because
the glucose concentration in the
capillaries is typically higher
than in the glomerular filtrate due
to ongoing reabsorption.

- **Constriction of afferent
arteriole decreases the blood flow to
the glomerulus:**
- The afferent arteriole supplies
blood to the glomerulus.
- Constriction of this arteriole
reduces blood flow to the glomerulus.
- This statement is true.

- **Hematocrit of the fluid leaving
the capillaries is less than that of
the fluid entering it:**
- Hematocrit refers to the
proportion of red blood cells in
the blood.
- As fluid leaves the capillaries,
the remaining fluid has a higher
concentration of proteins and a
lower concentration of red blood
cells.
- Therefore, the hematocrit of the
fluid leaving the capillaries is
indeed lower than that of the fluid
entering it.
- This statement is true.

4. **Systematically Rule Out Options:**
- We can rule out the statements
about oncotic pressure, constriction
of the afferent arteriole, and
hematocrit as they are all true.

5. **Compare Remaining Choices:**
- The only remaining choice is the
statement about glucose concentration.

6. **Final Answer:**
- The statement ``Glucose
concentration in the capillaries is
the same as that in glomerular
filtrate'' is not true.

**Conclusion:**
The correct answer is: **Glucose
concentration in the capillaries is the
same as that in glomerular filtrate.**
This statement is false because the
glucose concentration in the capillaries
is typically higher than in the
glomerular filtrate due to ongoing
reabsorption in the proximal tubule.

CoTMed (temperature 0.6)

To answer this question, let's break
down the options step by step:

1. **Restating the Question**: We need
to identify which statement about
glomerular capillaries is incorrect.

2. **Key Clinical Details and Background
Information**:

- Glomerular capillaries are part of
the kidney's filtration system.
- They are involved in the formation
of urine through the process of
glomerular filtration.
- The glomerular capillaries have a
unique structure that allows for
selective filtration of blood
components.
- Oncotic pressure, glucose
concentration, and hematocrit are
important factors in understanding
the function of glomerular capillaries.

3. **Evaluating Each Candidate Answer**:
- **Option 1: The oncotic pressure of
the fluid leaving the capillaries is
less than that of fluid entering it**
- This statement is true. Oncotic
pressure is the osmotic pressure
exerted by proteins in the blood.
As fluid passes through the
glomerular capillaries, some of the
plasma proteins are too large to
pass through the filtration
barrier, so they remain in the
capillaries. Therefore, the oncotic
pressure of the fluid leaving the
capillaries is indeed lower than
that of the fluid entering it.

- **Option 2: Glucose concentration
in the capillaries is the same as
that in glomerular filtrate**
- This statement is false. Glucose
is filtered from the blood into the
glomerular filtrate, but the
filtration process is selective.
The glomerular capillaries reabsorb
glucose back into the bloodstream,
so the glucose concentration in the
capillaries is higher than in the
glomerular filtrate.

- **Option 3: Constriction of
afferent arteriole decreases the
blood flow to the glomerulus**
- This statement is true. The
afferent arteriole supplies blood
to the glomerulus. Constriction of
this arteriole reduces blood flow
to the glomerulus, thereby
decreasing the glomerular
filtration rate (GFR).

- **Option 4: Hematocrit of the fluid
leaving the capillaries is less than
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that of the fluid entering it**
- This statement is true.
Hematocrit refers to the proportion
of blood volume occupied by red
blood cells. As fluid passes
through the glomerular capillaries,
plasma proteins are retained, while
water and small molecules are
filtered out. This results in a
lower hematocrit in the fluid
leaving the capillaries compared to
the fluid entering them.

4. **Ruling Out Options**:
- Options 1, 3, and 4 are all true
statements about glomerular
capillaries.
- Option 2 is the only false
statement among the given options.

5. **Comparing Remaining Choices**:
- Since we have identified that
Option 2 is the only false statement,
there is no need for further
comparison.

6. **Final Answer**:
- The correct answer is **Option 2:
Glucose concentration in the
capillaries is the same as that in
glomerular filtrate**. This statement
is false because the glomerular
capillaries reabsorb glucose,
resulting in a higher glucose
concentration in the capillaries
compared to the glomerular filtrate.

ResponseMed (temperature 0.4)

The question asks which statement about
glomerular capillaries is incorrect. Key
details include that glomerular
capillaries are part of the kidney's
filtration system, where blood is
filtered to produce urine, and that
oncotic pressure affects fluid movement
across capillary walls.

Evaluating the candidate answers:
1. The statement about oncotic pressure
is incorrect because the oncotic
pressure of fluid leaving the
capillaries is actually greater than
that of the fluid entering, due to the
reabsorption of proteins.
2. The statement regarding glucose
concentration is true; glucose is
filtered and then reabsorbed, leaving
its concentration unchanged.
3. The statement about afferent
arteriole constriction decreasing blood
flow to the glomerulus is also true.
4. The statement about hematocrit is
true as well; the hematocrit of the
fluid leaving the capillaries is lower
due to plasma filtration.

Thus, the incorrect statement is that
``The oncotic pressure of the fluid
leaving the capillaries is less than
that of fluid entering it.'' This is
because the oncotic pressure increases
as proteins are retained in the
capillaries.

Final answer: The oncotic pressure of
the fluid leaving the capillaries is
less than that of fluid entering it.
This statement is incorrect as the
oncotic pressure actually increases due
to protein retention.

ResponseMed (temperature 0.5)

The incorrect statement regarding
glomerular capillaries is that ``The
oncotic pressure of the fluid leaving
the capillaries is less than that of
fluid entering it.'' This is false
because oncotic pressure increases as
fluid moves through the glomerulus due
to the removal of plasma proteins,
leading to a higher oncotic pressure in
the capillary blood compared to the
glomerular filtrate.

The other statements are accurate:
1. Glucose concentration in capillaries
is the same as in glomerular filtrate
initially, but it is fully reabsorbed,
making this statement somewhat
misleading.
2. Constriction of the afferent
arteriole does decrease blood flow to
the glomerulus, which is correct.
3. The hematocrit of the fluid leaving
the capillaries is indeed lower than
that entering, as plasma is filtered
out, making this statement true.

In summary, the first statement is the
only one that is definitively incorrect
based on the principles of glomerular
filtration. Understanding these dynamics
is crucial for interpreting renal
function and managing related medical
conditions.

ResponseMed (temperature 0.6)

To determine which statement about
glomerular capillaries is incorrect, we
analyzed several options based on the
physiology of the glomerulus.

1. **Oncotic Pressure**: The oncotic
pressure of fluid leaving the
capillaries is indeed lower than that
entering, as some proteins are retained,
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making this statement true.
2. **Glucose Concentration**: Glucose is
freely filtered, so its concentration is
the same in both capillary blood and
glomerular filtrate, confirming this
statement is true.
3. **Afferent Arteriole Constriction**:
Constriction of the afferent arteriole
reduces blood flow to the glomerulus,
which is also true.
4. **Hematocrit**: The hematocrit of the
fluid leaving the capillaries is higher
than that entering because plasma is
filtered out, making this statement
false.

Thus, the incorrect statement is that
the hematocrit of the fluid leaving the
capillaries is less than that of the
fluid entering it.

**Final Answer**: The incorrect
statement is that the hematocrit of the
fluid leaving the capillaries is less
than that of the fluid entering it.
\(\boxed{D}\)
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