
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 26486–26506
November 4-9, 2025 ©2025 Association for Computational Linguistics

UICOMPASS: UI Map Guided Mobile Task Automation via Adaptive
Action Generation

Yuanzhang Lin , Zhe Zhang , Rui He , Qingao Dong ,
Mingyi Zhou , Jing Zhang , Xiang Gao* , Hailong Sun*

Beihang University, Hangzhou Innovation Institute of Beihang University
{yuanzhanglin, xiang_gao, sunhl}@buaa.edu.cn

Abstract

Mobile task automation is an emerging technol-
ogy that leverages AI to automatically execute
routine tasks by users’ commands on mobile
devices like Android, thus enhancing efficiency
and productivity. While large language models
(LLMs) excel at general mobile tasks through
training on massive datasets, they struggle with
app-specific workflows. To solve this problem,
we designed UI Map, a structured representa-
tion of target app’s UI information. We fur-
ther propose a UI Map-guided LLM-based ap-
proach UICOMPASS to automate mobile tasks.
Specifically, UICOMPASS first leverages static
analysis and LLMs to automatically build UI
Map from either source codes of apps or byte
codes (i.e., APK packages). During task execu-
tion, UICOMPASS mines the task-relevant in-
formation from UI Map to feed into the LLMs,
generates a planned path, and adaptively ad-
justs the path based on the actual app state and
action history. Experimental results demon-
strate that UICOMPASS achieves a 14.52%
higher task executing success rate than SOTA
approaches. Even when only APK is available,
UICOMPASS maintains superior performance,
demonstrating its applicability to closed-source
apps.

1 Introduction

Automating mobile tasks is crucial as it has the
potential to significantly enhance user experience,
particularly in situations where manual interaction
with devices is inconvenient or unsafe—such as
for people with disabilities or drivers who need to
focus on the road. However, modern mobile apps,
despite offering valuable functionalities, often fea-
ture complex user interfaces that impose significant
difficulties for mobile task automation.

There are two primary approaches to automating
mobile tasks. The first relies on predefined tem-
plates to create customized workflows for specific

*Corresponding authors.

tasks. Tools like Siri Shortcuts (Shortcuts, 2025)
and Google Assistant Routines (Routines, 2025)
allow users to design automation sequences across
apps, services, and device settings, which can be
triggered with a tap or voice command. While
this method offers flexibility, it requires manual
setup of each workflow, making it time-consuming
and cumbersome—particularly for complex or fre-
quently updated tasks—limiting its accessibility
and scalability. The second approach leverages the
powerful understanding capabilities of LLMs (Wen
et al., 2024; Ran et al., 2024; Lee et al., 2024;
Wang et al., 2024a; Guan et al., 2024) and vi-
sual language models (VLMs) (Wang et al., 2024b,
2025, 2024b, 2025; Song et al., 2024; Zhang et al.,
2024c). These tools automate mobile tasks using
exploration-based methods that gather UI infor-
mation and predict the next UI action. Although
achieving promising results, these blind-exploring
methods have two key limitations: (1) a lack of
knowledge about the app’s global UI structure and
functional logic leads to inefficient task execution,
and (2) exploration can trigger many irrelevant ac-
tions on the user’s device, which is unsafe.

To address the limitations of blind exploration
in existing tools, inspired by navigation systems
that rely on maps to improve driving efficiency, we
propose UI Map, a high-level UI structure of the
target app. We design UI Map to outline app activi-
ties (corresponding to screens), UI elements, and
their syntactic and semantic interrelations—similar
to how a map includes cities and intersections. By
offering high-level guidance, UI Map helps LLMs
better understand the global app’s UI structure,
make more informed decisions, and avoid ineffi-
cient or irrelevant actions, thereby enhancing the
effectiveness of task automation.

In this paper, we propose UICOMPASS, an
approach that automatically generates UI Maps
and leverages them to facilitate task execution.
UICOMPASS first creates UI Map by combining

26486

static program analysis and LLMs. Initially, static
analysis processes the target application to gener-
ate an initial UI Map by analyzing either source
codes or byte codes (i.e., APK packages), support-
ing both open-source and closed-source apps. How-
ever, static analysis may overlook certain key ele-
ments and relationships, and struggle with under-
standing the semantics of UI components. Hence,
UICOMPASS uses LLMs to enrich UI descriptions
and incorporate missing elements. Since UI Map is
automatically generated, this process doesn’t add
extra workload for developers, simplifying the inte-
gration of UICOMPASS into the existing workflow.

Subsequently, UICOMPASS leverages UI Map to
automate mobile tasks. For a given task, UICOM-
PASS initially identifies and extracts a task-specific
sub-graph from UI Map, which is then analyzed
by LLM to devise an initial path for task comple-
tion. Since UI Map is statically derived from the
application code (e.g., source code or bytecode),
it might not accurately reflect the app’s dynamic
behaviors. Therefore, UICOMPASS employs an
adaptive UI action generation strategy. This inno-
vative approach dynamically modifies the planned
execution path in response to the current state of the
application and the ongoing progress of the task,
enabling efficient and accurate task completion.

We conducted experimental evaluations of
UICOMPASS on DroidTask (Wen et al., 2024)
and AndroidWorld (Rawles et al., 2025) dataset.
UICOMPASS achieved task success rates of 68.27%
(14.48% improvement) with DeepSeek-V3 as back-
end LLM and 78.62% (15.87% improvement) with
Qwen-Max. In terms of time efficiency, while
UICOMPASS incurs higher per-step overhead, it
achieves time savings by reducing the total number
of steps required for task completion. Given that
unrelated steps may lead to unpredictable behavior,
which is undesirable from a user perspective, we
argue that this trade-off remains justified. Ablation
studies show that UI Map and the adaptive replan-
ning modules are effective in enhancing the agent’s
mobile task execution capability.

Our contributions can be outlined as follows:

• We propose to automate mobile tasks with the
guidance of UI Map, a high-level UI structure of
target application.

• We developed UI Map generation approaches
based on either source code or APK bytecode,
and an adaptive action generation strategy.

• Experimental results show UICOMPASS achieves
14.52% (source code-based) and 13.45% (byte
code-based) improvement over state-of-the-art
approaches in terms of task success rates. Our
tool and experimental results are open available
1

2 Background and Related Work

In this section, we will provide an introduction to
Android programming and mobile task automation.

2.1 Background of Android App Code

At the highest level, every Android app declares its
activities (each representing a single screen) and
the partial transfer relationships between its activ-
ities in the AndroidManifest.xml file. An activ-
ity is organized by lifecycle states (e.g., created,
resumed) governing their visibility and interaction
logic. The vast majority of interactive UI elements
(e.g., Button, TextView) and their static attributes
(such as @+id/submit_button) are defined in
XML layout files. Developers assign specific func-
tionality to these elements by adding event listeners
(such as setOnClickListener) within the code.

App structure, behavior, and interaction logic
are crucial for tasks. While LLMs learn general
patterns, they lack app-specific knowledge. Thus,
extracting implementation logic from code has the
potential to enhance LLMs’ app task capabilities.

2.2 Mobile Task Automation

Mobile task automation aims to complete a user-
described task (expressed in natural language with-
out specific instructions) on the device. The agent
needs to determine the actions to be performed
based on the given task.

Traditional tools (e.g., Siri, Google Assistant)
rely on rigid templates, limiting their ability to
handle complex tasks and requiring significant de-
veloper effort. Supervised (Burns et al., 2022; Li
et al., 2020; Sun et al., 2022; Xu et al., 2021) or
reinforcement learning (Humphreys et al., 2022; Li
and Riva, 2021; Toyama et al., 2021) demanded
extensive training data and costs while remaining
inflexible for real-world mobile scenarios.

LLMs (Wen et al., 2024; Ran et al., 2024; Lee
et al., 2024; Zhang et al., 2023b, 2024a; Wang
et al., 2024c; Zhang et al., 2024b) and visual mod-
els (Zhang et al., 2023a) (such as multimodal mod-
els (Wang et al., 2024b, 2025; Song et al., 2024;

1https://github.com/YuanzhangLin/UICompass

26487

https://github.com/YuanzhangLin/UICompass

Zhang et al., 2024c; Li et al., 2025; Yan et al., 2023;
Hoscilowicz et al., 2024; Zhu et al., 2025; Chris-
tianos et al., 2025; Ma et al., 2024)) excel in mobile
task automation due to their advanced understand-
ing and reasoning capabilities. However, their de-
cisions often follow general practices rather than
app-specific considerations, necessitating the provi-
sion of app-specific information to enable tailored
decision-making. Existing approaches have devel-
oped exploration-based frameworks that systemat-
ically investigate app user interfaces and archive
exploration outcomes to facilitate subsequent ac-
tion generation. However, due to an insufficient
understanding of the app, these methods generate a
large number of trial actions that are unacceptable.

3 Method

Figure 1 presents the UICOMPASS framework,
which completes tasks in three steps: UI Map
generation (Section 3.1), UI path planning (Sec-
tion 3.2), and adaptive action generation (Sec-
tion 3.3).

3.1 UI Map Generation
To enable the LLM to understand the usage logic of
an app quickly, we propose UI Map, a graph used
to describe the app’s UI and interaction logic. Just
as maps in a navigation task, the UI Map serves to
assist LLM in swiftly identifying potential paths
prior to the execution of a task. Formally, UI Map
is defined as G = (V,E), where V represents the
set of nodes and E represents the set of edges. The
node set V is partitioned into two distinct subsets:

• Activity Nodes Na: represent the set of activ-
ities in the app. Each node is associated with
an attribute asum, describing the functionality
summarization of this activity.

• Element Nodes Nel: represent basic elements
like Button, Textfield, CheckBox, and etc. Each
node is associated with two attributes astatic and
adyn, specifying its static features (e.g., id) and
dynamic features (e.g., jump to setting activity
when this button is clicked), respectively.

The set of edges E is composed of two types:

• Containment Edges Ec: for any u ∈ Na and
v ∈ Nel, (u, v) ∈ Ec if u contains v.

• Transition Edges Et: edge (s, t) ∈ Et, if there
is a transition path from a source activity s ∈ Na

to target activity t ∈ Na.

Figure 2 depicts a portion of the UI Map for the
app Gallery generated by UICOMPASS. With this
structure, each activity node contains its own se-
mantic attributes, such as “viewing files, adjusting
settings”, which helps quickly understand the func-
tionality. The transition edges between activities
(e.g., MainActivity to MediaActivity) aid in quickly
understanding potential paths to the target activity.
Each activity node is explicitly linked to a set of el-
ement nodes via containment edges. Each element
comprises static attributes (e.g., @id/media_grid)
and dynamic attributes (e.g., clicking this element
to open media in a new activity). These attributes
help understand the functionality of elements and
infer the transitions they might trigger.

To automatically generate UI Map, UICOMPASS

first statically analyzes the target application to ex-
tract G’s nodes and edges. However, considering
traditional static program analysis may miss some
important nodes/edges (Rountev and Yan, 2014)
and struggles to model dynamic behavior, we pro-
pose to integrate static program analysis with LLM.
As a complement strategy, LLM infers the implic-
itly defined nodes/edges in the code and extract dy-
namic program behaviors, which can help UICOM-
PASS generate a comprehensive UI Map.

Static analysis for UI Map. In the first phase,
static analysis is utilized to construct the initial UI
Map by parsing three key components of the An-
droid app: AndroidManifest.xml file, layout files,
and code. The details of how each component con-
tributes to the UI Map are as follows:

1) AndroidManifest.xml File: This essential
XML document describes all activities Na and
partial transition edges Et between activities.

2) Layout Files: Layout files define the visual
structure of UI elements for an activity. By an-
alyzing these files, UICOMPASS initializes the
set of element nodes Nel, extracts their static
attributes astatic, and links them to the corre-
sponding activity. Once an activity is associated
with a layout, all its UI elements are assigned to
that activity.

3) Code Analysis: Source code or bytecode from
APK files is also utilized to expand the activ-
ity transition edges Et and containment edges
Ec. For activity transition edges Et, UICOM-
PASS focuses on functions startActivity()
and startActivityForResult() and per-
forms data flow analysis to obtain the source

26488

Planned PathFocusing Stategy

2 UI Path Planning 3 Adaptive UI Action Generation

1 UI Map Generation
UI Map

Code

Layout

Manifest

LLM AnalysisStatic Analysis

Call graph

Inheritance
Tree

Semantic
Enhancement

Map
Enhancement

Map
Construction

Entity
RecognitionFile Parsing

Code
Analysis

Task

UI Map
Update

Project

Perception Adaptive Replaning Action Generation

Enhance

Executed Path

Planned Path
Element

List

Task

Activity Element
Contain Transfer

Figure 1: The overall workflow of UICOMPASS

MainActivity

MediaActivity

SplashActivity

ViewPagerActivity

Summary:The SplashActivity is
the entry point for the app...

Summary:The ViewPagerActivity is designed to display a
collection of media files ... such as viewing files...

Static: @+id/directories_grid...

Dynamic:[click]opens the MediaActivity
for the selected directory.

Static: @+id/media_grid...

Dynamic:[click]opens the selected
media file in a new activity for
viewing.

Figure 2: Part of the UI Map of the app named Gallery.

activity s and the target activity t, adding
a directed edge (s, t). For containment
edges Ec, UICOMPASS analyzes the lay-
out loading functions setContentView() and
LayoutInflater.inflate() and identifies
the layout files specified in their parameters,
thereby inferring the containment relationships
between activities and elements.

LLM-based Semantic Enrichment. To address
the limitations of static analysis in building a com-
prehensive UI Map, we use an LLM to semantically
enrich the initial static graph. The LLM’s strong
code understanding enables it to handle complex
scenarios like third-party, implicitly defined rela-
tions, and custom elements. To improve the LLM’s
comprehension, UICOMPASS performs call graph
and data flow analyses, and builds an activity in-
heritance tree. Following the topological order of
the call graph and providing crucial information
such as called custom method summaries and vari-
able definitions/declarations (highly useful for link-
ing element IDs and event handlers), UICOMPASS

prompts the LLM to perform the code analysis
tasks, ultimately yielding four key outputs:

1) Custom method summaries: generate natural
language functionality description of methods.

2) Semantically enriched UI element nodes:
generates element’s dynamic properties adyn by
understanding the event handlers of elements.

3) Enhanced activity transition edges (Et): un-
cover potential activity transition edges.

4) Enhanced containment edges (Ec): com-
plement containment edges by leveraging the
LLM’s semantic understanding capabilities.

Additionally, UICOMPASS performs functional
summarization of activity nodes in the UI Map. To
capture inherited behaviors, it processes activities
in topological order based on the inheritance tree.
For each activity, the LLM combines summaries
from its own class and parent class summaries to
generate a comprehensive activity’s functional sum-
mary asum. This LLM-driven step enhances the
initial UI Map, making it semantically richer.

3.2 UI Path Planning

Just as in navigation task, the navigation system
offers possible routes for reference while the actual
driving process is decided by the driver according
to real world situations. Inspired by this, UICOM-
PASS also provides the initial path planning and
adjust it based on the state of the app during the
actual execution.

UICOMPASS generates a planned path in natu-
ral language rather than specific actions. Actions
typically include an action type (e.g., click, input),
an element locator (e.g., element ID), and parame-
ters (e.g., input text). However, locating elements
from the static UI Map can be challenging because
1) some elements lack specific location informa-
tion; 2) some elements are dynamically loaded. For

26489

Activity:
com.simplemobiletools.applauncher.activities.SettingsActivity.
Instructions:
3. In the SettingsActivity, locate the 'Color Customization' section.
4. Click on the 'Customize Colors' option.
5. Select the 'Light' theme from the available options.
6. Confirm the selection to apply the light theme.

UI Path:
Activity:
com.simplemobiletools.applauncher.activities.MainActivity.
Instructions:
1. Open the app and navigate to the MainActivity.
2. Click on the 'Settings' menu item in the options menu.

Figure 3: The generated UI path for task “Change theme
color to light” in the “App Launcher” app.

instance, contact lists in a contact app are gener-
ated after data loads. Asking the LLM to generate
concrete actions could lead to invalid locators, dis-
rupting execution. Thus, UICOMPASS first creates
a high-level plan using natural language instruc-
tions to outline necessary steps, and then generates
concrete actions according to runtime UI states.

UICOMPASS generates a UI path by analyzing
the relationship between the task and UI Map us-
ing LLM. To avoid overwhelming the LLM with
excessive information, especially when the UI Map
is large, UICOMPASS employs a focusing strategy.
First, it summarizes all activities in the UI Map and
identifies those relevant to the task. Then, it builds
a partial graph of these focused activities and com-
putes the shortest paths from the entry activity to all
of them, further expanding the focus set to include
intermediate activities. If the graph is small, all
activities are considered focused to ensure compre-
hensive understanding. Specific prompt is provided
in Appendix B.2. Finally, UICOMPASS generates a
UI path I by referring to the partial UI Map. I com-
prises multiple action blocks, with each containing
an activity ID activity i and a list of instructions Ii,
indicating executing Ii in activity i. Formally,

I = {(activity1, I1), · · · , (activitym, Im)}
For instance, Figure 3 illustrates the UI path for

the task “Change theme color to light” in the “App
Launcher” app. To complete this task, the gener-
ated UI path: open the MainActivity, click the
setting button to transition to SettingActivity,
and select Light theme.

This two-layer design helps UICOMPASS more
intuitively understand the activities it will go
through and the actions it needs to perform.
UICOMPASS can determine whether the current
path is incorrect from a global perspective by judg-

ing whether the current activity matches the activ-
ity in the UI Path. At the same time, the specific
instructions assist UICOMPASS in quickly identify-
ing what the current operation should be.

3.3 Adaptive UI Action Generation
To generate concrete UI actions, we propose an
adaptive mechanism that combines initial natural
language instructions with real-time program states.
It operates in a loop with three stages: Perception,
Adaptive Replanning, and Action Generation, up
to a maximum number of iterations.

Perception: UICOMPASS first runs the target
app and captures its screen information s in XML
format, which details the UI elements and their
static properties, such as IDs, text, and positions.
This runtime screen information s is then aligned
with the UI Map to determine the corresponding ac-
tivity node ns. Subsequently, s and ns are merged
into s′, combining the full element list from s with
the dynamic attributes adyn from ns.

Adaptive Replanning: The UI path I obtained
from Section 3.2 may not precisely model App’s
behaviors because of dynamically loaded elements.
Hence, UICOMPASS conducts an adaptive replan-
ning according to both UI Map and dynamic app
states. Specifically, given s′ and history instruc-
tions that have been executed, LLM is prompted to
update UI path I, and return the most appropriate
next instruction in. When in is empty, it signifies
that the LLM considers the task to be completed
successfully. UICOMPASS consolidates this entire
process into a single interaction with the aim of
reducing the number of interactions and thereby
shortening the time required for decision-making.
Specific prompt and examples can be found in Ap-
pendix B.3.

Action Generation: Given that instructions are
expressed in natural language and thus not directly
executable, UICOMPASS must translate them into
concrete actions. Specifically, UICOMPASS con-
verts the elements mentioned in in to candidate
executable actions based on their types, such as
‘scroll’, ‘click’, or ‘input’. If an action type is ‘in-
put’, UICOMPASS will prompt the LLM to provide
the specific input value. For each action in the
candidate list, LLM is provided with the static and
dynamic attributes of the element to facilitate the
LLM’s deeper understanding of its functionalities
and enable more informed decision-making. We
provide prompt and examples in Appendix B.4.
Once LLM selects a specific action, UICOMPASS

26490

converts it into the corresponding Android Debug
Bridge (ADB) command for execution.

4 Experiments

We evaluated UICOMPASS’s performance experi-
mentally.

4.1 Experimental Settings
Datasets. We evaluated UICOMPASS and baseline
tools on DroidTask (Wen et al., 2024) and Android-
World (Rawles et al., 2025) dataset, which are com-
monly used to evaluate mobile task automation. We
obtained 145 tasks from 12 different apps in Droid-
Task and 44 tasks from 9 apps in AndroidWorld.
We primarily filtered out tasks that were unsup-
ported by baseline tools or no longer executable.
Selection criteria are detailed in Appendix A.2.

Baseline Methods. We chose AutoDroid (Wen
et al., 2024), Guardian (Ran et al., 2024) and
Mobile-Agent-v2 (Wang et al., 2024b) as base-
line tools for experimental comparison. Both Auto-
Droid and Guardian utilize LLMs and exploration-
based mechanisms to facilitate task execution.
Mobile-Agent-v2 uses a Multi-agent architecture
and VLM to assist in task completion.

Model Selection. Considering both cost effi-
ciency and performance, we selected DeepSeek-
V3 (DeepSeek-AI et al., 2025), Qwen-Max (Bai
et al., 2023a), and Qwen-VL-max (Bai et al.,
2023b; Qwen, 2025) as models for the evaluation.

Metrics. Following existing work (Wen et al.,
2024; Ran et al., 2024), we measure the following
metrics: 1) Success Rate (SR): The ratio of suc-
cessfully completed tasks to the total number of
tasks. 2) Average Completion Proportion (ACP):
The proportion of the executed action sequence
that matches the prefix of the ground truth action
sequence. 3) Correct Termination Rate (CTR): The
rate of successfully stopping exploration when the
task is completed. 4) Success Rate Penalized by
Path Length (SPL): A metric that evaluates the
rate that is calculated by the ground truth action
sequence length divided by the actual action se-
quence length.

4.2 Overall Results of Task Completion
We implemented two versions of UICOMPASS that
extract UI Map from source code and byte code,
respectively. The experimental results are shown in
Table 1. Across experiments conducted with three
models, two datasets, and four metrics, UICOM-
PASS’s two versions achieved the best performance

in 20 out of a total of 24 metric results. In terms
of SR, UICOMPASS’s source code version showed
an average improvement of 14.52% compared to
AutoDroid (the best-performing baseline) across
all three models on both the DroidTask and An-
droidWorld datasets, while its byte code version
exhibited an average increase of 13.45%. In con-
trast, the Guardian and Mobile-Agent-v2 have trou-
ble to understand app-specific information, lead-
ing to a comparatively lower task execution ac-
curacy. In terms of ACP, CTR and SPL metrics,
UICOMPASS also outperforms almost all the base-
line tools. UICOMPASS outperforms existing tools
since UI Map facilitates task understanding. Tak-
ing the task “Disable showing the dial pad button
on the main screen” as an example, existing tools
attempt to operate the MainActivity to disable the
dial pad. However, this task is configured within
the SettingsActivity. UI Map enables UICOMPASS

to accurately comprehend the task’s intent with effi-
ciency. Overall, the experimental findings indicate
that UICOMPASS, leveraging a UI Map-based ap-
proach, can effectively enhance the performance of
mobile task automation.

Comparative analysis of different dataset: On
the AndroidWorld dataset, performance was de-
graded compared to DroidTask across all evalu-
ated tools. For instance, the success rate (SR) de-
creased to 37.21% for UICOMPASS (Byte code)
and 41.86% for UICOMPASS (Source code). This
performance decrease can be attributed to several
key factors in the AndroidWorld dataset: (1) tasks
often include more detailed and specific require-
ments, (2) there are more complex multi-step ac-
tions such as deleting multiple data items in a single
task, and (3) tasks require deeper understanding,
such as identifying duplicate data items.

Comparative analysis of different models. To
investigate the impact of different LLMs on tools’
performance, we conducted a comparative analysis
between DeepSeek-V3 and Qwen-Max. Our ex-
periments reveal two key insights: 1) Model selec-
tion significantly impacts tool performance, where
stronger LLMs (e.g., Qwen-Max) yield higher task
completion rates (+10.35% for UICOMPASS and
+8.96% for AutoDroid vs. DeepSeek-v3). Due
to enhanced reasoning and contextual understand-
ing—a capability of Qwen-Max, UICOMPASS ef-
fectively completes more tasks then DeepSeek-v3.
2) UICOMPASS demonstrates consistent superior-
ity across all metrics (SR/ACP/CTR/SPL) than Au-
toDroid, which conclusively establishes UICOM-

26491

Benchmark Methods
DeepSeek-v3 Qwen-Max Qwen-VL-Max

SR↑ ACP↑ CTR↑ SPL↑ SR↑ ACP↑ CTR↑ SPL↑ SR↑ ACP↑ CTR↑ SPL↑

DroidTask

AutoDroid 53.79% 71.72% 76.92% 15.87% 62.75% 77.71% 64.35% 17.92% 56.55% 74.24% 68.29% 17.02%
Guardian 45.20% 71.83% 0.0% 1.70% 53.10% 75.78% 2.59% 1.94% 40.69% 64.41% 0.00% 1.53%
Mobile-Agent-v2 - - - - - - - - 13.79% 26.17% 60.00% 4.63%
UICOMPASS(Byte code) 63.44% 80.63% 60.86% 20.34% 74.48% 85.16% 75.00% 22.08% 72.41% 83.62% 61.90% 19.31%
UICOMPASS(Source code) 68.27% 81.96% 80.80% 20.92% 78.62% 87.07% 76.31% 24.15% 73.79% 82.79% 68.22% 20.76%

AndroidWorld

AutoDroid 25.58% 57.47% 63.63% 1.12% 20.93% 53.93% 33.33% 1.48% 16.28% 48.44% 28.57% 0.85%
Guardian 18.60% 31.99% 0.00% 0.18% 20.93% 35.40% 11.11% 0.41% 18.60% 37.29% 0.00% 0.16%
Mobile-Agent-v2 - - - - - - - - 6.81% 22.94% 33.33% 0.47%
UICOMPASS(Byte code) 37.21% 48.86% 50.00% 2.15% 37.21% 46.15% 62.50% 2.28% 31.82% 45.85% 42.85% 1.39%
UICOMPASS(Source code) 30.23% 41.86% 53.84% 1.62% 30.23% 43.37% 69.23% 1.92% 41.86% 66.24% 55.56% 2.18%

Table 1: Effectiveness of Task Completion (Red indicates 1st place, blue indicates 2nd place).

Note

App
Lau

nch
er

Cale
nd

er

Cam
eraCloc

k

Con
tac

ts
Diale

r

File
man

ag
er

Galle
ry

Mess
ag

er

Musi
cPl

ay
er

Vo
ice

Re
cod

er
0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

DroidTask Dataset

Aud
ioR

eco
rde

r

Osm
an

d

Re
tro

 Musi
c

Ex
pe

nse
Mark

or

Broc
col

i

Mess
en

ge
r

Draw

Cale
nd

ar

AndroidWorld Dataset

AutoDroid Guardian Mobile-Agent-v2

UICompass(Byte code) UICompass(Source code)

AutoDroid Guardian Mobile-Agent-v2

UICompass(Byte code) UICompass(Source code)

Figure 4: Success Rate across Different Apps

1 2 3 4 5 6 7 8 9 10
Path Length

0

10

20

30

40

N
um

be
r o

f S
uc

ce
ss

fu
lly

 C
om

pl
et

ed
 T

as
ks

DroidTask Dataset

1 2 3 4 5 6 7 8 9 10
Path Length

0

2

4

6

8

10
AndroidWorld Dataset

AutoDroid Guardian Mobile-Agent-v2

UICompass(Byte code) UICompass(Source code)

Figure 5: Success Rate across Different Path Length.

PASS’s model-agnostic robustness.
Comparative analysis of different apps. To

further explore UICOMPASS’s performance across
different apps, we present comparative experi-
mental results in Figure 4. Our cross-app anal-
ysis considers Qwen-VL-Max as base model, as
Mobile-Agent-v2 requires VLMs. Experiment re-
sults shows that UICOMPASS (either source code
or bytecode version) outperforms all baselines in
84% (16/19) of apps. AutoDroid performs best
on AppLauncher and Broccoli, and Mobile-Agent-
v2 outperforms all tools on Osmand. This may
be because: 1) Mobile-Agent-v2’s vision module
is optimized for map apps like Osmand, enabling
direct coordinate clicks. 2) the failure of UICOM-
PASS to parse elements from third-party libraries
causes incomplete UI Map, which leads to infe-
rior performance compared to AutoDroid on two
apps. Nonetheless, UICOMPASS performs robustly
in most apps, demonstrating strong generalization.

Comparative analysis of different path
lengths. We evaluate tools’ performance with dif-
ferent task difficulties, with path length as a com-
plexity metric. As shown in Figure 5, for simple
tasks (1–2 steps), all the baseline tools and UICOM-
PASS perform consistently good, with UICOM-
PASS produces slightly better results. However,
when automating medium-level complex tasks (3–6
steps), both Guardian and Mobile-Agent-v2 ’s
performances are much worse than UICOMPASS.
For longer tasks (7–10 steps), AutoDroid and
Guardian complete only 1 and 2 tasks, respectively,
whereas Mobile-Agent-v2 fails entirely. In con-
trast, UICOMPASS still complete 7 tasks. All tools
failed to complete tasks that required more than 10
steps, so these tasks are not included in the figure.
The evaluation results show that as tasks become
more complex, UICOMPASS consistently achieves
strong performance, while the performance of base-
line tools drops significantly.

Comparison of source code and bytecode.
Compared to the bytecode version, the source code
version of UICOMPASS generally performs better
on 9 apps. This is primarily because bytecode, af-
fected by obfuscation, loses semantic information.
In contrast, source code retains more semantic de-
tails, enabling UICOMPASS to better understand
the app’s logic and plan more accurate execution
paths. However, in certain apps, e.g., Clock, the
bytecode version may have an advantage. For ex-
ample, bytecode includes compiled third-party li-
braries, which may contain UI design or Activity
logic that is not included from the app’s source
code.

4.3 Analyzing Decision-Making Efficiency

To objectively compare the efficiency of different
tools, we focus exclusively on measuring the dura-
tion of their decision-making phases (denoted as
time_d). In UICOMPASS, this phase corresponds
to the Adaptive Replanning process. Other phases

26492

Guardian AutoDroid UICompass
Average Step Time (s) 0.89 4.21 5.49

Step Efficiency 30 4.65 3.43
time_davg 26.91 19.6 18.9

Table 2: Time Efficiency Comparison.

(e.g., action execution) are susceptible to external
noise factors such as device performance fluctua-
tions and UI loading latency. These extrinsic varia-
tions could otherwise obscure the genuine dispar-
ities in tools’ strategic capabilities. To ensure a
fair comparison, we only analyzed tasks that were
successfully completed by all tools except Mobile-
Agent-v2 , denoted as task∩. We excluded Mobile-
Agent-v2 due to its low number of completed tasks.
Therefore, the average decision time of valid tasks
(denoted as time_davg) can be calculated using the
following formula:

time_davg =
1

|task∩|
∑

t∈task∩
time_dt (1)

We evaluated all three tools on 41 identical
tasks, measuring both task completion efficiency
time_davg and step efficiency (averaged steps per
task). As shown in Table 2, UICOMPASS demon-
strated superior step economy, requiring only 3.43
steps/task (mean) – 1.22 fewer than AutoDroid
(4.65 steps) and 2.1 fewer than Guardian (5.53
steps). In terms of time, although UICOMPASS

took longer for each decision-making step, its use
of fewer steps resulted in less average time spent
per task overall. Although Guardian consumes min-
imal time per interface (as it only outputs action
indices without requiring the LLM to generate any
reasoning content), the excessive number of steps
substantially impacts its average decision time. For
users, an agent performing a series of irrelevant
actions on an app could pose significant risks.

4.4 Evaluating the Time and Cost of UI Map
Generation

To assess the method’s feasibility, we analyzed the
computational overhead of the UI Map generation
phase. It is crucial to note that this is a one-time,
offline preprocessing step.

In the experiment, this process is performed by
the deepseek-v3 model. Figure 6 illustrates the
two key metrics measured for each of the 19 ap-
plications: the total generation time (in seconds)
and the corresponding API monetary cost (in US
dollars), sorted in descending order. Across all

Os
mAn

d
Ga

lle
ry

Ca
len

da
r

Ex
pe

ns
e

Co
nt

ac
ts

Sm
sm

es
se

ng
er

Di
ale

r
No

te
s

Fil
em

an
ag

er
Ma

rko
r

Mu
sic

pla
ye

r
Re

tro
mus

ic
Ca

mer
a

Clo
ck

Ap
pla

un
ch

er
Vo

ice
re

co
rd

er
Dr

aw
Au

dio
re

co
rd

er
Br

oc
co

li

0

500

1000

1500

2000

2500

3000

Ge
ne

ra
tio

n
Ti

m
e

(s
ec

on
ds

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

AP
I C

os
t (

US
D)

Generation Time
API Cost

Figure 6: Analysis of UI Map Generation Time and API
Cost per Application.

Config UI Map Adaptive SR↑ ACP↑ CTR↑ SPL↑
C-1 × × 37.24% 64.57% 60.00% 1.77%
C-2 ✓ × 42.75% 64.43% 66.67% 15.00%
C-3 × ✓ 55.86% 72.62% 53.84% 17.66%
C-4 ✓ ✓ 68.27% 81.96% 80.80% 30.85%

Table 3: Ablation Results of UICOMPASS on DroidTask

applications, the average generation time was ap-
proximately 509 seconds (8.48 minutes), with an
average monetary cost of $0.317. Given that this
is a one-time preprocessing cost, we think that the
required computational overhead is acceptable.

4.5 Ablation Study

To evaluate the effectiveness of UI Map and the
adaptive replanning, we further conducted ablation
experiments. When UI Map is omitted, UICOM-
PASS generates an initial UI path based solely on
the remaining information. When adaptive replan-
ning is disabled, UICOMPASS follows the UI path
strictly in its original sequence.

The effectiveness of UI Map. The experimental
results in Table 3 demonstrate that UI Map signifi-
cantly improves task automation performance, both
with (Config C-2 and C-4) and without (Config C-1
and C-3) UI Map. Specifically, task success rates
(SR) increased by 5.51% and 12.41% respectively,
proving that global information effectively guides
task execution. Task termination (CTR) accuracy
improved by 6.67% and 26.96%, attributable to
optimized initial route planning; Concurrent im-
provements in ACP and SPL metrics indicate the
system enhances completion rates while reducing
redundant exploration steps.

The effectiveness of adapting replanning. The
experimental results demonstrate that UI Map’s
Adapting module significantly enhances task com-
pletion capabilities: Task success rates improved by

26493

18.62% (Config C-3 over C-1) and 25.52% (Con-
fig C-4 over C-1), while ACP metrics increased
by 8.05% and 17.53% respectively. This confirms
the effectiveness of adaptive replanning in dynami-
cally adjusting execution paths based on real-time
application states. The CTR decreased by 6.16%
(Config C-3 over C-1) but increased by 14.13%
(Config C-4 over C-1), indicating that UI Map’s
guidance is more crucial for recognizing task com-
pletion. The substantial performance gap observed
between C-2 and C-4 stems from the gap of static
code and dynamic runtime behaviors. A representa-
tive case occurs when the application dynamically
skips onboarding screens while the predicted path
continues to include these unnecessary instructions.
These findings compellingly demonstrate the im-
portance of the adaptive model in UICOMPASS.

5 Conclusion

In this paper, we propose a method for mobile task
automation using a UI Map extracted from the code,
called UICOMPASS. UICOMPASS leverages LLM
and static analysis to analyze the code and gener-
ates the UI Map. UICOMPASS can then use this
UI Map and the given task to generate an initial UI
path. During task execution, we introduce adaptive
replanning that combines action history and UI to
continuously replan the UI path. Through extensive
experiments, we demonstrate the effectiveness of
UICOMPASS in task completion capability, achiev-
ing state-of-the-art performance.

Limitation

Although our work demonstrates UICOMPASS

achieves excellent performance, it still has some
limitations. 1) The integrity of the UI Map based
on code analysis is insufficient. Due to the complex
implementation of programs (such as dynamically
loaded elements), code parsing is hard to obtain
all elements and their functionalities, leading to
the possibility that the UI Map may miss some
elements. These missing elements affect the task
success rate of UICOMPASS. Although UICOM-
PASS uses adaptive replanning to mitigate this is-
sue, we will still further explore better methods
to obtain a more complete UI Map in the future.
2) UICOMPASS only uses the UI Map of a single
app as a reference. When facing cross-app tasks,
UICOMPASS relies on LLM to infer the actions
that should be performed on other apps. This lim-
its the performance of UICOMPASS in cross-app

tasks. In the future, we will explore how to com-
bine the UI Maps of multiple apps to help improve
the performance of cross-app tasks.

Acknowledgement

This work was supported by National Natural
Science Foundation of China under Grant No
62202026.

References
Jinze Bai, Shuai Bai, and etc. 2023a. Qwen technical

report. arXiv preprint arXiv:2309.16609.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023b. Qwen-vl: A versatile
vision-language model for understanding, localiza-
tion, text reading, and beyond. arXiv preprint
arXiv:2308.12966.

Max Brunsfeld and Contributors. 2025. Tree-sitter: An
incremental parsing system for programming tools.
Accessed: 2025-02-01.

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha
Kumar, Kate Saenko, and Bryan A Plummer. 2022.
A dataset for interactive vision-language navigation
with unknown command feasibility. In European
Conference on Computer Vision, pages 312–328.
Springer.

Filippos Christianos, Georgios Papoudakis, Thomas
Coste, Jianye Hao, Jun Wang, and Kun Shao.
2025. Lightweight neural app control. Preprint,
arXiv:2410.17883.

DeepSeek-AI, Aixin Liu, Bei Feng, and etc.
2025. Deepseek-v3 technical report. Preprint,
arXiv:2412.19437.

Shihan Deng, Weikai Xu, Hongda Sun, Wei Liu, Tao
Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang,
Rui Yan, and Shuo Shang. 2024. Mobile-bench: An
evaluation benchmark for llm-based mobile agents.
Preprint, arXiv:2407.00993.

Yanchu Guan, Dong Wang, Zhixuan Chu, Shiyu Wang,
Feiyue Ni, Ruihua Song, and Chenyi Zhuang. 2024.
Intelligent agents with llm-based process automa-
tion. In Proceedings of the 30th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
pages 5018–5027.

Jakub Hoscilowicz, Bartosz Maj, Bartosz Kozakiewicz,
Oleksii Tymoshchuk, and Artur Janicki. 2024. Click-
agent: Enhancing ui location capabilities of au-
tonomous agents. Preprint, arXiv:2410.11872.

Peter C Humphreys, David Raposo, Tobias Pohlen, Gre-
gory Thornton, Rachita Chhaparia, Alistair Muldal,
Josh Abramson, Petko Georgiev, Adam Santoro, and
Timothy Lillicrap. 2022. A data-driven approach

26494

https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://arxiv.org/abs/2410.17883
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2407.00993
https://arxiv.org/abs/2407.00993
https://arxiv.org/abs/2410.11872
https://arxiv.org/abs/2410.11872
https://arxiv.org/abs/2410.11872

for learning to control computers. In International
Conference on Machine Learning, pages 9466–9482.
PMLR.

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan
Wasi, Hojun Choi, Steve Ko, Sangeun Oh, and In-
sik Shin. 2024. Mobilegpt: Augmenting llm with
human-like app memory for mobile task automation.
In Proceedings of the 30th Annual International Con-
ference on Mobile Computing and Networking, pages
1119–1133.

Hongxin Li, Jingfan Chen, Jingran Su, Yuntao Chen,
Qing Li, and Zhaoxiang Zhang. 2025. Autogui: Scal-
ing gui grounding with automatic functionality anno-
tations from llms. Preprint, arXiv:2502.01977.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020. Mapping natural language instruc-
tions to mobile ui action sequences. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8198–8210.

Yuanchun Li and Oriana Riva. 2021. Glider: A rein-
forcement learning approach to extract ui scripts from
websites. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 1420–1430.

Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024.
Coco-agent: A comprehensive cognitive mllm
agent for smartphone gui automation. Preprint,
arXiv:2402.11941.

Qwen. 2025. Introducing qwen-vl.

Dezhi Ran, Hao Wang, Zihe Song, Mengzhou Wu, Yuan
Cao, Ying Zhang, Wei Yang, and Tao Xie. 2024.
Guardian: A runtime framework for llm-based ui
exploration. In Proceedings of the 33rd ACM SIG-
SOFT International Symposium on Software Testing
and Analysis, pages 958–970.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang,
Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice
Li, William Bishop, Wei Li, Folawiyo Campbell-
Ajala, Daniel Toyama, Robert Berry, Divya Tya-
magundlu, Timothy Lillicrap, and Oriana Riva.
2025. Androidworld: A dynamic benchmarking
environment for autonomous agents. Preprint,
arXiv:2405.14573.

Atanas Rountev and Dacong Yan. 2014. Static refer-
ence analysis for gui objects in android software. In
Proceedings of Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization, pages
143–153.

Google Assistant Routines. 2025. Automate daily rou-
tines & tasks with google assistant.

Apple Shortcuts. 2025. Run shortcuts with siri, the
shortcuts app or siri suggestions.

Skylot. 2025. Jadx: Dex to java decompiler. Accessed:
2025-02-01.

Yunpeng Song, Yiheng Bian, Yongtao Tang, Guiyu Ma,
and Zhongmin Cai. 2024. Visiontasker: Mobile task
automation using vision based ui understanding and
llm task planning. In Proceedings of the 37th Annual
ACM Symposium on User Interface Software and
Technology, UIST ’24, page 1–17. ACM.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai,
Zichen Zhu, and Kai Yu. 2022. Meta-gui: Towards
multi-modal conversational agents on mobile gui.
In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, pages
6699–6712.

Daniel Toyama, Philippe Hamel, Anita Gergely, Ghe-
orghe Comanici, Amelia Glaese, Zafarali Ahmed,
Tyler Jackson, Shibl Mourad, and Doina Precup.
2021. Androidenv: A reinforcement learning plat-
form for android. arXiv preprint arXiv:2105.13231.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang,
Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. 2024a. Mobile-agent-v2: Mo-
bile device operation assistant with effective navi-
gation via multi-agent collaboration. arXiv preprint
arXiv:2406.01014.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming
Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. 2024b. Mobile-agent-v2: Mobile device op-
eration assistant with effective navigation via multi-
agent collaboration. Preprint, arXiv:2406.01014.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan,
Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang.
2024c. Mobile-agent: Autonomous multi-modal mo-
bile device agent with visual perception. Preprint,
arXiv:2401.16158.

Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong
Mao, Qinmin Wang, Tianchen Min, Wei Chen, and
Shoufa Chen. 2024d. Mobileagentbench: An effi-
cient and user-friendly benchmark for mobile llm
agents. Preprint, arXiv:2406.08184.

Wenhao Wang, Zijie Yu, William Liu, Rui Ye, Tian
Jin, Siheng Chen, and Yanfeng Wang. 2025. Fedmo-
bileagent: Training mobile agents using decentral-
ized self-sourced data from diverse users. Preprint,
arXiv:2502.02982.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao,
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,
Yaqin Zhang, and Yunxin Liu. 2024. Autodroid: Llm-
powered task automation in android. In Proceedings
of the 30th Annual International Conference on Mo-
bile Computing and Networking, pages 543–557.

Nancy Xu, Sam Masling, Michael Du, Giovanni Cam-
pagna, Larry Heck, James Landay, and Monica Lam.
2021. Grounding open-domain instructions to auto-
mate web support tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1022–1032.

26495

https://arxiv.org/abs/2502.01977
https://arxiv.org/abs/2502.01977
https://arxiv.org/abs/2502.01977
https://arxiv.org/abs/2402.11941
https://arxiv.org/abs/2402.11941
https://qwenlm.github.io/blog/qwen-vl/
https://arxiv.org/abs/2405.14573
https://arxiv.org/abs/2405.14573
https://support.google.com/assistant/answer/7672035?hl=en&co=GENIE.Platform%3DAndroid
https://support.google.com/assistant/answer/7672035?hl=en&co=GENIE.Platform%3DAndroid
https://support.apple.com/en-gb/HT209055
https://support.apple.com/en-gb/HT209055
https://github.com/skylot/jadx
https://doi.org/10.1145/3654777.3676386
https://doi.org/10.1145/3654777.3676386
https://doi.org/10.1145/3654777.3676386
https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2406.01014
https://arxiv.org/abs/2401.16158
https://arxiv.org/abs/2401.16158
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2502.02982
https://arxiv.org/abs/2502.02982
https://arxiv.org/abs/2502.02982

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin,
Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong,
Julian McAuley, Jianfeng Gao, Zicheng Liu, and
Lijuan Wang. 2023. Gpt-4v in wonderland: Large
multimodal models for zero-shot smartphone gui nav-
igation. Preprint, arXiv:2311.07562.

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li,
Liqun Li, Si Qin, Yu Kang, Minghua Ma, Qingwei
Lin, Saravan Rajmohan, et al. 2024a. Large language
model-brained gui agents: A survey. arXiv preprint
arXiv:2411.18279.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin
Chen, Zebiao Huang, Bin Fu, and Gang Yu. 2023a.
Appagent: Multimodal agents as smartphone users.
Preprint, arXiv:2312.13771.

Jiayi Zhang, Chuang Zhao, Yihan Zhao, Zhaoyang Yu,
Ming He, and Jianping Fan. 2024b. Mobileexperts:
A dynamic tool-enabled agent team in mobile devices.
Preprint, arXiv:2407.03913.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao,
Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang.
2024c. Android in the zoo: Chain-of-action-thought
for gui agents. Preprint, arXiv:2403.02713.

Zhizheng Zhang, Xiaoyi Zhang, Wenxuan Xie, and Yan
Lu. 2023b. Responsible task automation: Empow-
ering large language models as responsible task au-
tomators. arXiv preprint arXiv:2306.01242.

Zichen Zhu, Hao Tang, Yansi Li, Dingye Liu, Hongshen
Xu, Kunyao Lan, Danyang Zhang, Yixuan Jiang, Hao
Zhou, Chenrun Wang, Situo Zhang, Liangtai Sun,
Yixiao Wang, Yuheng Sun, Lu Chen, and Kai Yu.
2025. Moba: Multifaceted memory-enhanced adap-
tive planning for efficient mobile task automation.
Preprint, arXiv:2410.13757.

Appendices

A Further Experimental Details and
Extended Investigations

In this section, we provide further elaboration on
our experimental details and present additional
experiments to demonstrate the performance of
UICOMPASS. Finally, we illustrate the execution
process of UICOMPASS on a specific task to facil-
itate understanding of adaptive UI action genera-
tion.

A.1 Implementation Detail
We implement UICOMPASS by using the following
key components.

• Decompilation: We use JADX (Skylot, 2025)
to decompile APKs into Java code. This en-
ables direct analysis of app byte code.

• Program Analysis: We leverage Tree-
Sitter (Brunsfeld and Contributors, 2025) to
parse Java code and Kotlin code. From these
parsed result, we extract call graphs, data
flows, and inheritance trees.

The bytecode version enables easier analysis of
third-party libraries, but at the cost of increased
analysis overhead. Following the source code ver-
sion, we restrict analysis to the current project’s
code (filtered by package names). For potential
third-party activities, we limit analysis to the activ-
ity class level.

A.2 Detail of Benchmark.
We selected DroidTask (Wen et al., 2024) as the
benchmark dataset, which include 12 open-source
apps and 149 tasks. DroidTask covers all projects
and tasks presented in (Wang et al., 2024d)’s study.
During evaluation, four tasks were found to be no
longer executable, resulting in a final total of 145
usable tasks.

We also selected AndroidWorld (Rawles et al.,
2025) as another benchmark. AndroidWorld com-
prises 116 distinct tasks across 20 real-world apps.
However, 28 of these tasks involve system appli-
cations, for which APKs are unavailable. An addi-
tional 26 tasks are question-answering based, mak-
ing them incompatible with all baseline tools in
our experiments. Furthermore, 18 tasks were ex-
cluded due to reasons such as inaccessible login re-
quirements, redundancy with other tasks, or being
vision-only tasks (e.g., image recognition). After

26496

https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2311.07562
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2407.03913
https://arxiv.org/abs/2407.03913
https://arxiv.org/abs/2403.02713
https://arxiv.org/abs/2403.02713
https://arxiv.org/abs/2410.13757
https://arxiv.org/abs/2410.13757

this filtering process, our final experimental dataset
consists of 44 tasks from 9 applications.

We hope to conduct experimental comparisons
between the source code version and the byte ver-
sion of UICOMPASS to uncover more interesting
findings. Several other datasets (Deng et al., 2024)
were not included due to the non-open-source na-
ture of their apps.

A.3 Experimental Evaluation Methods.

To ensure a fair comparison of each tool, we manu-
ally annotated the experimental data. The three au-
thors of the paper first familiarized themselves with
the applications and referred to the ground truth
provided in DroidTask (Wen et al., 2024) and An-
droidWorld (Rawles et al., 2025). For the execution
results of each tool on each application, we con-
ducted separate analyses and ultimately engaged
in discussions. Different tasks may have multiple
implementation approaches. Therefore, for the exe-
cution results of each tool, we analyze and evaluate
the shortest path chosen to complete the task when
calculating the experimental results. In addition,
during the experiments, we prepared the data re-
quired for each task in advance to ensure that the
task was executable. For each task, we conducted
three trial runs. Successful attempts were recorded
for performance analysis. For failed tasks, only
the most successful attempt (e.g., highest comple-
tion progress) among three trials is recorded, while
others are discarded.

A.4 Detail of Experimental Results on Task
Completion

As presented in Table 4, the experimental results
reveal significant disparities in the task completion
performance of various tools across different ap-
plications and datasets. In the DroidTask dataset,
UICOMPASS (source code) and UICOMPASS (byte
code) demonstrate a distinct advantage, success-
fully completing a larger number of tasks in mul-
tiple applications such as SimpleNote and Cam-
era. Within the AndroidWorld dataset, the number
of tasks completed by all tools is generally lower,
yet UICOMPASS still stands out with relatively
better performance in certain applications. Over-
all, UICOMPASS (source code) accomplishes 125
tasks, while UICOMPASS (byte code) completes
119 tasks. These figures are significantly higher
than those of other tools, such as Guardian (66
tasks) and Mobile-Agent-v2 (23 tasks), thereby

shows the efficiency and superiority of UICOM-
PASS in task completion.

A.5 Case Study
We analyze a representative DroidTask case (Fig. 7)
demonstrating UICOMPASS’s effectiveness, par-
ticularly its UI Map-guided process and adaptive
instruction replanning in real-world scenarios.

The task in this example is “Set app theme to
light and save it,” and the six images on the right
side of Figure 7 depict the correct steps generated
by UICOMPASS. The task requires navigating to
the “Customize colors” module in Settings (Steps
1-3) and switching the theme to light before saving
(Steps 4-6). This example presents a challenge
for the existing mobile agent. While the content
of tasks shows that it is a setting operation, users
face confusion because the settings activity neither
directly displays theme color options nor makes it
clear that ’Customize colors’ (Step 3) can modify
theme colors.

UICOMPASS generates the initial UI path using
the UI Map (shown in the top-left of Figure 7). Due
to the complexity of the application, the UI path
generated by UICOMPASS is not entirely correct.
In this example, we can see that most of the UI path
generated by UICOMPASS are correct, except for
the “Select the ‘Theme’ option” being missing and
“Confirm the theme selection” being mistakenly
included. As shown in the final instructions (as
shown in the bottom left of Figure 7), UICOMPASS

uses the adaptive replanning mechanism to correct
the errors in the initial UI path based on the actual
execution context. Therefore, the initial UI path
generated by the UI Map, combined with the adap-
tive replanning mechanism, can effectively guide
the LLM to complete tasks in the target application.

B More Details and Example of Prompts

In this section, we will detail several of the most
important prompts used in the interaction between
UICOMPASS and the LLM in this paper. We will
provide the templates and specific examples for
these prompts to facilitate understanding.

B.1 The Prompt for the Semantic Enhance for
UI Map via LLM

Following UICOMPASS constructs the initial UI
Map using static analysis techniques, UICOMPASS

further enhances it by leveraging an LLM. This
enhancement primarily aimed to enable UICOM-
PASS to extract information from more complex

26497

Table 4: Number of Tasks Completed by Different Tools Across Applications

Dataset Application Total AutoDroid Guardian Mobile-Agent-v2 UICOMPASS (Byte code) UICOMPASS (Source code)

DroidTask

SimpleNote 13 6 2 1 7 9
AppLauncher 5 5 1 2 6 6
Calender 16 4 5 0 6 7
Camera 15 10 8 4 12 13
Clock 11 8 6 2 11 8
Contacts 14 6 6 0 10 10
Dialer 15 11 9 4 13 13
Filemanager 15 8 6 3 12 14
Gallery 9 5 4 0 7 6
Messager 14 7 6 2 9 11
MusicPlayer 9 5 4 2 7 8
VoiceRecoder 9 7 2 1 8 5

AndroidWorld

AudioRecorder 2 0 0 0 1 2
Osmand 3 0 0 2 0 0
Retro Music 4 1 0 0 1 1
Pro Expense 5 0 0 0 2 3
Markor 11 1 3 1 4 4
Broccoli 5 4 0 0 3 3
Messager 4 0 3 0 1 3
Draw 1 0 0 0 1 1
Calender 9 1 1 0 1 1

Total 19 189 89 66 23 119 125

1 2

4 5 6

3Initial instructions:
 1. Open the app and navigate to the main interface.
 2. Go to the settings menu from the toolbar.
 3. Locate the theme customization option.
 4. Select the 'light' theme option.
 5. Confirm the theme selection.
 6. Save the changes.

Final instructions:
1. Open the app and navigate to the main interface.
2. Go to the settings menu from the toolbar.
3. Locate the theme customization option.
4. Select the 'Theme' option.
5. Select the 'light' theme option.
6. Click the 'Save' button to save the theme changes.

Figure 7: A successful case on DroidTask demonstrates the effectiveness of UICOMPASS’s UI Map and adaptive UI
action generation.

26498

Table 5: Prompt Template for Semantic Enhance for UI Map via LLM

System
You are an Android source code analysis assistant.

User
[Background]
You are an Android analyst. I will give you a method from the class {Class name}.
Here is the method from the given Android source code:
{Method}
[Method Variable Context]
{Global variable definition and assignment}
[Invoked Method Summary]
Here is the explanation of the method named {Method name} that is called within the given method:
{Description of these methods}
[Target]
Based on your analysis, please provide the following information:
1. **Method Summary:** Provide a concise summary of the functionality of this method. Describe
what the method does.
2. **Dynamic Attributes of UI Element Analysis:** Identify all **UI elements** present in this
method. For each identified UI element, provide the following information:
* **Type:** (e.g., Button, TextView, ImageView, MenuItem)
* **ID:** (if available, e.g., R.id.button_login)
* **Function:** Describe the effects of interacting with or the execution related to this UI element
(e.g., UI update, navigation to a new activity, data modification, triggering a function call).
3. **Activity Transfer Relationship:** Summarize any activity transfer relationships in the code.
4. **Activity-Fragment Relationships:** Identify and describe any dependencies or relationships
between activities and fragments within the code (e.g., a fragment being added, replaced, or associated
with an activity using ‘FragmentTransaction‘).
5. **Layout Relationships:** Identify any relationships between activities or fragments and XML lay-
out files (starting with ‘R.layout‘) or menu files (starting with ‘R.menu‘). Specify which layout files are
inflated or referenced by which activities or fragments (e.g., using ‘setContentView()‘, ‘LayoutInflater‘,
‘FragmentTransaction.replace()‘).
Output Example
{Output Example}

programming scenarios and augment the UI Map
with semantic information to facilitate understand-
ing, thereby making the enhanced UI Map more
robust. Table 5 presents the prompt template em-
ployed in this stage. During this process, UICOM-
PASS first provides the source code of a method
along with its contextual information, including
variable definitions and assignments, as well as
summaries of the methods it calls. Given that this
stage processes each method according to the topo-
logical order of the call graph, the summaries of the
methods called by the current method are already
available. Based on this information, UICOMPASS

prompts the LLM to accomplish our intended ob-
jectives. As shown in the main text, UICOMPASS

requests the LLM to provide a summary of the

method, the dynamic attributes of the involved ele-
ments, activity transition relationships, and layout
relationships. Considering that many applications
reuse layouts through fragments, we still account
for fragment scenarios. If a fragment is attached
to an activity, then all elements within the layout
corresponding to that fragment are added to the
activity. Finally, UICOMPASS instructs the LLM to
output the information according to a specified out-
put format, which facilitates subsequent processing
by UICOMPASS.

B.2 The Prompt for the UI Path Planning

The main purpose of the prompt in the UI path
planning stage is to guide the LLM in generating a
possible execution path for a given application and

26499

Table 6: Prompt Template for UI Path Planning in UICOMPASS

System
You are a helpful AI mobile phone operating assistant.

User
[Background]
I need to execute a target task within the application. Could you assist in designing the step-by-step
instructions to achieve it? I will provide you with the UI Map for the application. The UI Map is a
graph used to describe the application’s user interface and interaction logic. Your task is to speculate
on what instructions are used to execute the given task.
[UI Map]
Here is the UI Map of this app:
Activity list:
Na

Information about these activities:
Activity name:
{Activity name}
The summary of {Activity name}: {asum}
This activity can be transferred to other activities: Et.t,
{Nel}

[Task Description]
Based on the aforementioned application information, our goal is to execute the task: {t}
[Output Example]
Here’s a reference output example. Based on this format, list all activities involved in the task and the
corresponding instructions per activity. Output must adhere to the following JSON format.
{Output Example}

target task t.
Table 6 shows the template for the prompt at this

stage, which illustrates how UICOMPASS converts
the UI Map into easily understandable text format.
Within the template, UICOMPASS first informs the
LLM about the information that will be provided,
and specifies the expectation that the LLM should
generate a UI path capable of completing the task.
Subsequently, the UI Map is converted into a text
format. In this part, UICOMPASS first provides
all activity nodes Na within the application, and
then elaborates on the information for each Activity.
For each activity, UICOMPASS provides three key
pieces of information: 1) the name of the activity
and the functional summary asum, which helps
the LLM quickly understand the activity; 2) the
activities that can be navigated to from the current
activity, clarifying relationships between activities;
and 3) information about all elements contained
within that activity. As illustrated by the prompt
example for this stage in Table 7, UICOMPASS

displays not only the static properties of elements
(such as tag and id), which helps quickly identify
element types, but also provides dynamic property

information. This significantly assists the LLM in
understanding element functions and determining
their relevance to the task. Finally, UICOMPASS

clearly defines the specific task requirements and
provides an output example, requesting the LLM
to output in the specified format.

The prompt at this stage effectively extracts and
organizes the key information about app UI inter-
action, enabling the LLM to quickly generate ef-
fective UI paths.

B.3 The Prompt for the UICOMPASS’s
Adaptive Decision Making.

The adaptive decision-making component of
UICOMPASS is responsible for adjusting the
planned path (represented as an instruction list) and
determining the next instruction. Table 8 presents
the prompt template for this component. Initially,
the ‘Background’ section introduces the task to
be executed to the LLM. It informs the LLM that
UICOMPASS will provide a UI path for the task
t but notes that potential errors may exist, requir-
ing the LLM to identify and correct them. Subse-
quently, essential information is provided, includ-

26500

ing UI path I, screen S′, and history A. In the
history section, UICOMPASS furnishes the history
of executed actions and the history of instructions.
This facilitates the LLM’s assessment of the task
completion status from both action and instruction
perspectives. Finally, UICOMPASS specifies the
desired output data and its corresponding explana-
tion to the LLM, and requires the LLM to gener-
ate the output in the designated format. Table 9
offers a concrete example of a prompt. It can be
observed that UICOMPASS provides substantial rel-
evant information to aid the LLM in understanding
the task execution state. As demonstrated by the
LLM’s response in Table 10, the screen informa-
tion supplied by UICOMPASS effectively assists
the LLM in recognizing that the interface display
indicates the task objective is complete (e.g., the
font size has been adjusted). Based on the histori-
cal information, the LLM can further infer that all
instructions have been completed and accurately
determine that the next instruction should be ‘none’,
signifying the task’s conclusion. From the template,
example, and the LLM’s response, the effectiveness
of the prompt design for UICOMPASS’s adaptive
decision-making module is evident.

B.4 UICOMPASS Action Selection Prompt

Table 11 presents the prompt template used by
UICOMPASS for selecting corresponding candidate
elements based on a given instruction In and task
t. Inspired by the design of the Guardian tool, we
designed the prompt template for selecting action
candidates. UICOMPASS automatically identifies
the type of each element and analyzes the possible
actions that can be performed on it based on its
type and properties. These actions are then added
to an action candidate list. Consequently, in the
prompt, UICOMPASS lists all available action can-
didates. This list may include dynamic attributes to
describe the element’s functionality. For instance,
the element at index 4 in table 12 might indicate
its ability to open a new window. Subsequently,
UICOMPASS provides the current task t and the
instruction In to be executed, explicitly stating the
required output format. The LLM is only required
to output a single number, such as 4, corresponding
to the index in the candidate list. Suppose none of
these candidate elements is related. In that case, the
LLM should output "index-none", indicating that
no relevant element is present on the current user in-
terface, in which case UICOMPASS will perform a
return operation. For input actions, UICOMPASS’s

handling them is similar to Guardian’s design - it
will query the LLM again for the text to be input.
Table 12 provides a concrete example, illustrating
that we provide various attributes of the element
along with the actions to be executed. The element
attributes information is extracted from the XML
interface description obtained from the Android
device. This information can reflect the element’s
state during execution (e.g., selected=true indicates
it is selected), which is crucial for UICOMPASS to
determine whether the task has been successfully
completed.

C License and Terms for Derived
Artifacts

Use of Existing Artifacts:

• Guardian Tool (Ran et al., 2024): Licensed
under Apache 2.0, which imposes no restric-
tions on intended use. Our application of
Guardian for developing a mobile automation
tool is consistent with its open-source pur-
pose. We confirm there are no specified use
restrictions in Guardian’s original license or
documentation that our usage violates.

• AndroidWorld Dataset (Rawles et al.,
2025): Released under Apache License 2.0,
permitting free use. Our usage complies with
all license requirements.

• DroidTask Dataset (Wen et al., 2024): Li-
censed under MIT License, allowing free use.

• Tree-sitter (Brunsfeld and Contributors,
2025): Utilized under MIT License, which
permits free use in our project with minimal
restrictions.

• JADX (Skylot, 2025): Used under Apache-
2.0 license, compatible with our project’s li-
censing and usage requirements.

Derived Artifact Compliance:

• Our tool is released under the same Apache
License 2.0 (full text included in the repos-
itory’s LICENSE file), maintaining compat-
ibility with all incorporated components’ li-
censes.

26501

Table 7: Prompt Example for UI Path Planning in UICOMPASS

System
You are a helpful AI mobile phone operating assistant.

User
[Background]
I need to execute a target task within the application. Could you assist in designing the step-by-step
instructions to achieve it? I will provide you with the UI Map for the application. The UI Map is a
graph used to describe the application’s user interface and interaction logic. Your task is to speculate
on what instructions are used to execute the given task.
[UI Map]
Here is the UI Map of this app:
Activity list:
SplashActivity, MainActivity, WidgetConfigureActivity, AboutActivity,
CustomizationActivity, SettingsActivity,

Information about these activities:
Activity name:
com.simplemobiletools.notes.pro.activities.MainActivity

The summary of com.simplemobiletools.notes.pro.activities.MainActivity: "The
activity serves as the main interface for managing notes, including creating,
editing, deleting, and viewing notes. It supports various note types (text..."

This activity can be transferred to other activities: SplashActivity, AboutActivity,
SettingsActivity,

index-1: tag:MaterialToolbar, id:@+id/main_toolbar, action:toolbar,
effect:Displays the activity’s toolbar, which contains menu items for actions
like saving, searching, creating notes, and accessing settings.

index-2: tag:include, id:@+id/search_wrapper, action:include, effect:Embeds
the search bar layout, enabling search functionality within the activity.
...
[Task Description]
Based on the aforementioned application information, our goal is to execute the task: "Set app theme
to light and save it"
[Output Example]
Here’s a reference output example. Based on this format, list all activities involved in the task and the
corresponding instructions per activity. Output must adhere to the following JSON format.
{"task": "Book a flight", "UI path": [{"activity": "LoginActivity", "steps": ["1.
Input the account.", "2. Submit the login form."]}, {"activity": "MainActivity",
"steps": ["3. Search for available flights based on your preferences.", "4. Select
the flight that suits your needs."]}, {"activity": "BookingActivity", "steps": [
"5. Enter the required passenger details for booking.", "6. Make the payment for
the selected flight.", "7. Receive a confirmation of the flight booking."]}]}

26502

Table 8: The prompt template for the adaptiveDecisionMaking process of UICOMPASS.

System
You are a helpful AI mobile phone operating assistant.

User
[Background]
I currently have a task {Task}, and I have a set of instructions for this task, but there may be errors in
this set of instructions that need to be adjusted based on the current user interface.
[Instrctions]
Instructions:
{I}
[Screen]
Here is the information about the screen we are currently on.
{S′}
[History]
#History information (You should refer to the historical records to identify which part of the instructions
they correspond to, consider the relationship between the current interface and the next step, and then
update the instructions accordingly.):
{Action List}
Here is the history of executed instructions:
{Executed Instructions}
[Output Explanation and Example]
Based on this information, please tell me <current state>, <finished instruction>, <error reason>,
<next_instruction>, <updated instructions>.
Note that:
+ current state: Summarize the current program state according to the given widgets.
+ finished instruction: Summarize the just-completed instruction.
+ error reason: Please analyze if there are any errors in the UI path. When the UI path is correct, the
error reason should be output as empty.
+ next_instruction: next_instruction should correspond to only one action. If not, please split the
instruction, ensuring that the next instruction corresponds to a single action. If the Task is finished,
next_instruction = none.
This is an output example:
{Output Example}
Warning:
You should tell me the updated instructions according to this format. (**Do not output any else except
the JSON format.**)

26503

Table 9: The prompt example for the adaptiveDecisionMaking process of UICOMPASS.

System
You are a helpful AI mobile phone operating assistant.

User
[Background]
I currently have a task Adjust the fontsize of the Notes app to 125%, and I have a set of
instructions for this task, but there may be errors in this set of instructions that need to be adjusted
based on the current user interface.
[Instrctions]
Instructions:
{’task’: ’Adjust the fontsize of the Notes app to 125%’, ’UI_path’: [{’activity’:
’MainActivity’, ’steps’: [’1. Open the Notes app.’, ’2. Navigate to the settings
menu.’]}, {’activity’: ’SettingsActivity’, ’steps’: ["3. Locate the ’Font Size’
option.", "4. Click on the ’125%’ option to adjust the font size.", "5. Click ’OK’
to confirm the font size adjustment"]}]}
[Screen]
Here is the information about the screen we are currently on.
index-0: a View (accessibility information: Open note, resource_id "open_note",
content-desc: "Open note", text: "", selected: "false", checked: "false", text:)
to click
index-1: a View (accessibility information: Create a new note, resource_id
"new_note", content-desc: "Create a new note", text: "", selected: "false", checked:
"false", text:) to click
...
[History]
#History information (You should refer to the historical records to identify which part of the instructions
they correspond to, consider the relationship between the current interface and the next step, and then
update the instructions accordingly.):
index-0: open the target appliaction
index-1:Event(action=click, widget=a View (accessibility information: More options,
text:))
...
Here is the history of executed instructions:
index-1:"Navigate to the settings menu.".
index-2:"Locate the ’Font Size’ option.".
...
[Output Explanation and Example]
{Output Explanation.}
This is an output example:
{ "task": "Book a flight", "explanation": { "current state": "The booking is complete but not confirmed",
"finished instruction": "All booking steps are done", "error reason": "Missing confirmation click on
’Confirm’ or ’Book Now’ button", "next_instruction": "Click ’Confirm’ to finalize the booking" },
"updated_UI_path": [{ "activity": "LoginActivity", "steps": ["1. Open the application Booking",
"2. Input the account.", "3. Submit the login form."] }, { "activity": "MainActivity", "steps": ["4.
Search for available flights based on your preferences.", "5. Select the flight that suits your needs."] },
{ "activity": "BookingActivity", "steps": ["6. Enter the required passenger details for booking.", "7.
Make the payment for the selected flight.", "8. Receive a confirmation of the flight booking." "9. Click
’OK’ to confirm login"] }] }
Warning: You should tell me the updated instructions according to this format. (**Do not output any
else except the JSON format.**)

26504

Table 10: The LLM’s Answer for the Prompt in UICOMPASS’s the Adaptive Decision Making process.

LLM’s Answer:
{

"task": "Adjust the fontsize of the Notes app to 125%",
"explanation": {

"current state": "The font size adjustment is complete and confirmed",
"finished instruction": "All steps for adjusting the font size are done",
"error reason": "",
"next_instruction": "none"

},
"updated_UI_path": [
{

"activity": "MainActivity",
"steps": [

"1. Open the Notes app.",
"2. Navigate to the settings menu."

]
}, {

"activity": "SettingsActivity",
"steps": [

"3. Locate the ’Font Size’ option.",
"4. Click on the ’125%’ option to adjust the font size.",
"5. Click ’OK’ to confirm the font size adjustment"

]
}
]

}

Table 11: Prompt Template for Action Selection in UICOMPASS

System
You are a helpful AI mobile phone operating assistant.

User
[Action Candidates]
Currently we have {number} widgets, namely:
{List of candidate widget actions}
We now want to execute this instruction **{In}**, which is part of our test target is to {t}.
[Output Requirement]
Please choose only one UI element with its index, such that the element can bring us closer to our test
target.
If none of the UI elements can do so, respond with index-none.

26505

Table 12: Prompt Example for Action Selection in UICOMPASS

System
You are a helpful AI mobile phone operating assistant.

User
Currently we have 12 widgets, namely:
index-0: a View (accessibility information: Back, text:) to click
index-1: a View (accessibility information: , resource_id "settings_nested_scrollview", content-desc:
"", text: "", selected: "false", checked: "false", text:) to vertical_scroll
index-2: a View (accessibility information: , resource_id "settings_nested_scrollview", content-desc:
"", text: "", selected: "false", checked: "false", text:) to horizontal_scroll
index-3: a View (accessibility information: , resource_id "settings_color_customization_holder",
content-desc: "", text: "Customize colors", selected: "false", checked: "false", text: Customize colors)
to click
index-4: a View (accessibility information: , resource_id "settings_change_date_time_format_holder",
content-desc: "", text: "Change date and time format", selected: "false", checked: "false", text: Change
date and time format. This element is used for: <When clicked, it triggers the display of a dialog for
changing the date and time format.>.) to click
...
We now want to execute this instruction **"3. In the SettingsActivity, locate the ’Color
Customization’ section."**, which is part of our test target to change the theme to light on
Simple-File-Manager.
Please choose only one UI element with its index, such that the element can bring us closer to our test
target.
If none of the UI elements can do so, respond with index-none.

26506

