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Abstract

The advancement of Argument Mining (AM)
is hindered by a critical bottleneck: the scarcity
of structure-annotated datasets, which are ex-
pensive to create manually. Inspired by recent
successes in synthetic data generation across
various NLP tasks, this paper explores method-
ologies for LLMs to generate synthetic data for
AM. We investigate two complementary syn-
thesis perspectives: a quality-oriented synthesis
approach, which employs structure-aware para-
phrasing to preserve annotation quality, and a
diversity-oriented synthesis approach, which
generates novel argumentative texts with di-
verse topics and argument structures. Experi-
ments on three datasets show that augmenting
original training data with our synthetic data,
particularly when combining both quality- and
diversity-oriented instances, significantly en-
hances the performance of existing AM mod-
els, both in full-data and low-resource settings.
Moreover, the positive correlation between syn-
thetic data volume and model performance
highlights the scalability of our methods.

1 Introduction

Understanding the underlying logical reasoning
embedded within natural language text is a funda-
mental challenge for artificial intelligence. Argu-
ment Mining (AM) aims to address this challenge
by identifying and outlining the structure of ar-
guments within a document (Stab and Gurevych,
2014, 2017; Lawrence and Reed, 2019). This pro-
cess involves pinpointing key textual segments that
function as argument components, such as claims
stating a stance or premises providing support. It
also requires determining the relations between
these components, such as whether one supports
or attacks another. Having this structured view
of arguments provides valuable insights into logi-
cal reasoning and persuasive techniques, proving
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beneficial across various domains (Nguyen and Lit-
man, 2018; Slonim et al., 2021; Fabbri et al., 2021;
Elaraby and Litman, 2022).

Unfortunately, the advancement of AM mod-
els is often hindered by a significant bottleneck:
the scarcity of annotated data (Dutta et al., 2022;
Morio et al., 2022). The complexity inherent in AM
tasks—requiring not just span identification but
also fine-grained component classification and the
intricate mapping of relational structures—makes
manual annotation a particularly challenging and
labor-intensive endeavor. Consequently, existing
benchmark datasets for AM (Park and Cardie,
2018; Mayer et al., 2020), while invaluable for
research, tend to be limited in size (e.g., only 400+
essays in the AAEC dataset (Stab and Gurevych,
2017)). This data limitation poses a substantial
challenge for training robust, high-performance
AM systems. Addressing this critical data scarcity
is therefore a key motivation of this work.

Recent advancements leveraging LLMs for syn-
thetic data generation have shown significant
promise for augmenting data in NLP tasks (Havrilla
et al., 2024). Inspired by this, we argue that LLM-
based synthetic data generation holds potential for
alleviating the data bottleneck in AM. However,
generating synthetic data for AM is non-trivial due
to the inherent complexity of its annotation scheme,
involving component spans, types, and directed re-
lations. This difficulty is consistent with existing
work showing that off-the-shelf LLMs (e.g., GPT-
4o) struggle to perform well on AM (Bao et al.,
2025). Therefore, expecting LLMs to consistently
generate both the argumentative text and its precise
structural annotation through simple prompting is
an even greater challenge.

To address these challenges, this paper explores
methodologies for effectively leveraging LLMs to
generate synthetic data for AM, ultimately aiming
to enhance the performance of existing AM models.
Inspired by Havrilla et al. (2024), we investigate
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two complementary synthesis perspectives, focus-
ing on synthetic data quality and diversity, respec-
tively. We refer to them as the quality-oriented
synthesis (QOS) and diversity-oriented synthesis
(DOS) approaches.

The QOS approach prioritizes the quality of syn-
thetic data. It employs a structure-aware prompting
technique that instructs an LLM to paraphrase ex-
isting training instances while strictly preserving
their original annotation labels (i.e., component
spans, types, and relations). The resulting synthetic
data exhibits high label quality, mirroring the gold
standard, but consequently offers limited diversity
in terms of topics and argument structures. Con-
versely, the DOS approach focuses on generating
synthetic data with greater diversity. It first em-
ploys an LLM to brainstorm a wide range of new
topics. Then, for a new topic, it prompts the LLM
to generate a new argumentative text by imitating
an existing training instance. During this process,
we provide the LLM with the argumentation pattern
of this reference—a concise representation of the
argument structure—and instruct it to modify this
pattern before generating new argumentative text,
thereby fostering structural diversity. Finally, these
new texts are automatically annotated by a baseline
AM model. This method yields synthetic data with
greater topical and structural diversity, albeit with
potentially less reliable labels than QOS.

We conduct comprehensive experiments on three
AM datasets. Our empirical results demonstrate
that augmenting the original training data with syn-
thetic data–generated by either QOS or DOS–leads
to significant performance improvements over two
strong baseline AM systems, both in full-data and
low-resource settings. Furthermore, we observe
that combining synthetic data derived from both
data synthesis approaches yields additional perfor-
mance gains. Our analyses also reveal a generally
positive correlation between the volume of syn-
thetic data incorporated and the resulting model
performance, highlighting the potential scalability
of our methods.

2 Related Work

2.1 Argument Mining

Argument Mining is a multifaceted research area
within NLP focused on automatically extracting
argumentative structures from text (Lawrence and
Reed, 2019). Given its inherent complexity, many
efforts have sought to make the problem tractable

by selectively focusing on specific sub-tasks (Chen
et al., 2024; Kuribayashi et al., 2019; Li et al., 2022;
Bao et al., 2021; Liang et al., 2023). These include,
but are not limited to, argument component segmen-
tation and classification, which involves locating
textual spans corresponding to argumentative units
like claims and premises (Moens et al., 2007; Wang
et al., 2020; Cheng et al., 2022); and argumentative
relation identification, which aims to determine the
relations between these components (Cocarascu
and Toni, 2017; Jo et al., 2021).

While such focused research has yielded valu-
able insights, the interdependencies between these
sub-tasks have motivated a growing body of work
on joint modeling and end-to-end approaches (Eger
et al., 2017; Morio et al., 2022). These methods
attempt to parse the entire argument structure in a
single, unified framework, capturing richer contex-
tual information and mitigating error propagation
common in pipeline systems. Prominent end-to-
end strategies largely fall into two main categories:
those adapting traditional natural language parsing
techniques (Persing and Ng, 2016; Ye and Teufel,
2021; Morio et al., 2022), and the more recent rise
of generative models (Kawarada et al., 2024; Sun
et al., 2024; Bao et al., 2022, 2025). In this paper,
our focus aligns with these approaches, aiming to
improve end-to-end analysis of argument structure.

The development of end-to-end AM systems
is hampered by the scarcity of annotated cor-
pora (Dutta et al., 2022; Morio et al., 2022).
Annotating the comprehensive argument struc-
tures—encompassing argument components, their
types, and their interrelations—that end-to-end ap-
proaches strive to model is a meticulous endeavor.
Thus, existing datasets, while foundational, are
limited in size (Park and Cardie, 2018; Accuosto
and Saggion, 2020). For instance, the widely used
Argument-annotated Essays Corpus (AAEC) (Stab
and Gurevych, 2017) contains 402 persuasive es-
says; the AbstRCT corpus (Mayer et al., 2020)
comprises 500 abstracts of clinical trials. This data
scarcity poses a critical hurdle for developing ef-
fective end-to-end AM systems.

2.2 Synthetic Data Generation
Synthetic data generation, particularly empowered
by LLMs, has become a crucial strategy for aug-
menting data across numerous NLP tasks (Guo and
Chen, 2024; Bao et al., 2023; Wang et al., 2023;
Havrilla et al., 2024). While LLMs excel at gen-
erating fluent text for tasks with simpler output
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structures, their application to complex, structured-
output tasks like dependency parsing (Zhang et al.,
2024), semantic parsing (Nicosia et al., 2021), and
information extraction (Josifoski et al., 2023; Dong
et al., 2023) requires more tailored approaches to
handle intricate linguistic annotations.

Despite these advancements, research on syn-
thetic data generation specifically for end-to-end
AM remains relatively underexplored. To the best
of our knowledge, this paper is among the pioneer-
ing efforts to systematically investigate LLM-based
synthetic data generation as a means to enhance
end-to-end AM systems.

3 Task Formulation

Formally, the task of end-to-end AM takes an input
argumentative text X . The objective is twofold:
(1) Argument Component Identification (ACI)
aims to identify a set of argument components
C = {c1, c2, . . . , c|C|}. Each component ci ∈ C
is represented as a tuple (si, ei, t

c
i ), where si and

ei are the start and end token indices of the com-
ponent’s span within X , and tci is its type (e.g.,
“Claim”, “Premise”) drawn from a predefined set
of component types. (2) Argumentative Rela-
tion Identification (ARI) aims to identify a set
of argumentative relations R = {r1, r2, . . . , r|R|}.
Each relation ri ∈ R connects a source component
csrci ∈ C to a target component ctgti ∈ C. The rela-
tion is also assigned a type tri (e.g., “Support”, “At-
tack”) from a predefined set of relation types. Thus,
ri can be represented as a tuple (csrci , ctgti , tri ).

Let M denote an AM model designed to perform
this end-to-end task, typically trained on a manu-
ally annotated dataset Dorig = {(Xk, Ck,Rk)}Norig

k=1 .
The core objective of this paper is to investigate
methods for generating synthetic training data,
Dsyn, by leveraging LLMs. Our goal is to demon-
strate that by augmenting the original training data
with these synthetic instances, we can significantly
enhance the performance of existing AM models.

4 Methodology

We explore two complementary synthetic data gen-
eration approaches for AM: Quality-Oriented
Synthesis (QOS), which prioritizes the quality of
the synthetic data by ensuring high fidelity to gold-
standard annotations, and Diversity-Oriented Syn-
thesis (DOS), which focuses on the diversity of
the synthetic data in terms of topics and argument
structures. Figure 1 provides an overview of our

proposed framework.

4.1 Quality-Oriented Synthesis (QOS)

The QOS approach employs a paraphrase-based
strategy. It aims to generate synthetic data that
is lexically and syntactically varied from original
training instances, while meticulously preserving
both their original semantics and the integrity of
their human-annotated argument structures. This
ensures that the synthetic data exhibits high-quality
labels, thereby minimizing the risk of injecting
significant label noise into the training process.

Structure-aware Paraphrasing. QOS leverages
a carefully designed prompt that instructs an LLM
to perform structure-aware paraphrasing. As shown
in Figure 1 (a)1, for each original training instance
(Xk, Ck,Rk) ∈ Dorig, we format the input for the
LLM as a JSON object. In this object, we explicitly
separate the context text from the argument compo-
nents text. The context text contains placeholders
(e.g., “[AC1]”, “[AC2]”) indicating the positions
where argument components are to be inserted. The
“argument_component_info” part of the JSON ob-
ject provides the actual content and pre-defined
type of each argument component. The LLM is
then tasked to paraphrase both the context and the
content of each argument component. In essence,
the LLM aims to enhance linguistic diversity while
strictly preserving the original meaning, compo-
nent types, and overall textual coherence, returning
the output in the same JSON format.

This explicit separation of context and argument
components offers significant advantages. By treat-
ing argument components as distinct units inserted
into placeholders, their textual boundaries are inher-
ently maintained during paraphrasing. This circum-
vents the issue in free-form paraphrasing where
original span annotations often become misaligned
in the paraphrased text. Notably, argumentative
relations are not explicitly provided to the LLM,
due to the challenge of representing complex rela-
tional structures in a textual format that LLMs can
robustly interpret. Instead, we assume these rela-
tions are implicitly encoded within the context and
components’ semantics, and are preserved through
strict meaning preservation during paraphrasing.

Annotation Inheritance. Once the LLM gener-
ates the paraphrased JSON output, the new syn-
thetic text can be reconstructed by inserting the

1The specific prompt is shown in Figure 9 of Appendix N.
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Structure-aware 
Paraphrasing

{
 "context": "⋯ Conversely, [AC6] . This explains why it is
  commonly believed that [AC7]⋯",

 "argument_component_info": {
  …
  "[AC6]": {
   "type": "premise",
   "content": “the importance of competition lies in  
   striving for excellence to achieve success"
  },
  "[AC7]": {
   "type": "claim:against",
   "content": "competition enhances societal efficiency"
  }, …

{
 "context": "⋯ On the other hand, [AC6] . Hence it is always 
  said that [AC7] . ⋯",

 "argument_component_info": {
  …
  "[AC6]": {
   "type": "premise",
   "content": “the significance of competition is that  
    how to become more excellence to gain the victory"
  },
  "[AC7]": {
   "type": "claim:against",
   "content": "competition makes the society more effective"
  }, …

{
    "topic": "Should social life be built through work or outside of 

 work?",

    "argumentation_pattern": {
  "⋯ claim -> premise -> premise ⋯",
 },
    "argumentative_text": "⋯ <claim> On the other hand, work 
  provides a structured environment that facilitates ⋯   
  </claim>. <premise> Workplaces are designed to bring  
  people together to achieve ⋯ </premise>. However,   
  <premise> relying solely on work for social interactions
  can ⋯ </premise>. ⋯"
}

Text Imitation 

Context Paraphrasing

Component Paraphrasing

(a) Quality-Oriented Synthesis (QOS) :

(b) Diversity-Oriented Synthesis (DOS) :

Input Output

Input Output

{
 "topic": "Should students be taught to compete or to    
 cooperate?",

 "argumentation_pattern": {
  "⋯ premise -> claim -> premise ⋯",
 },
 "argumentative_text": "⋯ On the other hand, <premise> the 
  significance of competition is that how to become⋯   
  </premise> . Hence it is always said that <claim>   
  competition makes the society more effective </claim> . 
  However, <premise> when we consider about the question 
  that how to win the game, we always ⋯ </premise> . ⋯"
}

Synthetic 
Data

Argumentation Pattern 
Diversification

Topic Brainstorming

Automatic 
Annotation 

Annotation 
Inheritance

Figure 1: Overview of our synthetic data generation framework. (a) Quality-Oriented Synthesis (QOS) inputs an
original training sample (Input) and uses structure-aware paraphrasing with inheriting annotations to produce a
synthetic sample (Output). (b) Diversity-Oriented Synthesis (DOS) first employs topic brainstorming to generate
diverse new topics. Then, for a new topic and an original sample (Input), it generates a diversified argumentation
pattern and imitates a novel argumentative text (Output), which is automatically annotated by a baseline AM model.

paraphrased component contents into their corre-
sponding placeholders within the paraphrased con-
text. The span information for each component
is directly derivable from this process. Critically,
the labels of both the component types and the
argumentative relations are inherited from the orig-
inal training instance’s annotations. The result-
ing synthetic dataset generated via QOS, denoted
as Dsyn-qos, therefore exhibits high label quality2.
However, as a consequence of its reliance on para-
phrasing existing data, Dsyn-qos offers limited nov-
elty in terms of topics and argument structures
when compared to the original training set.

4.2 Diversity-Oriented Synthesis (DOS)

DOS prioritizes the generation of synthetic data
that exhibits greater novelty, particularly in terms
of the topics and the underlying argument struc-
tures. Its goal is to expose the AM model to a
wider spectrum of argumentation and reasoning pat-
terns than those present in Dorig. This is achieved
through a three-stage process: first brainstorming
diverse topics, then generating new argumentative
texts by text imitation while encouraging structural
variation, and finally automatically annotating the
generated texts using a baseline AM model trained
on existing training data.

2This high quality is empirically evidenced in Appendix D.

Diverse Topic Brainstorming. The initial stage
of DOS aims to generate a pool of novel topics to
serve as the foundation for new argumentative texts.
This is achieved by prompting an LLM to brain-
storm diverse topics, drawing inspiration from the
thematic domains in the original training data Dorig.
Specifically, we first randomly sample a small set
of existing topics from Dorig. For the AAEC dataset
(Stab and Gurevych, 2017), we view essay titles as
topics. For other datasets such as CDCP (Park and
Cardie, 2018) or AbstRCT (Mayer et al., 2020),
where topics are not readily available, we prompt
an LLM to summarize a concise topic for each ar-
gumentative text3. Once these topics are acquired,
a randomly selected subset is provided as input
to an LLM prompt designed for topic brainstorm-
ing4. This prompt instructs the LLM to generate
a specified number of new, diverse topics that are
thematically related to the provided examples. This
ensures the newly generated topics maintain rele-
vance to the dataset’s domain yet offer sufficient
novelty.

Text Imitation with Argumentation Pattern Di-
versification. Following the generation of di-
verse topics, this stage focuses on creating new
argumentative texts for each new topic. This pro-
cess employs an imitation prompt, as exemplified

3The specific prompt is shown in Figure 10 of Appendix N.
4The specific prompt is shown in Figure 11 of Appendix N.
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in Figure 1 (b)5, which guides an LLM to generate
a new argumentative text by taking as input both
a new topic and an example training instance ran-
domly sampled from Dorig. This example instance
is provided in a JSON format, containing its origi-
nal topic, its full argumentative text, and a central
element we introduce: its “argumentation pattern”.
The argumentation pattern serves as a simplified
representation of the reference instance’s argument
structure, formalized as a sequence of its compo-
nent types (e.g., “claim → premise → premise”).
To facilitate the LLM’s understanding of this pat-
tern and its direct correspondence to the actual
text, the argumentative text of the example instance
within the JSON input includes inline tags (e.g.,
<premise>...</premise>) that explicitly mark the
spans and types of its argument components. These
tags will be removed after generation.

Furthermore, a key mechanism for fostering di-
versity lies in the explicit instruction within the
prompt: the LLM is required to first modify the
provided argumentation pattern to create a new
one (e.g., from “claim → premise → premise”
to “premise → claim → premise”). Specifically,
the LLM is encouraged to introduce variations by
changing, adding, or removing components in the
provided argumentation pattern. Then, it generates
a new argumentative text following this modified
pattern. This strategy can prevent the LLM from
merely copying the reasoning flow of the reference
text, thereby promoting the generation of more di-
verse argument structures.

Automatic Annotation. Once the new argumen-
tative text is generated through the imitation pro-
cess, it must be annotated to function as a training
instance. This annotation is performed automati-
cally by employing a baseline AM model, denoted
Mbase. This model is trained exclusively on the
original human-annotated data Dorig. The combi-
nation of the new argumentative text and its au-
tomatically annotated argument components and
argumentative relations then constitutes a synthetic
training instance. We denote the synthetic dataset
as Dsyn-dos. This method yields data with the de-
sired topical and structural diversity6. However, the
quality of these automatically generated labels is
inherently contingent upon the performance of the
baseline model, potentially introducing a degree of
label noise. This represents a deliberate trade-off

5The specific prompt is shown in Figure 12 of Appendix N.
6This diversity is empirically evidenced in Appendix 5.8.

to achieve greater diversity compared to QOS.

4.3 Training Strategy with Synthetic Data
We use the synthetic datasets Dsyn-qos and Dsyn-dos
to augment the original training data Dorig using a
two-stage training strategy. First, the AM model
M is trained on a synthetic dataset–either Dsyn-qos,
Dsyn-dos, or a mixture of them–leveraging the larger
volume for initial learning. Subsequently, the
model is further trained on the original human-
annotated dataset Dorig to refine predictions with
high-quality labels and align with the target data
distribution. The effectiveness of this approach is
evaluated on the standard test sets of the respective
datasets.

5 Experiments

5.1 Experimental Setup
Datasets. We evaluate our methods on three
widely-used AM datasets: AAEC (Stab and
Gurevych, 2017), CDCP (Park and Cardie, 2018),
and AbstRCT (Mayer et al., 2020). Details of
these datasets are shown in Appendix A.1. Our
experiments are performed under two training data
settings: using 100% of the original training data
and a low-resource setting with only 5% of the
training data, which is randomly sampled. For all
experiments, we follow the train, validation, and
test splits used in prior work (Morio et al., 2022).

Implementation Details. For all LLM-based
synthetic data generation approaches, we utilize
the gpt-4o-2024-05-13 model. In Appendix H, we
also experiment with replacing GPT-4o with open-
source LLMs. In our main experiments7, the vol-
ume of synthetic data employed for augmentation
is consistently set to twice the size of the original
training data used in a given setting. For the com-
bined QOS+DOS approach in these experiments,
the synthetic data is composed of 25% QOS and
75% DOS instances8. Specific hyper-parameters
are provided in Table 5 of Appendix A.2. For all
experiments, we report the average results over five
runs with different random seeds. We use three mi-
cro F1 metrics adopted from previous work (Morio
et al., 2022): F1span for identifying argument com-
ponent spans, F1aci for further classifying their
types, and F1ari for detecting relations between
them.

7Code: https://github.com/YuqiHuang2003/QOS_
DOS

8This ratio is determined by experiments in Section 5.7.
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AM Model Setting Method AAEC AbstRCT CDCP

F1span F1aci F1ari Avg F1span F1aci F1ari Avg F1span F1aci F1ari Avg

ST

100%

Origin 84.31 75.56 53.49 71.12 70.15 64.57 36.01 56.91 82.01 67.88 30.85 60.25
EDA 84.81 76.30 53.51 71.54 70.88 65.14 37.65 57.89 82.26 67.92 30.75 60.31
FTGA 85.32 76.68 53.93 71.98 71.61 65.21 37.74 58.19 81.78 67.82 32.73 60.78
JTLS 85.21 76.03 53.89 71.71 71.29 65.55 38.22 58.45 82.11 67.97 30.73 60.27
QOS 85.23* 77.08* 56.68* 73.00* 71.80 65.60 38.47* 58.62* 82.77 67.45 33.62* 61.28*
DOS 84.80 76.11 55.44* 72.12* 72.76* 66.28* 38.72* 59.25* 82.40 67.84 32.47* 60.90
QOS+DOS 86.38* 78.04* 56.94* 73.79* 74.10* 67.49* 40.03* 60.54* 83.76* 69.01* 36.10* 62.96*

5%

Origin 67.91 50.33 16.91 45.05 57.52 50.76 21.57 43.28 76.54 49.51 4.03 43.36
EDA 66.72 48.40 16.43 43.85 58.35 51.79 21.59 43.91 76.24 48.28 4.27 42.93
FTGA 69.17 52.84 20.83 47.61 56.96 50.93 23.02 43.64 76.19 49.76 5.07 43.67
JTLS 70.83 52.42 20.18 47.81 59.47 50.95 22.27 44.23 77.31 49.44 3.83 43.52
QOS 70.90* 55.55* 24.49* 50.31* 63.18* 56.66* 27.84* 49.23* 76.60 50.27 6.49* 44.45*
DOS 71.47* 54.39* 22.49* 49.45* 61.81* 54.83* 26.93* 47.86* 76.98 52.12* 8.06* 45.72*
QOS+DOS 72.10* 55.60* 23.68* 50.46* 64.36* 57.93* 28.08* 50.12* 77.34* 54.19* 8.23* 46.59*

UniASA†

100%

Origin 87.12 76.37 54.72 72.74 78.88 71.73 37.10 62.57 81.93 66.72 27.12 58.59
EDA 87.42 76.93 55.46 73.27 77.85 72.02 37.39 62.42 81.68 66.72 26.13 58.18
FTGA 87.58 76.92 55.21 73.24 79.11 71.78 38.48 63.12 82.13 67.57 26.28 58.66
JTLS 87.48 76.86 55.07 73.14 79.19 72.20 38.40 63.26 82.54 67.51 26.63 58.89
QOS 87.40 77.74* 56.57* 73.90* 80.39* 72.64* 38.87* 63.97 81.48 66.34 26.12 57.98
DOS 87.79* 77.52 56.59* 73.97* 80.33* 73.06* 40.24* 64.54* 81.57 67.30* 26.77 58.55
QOS+DOS 87.96* 78.22* 56.91* 74.36* 80.94* 73.11* 42.25* 65.43* 82.55* 67.82* 27.96* 59.44*

5%

Origin 51.44 31.47 1.06 27.99 60.36 46.98 7.96 38.43 69.21 37.06 2.05 36.11
EDA 58.62 38.02 2.06 32.90 61.14 44.07 8.23 37.81 70.55 40.71 3.82 38.36
FTGA 66.79 44.41 3.69 38.30 60.98 48.83 10.58 40.13 71.34 39.36 4.46 38.39
JTLS 55.78 35.69 2.08 31.18 60.71 45.98 11.61 39.43 71.11 42.86 2.71 38.89
QOS 74.73* 50.95* 8.45* 44.71* 61.65 54.45* 21.29* 45.80* 71.88* 47.14* 8.66* 42.56*
DOS 72.58* 48.01* 7.30* 42.63* 61.66* 50.79 16.18* 42.88* 71.80* 46.16* 6.55* 41.50*
QOS+DOS 75.34* 53.62* 12.05* 47.00* 63.63* 56.78* 23.97* 48.13* 73.06* 48.10* 8.35* 43.17*

Table 1: Main experimental results on the AAEC, AbstRCT, and CDCP datasets under full (100%) and low-resource
(5%) training data settings. “Origin” indicates models trained solely on the original training data. UniASA† denotes
the single-view version of the UniASA model; we use this variant as its performance is generally comparable
to the multi-view version while being significantly less time-consuming. The best results for each metric within
each setting are highlighted in bold. “Avg” is the arithmetic mean of the three F1 scores. “*” indicates the results
obtained by our methods are statistically significant (p-value < 0.05) based on a paired t-test.

5.2 Baseline AM Models
End-to-end AM models predominantly fall into
two categories: those adapting traditional natural
language parsing techniques and, more recently,
generative models. To evaluate the utility of syn-
thetic data across these two main categories, we
measure performance improvements on two strong
AM models, each representative of one category:
(1) ST (Morio et al., 2022): A strong representa-
tive of models adapting natural language parsing
techniques9. (2) UniASA (Bao et al., 2025): A gen-
erative model that formulates AM as a sequence-
to-sequence task10. Note that, for the automatic
annotation step in DOS, Mbase refers to the spe-
cific model being evaluated (either ST or UniASA).

5.3 Compared Methods
Given the scarcity of existing work on synthetic
data generation specifically tailored for end-to-
end AM, we evaluate our QOS and DOS methods
against several widely applicable data augmenta-
tion and synthetic data generation methods: (1)

9https://github.com/hitachi-nlp/graph_parser
10https://github.com/HITSZ-HLT/UniASA

Easy Data Augmentation (EDA) enhances argu-
mentative text by applying lexical operations. (2)
Few-shot Text Generation and Auto-annotation
(FTGA) uses GPT-4o with few-shot examples to
generate new argumentative texts, which are then
annotated by a baseline AM model. (3) Joint Text
and Label Synthesis (JTLS) prompts GPT-4o
with text-annotation pairs to simultaneously gener-
ate new argumentative texts and their full structural
annotations. Details of these methods are provided
in Appendix A.3.

5.4 Main Results

Table 1 shows results for our proposed synthetic
data generation methods (QOS, DOS, QOS+DOS)
and other compared methods on ST and UniASA
models, revealing several key points:

Enhanced Performance with QOS and DOS.
Augmenting original training data with QOS or
DOS synthetic instances significantly improves per-
formance for both ST and UniASA models. This
enhancement is consistent across all three datasets
and in both the full data and low-resource settings
when compared to models trained solely on the
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Set. Method AAEC AbstRCT CDCP

F1span F1aci F1ari Avg F1span F1aci F1ari Avg F1span F1aci F1ari Avg

100%

QOS 85.23 77.08 56.68 73.00 71.80 65.60 38.47 58.62 82.77 67.45 33.62 61.28
w/o Struct.-aware Paraph. 85.34 75.63 55.99 72.32 72.64 64.19 38.26 58.36 82.98 68.19 33.60 61.59
w/o Original Annotations 84.92 76.23 54.47 71.87 68.02 61.87 36.82 55.57 81.97 67.77 31.28 60.34
DOS 84.80 76.11 55.39 72.10 72.76 66.28 38.72 59.25 82.40 67.84 32.47 60.90
w/o Topic Brainstorming 84.92 76.30 55.60 72.27 69.58 63.42 37.59 56.86 81.16 67.31 31.93 60.13
w/o Argumentation Pattern 85.52 76.35 54.90 72.26 70.32 64.53 37.36 57.40 82.30 68.30 30.87 60.49

5%

QOS 70.90 55.55 24.49 50.31 63.18 56.66 27.84 49.23 76.60 50.27 6.49 44.45
w/o Struct.-aware Paraph. 69.76 53.51 23.06 48.78 56.74 50.51 23.30 43.52 76.53 49.46 4.58 43.52
w/o Original Annotations 68.82 49.86 18.06 45.58 55.01 49.08 21.94 42.01 76.87 48.59 4.97 43.48
DOS 71.47 54.39 22.49 49.45 61.81 54.83 26.93 47.86 76.98 52.12 8.06 45.72
w/o Topic Brainstorming 70.24 53.17 21.92 48.44 59.22 52.71 23.78 45.24 76.64 51.26 7.15 45.02
w/o Argumentation Pattern 69.50 53.16 21.86 48.17 57.57 51.32 23.97 44.29 76.67 50.39 4.88 43.98

Table 2: Ablation study of QOS and DOS on the ST model. “Set.” is short for “Setting”.

original data (“Origin”).
Synergistic Gains from Mixing QOS and DOS.

The mixture of QOS and DOS data (“QOS+DOS”)
generally yields the most substantial performance
gains, highlighting a powerful synergy between the
two approaches. By leveraging both high-quality
paraphrases of existing training data and novel ar-
gumentative texts with diverse topics and argument
structures, the AM models are exposed to a richer
and more comprehensive training signal, leading
to superior performance.

Pronounced Benefits in Low-Resource Sce-
narios. The advantages of our methods are particu-
larly striking in the 5% low-resource setting. Here,
the performance uplift from QOS, DOS, and espe-
cially QOS+DOS over the “Origin” is often more
pronounced than with full data. This crucial find-
ing demonstrates the potential of our methods to
effectively mitigate the challenge of data scarcity,
enabling performant AM systems even with limited
human-annotated data.

Superiority over Compared Data Augmen-
tation Methods. Our methods, particularly
“QOS+DOS”, generally exhibit superior perfor-
mance compared to the other data augmentation
techniques (EDA, FTGA, and JTLS). While these
compared methods offer some improvements over
the “Origin”, gains from our methods are typically
more consistent and significant across all datasets,
AM models, and data settings. This suggests that
our tailored designs for QOS and DOS are more
effective for the complex task of end-to-end AM.

5.5 Ablation Study
To validate the effectiveness of the key components
of our proposed QOS and DOS approaches, we
conduct an ablation study on ST (Table 2).

QOS Ablation Results. First, “w/o Struct.-
aware Paraph.” means that the LLM paraphrases
the entire text without separating context and com-
ponents, with annotations generated by the baseline
AM model. This has mixed effects in the 100% set-
ting but significantly hurts performance in the 5%
low-resource setting. Second, “w/o Original Anno-
tations” denotes that the LLM performs structure-
aware paraphrasing, but annotations come from the
baseline AM model instead of gold-standard la-
bels. This consistently reduces performance across
all settings, underscoring the importance of high-
quality labels in QOS.

DOS Ablation Results. First, “w/o Topic Brain-
storming” denotes that the LLM generates new
texts using only topics present in the original train-
ing data. This lowers performance, especially in
the 5% setting, highlighting the value of topical
diversity. Second, “w/o Argumentation Pattern”
removes argumentation pattern guidance and diver-
sification instruction from the text imitation prompt
(Figure 12). This leads to a decrease in overall per-
formance, confirming the benefit of the explicit
pattern diversification instruction in DOS.

5.6 Impact of Synthetic Data Scale
We examine the impact of varying the volume of
synthetic data (e.g., 1x, 2x the original training
data size) on the ST model’s performance. Figure 2
presents these results for QOS, DOS, and their com-
bination (25% QOS + 75% DOS as in the main
experiments). Generally, increasing the volume of
synthetic data consistently improves performance.
This positive trend is observed for all synthetic
data types and across all datasets and training set-
tings. The benefits are particularly pronounced
in the low-resource setting. Crucially, the combi-
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Figure 2: Impact of synthetic data scale on the ST model
performance across three datasets for F1span, F1aci, and
F1ari metrics. The x-axis indicates the synthetic data
volume, expressed as N times the size of the original
training data used. Results are shown for both low-
resource (5%) and full-data (100%) settings.

nation of QOS and DOS synthetic data generally
outperforms using QOS or DOS data individually.

5.7 Impact of QOS and DOS Mixture Ratios

In the main experiments, “QOS+DOS” utilizes a
mixture of 25% QOS and 75% DOS data, which
generally yielded strong performance gains. Here,
we further analyze different mixture ratios of QOS
and DOS data, maintaining a total synthetic data
volume of 2x the original training data. Figure 3
shows results for the ST model on CDCP. Results
for AAEC and AbstRCT are shown in Figure 6
(Appendix B). It can be seen that a blend often out-
performs using solely QOS or DOS data. Specifi-
cally, a mixture with 25% QOS data and 75% DOS
data frequently yields the best performance.

5.8 Diversity Analysis of DOS Data

To better understand how DOS enhances diversity
in synthetic data, we conduct a visual analysis of
both topical and structural diversity in the DOS
data.

Topical Diversity. We use Instructor embeddings
(Su et al., 2023) for text representation and t-SNE
for visualization. Figure 4 illustrates the topic dis-
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Figure 3: Impact of QOS and DOS mixture ratios for
the ST model on CDCP. The x-axis represents the per-
centage of DOS data, while the remaining portion is
QOS data.

tributions of original training data compared to
DOS data across the three datasets. We can see
that the topics of DOS data consistently show more
expansive and evenly distributed patterns in the em-
bedding space. For AAEC (Figure 4a), DOS topics
cover a similar semantic space but with increased
density. More notably, for AbstRCT (Figure 4b)
and CDCP (Figure 4c), DOS significantly extends
the topical range, as evidenced by the wider disper-
sion of points in the visualization. These results
demonstrate that the topic brainstorming process in
DOS substantially enhances topical diversity across
all datasets.

Argument Structural Diversity. To analyze the
diversity of argument structures, we first view the
argument structure annotations as argument graphs,
and employ graph2vec (Narayanan et al., 2017) to
embed the graphs and visualize them using t-SNE.
Importantly, this graph embedding method consid-
ers only the structural information composed of
argument component types and their argumentative
relations (including relation types), without incor-
porating any textual semantic information. Figure 5
shows the results of both the original training data
and the DOS data. It can be seen that the argu-
ment structures in the original training data typ-
ically form concentrated clusters, indicating lim-
ited structural patterns. In contrast, DOS data ex-
hibits significantly wider distribution, expanding
beyond the boundaries of original structures across
all datasets. These visualizations confirm that our
DOS approach effectively generates texts with di-
verse argument structure annotations.

5.9 Training Time Analysis
The introduction of synthetic data inevitably in-
creases model training time. All AM models are
trained on a single Tesla A100 GPU. Under the
full-data setting, training the ST model on original
data takes approximately 40 minutes, while train-
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Figure 4: t-SNE visualization of topic distributions in
original training data (left) versus DOS-generated data
(right) under full-data (100%) setting. We use Instructor
(Su et al., 2023) for topic embedding.

ing with augmented synthetic data extends this to
about 1 hour. For the UniASA model, the original
training completes in roughly 2 hours, increasing
to about 3 hours with synthetic data. This increase
in training time represents a worthwhile investment
given the substantial performance improvements
demonstrated throughout our experiments. Impor-
tantly, our methods do not introduce any additional
overhead during model inference.

5.10 Further Analyses

We conduct additional analyses, detailed in the ap-
pendices. These include deeper investigations into
synthetic data quality (Appendix D), case study
(Appendix L), error analysis (Appendix M), and
integration with self-training (Appendix C). We
also verify the generalizability of our methods on
an additional AM model (Appendix E), two more
datasets (G), and in a cross-dataset transfer set-
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Figure 5: t-SNE visualization of argument structure
distributions in original training data (left) versus DOS-
generated data (right) under full-data (100%) setting.
We use graph2vec (Narayanan et al., 2017) for graph
embedding.

ting (Appendix I). For reproducibility, the detailed
prompts are available in Appendix N.

6 Conclusion

This paper investigates leveraging LLMs for syn-
thetic data generation to alleviate data scarcity in
AM. We propose two complementary approaches:
quality-oriented synthesis, which focuses on label
fidelity through structure-aware paraphrasing, and
diversity-oriented synthesis, which emphasizes top-
ical and structural novelty via topic brainstorming
and argumentation pattern diversification. Exten-
sive experiments on three datasets demonstrate that
augmenting training data with instances from ei-
ther QOS or DOS significantly enhances the per-
formance of existing AM models, particularly in
low-resource scenarios. Also, combining both ap-
proaches yields further synergistic improvements.
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Limitations

While our proposed synthetic data generation meth-
ods demonstrate significant promise for alleviating
data scarcity in AM, we acknowledge certain limi-
tations.

First, incorporating synthetic data, despite its
benefits, inevitably increases the overall model
training time due to the larger volume of training
instances. We discuss this in Section 5.9. Sec-
ond, although effective, both our QOS and DOS
approaches currently rely on some existing human-
annotated data as a reference. Generating high-
quality, structured argumentative data entirely from
scratch, without any reference to gold-standard an-
notations, remains a significant challenge for future
work. Finally, our study is primarily focused on
the AM domains represented by the existing bench-
mark datasets. Expanding these synthetic data gen-
eration techniques to more diverse, open-domain
AM scenarios presents an important avenue for
future research.
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This work uses publicly available datasets widely
adopted in previous AM studies. Our use of these
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strictly complies with their respective licenses and
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that using LLMs for synthetic data generation may
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polishing in manuscript preparation.
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Appendix

A Additional Experimental Settings

A.1 Dataset Information

We conduct experiments on three AM datasets: the
Argument-annotated Essays Corpus (AAEC)
(Stab and Gurevych, 2017), comprising persuasive
essays; the Consumer Debt Collection Practices
(CDCP) corpus (Park and Cardie, 2018), contain-
ing user comments on e-rulemaking; and AbstRCT
(Mayer et al., 2020), consisting of abstracts from
clinical trials. Details of these datasets are pre-
sented in Table 4.

A comprehensive list of all component and rela-
tion types for each dataset is shown in Table 3. It is
important to note that for the data synthesis process
on the AAEC dataset, we simplify the annotation
by treating both “Claim:For” and “Claim:Against”
as a single, unified “Claim” type. This simplifi-
cation is adopted because the LLM struggles to
reliably distinguish between these two nuanced sub-
types during generation. This does not compromise
the final AM model’s predictive capabilities, as the
model will finally be trained on the original training
data.

A.2 Hyper-parameters of the Main
Experiments

The hyper-parameters of the main experiments are
shown in Table 5. For training on the original train-
ing data, we adhere to the hyperparameter config-
urations reported in the original papers of the AM
models. For AAEC, we conduct experiments at the
essay level, as this represents a more complete and
challenging setting.

A.3 Details about the Compared Methods

We compare our data synthesis methods with the
following data augmentation and synthetic data
generation methods:

• Easy Data Augmentation (EDA): This
method applies lexical operations to the ar-
gumentative text. While the original EDA
(Wei and Zou, 2019) framework includes syn-
onym replacement, random insertion, deletion,
and swapping, the latter three operations can
inevitably disrupt the original argument struc-
ture annotations. Therefore, we exclusively
apply synonym replacement to the argumenta-
tive text.
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Figure 6: Impact of QOS and DOS mixture ratios for
the ST model on AAEC and AbstRCT. The x-axis repre-
sents the percentage of DOS data, while the remaining
portion is QOS data. The total synthetic data volume is
2x the original training data.

• Few-shot Text Generation and Auto-
annotation (FTGA): This method prompts
GPT-4o with a few example argumentative
texts from Dorig to generate new texts, which
are then automatically annotated by a baseline
AM model.

• Joint Text and Label Synthesis (JTLS): This
approach prompts GPT-4o with a few exam-
ples of texts paired with their full structural an-
notations from Dorig to directly generate new
texts along with their corresponding structural
annotations.

B Additional Results for QOS and DOS
Mixture Ratios

This section provides supplementary results to the
analysis in Section 5.7, illustrating the impact of
varying QOS and DOS mixture ratios on the ST
model’s performance for the AAEC and AbstRCT
datasets. Figure 6 shows these results. Similar to
the findings for CDCP, specific blends of QOS and
DOS data often yield better performance than using
either synthetic data type exclusively.

C Analysis of Iterative Self-Training

Self-training is an effective approach that lever-
ages additional data. We therefore further explore
integrating our data synthesis approaches with self-
training. Notably, our DOS approach involves au-
tomatically annotating new synthetic texts using a
baseline AM model (pseudo-labeling), a process
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Dataset Component Types Relation Types

AAEC MajorClaim, Claim:For, Claim:Against, Premise Support, Attack

CDCP Value, Fact, Policy, Testimony, Reference Reason, Evidence

AbstRCT MajorClaim, Evidence, Claim Support, Attack, Partial-Attack

Table 3: Component and relation types as defined in each dataset.

Dataset # Instance # Components # Relations

AAEC 402 6,089 3,832
CDCP 731 4,779 1,353
AbstRCT 500 3,279 2,060

Table 4: Statistics of the datasets used in our experi-
ments.

that can be iteratively applied. In this iterative
scheme, the model trained on data from preced-
ing iterations is used to generate pseudo-labels for
new synthetic texts, thus leveraging model improve-
ments across iterations.

Our iterative self-training primarily follows the
framework presented in Wang et al. (2021). The
specific setup is as follows: We start with the model
trained solely on the original data Dorig as the ini-
tial model (Iteration 0). For each subsequent itera-
tion i (where i ≥ 1), we employ the model trained
in iteration i − 1 to pseudo-label a set of newly
generated diverse texts (created using the text gen-
eration process from the DOS approach). We then
filter these pseudo-labeled instances based on their
confidence scores, retaining only those with con-
fidence values between 0.7 and 0.9 to avoid both
noisy low-confidence samples and overly simplistic
high-confidence ones. The confidence for each in-
stance is determined by averaging all its predicted
classification probabilities by the AM model. For
training the model in iteration i, we combine the
original training data Dorig with a fixed amount
of QOS data (generated once at the start, equiva-
lent to 0.5x the size of Dorig) and the cumulative
set of high-confidence pseudo-labeled DOS data
collected from all iterations up to i. The model is
first trained on this combined synthetic and original
dataset, and then fine-tuned on Dorig. This process
is repeated for 4 iterations beyond the initial train-
ing (Iterations 1 through 4).

Figure 7 shows the results for the ST model on
AAEC, AbstRCT and CDCP. Generally, perfor-
mance increases with iterations, particularly in the
initial steps, though later iterations exhibit dimin-
ishing or slightly negative gains.
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Figure 7: Iterative self-training results of the ST model
on AAEC, AbstRCT and CDCP. The x-axis represents
the iteration number.

D Synthetic Data Quality Analysis:
Training with QOS and DOS Alone

To specifically evaluate and compare the quality of
synthetic data produced by QOS and DOS, we con-
duct an experiment where AM models are trained
exclusively on synthetic data without any origi-
nal human-annotated training data. This setup
aims to isolate the impact of synthetic data qual-
ity by removing the influence of original training
instances. As in our main experiments, the vol-
ume of synthetic data used is twice the size of the
original training data for each setting. We show
the results of AM models (ST) trained with only
data generated by QOS, DOS, or their combination
(25%QOS+75%DOS) in Table 6.

QOS consistently outperforms DOS across all
datasets and settings, with particularly significant
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AM Model Training Data Dataset BS LR Epoch

ST

Synthetic Data
AAEC

8 2e-5 10AbstRCT
CDCP

Original Training Data
AAEC 4 9.1e-5 20

AbstRCT 4 8.1e-5 20
CDCP 4 5.6e-5 20

UniASA

Synthetic Data
AAEC

2 2e-5 10AbstRCT
CDCP

Original Training Data
AAEC 1 1e-4 35

AbstRCT 1 1e-4 10
CDCP 1 2e-4 40

Table 5: Hyper-parameters of the main experiments. “BS” and “LR” denote batch size and learning rate. For
full-data and low-resource settings, and different data synthesis/data augmentation methods, we use the same
hyper-parameters as above.

gaps in the low-resource setting. These results con-
firm that QOS produces synthetic data with higher-
quality labels due to its structure-aware paraphras-
ing approach. The performance difference between
QOS and DOS is more pronounced in low-resource
scenarios, indicating that label quality becomes in-
creasingly critical when working with limited data.
The QOS+DOS combination generally performs
better than DOS alone but slightly underperforms
QOS in most metrics. These findings demonstrate
a clear quality-diversity trade-off between our ap-
proaches. QOS effectively preserves label quality,
while DOS offers valuable diversity at the cost of
some label reliability.

E Results on Another AM Model

We further conduct additional experiments on an-
other AM model: DENIM (Sun et al., 2024). Our
choice of ST and UniASA is to ensure our methods
are evaluated on models representative of the two
dominant paradigms in end-to-end AM (parsing-
based and generation-based). Adding DENIM, a
generation-based model with a discourse structure-
aware prefix, helps demonstrate the broad applica-
bility of our approach.

We followed the experimental setup from the
original DENIM paper, evaluating on the AbstRCT
dataset. Table 7 presents the results. The find-
ings clearly show that augmenting the training data
with our synthetic instances—QOS, DOS, and their
combination—yields consistent performance im-
provements for DENIM in both full-data and low-
resource settings.

F Task-Specific Performance Analysis for
ACI and ARI

To provide a more granular understanding of where
performance gains originate, we conduct a separate
analysis of the two primary sub-tasks: Argument
Component Identification (ACI) and Argumenta-
tive Relation Identification (ARI). We evaluate the
ST model on each task independently to determine
which benefits most from our synthetic data aug-
mentation. Since span identification is a prereq-
uisite for both tasks, we report F1span for both
evaluations, alongside F1aci for the ACI task and
F1ari for the ARI task.

The results, presented in Table 8, demonstrate
that our synthetic data augmentation benefits both
the ACI and ARI tasks. Although the specific gains
for ACI and ARI vary across datasets, our methods
generally provide similar levels of enhancement for
both tasks.

G Results on Additional Datasets

To further assess the generalizability of our find-
ings, we extend our evaluation to two additional
AM datasets: MTC and AASD. Given their
smaller size, we report results on the full (100%)
training data setting, using a 7:1:2 random split
for train/validation/test. The results for the ST
model, shown in Table 9, demonstrate that our
methods—particularly the QOS+DOS combina-
tion—continue to provide significant performance
gains. These findings across a total of five diverse
datasets strengthen the evidence for the broad appli-
cability of our proposed data synthesis strategies.
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Setting Method AAEC AbstRCT CDCP

F1span F1aci F1ari Avg F1span F1aci F1ari Avg F1span F1aci F1ari Avg

100%
QOS 81.74 73.17 52.50 69.13 70.25 64.07 36.39 56.90 79.96 64.31 28.91 57.73
DOS 78.75 68.89 47.24 64.96 66.45 58.78 24.93 50.05 78.56 57.63 19.96 52.05
QOS+DOS 81.75 73.38 52.70 69.28 71.24 64.21 35.67 57.04 79.92 63.49 26.79 56.73

5%
QOS 68.61 51.95 22.54 47.70 62.01 55.11 22.94 46.69 73.03 48.46 4.87 42.12
DOS 63.70 45.41 10.99 40.03 28.30 23.13 4.54 18.66 60.18 35.55 0.90 32.21
QOS+DOS 64.06 46.83 15.62 42.17 51.33 44.71 19.94 38.66 75.13 48.17 4.83 42.71

Table 6: Performance comparison of ST models trained exclusively on synthetic data without any original training
data.

Setting Method F1span F1aci F1ari Avg

5%

Origin 45.07 39.22 17.72 34.00
QOS 54.90 49.53 21.25 41.89
DOS 55.37 49.56 19.42 41.45
QOS+DOS 55.59 48.39 20.67 41.55

100%

Origin 76.85 69.17 39.57 61.86
QOS 77.09 69.90 40.80 62.60
DOS 77.09 70.08 39.63 62.27
QOS+DOS 78.30 71.15 40.23 63.23

Table 7: Performance of DENIM model on AbstRCT
dataset with our synthetic data generation methods.

H Data Synthesis with Open-source
LLMs

To demonstrate the general applicability of our data
synthesis method, we conduct experiments using
two open-source LLMs: Qwen2.5-14B-Instruction
and Llama3.1-70B-Instruction. The results for the
ST model are presented in Table 10. As can be seen,
our method consistently improves performance re-
gardless of the underlying LLM. Overall, Llama3.1-
70B-Instruction yields slightly better gains than
Qwen2.5-14B-Instruction, though both are outper-
formed by GPT-4o. This suggests that the benefits
of our approach scale with the capability of the
LLM used for data synthesis.

I Cross-Dataset Transferability Analysis

We conduct cross-dataset transfer experiments us-
ing our DOS method. Specifically, we pre-train the
ST model on DOS data synthesized from a source
dataset, and then fine-tune and test it on a target
dataset.

The results are presented in Table 11. In
the vast majority of cases, pre-training on
synthetic data—even from a different source
dataset—improves final performance. This indi-
cates that the argumentative patterns learned from
the synthetic data are transferable to some extent.

However, we also observe a few instances where
cross-dataset pre-training leads to a minor perfor-
mance decrease compared to the baseline, likely
due to significant differences in dataset characteris-
tics. For example, pre-training on CDCP DOS data
and then fine-tuning on AbstRCT in the 5% setting
results in a slight drop in performance. Overall,
these experiments show promising results for cross-
dataset transfer.

J Analysis of the Auto-Annotation
Method in DOS

To validate the design choice for the auto-
annotation step in our DOS approach, we conduct a
comparative experiment. We compare our method,
which uses a fine-tuned baseline AM model for an-
notation (DOS-BL), against an alternative that uses
few-shot GPT-4o for the same task (DOS-LLM).

The results, presented in Table 12, consistently
show that using a specialized, in-domain model
(DOS-BL) for auto-annotation is more effective
than using a general-purpose LLM in a few-shot
setting (DOS-LLM). This is likely because a model
specifically trained on the AM task’s complex an-
notation scheme provides higher-quality pseudo-
labels.

K Quantitative Analysis of Semantic
Diversity

Diversity is an important aspect emphasized by
many datasets and benchmarks, as it is crucial for
building robust and generalizable models (Du et al.,
2024; Xie et al., 2025; Dong et al., 2025; Li et al.,
2025). To quantitatively measure the diversity of
the synthetic data, we conduct an analysis of se-
mantic distance. Specifically, for each synthetic
instance, we compute its semantic distance to every
instance in the original training set. This distance
is derived from the cosine similarity of their em-
beddings, generated by OpenAI’s text-embedding-
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Setting Method

AAEC AbstRCT CDCP

ACI ARI ACI ARI ACI ARI

F1span F1aci F1span F1ari F1span F1aci F1span F1ari F1span F1aci F1span F1ari

5%

Origin 69.79 52.08 69.32 16.71 57.86 51.12 55.47 21.35 76.06 44.60 76.91 3.01
QOS 72.31 55.11 71.13 22.90 62.04 53.94 58.92 24.48 77.39 51.37 77.67 8.08
DOS 72.98 56.43 70.80 22.54 61.49 54.03 56.90 22.92 77.11 53.74 76.35 7.25
QOS+DOS 72.83 56.67 71.99 22.54 63.22 55.29 59.26 25.44 76.87 54.82 76.49 9.96

100%

Origin 84.77 74.81 84.79 54.42 69.15 62.68 69.38 36.08 82.70 69.17 82.32 32.48
QOS 85.01 75.81 85.44 55.94 72.77 66.03 69.03 37.57 82.57 68.42 82.32 32.34
DOS 85.37 75.33 85.02 55.14 72.51 65.16 68.32 36.10 82.21 68.73 82.06 34.37
QOS+DOS 86.00 76.89 85.72 56.37 74.26 67.02 69.47 38.12 82.84 69.08 82.71 35.43

Table 8: Task-specific performance analysis for ACI and ARI on the ST model in the low-resource (5%) and
full-data (100%) settings.

Dataset Method F1span F1aci F1ari Avg

MTC

Origin 85.85 78.05 43.64 69.18
QOS 86.21 77.93 45.48 69.87
DOS 85.90 79.75 48.32 71.32
QOS+DOS 88.83 80.51 50.67 73.34

AASD

Origin 91.76 75.96 63.94 77.22
QOS 93.36 77.08 64.22 78.22
DOS 93.27 78.56 67.06 79.63
QOS+DOS 94.23 78.81 69.93 80.99

Table 9: Performance on two additional datasets, MTC
and AASD, using the ST model with 100% training
data.

ada-002 model. We then average these distances
to get a diversity score for that instance. The final
diversity score for a method (QOS or DOS) is the
average score across all its generated instances. A
higher score indicates greater semantic novelty rel-
ative to the original training set. We also compute
the internal diversity of the original training set for
comparison.

As shown in Table 13, the data generated by our
DOS method consistently exhibits higher semantic
diversity compared to both the data from QOS and
the original training set itself. This quantitative
analysis further validates the effectiveness of DOS
in enhancing data diversity.

L Case Study

This section provides a concrete example compar-
ing synthetic data generated by both QOS and DOS
approaches alongside the original reference train-
ing instance. As shown in Figure 8, the QOS ap-
proach preserves the original argumentative struc-
ture while paraphrasing the content, maintaining
the same component types and relation types. In
contrast, the DOS approach generates text on a

completely different topic, with a modified argu-
mentation pattern that introduces new argument
structures.

M Error Analysis of Synthetic Data

To provide deeper insight into the characteristics of
our generated data, we conduct a manual error anal-
ysis. We randomly sample 5 instances generated
by GPT-4o for both the QOS and DOS methods
and examine the quality of the annotations.

QOS Data The structure-aware paraphrasing ap-
proach of QOS proves highly effective. In our anal-
ysis of the sampled instances, we observe no signifi-
cant errors, such as span misalignments or incorrect
component type inheritance. This result confirms
the high-fidelity nature of the QOS method.

DOS Data For the DOS data, which relies on
auto-annotation, our analysis of the 5 samples (con-
taining 87 component spans and 42 relations) re-
veals the following mispredictions or omissions:

• Span-related errors: 10 instances (e.g.,
incorrect boundaries, identifying non-
argumentative text).

• Component type errors: 7 instances (e.g.,
misclassifying a Claim as a Premise).

• Relation errors: 6 instances (e.g., incorrect
support/attack links).

We consider this error rate acceptable, as our
main experimental results (Table 1) consistently
show that the diversity introduced by DOS data
provides a net positive impact on model perfor-
mance, despite these imperfections. Below are
representative examples of observed errors.
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AAEC AbstRCT CDCP

Setting LLM Method F1span F1aci F1ari Avg F1span F1aci F1ari Avg F1span F1aci F1ari Avg

5%

- Origin 67.91 50.33 16.91 45.05 57.52 50.76 21.57 43.28 76.54 49.51 4.03 43.36

Qwen2.5-14B-I
QOS 70.67 53.22 22.56 48.82 59.48 53.10 24.60 45.73 76.49 47.90 5.40 43.26
DOS 70.51 53.17 22.81 48.83 56.11 49.62 23.74 43.16 76.29 50.34 5.21 43.95
QOS+DOS 70.96 54.19 23.34 49.50 59.56 53.37 24.91 45.95 76.89 50.35 6.02 44.42

Llama3.1-70B-I
QOS 69.37 52.56 22.10 48.01 59.72 53.19 24.17 45.69 76.57 49.75 4.91 43.74
DOS 70.59 54.23 23.49 49.44 60.47 53.78 24.29 46.18 76.35 50.53 5.37 44.08
QOS+DOS 70.64 54.31 23.69 49.55 61.21 54.24 25.81 47.09 76.81 51.32 6.78 44.97

100%

- Origin 84.31 75.56 53.49 71.12 70.15 64.57 36.01 56.91 82.01 67.88 30.85 60.25

Qwen2.5-14B-I
QOS 84.65 76.31 54.75 71.90 72.10 64.16 39.43 58.56 82.79 68.74 32.87 61.47
DOS 85.30 77.01 55.94 72.75 70.61 65.06 38.91 58.19 83.01 67.81 30.75 60.52
QOS+DOS 85.33 77.22 56.36 72.97 72.53 66.23 39.46 59.41 83.19 68.77 33.52 61.83

Llama3.1-70B-I
QOS 85.19 76.44 55.50 72.38 71.34 65.58 37.58 58.17 82.26 70.11 33.79 62.05
DOS 84.57 76.40 54.69 71.89 71.61 65.84 37.69 58.38 82.45 67.33 34.29 61.36
QOS+DOS 85.24 76.64 55.82 72.57 72.62 66.79 39.47 59.63 83.15 68.82 35.06 62.34

Table 10: Performance of the ST model with synthetic data generated by two open-source LLMs. Qwen2.5-14B-I
and Llama3.1-70B-I are short for Qwen2.5-14B-Instruction and Llama3.1-70B-Instruction.

Setting Source Target: AAEC Target: AbstRCT Target: CDCP

F1span F1aci F1ari Avg F1span F1aci F1ari Avg F1span F1aci F1ari Avg

5%

None 67.91 50.33 16.91 45.05 57.52 50.76 21.57 43.28 76.54 49.51 4.03 43.36
AAEC 71.47 54.39 22.49 49.45 58.90 51.82 25.41 45.38 76.33 46.57 2.96 41.95
AbstRCT 70.54 52.80 21.58 48.31 61.81 54.83 26.93 47.86 76.52 49.89 5.09 43.83
CDCP 69.74 52.39 22.23 48.12 56.76 49.95 21.55 42.75 76.98 52.12 8.06 45.72

100%

None 84.31 75.56 53.49 71.12 70.15 64.57 36.01 56.91 82.01 67.88 30.85 60.25
AAEC 84.80 76.11 55.44 72.12 72.71 66.65 38.26 59.21 82.13 67.38 31.43 60.31
AbstRCT 84.35 75.65 55.12 71.71 72.76 66.28 38.72 59.25 82.91 69.11 31.48 61.17
CDCP 84.94 75.77 54.68 71.80 71.98 65.01 37.10 58.03 82.40 67.84 32.47 60.90

Table 11: Cross-dataset transfer experiment results in both low-resource (5%) and full-data (100%) settings. “None”
indicates the baseline without pre-training on synthetic data.

Setting Method AAEC AbstRCT CDCP

F1span F1aci F1ari Avg F1span F1aci F1ari Avg F1span F1aci F1ari Avg

5%
Origin 67.91 50.33 16.91 45.05 57.52 50.76 21.57 43.28 76.54 49.51 4.03 43.36
DOS-BL 71.47 54.39 22.49 49.45 61.81 54.83 26.93 47.86 76.98 52.12 8.06 45.72
DOS-LLM 70.67 52.58 21.43 48.23 57.16 50.44 24.23 43.94 75.63 52.12 6.13 44.62

100%
Origin 84.31 75.56 53.49 71.12 70.15 64.57 36.01 56.91 82.01 67.88 30.85 60.25
DOS-BL 84.80 76.11 55.44 72.12 72.76 66.28 38.72 59.25 82.40 67.84 32.47 60.90
DOS-LLM 84.24 75.53 53.91 71.23 70.26 64.49 38.21 57.65 82.33 68.60 31.17 60.70

Table 12: Comparison of auto-annotation methods for DOS. DOS-BL uses a fine-tuned baseline AM model, while
DOS-LLM uses few-shot GPT-4o. Results show the performance of the ST model when trained on the resulting
synthetic data.

Example 1: Span-related Error. This example
illustrates a case where a non-argumentative dis-
course marker is incorrectly identified as a com-
ponent. Here, <Claim 8> is a discourse marker
introducing a viewpoint, not a distinct argumenta-
tive component itself. It was erroneously identified
as a span.

Argumentative Text with Argument Component An-
notations:
. . . On the other hand, <Claim 8> there are concerns
that </Claim 8> <Claim 9> school choice might exac-
erbate educational inequality </Claim 9>. Critics argue
that <Premise 10> it could lead to a disparity between
well-resourced schools and those with fewer resources
</Premise 10>. . . .

Argumentative Relations:
<Premise 10> Support <Claim 9>
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Method AAEC AbstRCT CDCP

DOS 0.2423 0.2573 0.2438
QOS 0.2020 0.2035 0.2192
Origin 0.2036 0.1987 0.2173

Table 13: Quantitative analysis of semantic diversity.
Scores represent the average semantic distance from the
original training set. A higher score indicates greater
diversity.

Example 2: Component Type and Relation Er-
rors. This example shows how a component mis-
classification leads to an invalid relation.
• Component type error: The component <Premise

4> functions as a concluding “Claim” summa-
rizing a benefit, but it is misclassified as a
“Premise”.

• Relation error: As a consequence of the type er-
ror, the annotated “Support” link from <Premise
4> to <Claim 1> is invalid.

Argumentative Text with Argument Component An-
notations:
. . . To begin with, <Claim 1> parents are most aware
of their children’s needs and aspirations </Claim 1>.
<Premise 2> They possess intimate knowledge of
their child’s learning style, strengths, and weaknesses
</Premise 2>. <Premise 3> This . . . </Premise 3>.
Moreover, <Premise 4> the ability to choose can lead
to a more personalized and effective educational ex-
perience, enhancing the child’s academic and social
development </Premise 4>. . . .

Argumentative Relations:
<Premise 2> Support <Claim 1> | <Premise 3> Support
<Claim 1> | <Premise 4> Support <Claim 1>

N Prompt Details

This section provides the detailed prompts used in
our data synthesis approaches:

• Figure 9: Structure-aware paraphrasing of
QOS.

• Figure 10: Topic summarization of DOS.

• Figure 11: Topic brainstorming of DOS.

• Figure 12: Text imitation with argumentation
pattern diversification of DOS.
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Reference Instance from Original Training Data:

Argumentative Text with Argument Component Annotations:
Television is one of the greatest innovations that we use every day. Besides, watching television has some cons and at the same time has very good pros.
However, while some people argue that TV has devastated communication among friends and families, I believe it has done the opposite. I think <MajorClaim
0> TV programs are among the popular topics in every day talk as well as a great time for gathering </MajorClaim 0>. In addition <Claim 1> Modern TV has
smart system that let you be connected with people </Claim 1>.
First, it’s true <Claim 2> watching TV take a lot of your day </Claim 2>, nevertheless <Premise 3> it makes people meet and start a conversation about what
they watch at other times like weather forecast and sport programs </Premise 3>. Second, <Claim 4> people like having meals while they are watching TV
</Claim 4>. <Claim 5> Families usually tend to watch television either with each other or friends </Claim 5>. For example <Premise 6> my friends and I used
to sit together and enjoy watching movies using VHS player at nights </Premise 6>. <Premise 7> It was fun and a little bit similar to the cinema </Premise 7>.
Third, <Premise 8> TV can be one of communication ways </Premise 8>. Moreover, <Premise 9> TV can be connected to multimedia devices that have smart
operating system like Google TV, WDTV using Skype, tango and other apps </Premise 9>. In addition <Premise 10> Teenagers can play games online with
their friends </Premise 10> ; therefore <Claim 11> we can communicate with each other through TV </Claim 11>.
To sum up, <Claim 12> TV may take some of your time away from your family and friends </Claim 12> but <Claim 13> it can also make family get together
and help to get in conversation </Claim 13>. As well as <Claim 14> it’s one way of recent communications </Claim 14>, based on that I think <MajorClaim 15>
TV helps you to get connected with people </MajorClaim 15>.

Argumentative Relations:
<Claim 2> Attack <Premise 3> <Claim 5> Support <Premise 6> <Claim 5> Support <Premise 7>

<Claim 11> Support <Premise 8> <Claim 11> Support <Premise 9> <Claim 11> Support <Premise 10>

Synthetic Instance from QOS:

Argumentative Text with Argument Component Annotations:
Television is undoubtedly one of the most significant innovations we engage with daily. On the one hand, watching television has its drawbacks, yet it also offers
substantial benefits. Despite claims that TV has weakened communication among friends and families, I am convinced it has actually strengthened it. I believe
<MajorClaim 0> TV shows are among the trending subjects in everyday conversations and serve as an excellent occasion for social gatherings </MajorClaim 0>.
Additionally, <Claim 1> Modern television features smart systems enabling connectivity with others </Claim 1>. Initially, while it’s correct that <Claim 2>
watching TV consumes a significant portion of your day </Claim 2>, it nevertheless <Premise 3> it encourages people to come together and initiate discussions
about what they view, such as weather forecasts and sports broadcasts </Premise 3>.
Furthermore, <Claim 4> many enjoy eating while watching TV </Claim 4>. <Claim 5> Families often prefer to watch television with either each other or their
friends </Claim 5>. To illustrate, <Premise 6> my friends and I used to gather and relish watching movies on a VHS player during the evenings </Premise 6>.
<Premise 7> It was entertaining and somewhat resembled a cinema experience </Premise 7>.
Moreover, <Premise 8> TV can serve as a means of communication </Premise 8>. Besides, <Premise 9> TV can connect to multimedia devices featuring smart
operating systems like Google TV and WDTV, utilizing apps such as Skype and Tango </Premise 9>. Also, <Premise 10> Teenagers have the option to play
online games with friends </Premise 10> ; thus <Claim 11> we can interact with each other through television </Claim 11>.
In conclusion, <Claim 12> TV might consume time that could be spent with family and friends </Claim 12> but <Claim 13> it also facilitates family gatherings
and stimulates conversation </Claim 13>. Furthermore, <Claim 14> it is a modern form of communication </Claim 14>, and based on this, I assert <MajorClaim
15> TV fosters connections among people </MajorClaim 15>.

Argumentative Relations:
<Claim 2> Attack <Premise 3> <Claim 5> Support <Premise 6> <Claim 5> Support <Premise 7>

<Claim 11> Support <Premise 8> <Claim 11> Support <Premise 9> <Claim 11> Support <Premise 10>

Synthetic Instance from DOS:

Argumentative Text with Argument Component Annotations:
The relationship between democracy and capitalism has long been a subject of heated debate. While some argue that these systems are inherently at odds, I
believed <MajorClaim 0> emocracy and capitalism can coexist and even complement each other </MajorClaim 0>. In fact, <Claim 1> capitalism creates the
economic prosperity that allows democratic ideals to flourish </Claim 1>.
First, <Claim 2> democracy thrives on individual freedoms and choice </Claim 2>. <Premise 3> Capitalism, as an economic system, also emphasizes freedom
by allowing individuals to make choices about what to buy, sell, or invest in </Premise 3>.This alignment of values suggests that <Claim 4> both systems can
support one another </Claim 4>.
Second, <Claim 5> capitalism can provide the resources necessary for a democratic society to function effectively </Claim 5>. <Premise 6> Economic growth
driven by capitalism enables governments to fund public services and infrastructure </Premise 6>. At the same time, <Premise 7> democracy provides the
political framework to regulate capitalism and ensure fairness </Premise 7>. For example, <Premise 8> laws against monopolies and exploitation are often
enacted in democratic societies </Premise 8>.
Third,critics argue that <Claim 9> capitalism promotes inequality, which can undermine democracy </Claim 9>. However, <Premise 10> democratic institutions
can mitigate these inequalities through policies like progressive taxation and social welfare programs </Premise 10>. Furthermore, <Premise 11> capitalism
encourages innovation and competition, which can empower individuals to improve their circumstances </Premise 11>. <Premise 12> This empowerment aligns
with democratic ideals of equal opportunity </Premise 12>.
To sum up,while <Claim 13> capitalism may pose challenges to democracy </Claim 13>, <Claim 14> it also offers mechanisms for economic freedom and
growth that reinforce democratic principles </Claim 14>. Additionally, <Premise 15> democracy has the tools to regulate capitalism and ensure it serves the
public good </Premise 15>. Therefore, <MajorClaim 16> democracy and capitalism are compatible systems that, when balanced, can mutually reinforce one
another </MajorClaim 16>.

Argumentative Relations:
<Claim 4> Support <Premise 3> <Claim 5> Support <Premise 6> <Claim 5> Support <Premise 7>

<Premise 7> Support <Premise 8> <Claim 9> Attack <Premise 10> <Claim 9> Attack <Premise 11>
<Claim 9> Attack <Premise 12>

Figure 8: Examples of synthetic data from QOS and DOS, taken from the AAEC dataset.
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Your task is to paraphrase the provided argumentative text.
The text is given in a JSON format, which consists of a main text (context) with placeholders ([AC1], [AC2], etc.), and the
argument components (argument_component_info) that will be inserted at these placeholders.
The types of the argument components are defined as follows:

- "MajorClaim": The central standpoint of the author on the topic.
- "Claim": A statement that supports or attacks the author’s central standpoint (MajorClaim).
- "Premise": A statement serving as a reason, justification, or evidence to support or attack either a Claim or another Premise.

Please adhere to the following rules:

- Preserve the original meaning of both the context and argument components
- Enhance expression diversity and language variety
- After paraphrasing, ensure smooth and natural flow when components are reintegrated into the context
- Maintain each argument component’s designated type

Below is the provided argumentative text, please return the answer in a similar JSON format.
{

"context": "· · · From this point of view, I firmly believe that [AC1] .\nFirst of all, [AC2] . [AC3] . · · · ",
"argument_component_info": {
"[AC1]": {

"type": "MajorClaim",
"content": "we should attach more importance to cooperation during primary education"
},

},
"[AC2]": {

"type": "Claim",
"content": "through cooperation, children can learn about interpersonal skills which are significant in the future life of

all students"
},
· · ·

}

Figure 9: Example of the prompt used for Quality-Oriented Synthesis (QOS). It instructs the LLM to perform
structure-aware paraphrasing. The input text is provided in a JSON format with context (containing placeholders
like ‘[AC1]‘) and argument component information (content and type). The LLM is tasked to paraphrase both while
preserving original meaning, component types, and ensuring natural reintegration.
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Your task is to summarize the topic of the following argumentative text:

Any collector who uses a robocall, without first having a live person call to verify that the phone number is cor-
rect, is lazy and irresponsible. Aside from being a major nuisance, · · ·

## Rules:
- Please refer to the following examples and provide a topic of similar length.
- Return the result in a similar JSON format.

## Example 1:

Input:

Too many collectors call and never report the "mini-Miranda warning". They call all times of the day and night,
and multiple times of the day. If they don’t get you because your have called ID, they will · · ·

Output:

{
"topic": "Debt collectors often harass consumers and lack proper documentation."

}

## Example 2:

Input:

I think the "unless" part of the rule about contacting a person more than once should be scrapped. They should
not be allowed to contact anyone (other than the debtor him/herself) more than once. If the person · · ·

Output:

{
"topic": "Collectors should not repeatedly contact third parties about debts."

}

Figure 10: Example of the prompt used for summarizing the topic of an argumentative text. This is employed in the
Diversity-Oriented Synthesis (DOS) approach when explicit topics are not readily available in the original dataset
(e.g., CDCP, AbstRCT).

Referring to the argumentative text writing topics below, please brainstorm and write 16 diverse topics.

Please adhere to the following rules:

- Return the results in a similar JSON format.
- Ensure the generated topics cover diverse aspects within the same domain.

{
"topics": [

"Should students be taught to compete or to cooperate?",
"International tourism is now more common than ever before",
"Will newspapers become a thing of the past?",
"Government budget focus, young children or university?",
"Roommates quality and their importance",
"Should governments spend more money on improving roads and highways",
"Physical exercise",
"Advance in transportation and communication like the airplane and the phone",

]
}

Figure 11: Example of the prompt used for topic brainstorming in the Diversity-Oriented Synthesis (DOS) approach.
The LLM is given a list of existing topics as examples and instructed to generate a specified number of new, diverse
topics within the same thematic domain.
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Your task is to imitate the provided reference text to write a new argumentative text.
The topic of the new text should be:

"Should social life be built through work or outside of work?"

Please adhere to the following rules:

- Ensure the number of paragraphs is the same as the reference text, and the text length is similar.
- Make adjustments in aspects such as the organization of the argumentative structure, logical reasoning patterns, or the
selection of evidence types.
- In the ‘argumentation_pattern‘, the sequence of argument components describes the logic flow of the entire text. The types
and definitions of these components are as follows:

- "MajorClaim": The central standpoint of the author on the topic.
- "Claim": A statement that supports or attacks the author’s central standpoint (MajorClaim).
- "Premise": A statement serving as a reason, justification, or evidence to support or attack either a Claim or another

Premise.
- First, adjust the provided ‘argumentation_pattern‘ to create a *new* ‘argumentation_pattern‘. Then, generate a new
argumentative text following this new ‘argumentation_pattern‘. To adjust the ‘argumentation_pattern‘, you can choose to
perform one or more of the following operations:

- Add new argument components.
- Remove existing argument components.
- Adjust the order of the argument components.
- Adjust the type of the argument components.

Below is the reference text, please return the answer in a similar JSON format.

{
"topic": "Should students be taught to compete or to cooperate?",
"argumentation_pattern": {

"paragraph_1": "MajorClaim",
"paragraph_2": "Claim → Premise → Premise → Premise",
· · ·

},
"argumentative_text": "It is always said that competition can effectively promote the development of economy. In order

to survive in the competition, companies continue to improve their products and service, and as a result, the whole society
prospers. However, when we discuss the issue of competition or cooperation, what we are concerned about is not the whole
society, but the development of an individual’s whole life. From this point of view, I firmly believe that <MajorClaim> we
should attach more importance to cooperation during primary education </MajorClaim> .\nFirst of all, <Claim> through
cooperation, children can learn about interpersonal skills which are significant in the future life of all students </Claim> .
<Premise> What we acquired from team work is not only how to achieve the same goal with others but more importantly,
how to get along with others </Premise> . <Premise> During the process of cooperation, children can learn about how to
listen to opinions of others, how to communicate with others, how to think comprehensively, and even how to compromise
with other team members when conflicts occurred </Premise> . <Premise> All of these skills help them to get on well with
other people and will benefit them for the whole life </Premise> . · · · "
}

Figure 12: Example of the prompt used for text imitation with argumentation pattern diversification in the Diversity-
Oriented Synthesis (DOS) approach. The LLM is provided with a new topic and a reference argumentative text
(including its original topic, argumentation pattern, and full text with inline component tags). It is instructed to first
modify the reference argumentation pattern and then generate a new argumentative text on the new topic, following
the diversified pattern.
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