Translate Smart, not Hard:
Cascaded Translation Systems with Quality-Aware Deferral

Anténio Farinhas'*, Nuno M. Guerreiro'’, Sweta Agrawal**
Ricardo Rei'’, André F.T. Martins®*°6'
!Sword Health, ?Google, *Instituto de Telecomunicagdes
4Instituto Superior Técnico, Universidade de Lisboa, TransPerfect, °ELLIS Unit Lisbon

antonio.farinhas@tecnico.ulisboa.pt

Abstract

Larger models often outperform smaller ones
but come with high computational costs. Cas-
cading offers a potential solution. By default,
it uses smaller models and defers only some in-
stances to larger, more powerful models. How-
ever, designing effective deferral rules remains
a challenge. In this paper, we propose a simple
yet effective approach for machine translation,
using existing quality estimation (QE) metrics
as deferral rules. We show that QE-based de-
ferral allows a cascaded system to match the
performance of a larger model while invoking
it for a small fraction (30% to 50%) of the ex-
amples, significantly reducing computational
costs. We validate this approach through both
automatic and human evaluation.

1 Introduction

Larger models consistently outperform smaller
ones in NLP tasks, but the trade-off is the increased
computational cost (Brown et al., 2020; Kaplan
et al., 2020; Chowdhery et al., 2023). This raises
the question:

How can we maintain high performance
while reducing computational load?

A promising solution is model cascading, where
smaller models handle examples by default, and
only a subset of hard instances is deferred to a
larger model. However, this approach requires a ro-
bust deferral system that reliably determines when
to defer. Common approaches often involve de-
signing and training specialized deferral models,
which determine when a large model is needed—
e.g., based on reliability or uncertainty estimates
(Chen et al., 2023b; Gupta et al., 2024). But do we
really need to train new models for every task, or
can existing resources speed up this process?
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Figure 1: Cascaded translation system with quality-
aware deferral. A small model translates a batch of
source sentences, and a relatively lightweight QE model
scores the hypotheses. Sources with the lowest-scoring
translations are deferred to a larger model. By default,
the deferral rate is set by a predefined compute budget,
but the threshold can also be computed dynamically
without requiring full batches (§5.5).

For machine translation (MT), extensive re-
search on reference-free automatic evaluation of-
fers an appealing alternative (Zerva et al., 2022,
2024; Blain et al., 2023). In this paper, we leverage
recent quality estimation (QE) metrics to create
straightforward and relatively lightweight deferral
rules. This approach draws inspiration from pro-
fessional translation workflows, where QE metrics
help identify translations that should be deferred
to expert post-editing (Castilho and O’Brien, 2017;
Béchara et al., 2021). Our main contributions are:

* We introduce a cascaded translation system
that uses pretrained QE metrics to determine
whether to defer examples from a smaller
model to a larger one, balancing efficiency
and quality (§3). See Fig. 1 for an illustration.

* We confirm that the benefits of QE-based
model cascading hold across different com-
binations of translation and QE models (§5).

* We perform human evaluation, further val-
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idating our approach on two language pairs
(en-es and en-ja) in the WMT24 test set (§6).

2 Adaptive Inference in NLP

Adaptive inference techniques are increasingly be-
ing adopted in natural language processing tasks
(Mamou et al., 2022; Varshney and Baral, 2022;
Chen et al., 2023b; Ong et al., 2024). These meth-
ods typically use models of different sizes and pre-
dictive power (often two, though most frameworks
can easily accommodate more), with the primary
goal of reducing the computational load by using
the larger, more computationally expensive model
only when necessary (e.g., for more difficult ex-
amples or when a model is highly uncertain about
its prediction). Current strategies include routing,
where a decision rule determines which model to
use, ensuring only one model is used to handle each
input, and cascading, which starts with a smaller
model and may invoke a larger one afterward based
on the small model’s output and a deferral rule. In
this paper, we focus on the second approach.

The computational efficiency of model cascad-
ing comes at the cost of designing a robust defer-
ral system that can reliably identify when to defer
to the larger model. This is often handled using sim-
ple decision rules, such as nonparametric methods
or other approaches based on uncertainty measures
(Ramirez et al., 2024; Gupta et al., 2024). A re-
cent alternative involves training external models
specifically to predict when deferral is needed—for
a given example, these models can be trained, e.g.,
to assess if a given candidate is correct (Chen et al.,
2023b).! Here, we propose a simple and effective
deferral rule for MT that is conceptually similar to
this approach while offering a particularly straight-
forward solution for this task.

Complementary to routing and cascading is the
line of research on speculative decoding (Stern
et al., 2018; Chen et al., 2023a; Leviathan et al.,
2023; Xia et al., 2024), where a small model drafts
multiple tokens in advance, and a large model veri-
fies them in parallel. Only the tokens that pass this
verification are accepted as final outputs. While
speculative decoding is typically applied to accel-
erate autoregressive generation, its principles can
be combined with cascading to further improve
efficiency (Narasimhan et al., 2025).

"Likewise, routing typically involves training external
models to (i) predict the performance of the small model
(Sakota et al., 2024), or (ii) determine if the small model is
likely to outperform the large one (Ding et al., 2024).

3 Quality-Aware Deferral for MT

Although human evaluations and reference-based
metrics remain the standard for evaluating machine
translations, reference-free/quality estimation (QE)
metrics have shown strong correlations with human
judgments (Zerva et al., 2024), holding promise in
distinguishing between the quality of translations
for the same source (Agrawal et al., 2024). Since
QE models are typically much smaller than current
translation models (Kocmi et al., 2024a), we pro-
pose to leverage them for an efficient deferral rule.
Rather than training new bespoke decision models
(§2), existing QE models can evaluate translations
from a lightweight model and determine when to
accept them or defer to a larger one.

How to choose which examples to defer? Set-
ting a fixed threshold on QE scores is challenging—
too high a threshold wastes computational re-
sources, while too low a threshold risks compro-
mising quality (Jitkrittum et al., 2023; Gupta et al.,
2024). Throughout this paper, we use a budget-
constrained computation approach: we first trans-
late all examples in a batch with the smaller model,
then rank them based on QE scores, deferring only
the lowest-scoring subset according to a predefined
compute budget (the fraction of examples deferred
to the larger model). This assumes parallel pro-
cessing of entire batches rather than processing
individual instances sequentially (see Fig. 1 for an
illustration with 50% of deferral). However, real-
world systems may process inputs sequentially or
in a streaming fashion. To mimic such settings, we
also explore a dynamic thresholding approach in
§5.5. Inspired by Ramirez et al. (2024), this ap-
proach sets and updates the QE threshold on the
fly, using the distribution of scores observed so
far—allowing adaptive, approximate control over
deferral without access to full batches upfront.

Computational efficiency. The standard approx-
imation for the number of floating point operations
(FLOPs) required for inference with a transformer
model is 2N D, where N represents the number
of model parameters and D is the number of to-
kens generated at inference time (Sardana et al.,
2024; Snell et al., 2024). For a cascaded approach
with superscripts .S and L denoting the smaller and
larger models, respectively, this becomes:

2BDs(Ns + Ngg) +2nBDNg, (1)
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where B is the batch size, Ngg is the number of
parameters of the QE model, and 7 is the proportion
of instances the larger model processes. Assuming
Dg =~ Dy, this approach achieves computational
parity with the larger model (i.e., 2B D Ny) when:

B NS+NQE

N, 2

=1
This expression provides a simple rule of thumb: to
maintain computational efficiency, the larger model
should handle at most n* of the examples. For
instance, if it is 10x larger than the smaller model
and the QE model is negligible (Ngr < Ng),
then n* = 0.9. This means the cascading is more
efficient than always using the larger model as long
as fewer than 90% of the examples are deferred.

4 Experimental Setup

4.1 Generation models

Through the paper, we experiment with generation
models of different size and predictive power:

* Tower-v2 70B (Rei et al., 2024): With 70B
parameters, this is an improved iteration of
Tower (Alves et al., 2024), obtained by con-
tinued pertaining Llama-3 (AI@Meta, 2024)
on a multilingual dataset with 25 billions of
tokens, followed by supervised finentuning
for translation-related tasks. Compared to the
first iteration of Tower, this model is better at
paragraph and document-level translation and
supports more languages (15, instead of 10),
including all the languages in the WMT24 test
sets. Combined with quality-aware decoding
(Fernandes et al., 2022), this is the winning
submission of the WMT24 general translation
shared task (Kocmi et al., 2024a).

* Tower-v2 7B (Rei et al., 2024): A more
lightweight version of Tower-v2 70B using
Mistral instead (Jiang et al., 2023).

* Tower-v2 7B (L): We follow the recipe de-
scribed above to train a smaller version of
Tower-v2 70B based on Llama-3. This model
slightly underperforms its Mistral counterpart.

¢ EuroLLM Instruct (9B and 1.7B) (Martins
et al., 2024): EuroLLM models are open-
weight multilingual models trained on 4 tril-
lion tokens covering all European Union and
many other relevant languages across several

M1t C1t Win rate
Tower-v2 7B -3.01 83.94 T 17
Tower-v2 7B (L) -3.07 83.73 111
EuroLLM 9B -4.01 80.56 I— i —
EuroLLM 1.7B  -4.60 77.42 —
Tower-v270B  -2.79 84.71 NA

Table 1: Translation quality measured with METRICX
(M) and COMET (C) on the WMT24 test set. Win rates
against Tower-v2 70B, according to M. The bars repre-
sent the proportions of , ties, and

data sources (web data, parallel data, and high-
quality datasets). The instruction-tuned mod-
els are obtained after finetuning the base mod-
els on the EuroBlocks dataset, which includes
general instruction-following and MT tasks.

We generate all translations with greedy decoding
using vVLLM (Kwon et al., 2023) for faster infer-
ence. Table 1 shows the performance of these mod-
els on the WMT?24 test sets (Kocmi et al., 2024a),2
according to METRICX and COMET (results are
averaged across all language pairs), along with win
rates against Tower-v2 70B. Following Kocmi et al.
(2024b), translations with differences in METRICX
below 0.122 are considered ties when comparing
two systems (90% human accuracy). We use this
threshold for detecting ties at the segment level.

4.2 Deferral strategy and baselines

We wuse two versions of COMETKIWI:
wmnt22-cometkiwi-da (Rei et al.,, 2022b),
which with only 0.5B parameters achieves a strong
correlation with human judgments (Zerva et al.,
2022); and wmt23-cometkiwi-da-xx1 (Rei et al.,
2023), a scaled version with 10.5B parameters. As
baselines, we compare against several simple, yet
often effective, heuristics:

* random selection, which uniformly defers a
random subset of examples;

* source length computed using Tower-v2’s
tokenizer, i.e., deferring either the shortest
(1ength) or the longest (-length) sources—
source length is a common proxy for transla-
tion difficulty (Kocmi and Bojar, 2017; Wan
et al., 2022; Wang et al., 2023), as longer
texts are typically harder to translate because

“Publicly available for research purposes at https:
//www2.statmt.org/wmt24/translation-task.html.
Our use of datasets and models aligns with their intended
purposes as defined by the licenses.
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they require maintaining consistency and ad-
equacy for larger contexts, and most systems
are trained with sentence-level data;

* logprobs, which uses the smaller model’s
normalized log-probability (directly obtained
as a by-product of the translation), i.e., defer-
ring texts with the lowest likelihoods, which
is typically a helpful quality proxy, as shown
by Fomicheva et al. (2020) and Guerreiro et al.
(2023) for hallucination detection.

These heuristics are not only computationally in-
expensive but have also been shown in prior work
to be effective, often outperforming more sophis-
ticated methods. We also report results with ora-
cle deferral, which maximizes translation quality
according to humans in §6, and compare our ap-
proach with quality-aware decoding (Fernandes
et al., 2022), which selects among multiple hy-
potheses produced by the same model in §7.

4.3 Evaluation

We use the WMT?24 test sets (Kocmi et al., 2024a),
which span multiple domains (news, social, speech,
and literary) and 11 language pairs (en-cs, en-de,
en-es, en-hi, en-is, en-ja, en-ru, en-uk, en-zh, cs-uk,
and ja-zh). For each language pair, we treat the full
test set as a single batch for computing QE thresh-
olds (§3), unless otherwise stated. Results are then
averaged across language pairs for better visualiza-
tion. We evaluate systems with METRICX (Juraska
et al., 2023) to reduce the risk of “reward hacking”
(Fernandes et al., 2022) and better reflect real qual-
ity improvements (we also provide COMET (Rei
et al., 2022a) scores in App. A). Since biases may
still exist when using a different evaluation metric
than the reward model (Kovacs et al., 2024), we
also conduct a human study (§6) using DA+SQM
(direct assessment + scalar quality metric) source
contrastive evaluation (Kocmi et al., 2022).

5 Results and Analysis

In this section, we present a series of analyses to
evaluate the effectiveness of quality-aware deferral.
We first show that larger models are not always
better than smaller ones (§5.1), motivating the use
of cascaded approaches. We then demonstrate that
quality-aware deferral effectively balances perfor-
mance and efficiency (§5.2), and that these gains
hold across different QE models (§5.3) and small
model backbones (§5.4). Finally, we explore how
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Figure 2: Translation quality of cascading combining
Tower-v2 7B and Tower-v2 70B according to METRICX,
as the inference computation budget varies. Horizontal
lines show the performance of each model alone.

our method performs under streaming constraints
where deferral must be made dynamically (§5.5).

5.1 Larger is not necessarily better

Although Tower-v2 70B outperforms Tower-v2 7B
across all language pairs (Table 1 shows aggregated
results), a closer look at its win rates shows it only
outperforms the smaller model in 43% of individ-
ual examples. Even when compared to the signifi-
cantly smaller EuroLLM 1.7B, Tower-v2 70B wins
only 66% of the time. This is not surprising, as Eu-
roLLM was trained explicitly with large amounts
of translation data to perform well on translation
tasks, despite its smaller size (Martins et al., 2024).
This demonstrates that larger models are not con-
sistently superior at the instance level (Table 2 pro-
vides some examples), opening the possibility of
strategically using smaller models for a subset of
examples. This approach can improve efficiency
without compromising translation quality.

5.2 QE is an effective deferral rule

Fig. 2 shows the quality of a cascaded system com-
bining Tower-v2 7B and Tower-v2 70B according
to METRICX under varying inference budgets (re-
sults are averaged across language pairs). Each
curve represents a different deferral rule. The dot-
ted vertical lines show the values of 7 after which
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Example 1: Tower-v2 70B is better

Notes

Source "It’s your birthday soon, isn’t it?" Ivory asked, remembering that the princess’
birthday was in a few days. Kari nodded, a sad glint in her light blue eyes.

Tower-v2 7B —No es pronto tu cumpleafios, verdad?—pregunt6 Ivory, acorddndose de ~ 33/100, awkward phras-
que el cumpleaiios de la princesa era en unos dias. Kari asintié, con un brillo  ing, less natural structure
triste en sus ojos azul claro.

Tower-v270B  «Pronto es tu cumpleafios, ;no es asi?», pregunt6 Ivory, recordando que el ~ 100/100, more fluid and
cumpleafios de la princesa era en unos pocos dias. Kari asintié, con un brillo  literary
triste en sus ojos azul claro.

Example 2: Tower-v2 7B is better Notes

Source A quarter of the way through the year update... well ahead of pace!

Tower-v2 7B i Ya llevamos una cuarta parte de la actualizacién anual... jmuy por encima  100/100, idiomatic phras-
del ritmo previsto! ing

Tower-v270B  ;Ya hemos avanzado un cuarto del camino en la actualizacién del afio... jy =~ 67/100, slightly literal,
estamos muy por delante del ritmo! less natural
Example 3: Tower-v2 7B is better Notes

Source I'll keep posting my bakes to my lovely masto-peeps, as they gobble it up.

Tower-v2 7B EHRLZESIEBRTLNSGYZ N7 —DEZAIC. 2Timd  100/100, conversational
LERFORBERIITHELT.

Tower-v270B  EZAICBATHLLITZDT. RELZSLFEERFEY MK 33/100, more formal

VICERLEITET.

Table 2: Illustrative examples where Tower-v2 70B is either better or worse than Tower-v2 7B, based on human
quality assessments. These examples show that the larger model does not always produce the preferred output. Key

differences are underlined.

our method would become more expensive than
always running the larger model only, depending
on the size of the QE model.

As expected, the random baseline fails to identify
examples that benefit from larger models, resulting
in suboptimal performance. Source length-based
decision rules or using the small model’s logprobs
perform slightly better or worse than random, sug-
gesting that simple heuristics cannot capture fine-
grained differences in translation quality and are
inefficient for deferral. In contrast, QE-based defer-
ral (our proposal) achieves the best overall perfor-
mance, enabling the cascaded system to match the
performance of the large model while invoking it
for only 50% to 60% of the examples. From Eq. (2),
computational parity is reached at n* = 89%
when using (Ng = 0.5B)
and n* = 75% with
(Ng = 10.5B). Matching Tower 70B’s perfor-
mance at such a small 7 shows that our approach
effectively balances efficiency and quality.

5.3 What if we use another QE model?

We have seen that QE-based cascading works
well with COMETKIWI models of different
sizes (Fig. 2). Here, we show that this is
also the case when using two reference-free
versions of METRICX (Juraska et al., 2024):
metricx-24-hybrid-large-v2p6, with 1.2B

g == metricx-24-qe-1

o 29 === metricx-24-qe-xl

E == = Tower-v2 7B
B0 ol = = = Tower-v2 70B

—— et —— —

0 10 20 30 40 50 60 70 80 90 100

n (% of Tower-v2 70B)

Figure 3: Translation quality of cascaded systems with
deferral based on metricx-24-hybrid-large-v2p6
and metricx-24-hybrid-x1-v2p6.

parameters, and metricx-24-hybrid-x1-v2p6,
with 3.7B parameters (Fig. 3, gray curves). Later
in §6, we confirm this with human evaluation.

5.4 How does the quality of the small model
impact performance?

We have shown that QE-based cascading works
well across QE models of different sizes (Fig. 2).
Here, we study whether it still provides gains when
the smaller model is relatively weaker. We train an-
other version of Tower 7B using Llama-3 instead of
Mistral, referred to as Tower 7B (L), and use two
versions of EuroLLM (Martins et al., 2024) with
1.7B (n* = 0.97) and 9B parameters (n* = 0.86).
Fig. 4 shows that while these models underperform
Tower-v2 7B, cascading with Tower 70B remains
competitive. This indicates that QE-based cascad-
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Figure 4: Translation quality of cascaded systems with
deferral based on . Large model:
Tower-v2 70B. Small models: Tower-v2 7B (L), Tower-
v2 7B (top); EuroLLM 1.7B, EuroLLM 9B (bottom).

ing is robust across different generation models,
even when both belong to the same family (top) or
when the small model is much smaller (bottom).
However, when the win rates of the larger model
against the smaller model increase, we can expect
7 to also increase.

5.5 What if deferral must be made on the fly?

So far, we have presented results by varying the
percentage of deferred sentences, which is equiva-
lent to thresholding QE scores with different cutoff
values. However, in some real-world cases (e.g.,
real-time streaming scenarios), we may not have
immediate access to an entire batch of sentences.
To address this, we use a dynamic thresholding
method similar to that of Ramirez et al. (2024),
where the threshold is updated incrementally dur-
ing inference. Specifically: i) for the first B exam-
ples, we route all inputs to the smaller model and
compute their QE scores; ii) we then set an initial
threshold based on the score that would defer a
target percentage of examples (e.g., 40%) from that
block; iii) after each subsequent block of B exam-
ples, we update the threshold using all previously
computed QE scores to maintain the desired defer-
ral rate. This mirrors a real-time scenario where the
system continuously adapts its deferral decisions
over time, aiming to approximate the target de-
ferred percentage based on the sentences processed
so far. Unlike our earlier budget-constrained com-
putation setup, this approach does not guarantee
the exact deferred percentage.

Fig. 5 shows that similar curves can be obtained
using a dynamic thresholding setup with B = 1

—2.75

—2.80

-2.85
cometkiwi

—-2.90 cometkiwi xxI

metricx

== cometkiwi (dynamic)
-2.95 . q
=== cometkiwi xxl (dynamic)

-3.00 == = Tower-v2 7B

== = Tower-v2 70B

-3.05
0 20 40 60 80 100

% of Tower-v2 70B

Figure 5: Translation quality of cascaded sys-
tems with deferral based on wmt22-cometkiwi-da
and wmt23-cometkiwi-da-xx1, using a

or a dynamic procedure.

(gray curves), without requiring access to the full
batch of source sentences. For the rest of the paper,
we use the budget-constrained setup.

6 Human Evaluation

Since using QE metrics during inference can bias
automatic evaluations, we conduct a human study
to obtain reference-quality translation judgments
and validate our approach. We recruited profes-
sional translators who were native speakers of the
target language on the freelancing site Upwork.>
We followed a DA+SQM (direct assessment +
scalar quality metric) source contrastive evaluation
(Kocmi et al., 2022) using Appraise (Federmann,
2018). We randomly sampled 500 source instances
from the WMT?24 test set for en-ja and en-es and
asked one translator per language pair to read two
alternative translations for each source and evaluate
them on a continuous scale from 0 (no overlap in
meaning) to 100 (perfect translation). The scale
featured seven labeled tick marks (from O to 6) indi-
cating different quality labels combining accuracy
and grammatical correctness. Translators could
further adjust their scores to reflect preferences
or assign the same score to translations of similar
quality. They were paid a market rate of around
20 USD per hour, and completing the task took
approximately 12 to 14 hours for each language
pair. Further details are in App. B.

6.1 QE remains an effective deferral rule

Fig. 6 shows the performance of cascaded sys-
tems using QE-based deferral. We use a paired-
permutation test (Good, 2000; Zmigrod et al., 2022)
to compare the performance of Tower-v2 70B with

*https://upwork. com.
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Figure 6: Translation quality of a cascaded system com-
bining Tower-v2 7B and Tower-v2 70B according to
human scores (in a scale from 0 to 100), as the infer-
ence computation budget varies. Systems in the shaded
area are not significantly different from Tower-v2 70B
according to the paired-permutation test with p = 0.01.

each our cascaded systems under varying budgets
(represented by the lines and marked with
an “x”). Using p = 0.01, we found that all the
systems in the shaded area are not significantly dif-
ferent from Tower-V2 70B, whereas systems below
the shaded area (i.e., below 92.4 and 92.9 for en-
es and en-ja, respectively) are significantly worse.
This shows that our approach achieves performance
comparable to Tower-v2 70B while invoking it for
only 30% to 50% of the examples,* confirming
that it substantially reduces computational costs
without compromising translation quality.

6.2 What if we use another QE model? What
if we had a perfect QE model?

The effectiveness of our framework depends on
the quality of existing QE models, and improving
them can further strengthen our approach. First,
we confirm with human evaluation that the benefits
of quality-aware deferral go beyond COMETKIWI
models, as explained in §5.2 (check the

“We run the same statistical test to compare the small
model (Tower-v2 7B) with our cascaded systems, concluding

that all systems within the shaded region (including the large
model itself) are also significantly better than Tower-v2 7B.

curves in Fig. 7 for results using two reference-free
versions of METRICX). Second, to access the per-
formance ceiling of cascading, we report results
with oracle deferral, i.e., a deferral strategy that
maximizes translation quality according to humans
(Fig. 7, black curves).”> The high oracle values
indicate significant potential for improvement, sug-
gesting that having better QE models could directly
boost the effectiveness of our cascaded approach.

7 Comparison with Quality-Aware
Decoding

There is a large body of work on reranking for lan-
guage generation, where we start by generating
multiple hypotheses with a language model, and
then use a reranker to select the best one (Farinhas
et al., 2024). For MT, an example is quality-aware
decoding (Fernandes et al., 2022). The cheapest
approach is QE reranking, where we first gener-
ate multiple translation hypotheses and then rerank
them using a QE model. This strategy is often
used to reduce the propensity of language mod-
els to hallucinate (Guerreiro et al., 2023; Farin-
has et al., 2023). While our approach is conceptu-
ally different—designed with efficiency in mind,
whereas QE reranking is often computationally
expensive—there is also a key structural distinction:
QE reranking selects among multiple hypotheses
produced by the same model, whereas our deferral
strategy uses a single hypothesis from the smaller
model and invokes the larger model only when the
predicted quality falls below a certain threshold.

Computational efficiency. Following the discus-
sion in §3, the number of FLOPS required for in-
ference with a large model on a batch of B ex-
amples is 2BD Ny, where Ny, represents the num-
ber of model parameters and D is the number of
generated tokens. In this section, we assume that
our goal is to reduce the computational cost by
(1 — X)%, meaning that we operate under a com-
putational budget of X - 2B D Ny. The number of
FLOPs required to run inference with our cascaded
approach is given by:

QBD(N5+NQE+77NL), 3)
which leads to the following expression for X:
Ns + N,
X =pn4 2 CF &)
Ni,

>Oracle performance goes down after reaching a plateau
due to our budget-constrained approach, which enforces de-
ferral for a fixed percentage of examples.
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For QE reranking, the computational cost is:

2BDK(Ng —i—NQE), 5)

where K is the number of generated hypotheses.
This yields:
Ns + Ngk
X=K | ———].
( Ni

These expressions allow us to obtain the values of
7 for which our approach incurs the same compu-
tational cost as QE reranking with K hypotheses:

= - (Mo New)

(6)

)

curves). The black curve shows the oracle selection.

Experiments and discussion. We generate up to
9 hypotheses with Tower-v2 7B using e-sampling
with ¢ = 0.02 (Freitag et al., 2023). Ac-
cording to Eq. (6), the number of FLOPs re-
quired for QE reranking with more than 9 hy-
potheses already exceeds the budget of 2BD Ny,
if we use When using

, computational parity
is achieved with K = 4. Fig. 8 illustrates the trade-
off between computational efficiency and transla-
tion quality (measured with METRICX) for a cas-
caded approach with QE-based deferral against QE
reranking. As expected, quality improves as the
computational budget increases for both methods.
While QE reranking is also an effective way to
improve translation quality when generating multi-
ple hypotheses is feasible, our cascaded approach
achieves better quality at lower computation costs,
making it a more efficient alternative when compu-
tational efficiency is a priority.

8 Conclusions and Future Work

We propose a simple yet effective approach to
model cascading for MT using QE metrics for de-
ferral. Our method matches the quality of larger
models while requiring them to handle only a sub-
set of examples, significantly reducing computa-
tional costs. This is shown through automatic and
human evaluations. The effectiveness of our frame-
work depends on the quality of existing QE models,
and improving them can further strengthen our ap-
proach.
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Limitations

We highlight the main limitations of our work.
First, we focus on a two-stage cascade, where ex-
amples are handled by a small model or deferred to
a larger one. Extending this to a multistage setup
with more than two models could further improve
efficiency but also add complexity. Second, our
study is limited to machine translation. QE-based
deferral works particularly well in MT due to the
availability of high-quality human-labeled data for
training QE models. Extending this approach to
other tasks where such data is scarce is not straight-
forward. Third, our method assumes the smaller
model is reasonably competitive with the larger
one, which is a fair assumption for MT, as shown
in our experiments. If the gap in win rates is too
large, cascading offers little benefit, as most ex-
amples would require deferral. Finally, from the
standpoint of deploying in a real-world application,
any cascading solution may introduce latency if
not engineered properly. Our analysis about the
computational efficiency of our method in §3 does
not account for that.
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A Automatic Evaluation

Here, we include versions of Figs. 2 to 4 but us-
ing COMET (Rei et al., 2022a) scores instead of
METRICX (Juraska et al., 2023). Please check
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Figure 9: Translation quality of cascading combining
Tower-v2 7B and Tower-v2 70B according to COMET,
as the inference computation budget varies.
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Figure 10: Translation quality of cascaded systems with
deferral based on metricx-24-hybrid-large-v2p6
and metricx-24-hybrid-x1-v2p6 according to
COMET.

Figs. 9 to 11. Crucially, the main conclusions do
not change.

B Human Evaluation

B.1 Annotation guidelines

We share below the annotation guidelines shared
with the freelancers.

Task overview. This task involves evaluating two
alternative translations of a source text and assign-
ing a rating to each translation based on its overall
quality and adherence to the source content. You
should consider accuracy, fluency, and overall qual-
ity when assessing the different translations.

Annotation scale. Each translation should be
evaluated on a continuous scale from 0 to 6 with
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Figure 11: Translation quality of cascaded systems with
deferral based on , according to
COMET. Large model: Tower-v2 70B. Small models:
Tower-v2 7B (L), Tower-v2 7B (top); EuroLLM 1.7B,
EuroLLLM 9B (bottom).

the quality levels described below:

* 6 (perfect meaning and grammar): The
meaning of the translation is completely con-
sistent with the source and the surrounding
context, if applicable. The grammar is also
correct.

* 4 (most meaning preserved and few gram-
mar mistakes): The translation retains most
of the meaning of the source. It may have
some grammar mistakes or minor contextual
inconsistencies.

* 2 (some meaning preserved): The translation
preserves some of the meaning of the source
but misses significant parts. The narrative
is hard to follow due to fundamental errors.
Grammar may be poor.

* 0 (nonsense/no meaning preserved): Nearly
all information is lost between the translation
and source. Grammar is irrelevant.

Annotation interface. Figs. 12 and 13 show the
annotation interface. If two candidates were the
same or of the same quality, the annotators were
asked to use “match sliders” to give them the exact
same score. And, they could also use the absolute
scale range to show preference between the transla-
tions.
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0/50 blocks, 10 items left in block wmt24engspatest #1:Segment #546 English — Spanish (espaiiol)

Today, | completed my first Cross Country Flight (Flight over 50 Nautical Miles).

— Source text

How accurately does each of the candidate text(s) below convey the original semantics of the source text above?
If the two candidates are the same or of the same quality, use the "Match Sliders" button to give them the same score.
(Please see the detailed guidelines below)

Hoy completé mi primer vuelo de larga distancia (vuelo de mas de 50 millas nauticas).

0 1 2 3 4 5 6

se/ No meaning 2: Some meaning preserved 4: Most meaning preserved and few grammar mistakes 6: Perfect meaning and grammar

Hoy completé mi primer vuelo de cross country (vuelo de mas de 50 millas nauticas).

0 1 2 3 4 5 6
0: Nonsense/ No meaning 2: Some meaning preserved 4: Most meaning preserved and few grammar mistakes 6: Perfect meaning and grammar
preserved

Reset Show/Hide diff. Match sliders

Assess the translation quality on a continuous scale using the quality levels described as follows:

0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and source. Grammar is irrelevant.

2: Some meaning preserved: The translation preserves some of the meaning of the source but misses significant parts. The narrative is hard to follow due to fundamental errors.
Grammar may be poor.

4: Most meaning preserved and few grammar mistakes: The translation retains most of the meaning of the source. It may have some grammar mistakes or minor contextual
inconsistencies.

6: Perfect meaning and grammar: The meaning of the translation is completely consistent with the source and the surrounding context (if applicable). The grammar is also correct.

The numeric labels on the slider are there to help you to adjust the score more precisely, but the slider can be stopped at any position along the track. Try
to use the full range of the scale when scoring segments and not limit yourself only to the values around the numeric labels.

@ This is the GitHub version #unt24dev of the Appraise evaluation system. ® Some rights reserved. >3 Developed and maintained by Christian Federmann and the Appraise Dev team.

Figure 12: Annotation interface for en-es.
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0/50 blocks, 10 items left in block wmt24engjpntest #2:Segment #546 English — Japanese (H4:E)

Today, | completed my first Cross Country Flight (Flight over 50 Nautical Miles).

— Source text

How accurately does each of the candidate text(s) below convey the original semantics of the source text above?
If the two candidates are the same or of the same quality, use the "Match Sliders" button to give them the same score.
(Please see the detailed guidelines below)

SRR, WHTOI/ARAYFY—=754 b (50iBRILLEDORIT) 2T LEL,

0 1 2 3 4 5 6

ense/ No meaning 2: Some meaning preserved 4: Most meaning preserved and few grammar mistakes 6: Perfect meaning and grammar

SH. os0xAY bY—=754 + (50i8BLALORIT) 2T LE LT,

0 1 2 3 4 5 6
0: Nonsense/ No meaning 2: Some meaning preserved 4: Most meaning preserved and few grammar mistakes 6: Perfect meaning and grammar
preserved

Reset Show/Hide diff. Match sliders

Assess the translation quality on a continuous scale using the quality levels described as follows:

0: Nonsense/No meaning preserved: Nearly all information is lost between the translation and source. Grammar is irrelevant.

2: Some meaning preserved: The translation preserves some of the meaning of the source but misses significant parts. The narrative is hard to follow due to fundamental errors.
Grammar may be poor.

4: Most meaning preserved and few grammar mistakes: The translation retains most of the meaning of the source. It may have some grammar mistakes or minor contextual
inconsistencies.

6: Perfect meaning and grammar: The meaning of the translation is completely consistent with the source and the surrounding context (if applicable). The grammar is also correct.

The numeric labels on the slider are there to help you to adjust the score more precisely, but the slider can be stopped at any position along the track. Try
to use the full range of the scale when scoring segments and not limit yourself only to the values around the numeric labels.

@ This is the GitHub version #unt24dev of the Appraise evaluation system. ® Some rights reserved. >3 Developed and maintained by Christian Federmann and the Appraise Dev team.

Figure 13: Annotation interface for en-ja.
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