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Abstract

NLP benchmarks rely on standardized datasets
for training and evaluating models and are
crucial for advancing the field. Traditionally,
expert annotations ensure high-quality labels;
however, the cost of expert annotation does not
scale well with the growing demand for larger
datasets required by modern models. While
crowd-sourcing provides a more scalable so-
lution, it often comes at the expense of anno-
tation precision and consistency. Recent ad-
vancements in large language models (LLMs)
offer new opportunities to enhance the anno-
tation process, particularly for detecting label
errors in existing datasets. In this work, we con-
sider the recent approach of LL.M-as-a-judge,
leveraging an ensemble of LLMs to flag poten-
tially mislabeled examples. We conduct a case
study on four factual consistency datasets from
the TRUE benchmark, spanning diverse NLP
tasks, and on SummEval, which uses Likert-
scale ratings of summary quality across multi-
ple dimensions. We empirically analyze the la-
beling quality of existing datasets and compare
expert, crowd-sourced, and LLM-based anno-
tations in terms of the agreement, label quality,
and efficiency, demonstrating the strengths and
limitations of each annotation method. Our
findings reveal a substantial number of label
errors, which, when corrected, induce a sig-
nificant upward shift in reported model perfor-
mance. This suggests that many of the LLMs’
so-called mistakes are due to label errors rather
than genuine model failures. Additionally, we
discuss the implications of mislabeled data and
propose methods to mitigate them in training
to improve performance.

1 Introduction

Natural Language Processing (NLP) benchmarks
have long served as a cornerstone for advancing the
field, providing standardized datasets for training
and evaluating methods and models (Wang et al.,
2019; Hendrycks et al., 2021; Srivastava et al.,

2023; Calderon et al., 2024). These datasets have
been developed over the years for various tasks and
scales, annotated using different schemes. Gold
labels represent the “true” or ground truth anno-
tations, which are typically established through
expensive rigorous processes, including expert con-
sensus and extensive quality control. However, as
models have increased in size (Devlin et al., 2019;
Brown et al., 2020), the demand for larger datasets
has also grown (Kaplan et al., 2020). Since expert
annotation is cost-prohibitive, it does not scale well
to meet these demands. The demand for large quan-
tities of annotated data quickly and cost-effectively
has led researchers to adopt crowd-sourcing, often
sacrificing expertise for scale.

That way or another, constructing datasets heav-
ily involves making compromises in annotation,
trading off between scale, efficiency and expertise.
Even when annotated by experts, datasets can nat-
urally contain labeling errors, arising from factors
such as task subjectivity, annotator fatigue, inat-
tention, insufficient guidelines, and more (Rogers
et al., 2013; Reiss et al., 2020; Sylolypavan et al.,
2023). Mislabeled data is even more pronounced
when non-expert annotators are involved (Kennedy
et al., 2020; Chong et al., 2022). Widespread
mislabeled data is particularly concerning because
both the research community and the industry rely
heavily on benchmarks. In training data, label er-
rors harm model quality and hinder generalization,
while in test sets, they lead to flawed comparisons,
false conclusions, and prevent progress.

Recent advancements in LLMs (Ouyang et al.,
2022; Chiang and Lee, 2023; Li et al., 2023; Gat
et al., 2024) present new opportunities to improve
the annotation process, specifically in detecting
label errors within existing datasets (Klie et al.,
2023). Rather than re-annotating entire datasets
(e.g., through experts or crowd-workers), we con-
sider the LLM-as-a-judge approach (Zheng et al.,
2023), and propose a simple yet effective method

26782

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 26782—-26809
November 4-9, 2025 ©2025 Association for Computational Linguistics



Existing Re-label Flag strong Handle label
Dataset with LLMs . disagreements | errors
/ N Prediction Confidence / Train set

Example 1 | 0 @ :‘j Filter or flip flagged examples Better model
84 performance

Example 2 |0 1)

r o
Example 3 |1 (o] 1] »

—

s 73 — — v
68

'
'

H Test set

: Re-annotate with experts

Valid model
evaluation

#
dh

Figure 1: An illustration of our approach for detecting and addressing mislabeled data: (1) Re-label examples from
existing datasets using an ensemble of LLMs. (2) Identify strong disagreements between the LLM’s predictions
and the original labels (i.e., high confidence in a different label), flagging examples based on confidence levels.
Our findings show that LLMs detect between 6% and 21% of label errors, and higher LLM confidence is strongly
associated with improved precision in error detection. (3) In the training set, we either filter or flip flagged examples,
leading to an increase of up to 4%. For the test set, flagged examples are re-annotated by experts to make sure the
evaluation is accurate. Under accurate evaluation, the performance of LLMs is up to 15% higher.

by leveraging an ensemble of LLMs to flag a set of
potentially mislabeled examples. These can then
be sent to experts for re-annotation and correction,
or even get filtered during training.

Specifically, we construct an ensemble model us-
ing multiple LLMs with diverse prompts, gathering
both their predicted labels and corresponding confi-
dence scores. These predictions are contrasted with
the original labels, and instances where the LLMs
strongly disagree with the original label (i.e., show
high confidence in a different label) are flagged as
potential mislabeling cases. Additionally, we not
only explore the role of LLMs in detecting errors
but also evaluate their performance as annotators,
comparing them with expert and crowd-sourced
annotations. We assess these approaches in terms
of agreement, label quality, and efficiency, high-
lighting their strengths and limitations.

To address the broader issue of label errors in
NLP benchmarks, we conduct a comprehensive
end-to-end study structured around four intercon-
nected research questions: (1) Do current bench-
marks include mislabeled data? (2) Can LLMs
detect label errors? (3) How do expert, crowd-
sourced, and LLM-based annotations compare in
quality and efficiency? and (4) What are the impli-
cations of mislabeled data on model performance
and can we mitigate their impact?

To this end, we choose the TRUE benchmark
(Honovich et al., 2022) — A collection consolidat-
ing 11 existing datasets annotated for factual con-
sistency in a unified format — as a case-study and

empirically investigate its labeling quality. Specif-
ically, we analyze four datasets from TRUE with
binary factual consistency annotation originating
from different tasks. To support our claims and
results in other setups, we conduct similar experi-
ments on an additional dataset, SummEval (Fabbri
et al., 2021), which evaluates generated summaries
in four dimensions on a scale of 1 to 5.

Our paper presents both methodological and em-
pirical contributions. We propose a straightforward
approach for detecting potential mislabeled exam-
ples (as illustrated in Figure 1), revealing a substan-
tial number of label errors in existing datasets, rang-
ing from 6% to 21%. Additionally, we demonstrate
that the precision of LLMs in identifying errors
improves with their confidence in an incorrect la-
bel; when their confidence exceeds 95%, over two-
thirds of those labels are human errors. Moreover,
we show that LLM-based annotations not only ex-
cel in error detection but also perform similarly to,
or better than, traditional annotation methods, of-
fering better trade-offs between quality, scale, and
efficiency. Finally, we empirically illustrate the
negative impact of mislabeled data on model train-
ing and evaluation. We propose a simple automated
method for addressing label errors, improving the
performance of fine-tuned models by up to 4%. In
evaluation, we found that mislabeled data can sig-
nificantly distort reported performance; LLMs may
perform up to 15% better. This indicates that many
so-called prediction errors are not genuine errors
but are instead human annotation mistakes.
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Together, our results offer a holistic perspective
on label errors, examining their prevalence in real
datasets, the trade-offs and practices that give rise
to them, the role LLMs can play across the an-
notation process, and their downstream effects on
model performance.

2 Related Work

Traditional Human Annotation Approaches
Crowdsourcing is widely used for annotating
large-scale NLP datasets (Rajpurkar et al., 2016;
Williams et al., 2018; Wang et al., 2022), offering
rapid and scalable data collection. However, quality
control remains a challenge, with labeling inconsis-
tencies increasing as dataset complexity grows (Lu
et al., 2020; Allahbakhsh et al., 2013). Moreover,
as LL.Ms approach near-human performance (Chi-
ang and Lee, 2023; Chen and Ding, 2023), crowd
workers increasingly rely on these models for as-
sistance, further complicating annotation quality
(Veselovsky et al., 2023b,a). Expert annotation
provides more reliable labels for domain-specific
and cognitively demanding tasks (e.g., medical
or legal domains) but is significantly slower and
costlier than crowdsourcing (Snow et al., 2008;
Chau et al., 2020). Ensuring inter-annotator agree-
ment among experts adds further complexity and
expense (Baledent et al., 2022). Our study com-
pares expert, crowd-sourced, and LLM-based anno-
tation approaches in terms of quality and efficiency.

LLMs in the Annotation Loop LLMs have
been increasingly utilized as annotators in various
NLP tasks, offering potential benefits in efficiency
and scalability, often outperforming human annota-
tors (He et al., 2023; Gilardi et al., 2023; Tornberg,
2023; Calderon and Reichart, 2024). However,
LLMs are not reliable as standalone annotators as
they may produce incorrect labels, particularly in
complex (Chen et al., 2024), social (Ventura et al.,
2023; Felkner et al., 2024), emotional (Lissak et al.,
2024), or low-resource (Bhat and Varma, 2023)
contexts. To mitigate these limitations, hybrid ap-
proaches combining LLMs with human oversight
have been proposed (Kim et al., 2024; Li et al.,
2023; Weber and Plank, 2023; Zhang et al., 2023;
Kholodna et al., 2024). While most research fo-
cuses on annotation from scratch, our work em-
ploys an ensemble of LLMs to flag potentially mis-
labeled data points in existing datasets. Bavaresco
et al. (2025) compare LLM- and human-provided
annotations, focusing on agreement rather than de-

tecting label errors or analyzing their implications.

Handling Label Errors Label errors (also re-
ferred to as label noise) in training and evaluation
datasets can significantly impair NLP model per-
formance and reliability (Frénay and Verleysen,
2014). Previous work mainly focuses on fine-tuned
models and typically identifies mislabeled exam-
ples based on the model’s low confidence or high
training loss (Chong et al., 2022; Hao et al., 2020;
Pleiss et al., 2020; Northcutt et al., 2019). For
example, Chong et al. (2022) detects label errors
using the loss of a fine-tuned model, primarily in
binary classification, with some ensemble-based
variants explored. Once these high-loss or low-
confidence examples are flagged, they are typically
filtered out (Nguyen et al., 2019; Northcutt et al.,
2019), corrected automatically (Pleiss et al., 2020;
Hao et al., 2020), or re-labeled by human annota-
tors (Northcutt et al., 2021) to verify and improve
dataset quality. Our work differs both methodolog-
ically and in scope. We use zero-shot LLMs with
prompt diversity to construct an ensemble, requir-
ing no model training, enabling broader adaptabil-
ity. While prior approaches often flag uncertain
predictions, we focus on confident disagreements,
where the model strongly favors a different label.
This makes the flagged cases more actionable, as
they highlight what the model believes the label
should be. Recent work on AED also includes more
nuanced views: distinguishing genuine errors from
legitimate variation (Weber-Genzel et al., 2024),
introducing model-agnostic frameworks that detect
and overwrite erroneous labels (Yang et al., 2023),
and benchmarking AED across tasks and datasets
to support reproducibility (Klie et al., 2023).

3 LLM as an Annotator and Detector

This study aims to evaluate the potential of LLMs
in detecting mislabeled examples and compare
three annotation approaches: experts, crowdsourc-
ing, and LLMs. To this end, we use an ensem-
ble model that combines multiple LLMs with var-
ied prompts. The motivation for this ensemble is
twofold: first, we demonstrate that it enhances error
detection and aligns more closely with expert anno-
tations while also decreases the variance; second,
it offers a simple approach that avoids the need for
complex model selection or extensive prompt engi-
neering, relying instead on the collective strength.

Prediction and Confidence To make a predic-
tion using the ensemble, we first extract class prob-
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abilities of each LLLM and prompt from the logits
of the representing class tokens (e.g., 0 or 1 for the
binary TRUE datasets, and 1 to 5 for the ordinal
SummEval). The probabilities are then normalized
to sum to 1. Next, we compute the average probabil-
ity for each class across the ensemble and select the
class with the highest probability (argmax) as the
final prediction. The confidence in the prediction is
defined as the corresponding ensemble probability.
If the token probabilities are not accessible, they
can be approximated via sampling.

Errors Detection We re-label the dataset us-
ing the ensemble, keeping both the prediction and
confidence for each example. We then flag poten-
tially mislabeled examples where there is strong
disagreement between the ensemble prediction and
the original label, specifically when the model ex-
hibits high confidence in a false prediction. In the
binary case, we examine only examples where the
ensemble prediction differs from the original label.
In the ordinal case, we examine examples where
the difference between the original label and the en-
semble prediction is strictly greater than 1 (e.g., 3
vs. 5,1 vs. 5,4 vs. 2, etc.). After examining these
examples, only those with confidence exceeding a
predefined threshold are flagged as potentially mis-
labeled. Our experiments show that as confidence
in an incorrect prediction increases, the likelihood
of the example being mislabeled also rises.

For test sets, flagged examples can be re-
examined by experts to verify their labels. For
training sets, the same applies, though automated
alternatives can be to remove or relabel them based
on the ensemble prediction.

4 Experimental Setup
4.1 Data

As a case-study, we choose to explore the exten-
sive and widely used TRUE benchmark (Honovich
et al., 2022), which is typically used as an evalua-
tion set (Steen et al., 2023; Gekhman et al., 2023;
Wang et al., 2024; Zha et al., 2023). It consists of
11 datasets from various NLP tasks such as summa-
rization and knowledge-grounded dialogue. This
benchmark is unique in its approach of bringing
multiple datasets and tasks into a unified schema
of binary factual consistency labels. Each dataset
is transformed from its original structure (e.g., a
source document and a summary) into two input
texts, Grounding and Generated Text, and a bi-
nary label indicating whether the generated text is

factually consistent w.r.t the grounding. This en-
ables us to examine multiple tasks and domains
under the same umbrella at once while maintain-
ing a unified binary-label schema. Specifically, we
focus on four TRUE datasets, one from each task:
MNBM - summarization evaluation (Maynez et al.,
2020); BEGIN - grounded dialogue evaluation
(Dziri et al., 2022); VitaminC — fact verification
(Schuster et al., 2021); and PAWS — paraphrasing
evaluation (Zhang et al., 2019). See Appendix D
for additional details on these datasets.

For each dataset, we randomly sampled up to
1000 examples (using the full dataset if smaller) for
LLM annotation. From these, 160 examples per
dataset (640 in total) form the evaluation set, while
the remainder were kept for training and validation
(subsection 7.1). The evaluation set was further re-
annotated by two experts and three crowd workers.

SummEval In addition to the TRUE bench-
mark, we replicate some of the experiments on the
full SummEval benchmark (Fabbri et al., 2021).
This benchmark includes 1600 generated sum-
maries evaluated on four dimensions (relevance,
fluency, coherence, consistency) by crowd-workers
and experts. In contrast to TRUE, the labeling
scheme is ordinal on a scale of 1 to 5. For further
information on the SummEval data and experimen-
tal setting, see Appendix A. Noteworthy, when re-
searchers employ the SummEval benchmark, they
use solely the expert annotations. Accordingly, the
focus of our experiments conducted on SummEval
is (1) to simulate a setup where the original labels
are obtained through crowd-sourcing while relying
on expert annotations as the gold standard; and (2)
to compare the three annotation approaches (crowd-
sourcing, experts, and LLMs).

4.2 Annotation Procedure

This subsection outlines the annotation procedures
for the various approaches. Refer to Appendix C
for additional implementation and technical details
not covered here, or Appendix A for the SummEval
LLM annotation details.

LLMs We re-annotate the data with four LLMs:
GPT-4, (OpenAl, 2023), PaLM2 (Anil et al., 2023),
Mistral (7B) (Jiang et al., 2023), Llama 3 (8B)
(Dubey et al., 2024), and GPT-40 and Gemini-1.5-
Flash for SummEval. Our ensemble model lever-
ages four different prompts which control the vari-
ance caused by task descriptions. The prompts are
designed as a zero-shot classification task, e.g., for
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TRUE the requested output is a single token, either
"0’ for factual inconsistency or ' 1’ for factual
consistency (see more details in Appendix, C.3 and
prompt templates in Figure 12).

Crowd-sourcing  Generally, crowd-sourced an-
notators span a spectrum- from untrained, "com-
mon" crowd-workers to carefully selected and
trained annotators. Our paper focuses on the lower
end of this spectrum. We used Amazon Mechanical
Turk (MTurk) to recruit crowd workers for anno-
tating 100 examples per TRUE dataset (400 total).
Examples were randomly assigned to annotators.
Each annotated example was manually reviewed.
Rejected examples were returned to the pool and
re-annotated until each example was annotated by
three different annotators.

To obtain a single label per example, we consider
two different aggregations: (1) Majority - by major-
ity vote, and (2) Strict - if any annotator marks it in-
consistent, that becomes the label. For SummEval,
we use the crowd-sourced annotations provided by
Fabbri et al. (2021), aggregated by their median.

Experts All TRUE examples where the predic-
tion differed from the original label, regardless of
confidence, were annotated by human experts. The
experts are two of the paper’s authors, who are fa-
miliar with the guidelines and task characteristics.

Each example was independently annotated by
both experts on a scale from O (inconsistent) to 1
(consistent). The examples were shuffled and pre-
sented in no specific order, with neither the original
nor LLM labels shown. For cases where the ex-
perts disagreed, a reconciliation phase followed,
during which they discussed and attempted to re-
solve their differences. For more details on the
annotation procedure, see Appendix C.2. After re-
annotating all conflicted examples, we define the
gold label as the original label, if the LLM predic-
tion agrees with it, or the expert resolution, if there
was a disagreement. For SummEval, we use the
expert annotations provided by Fabbri et al. (2021),
aggregated by median.

5 Label Errors: Analysis and Detection

5.1 Do current benchmarks include
mislabeled data?

To address the first research question, we annotate
the test-set of TRUE (as described in section 4 us-
ing LLMs. We then contrast these annotations with
the original labels, to find disagreements. As shown

Dataset: BEGIN

Grounding: Hillary Clinton, the nominee of the
Democratic Party for president of the United States
in 2016, has taken positions on political issues
while serving as First Lady of Arkansas (1979-81;
1983-92), First Lady of the United States (1993-2001);
Generated Text: She is the nominee in 2016.

Original Label: 0 LLM p: 0.98  Gold Label: 1

Explanation: She (Hillary Clinton) is indeed the nomi-
nee in 2016 as specifically stated in the grounding.

Table 1: Example of an annotation error in the original
datasets, discovered by LLMs and corrected by experts.
In Appendix Table 6 we provide additional examples.

Dataset Task % pos | % LLM | % error

‘ disagree
MNBM Summarization 10.6 39.4 16.9 (11.6)
BEGIN Dialogue 38.7 344 21.2 (15.8)
VitaminC | Fact Verification | 52.5 17.5 8.1 4.4)
PAWS Paraphrasing 443 22.5 6.2 (3.0)

Table 2: Summary of LLM disagreement and label error
rates across different datasets. %pos is the percentage of
positive (i.e., the consistent class) examples in the data.
% LLM disagree refers to the percentage of examples
where the LLM label differs from the original one. %
error indicates the error rate in the sampled test set,
while the number in parentheses denotes the estimated
lower bound of the error rate for the entire dataset.

in Table 2, the disagreement rate is significant and
can be up to ~ 40% of the examples. An exam-
ple of such disagreement is presented in Table 1.
While this would typically suggest poor LLM per-
formance, we further investigated by re-annotating
with experts to determine which was more accurate:
the original label or the LLMs’ prediction.

Our findings show a considerable number of la-
bel errors for all examined datasets (see the %error
column in Table 2). Based on the experts gold la-
bel and the sample sizes, we also estimate a lower
bound for the total percentage of label errors in the
full datasets. We employed the Clopper-Pearson
exact method (Clopper and Pearson, 1934) to con-
struct a 95% confidence interval for the binomial
proportion, adjusted by a finite population correc-
tion (FPC) (see more details in Appendix G.1). We
provide the lower bound of these confidence inter-
vals in parentheses in Table 2, under the %error
column. The lower bounds range from 3% in the
PAWS dataset to 15.8% in the BEGIN dataset.

5.2 Can LLMs Detect Label Errors?

As described in subsection 5.1, we utilize LLMs to
flag candidates for mislabeling, and indeed find la-

26786



|| Ms-binary

Experts resolution when LLMs disagree with original labels
100

Original label

751

iiaii[

[0.5,0.65) [0.65,0.8) [0.8,0.95) [0.95, 0.99) [0.99, 1.0)
LLMs confidence (on predicted label)

Agreement with experts (%)
w

100Exper‘ts resolution when LLMs disagree with Turkers' labels

80
60
40 -

mmm || Ms are more correct
Turkers are more correct
Both are equally correct

201

Agreement with experts (%)

04
[0.2,0.55) [0.55,0.7) [0.7,0.8)

[0.8,0.9)
LLM confidence (on predicted label)

[0.9, 1.0)

Figure 2: When LLMs disagree with original labels -
who is correct? (Top) TRUE (Bottom) SummEval. As
the LLM’s confidence grows, so does the precision of
identifying an error in the original labels.

bel errors. In this subsection, we focus on the LLM
viewpoint, exploring the effect of LLM confidence,
and the power of ensemble.

Confidence LLM annotations are valuable for
flagging mislabeled data, offering more than just
hard labels. By considering LLM confidence scores
alongside their predictions, we can improve the
precision of automatic error detection. Leverag-
ing confidence can reduce re-annotation efforts by
flagging only cases exceeding a predefined thresh-
old. The rationale is that not all flagged examples
should be treated equally. Instances flagged with
low confidence indicate that the LLM recognizes a
potential issue, however, when the LLM is highly
confident in a label that contradicts the original one,
it provides a stronger signal of a possible error.

Figure 2 shows the rate of the experts’ agree-
ment with the LLMs compared to the agreement
with original labels, divided into confidence-based
bins. Bins are balanced by size, and defined by a
confidence interval of 95% based on bootstrap sam-
pling (see Appendix G.2 for further details). The
bins reflect increasing levels of LLM confidence
in its predicted label (i.e., a stronger disagreement
between LLMs and the original labels).

From the top of Figure 2, we observe a clear
trend: as LLM confidence increases, so does its
precision in detecting label errors in the original
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Figure 3: The power of ensemble. (Top) TRUE (Bot-
tom) SummEval. As the ensemble size increases (Xx-
axis), its performance against gold labels (Left), and its
ability to detect label errors (Right) improve.

dataset. In the highest confidence bin, LLM annota-
tions surpass the original labels in agreement with
expert re-labeling, and this difference is statistically
significant. This indicates that when the LLM is
highly confident in its disagreement with the orig-
inal label, the labeled example serves as a strong
candidate for a labeling error. Note that even in
cases where the expert agreement with LLMs was
below 50%, mislabeled data was still discovered.
See Appendix E for model-specific analysis.

We replicated this analysis on the SummEval
dataset (bottom of Figure 2) and observed a similar
trend: higher confidence increases the likelihood
that the LLM prediction is closer to the expert an-
notation than the original label. In the SummEval
case, we consider the crowd-sourced labels as the
original labels. For more details see Appendix A.

Ensemble By varying the size of the LLM en-
semble, we examine two key aspects: predictive
power (how well predictions align with gold labels,
measured by ROC AUC for TRUE and average cor-
relation for SummEval), and error detection power
(measured by F1-score, averaging the recall of er-
rors and the precision of correctly identifying a
candidate as a true error). The ensemble power
analysis is presented in Figure 3.

For both aspects, we see a clear trend. As we
increase the number of models in the ensemble,
the performance increases. A higher ROC AUC
with respect to the gold labels (left) reflects bet-
ter annotation quality, while a higher F1 score
(right) indicates a stronger error detector, either
by recalling more errors or improving precision,
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Annotator group Fleiss’s x | %agreement | #examples | Fleiss’s x #annotators
(disagree. sub-
set)
Experts 222 2
Before reconciliation 0.486 75.7 0.486
After reconciliation 0.851 93.2 0.851
MTurk ‘ 0.074 60.5 400 -0.004 3*
LLM (different prompts) 640 4
GPT-4 0.706 85.3 0.571
PaLM2 0.750 87.7 0.696
LLaMA3 0.219 71.7 0.078
Mistral 0.459 73.2 0.314
LLMs (different models) | 0521 | 775 | 640 | 0389 | 4

Table 3: Inter-annotator agreement (IAA) across annotator groups. LLMs such as GPT-4 and PaLM2 approach
expert-level agreement, while MTurk workers show low and inconsistent reliability. Results for SummEval are

provided in Table 5 in the appendix.

or through a balance of both. Notably, to place
the absolute F1-score in context, the expected F1-
score for random behavior is approximately 0.22
(when randomly flagging errors), or around 0.13
(when randomly guessing the annotation), due to
the class imbalance between error and non-error
cases. Additionally, for both measures, the vari-
ance decreases as the ensemble size grows, which
indicates more stable and consistent annotations
and error detections. Similarly, Figure 3 (bottom)
shows the power of LLM ensemble on the same
aspects on the SummEval datasets, aggregated over
four summarization dimensions (see experiment
details on Appendix A.4.2). Trends of diminish-
ing variance and increased performance and error
detection are observed here as well.

Although not yet discussed in the context of er-
ror detection with LLMs, these results align with
previous work showing the power of ensemble (Di-
etterich, 2007).

Our findings show that incorporating multiple
LLMs and prompts in an ensemble is valuable: as
the ensemble size increases, both label quality and
error detection improve. These observations justify
our choice to use an ensemble of models rather
than a single one.

6 Comparing Annotation Approaches

Our paper discusses three annotation approaches,
each with its own benefits and drawbacks, differ-
ing in how they balance label quality, scalability,
and cost. Here we summarize the main findings,

“Multiple MTurk workers have participated in annotation,
yet exactly 3 annotations per example were obtained. Annota-
tor independence assumption was made to calculate Fleiss’s «
as with 3 annotators.
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Figure 4: Annotation approaches comparison.

with additional analyses provided in Appendix B.
Figure 4 highlights the key results.

LLMs exhibit strong agreement with experts
and among themselves. Inter-annotator agreement
(IAA) among LLMs, as well as their alignment
with expert annotations, are significantly higher
than that of crowd workers. As shown in Table 3,
GPT-4 and PalLM?2 achieve k scores above 0.70,
approaching expert-level agreement after recon-
ciliation (x = 0.85). In contrast, MTurk workers
reach only k = 0.07, underscoring the gap between
crowd- and LLM-based annotation.

Crowd worker quality improves with experience
but remains inconsistent. Our analysis shows that
experienced crowd workers produce higher-quality
annotations, as illustrated in Figure 5. However,
even among them, annotation quality and consis-
tency remain lower than LLM-based annotation,
which is more reliable. This is reflected in the
wide variance of MTurk agreement (60.5% overall,
k = —0.004 on disagreement cases), suggesting
that crowd annotation requires substantial verifica-
tion to ensure reliability.

LLMs provide fast, scalable, and cost-efficient
annotation. Compared to expert and crowd-
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(Right y-axis) The number of annotators with at least x
annotations (bins). (Left y-axis) the average F1-score
or accuracy for all user annotations with at least  anno-
tations.

sourced annotation, LLMs require less time and
are much more cost-effective per annotation. As
discussed in subsection B.3, LLM annotation is es-
timated to be 100-1000 times cheaper than human
annotation. This makes them a viable alternative
for large-scale annotation while effectively balanc-
ing the trade-off.

7 Implications of Mislabeled Data
7.1 Training on Mislabeled Data

Training on mislabeled data can harm model perfor-
mance and stability, as learning from errors makes
it harder to identify consistent patterns. The impact
depends on various factors, such as the fraction
of mislabeled data and the training procedure. In
this subsection, we show that addressing this is-
sue, even heuristically, significantly improves the
model’s performance on a test set.

Handling Label Errors In order to handle label
errors in the training set, and reduce its effect on
model performance, we propose two manipulations.
For both manipulations, we flag examples where
the model strongly disagrees with the original la-
bel(i.e., with confidence above a certain threshold).
The first manipulation is filtering flagged examples
out, which maintains a “cleaner” yet smaller train-
ing set. The second manipulation is label flipping
for flagged examples, which maintains the same
amount of data, but may also cause harm if flipping
too many correct labels.

Experimental Setup We set the training set to
be the additional data examples from the datasets
(i.e., MNBM, BEGIN, VitaminC, PAWS), which

Impact of Label Error Handling on Fine-Tuning Performance
Starting from: NLI model
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Figure 6: Fine-tuning a model on a transformed dataset.
The gray bar is the original dataset - without any
changes. The green bars present results for label flip-
ping for a subset of examples, determined by LLMs-
confidence (plain), or at random (dotted). The blue bars
represent filtering of these examples.

are disjoint from the test set. Note that we posses
gold labels for the test set alone, while for the train-
ing set we only extract the confidence. The fine-
tuning procedure includes splitting the training set
into train and validation sets, and fine-tuning on the
train set. We report average results of five seeds.

As an ablation study, we also apply these ma-
nipulations on a random subset of examples rather
than the flagged examples. The ablation study aims
to maintain a consistent number of training exam-
ples, while the ablation for flipping aims to address
the claim that in some cases, a relatively small
fraction of label errors may be even considered as
a noise that improves model robustness (e.g., as
in label perturbation (Zhang et al., 2018) or label
smoothing (Szegedy et al., 2016)).

We conducted this experiment starting from two
base models: DeBERTa-v3, and a fine-tuned ver-
sion of it on classic NLI datasets, which we will
refer to as the NLI-base model. We chose the
NLI-base model as NLI tasks closely resemble
factual consistency evaluation (FCE), making it
well-suited for this experiment. Given the similar
trends, we present the results for the NLI model
here. Additional experiments and implementation
details can be found in Appendix F.1.

Results  Figure 6 shows the results of our exper-
iments. In our confidence-based approaches, we
clearly see the trend that as the confidence thresh-
old, according to which our manipulations are ap-
plied, grows, our manipulation results in improved
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Model Rank ROC AUC F1 Score Accuracy
Original Gold | Original Gold Original Gold Original Gold
GPT-4 3 1(+2) 0.81 0.93 (+15%) 0.73 0.83 (+14%) 0.73 0.83 (+14%)
NLI model 1 2(-1) 0.93 0.91 (-2%) 0.87 0.87 (—) 0.87 0.87 (—)
PaLM2 6 3(+3) 0.81 0.91 (+12%) 0.71 0.81 (+14%) 0.71 0.81 (+14%)
GPT-40 4 4(—) 0.81 0.91 (+12%) 0.74  0.83 (+12%) 0.74  0.83 (+12%)
GPT-4-mini 5 5(—) 0.81 0.91 (+12%) 0.71 0.79 (+11%) 0.70  0.79 (+13%)
Llama3 7 6 (+1) 0.75 0.86 (+15%) 0.47 0.50 (+6%) 0.52  0.55 (+6%)
Mistral-v0.3 8 7 (+1) 0.75 0.85 (+13%) 0.61 0.68 (+11%) 0.62  0.68 (+10%)
DeBERTa-v3 2 8 (-6) 0.84  0.80 (-5%) 0.76 0.73 (-4%) 0.76  0.73 (-4%)
Mistral-v0.2 9 9(—) 0.73 0.82 (+12%) 0.66 0.72 (+9%) 0.66  0.72 (+9%)

Table 4: Comparison of Model Performance on Original and Gold Labels. Ranking is defined over ROC AUC.

ROC AUC for both models. This trend eventu-
ally (i.e., for high enough LLLM confidence) brings
these approaches to significantly outperform the
baseline. In contrast, when we applied our ma-
nipulations on random subsets, we generally see a
diminishing effect of manipulation, converging to
the no-manipulation baseline.

Comparing between the handling approaches, it
appears that flipping is better than filtering for high
confidence. We hypothesize that this stems from
the amount of data that remains after flipping (i.e.,
the same amount as before the flipping) compared
to the filtering approach, combined with the high
error rate in these datasets. Note that this is contrary
to the random case where filtering is better than
flipping, as flipping a subset with low error-rate
brings more damage than value.

7.2 Evaluating on Mislabeled Data

In this subsection, we examine the impact of mis-
labeled data in evaluation sets and its potential to
distort results. Labeling errors can mislead the
evaluation process, resulting in inaccurate perfor-
mance metrics and, in some cases, flawed model
comparisons that lead to incorrect conclusions.

Experimental Setup To test this assumption, we
evaluate the performance of nine models, mostly
state-of-the-art LLMs, on the test datasets. We com-
pare their performance between the original labels,
and the gold labels. For LLMs, we used zero-shot
prediction as described in section 3, and averaged
over prompts. For DeBERTa-based models, we
used the fine-tuned models from subsection 7.1,
and averaged over seeds.

Results Prior to this work, an evaluation of these
models would induce the values and ranking as in
Table 4 under the Original sub-columns. However,
as shown before, these datasets include labeling
errors, and therefore do not support fair evaluation.
Considering the new gold labels, based on expert

intervention (as described in subsection 4.2), we
obtain different results, shown in the Gold sub-
columns. The first observed discrepancy is the
ranking of models. For example, DeBERTa-v3 has
shifted from being the second-best to the second-
worst. Beyond the change in ranking, all metrics’
(i.e., ROC AUC, F1-score, and accuracy) range has
shifted upward, indicating that LLMs perform bet-
ter on this task than previously thought. We further
discuss the performance differences between LLMs
and fine-tuned models in Appendix F.2. If this phe-
nomenon extends to other tasks and datasets be-
yond those examined in this study, it could suggest
that LLMs are better than currently perceived.

8 Discussion

Labeling errors are a persistent issue in NLP
datasets, negatively affecting model fine-tuning and
evaluation. Our findings demonstrate that LL.Ms,
particularly when highly confident, can effectively
detect these errors, outperforming crowd workers
in accuracy, consistency, and cost-efficiency. As
LLM capabilities advance, their role in refining
data quality will become central to improving NLP
benchmarks. Future work could explore applying
LLM-based error detection to a broader range of
datasets and tasks, as well as refining methods for
optimizing label correction strategies. We encour-
age researchers to adopt our methods and critically
evaluate existing datasets to drive more robust, reli-
able results in the field.
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Limitations

While our study provides valuable insights into the
role of LLMs in identifying label errors and im-
proving dataset quality, several limitations should
be considered. First, crowd workers encompass a
broad range of annotators with varying expertise
and training. Our analysis, focuses on the “com-
mon” crowd worker, typically an annotator selected
with minimal qualifications, such as an approved
task completion rate, and without specialized train-
ing. However, some datasets implement more selec-
tive strategies, such as requiring prior experience
or task-specific training, which may yield more re-
liable labels. These "trained" crowd workers can be
seen as an intermediate category between common
annotators and experts, both in terms of cost and la-
bel quality. We chose to focus on the two endpoints,
comparing common crowd workers and experts, to
highlight clear contrasts in annotation quality and
associated trade-offs. Importantly, we did not take
crowd-worker annotations at face value; we applied
filtering (based on the explanation crowd workers
were asked to write for each example) to remove
a substantial number of low-quality assignments,
such as clearly invalid responses, in addition to
enforcing minimal qualification criteria.

Second, our analysis does not account for po-
tential data contamination, where LLMs may have
been trained on the datasets we evaluate. However,
since our analysis focuses on identifying and cor-
recting label errors within these datasets, contami-
nation would likely hinder rather than enhance our
findings. If an LLM had memorized these datasets,
it would be more likely to reproduce existing errors
rather than detect and correct them, making con-
tamination a potential limitation only for certain
aspects of evaluation but not for our core claims.

Third, LLM-based annotations can vary depend-
ing on the choice of prompting strategies and en-
semble methods. In this work, we use zero-shot
prompting and simple averaging for ensembling.
Still, alternative approaches — such as few-shot
prompting, chain-of-thought reasoning (Wei et al.,
2022), or self-refine (Madaan et al., 2023) — could
improve annotation accuracy and consistency. Like-
wise, for ensembling, more advanced methods-
such as percentile-based aggregation (Sherratt et al.,
2023), error-aware weighting (Freund and Schapire,
1997), confidence-aware methods (Lee, 2010; Lu
etal., 2024), or even LLM-based aggregation strate-
gies like debate variants (Liang et al., 2023; Du

et al., 2024) — may yield more reliable consensus
labels. We leave the exploration of these strate-
gies for future work and hope our study encourages
such further research.

Finally, while our study does not cover the full
range of NLP tasks, it is grounded in diverse and
realistic labeling settings. The TRUE benchmark
includes factual consistency annotations for sum-
marization, dialogue, paraphrasing, and fact veri-
fication. SummEval adds ordinal labels and evalu-
ates multiple dimensions of summary quality, such
as fluency and coherence. These datasets differ in
task framing, label format, and domain, providing
a solid basis for analyzing label errors and their
effects. Extending this analysis to other task types
is a valuable direction for future work.

Ethical Considerations

We address several ethical considerations related
to human annotators and the research community.

First, we recognize the significant human effort
and cost involved in creating the datasets used in
this study. While we question certain labels in these
datasets, this should not be seen as undermining
their value or the hard work behind them. These
datasets have been highly beneficial to the research
community, and our aim is to help improve labeling
quality, especially as powerful tools like LLMs
become more capable in various tasks. Our goal
is to highlight areas where improvements can be
made, contributing to further advancements in the
field.

Additionally, we used crowd-sourced human an-
notators for text labeling. All participants were
paid fairly, in line with platform regulations and
our institution’s policies. We ensured transparency
in the process, treated participants with respect,
and provided appropriate compensation for their
efforts.

Lastly, we acknowledge the potential impact of
LLMs on crowd-sourced workers who depend on
these platforms for income. While we explore the
use of LLMs to enhance or potentially replace cer-
tain aspects of annotation, we do not intend for
this to harm human workers. Instead, we hope that
crowd-sourced workers will adopt these tools, al-
lowing them to become more efficient and skilled,
which will improve both the scalability and qual-
ity of future datasets while maintaining a role for
human oversight.
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A Additional Experiments - SummEval

In addition to the datasets from the TRUE bench-
mark, we replicate our experiments on another
dataset with a different objective and a different
labeling scheme, to strengthen our results and con-
clusions.

A.1 Data

SummEval (Fabbri et al., 2021) is an exten-
sive and commonly used summarization bench-
mark, evaluating the quality of multiple model-
generated summarization outputs compared to a
source CNN/DailyMail sources on four dimen-
sions: coherence, relevance, consistency, and flu-
ency. Each summarization is labeled on each di-
mension with five crowd-workers and three experts,

enabling us to replicate some of the experiments
without additional crowd-worker or expert anno-
tation costs. The labeling schema is ordinal on
a scale of 1 to 5 (higher is better). Note that this
dataset does not have a singular gold-standard label
per summarization, but rather a collection of an-
notations from experts and crowd-workers. There-
fore, we will not claim to find label errors in this
benchmark, but rather showcase our methodology
as if the crowd-sourced annotations are the origi-
nal labels for the dataset, and we have access to
experts’ annotations for gold-standard reference, to
determine if the LLM was correct when flagging
examples.

A.2 Definitions

To apply our methods for error detection via LLMs
ensemble, we first define the following:

Labels We aggregate crowd-sourced annota-
tions by their median, to construct a single original
label on a scale of 1 to 5. Similarly, we take the
median of the experts’ annotations to be a single
gold-standard label.

A disagreement We say that the LLM anno-
tation disagrees with the original label if there is
a difference of more than 1 between the scores.
Smaller differences (e.g., 4 vs. 5) may reflect natu-
ral variation in subjective interpretation rather than
a labeling mistake, and are therefore not considered
strong disagreements. In practice, using a thresh-
old of 1 results in over 50% of the dataset being
flagged, making it difficult to isolate meaningful er-
rors. We adopt this more conservative threshold to
better reflect genuine annotation issues and reduce
noise in our error detection process.

A.3 Experimental Setting

Similar to the description in subsection 4.2, we
utilize two LLMs— GPT-40 (gpt-40-2024-
11-20) and Gemini 1.5 Flash (gemini-1.5-
flash-002). We constructed four prompts, dif-
fering by phrasing and compatible with the four
prompt template structures used for the TRUE
benchmark experiments. The answer to each query
was a JSON format with Relevance’, ’Coherence’,
"Consistency’, and "Fluency’ as its keys. The scores
are integers on a scale of 1 to 5, as are the ratings
in the SummEval dataset. We extract the proba-
bility of each score possible through the log-probs
for each score token. Finally, we average all mod-
els’ probabilities, to obtain an ensemble of LLMs,
with p being the distribution over the five possible
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SCOres.

A.4 Experiments and Results
A.4.1 Can LLMs Detect Label Errors?

We replicate the experiment described in subsec-
tion 5.2 with the appropriate adjustment for the
SummEval dataset, based on the definitions above.
The result is shown in Figure 2 (bottom). The plot
presents the subset of examples where there was a
disagreement between the crowd-sourced annota-
tion and the LLMs’ annotation. Each bin represents
the confidence of the LLMs in their predicted label.
As there are five ordinal categories, even if there
was a disagreement between two annotations, they
both might be "wrong", where the expert’s answer
is a third option. Therefore, to show clearer results,
we do not resolve by experts "who is correct”, but
rather "who is more correct?". For completeness,
we also provide the "both equally correct” option,
for the case the expert’s label is exactly in the mid-
dle, and none is "more correct" than the other. The
bins are relatively balanced in terms of the amount
of examples per bin. Note that in contrast to the
TRUE binary labeling scheme, where confidence
0.5 is the minimal threshold for an answer, here we
start from 0.2.

From the results, we see a clear dominance of
the LLM over the crowd-sourced annotations, for
all confidence bins. This suggests that the LLMs
not only detect error by flagging possibly misla-
beled data points, but also provide better answers,
which can account for error correction. Similar
to the result on the TRUE benchmark, we observe
a trend where as the LLMs’ confidence increases,
they are more correct, indicating that they find la-
bel errors with higher precision. However, in this
dataset, the difference from the original labels (in
this case, the MTurk labels) is even more apparent,
and the LLMs are correct even when with lower
confidence.

A.4.2 The Power of Ensemble

We analyze the importance of utilizing more than
a single model and a single prompt on two dimen-
sions - performance compared to the gold labels
(the quality of the annotations we utilize), and error
detection (the ability to identify errors more accu-
rately). For performance evaluation on the ordinal
labels, we report Pearson correlation; for error de-
tection evaluation, we report the F1-score based on
binary error/not-error classification. See results in
Figure 3 and discussion in ??.

A.4.3 Annotation Approaches Comparison

In Appendix B, we thoroughly discuss the compar-
ison between the different annotation approaches.
For SummEval, experts and crowd-sourced anno-
tations are provided. Together with our LLM-
ensemble annotations (as described in subsec-
tion A.3), we analyze and compare the annotation
approaches in terms of quality (see Figure 7 (bot-
tom)) and consistency (see Table 5). To account for
ordinal labels, we measure IAA via Krippendorff’s
a (Krippendorff, 1970).

B Comparing Annotation Approaches

Our paper discusses three annotation approaches,
each with its own benefits and drawbacks. These
approaches differ in how they manage the trade-
offs between label quality, scalability, and cost. In
the following section, we discuss and compare their
characteristics. A summary of this comparison is
given in Figure 4.

B.1 Annotation Quality

When annotating or validating a dataset, one of
our main concerns is the quality of the labels, or
in other words, establishing a reliable gold stan-
dard. However, each annotation approach produces
different labels. To estimate the quality of these
approaches, we measure the agreement between
different annotations using the weighted F1-score
(which accounts for both classes). Note that this
metric is not symmetric, meaning that treating one
annotation as the true label and the other as the
prediction, or vice versa, can result in different
scores.

Figure 7 (top) presents the Fl-score between
each pair of annotation approaches. As the figure
shows, LLMs have disagreements with the original
labels (0.72). Yet, as discussed in subsection 5.1,
the original labels themselves contain mistakes,
so this disagreement does not necessarily indicate
poor performance of the LLMs. When considering
the Gold as the true label, LLM performance in-
creases to 0.83. This suggests that LLMs, despite
their discrepancies with the original labels, per-
form closer to the truth than initially reported. The
Gold label, obtained by experts, has high agreement
with both the Original and LLM labels. On the
other hand, the MTurk-Majority approach performs
poorly, with near-random F1-scores compared to
both the original and gold labels, and even when
compared to its stricter variant, MTurk-Strict. The
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Figure 7: Comparison between all annotation meth-
ods: (Top) on the TRUE benchmark, measured by the
weighted-F1-score. Rows represent the "frue” label and
columns represent the "prediction”. For instance, the
score of LLMs compared to the Original label is 0.72.
(Bottom) Comparison on the SummEval benchmark,
measured by Pearson correlation (results are averaged
over all dimensions).

MTurk - 0.04 0.03

results indicate that basic crowd-sourcing, with-
out additional training to enhance crowd-workers
into specialized sub-experts, performs significantly
worse compared to other approaches, including
LLM-based methods. On the SummEval dataset
(bottom of Figure 7), we observe similar results,
where the LLMs are more correlated with the Ex-
perts rather than the crowd-workers, which in turn
have almost-no-correlation with LLMs or experts’
annotations- this implies poor quality of the anno-
tations obtained from crowd-sourcing. Still, we
do not suggest that crowd-sourcing is inherently
flawed; with proper task design and worker training,
it may be suitable for certain subjective or human-
centered tasks. However, we advocate for more
careful consideration when using generic crowd
annotations for evaluation.

Crowd-sourcing For crowd-sourcing, the re-
ported F1-score does not provide the complete pic-
ture. When we focus on individual annotators, we
see that those who annotate more examples gen-
erally deliver higher-quality annotations, achiev-

ing greater accuracy when compared to both the
original and gold labels (see Figure 5). This phe-
nomenon can be explained by two hypotheses: (1) a
learning process— as the annotators see more exam-
ples, they improve at the task, or (2) users who dedi-
cate time to annotating multiple examples are likely
those who either read the guidelines carefully and
strive to perform the task to the best of their ability,
or are naturally proficient at the task and therefore
continue annotating. Even though annotators who
label more instances tend to provide higher-quality
annotations, they are less common—most annota-
tors tend to stop after only a few examples. This dis-
tribution of annotators results in overall insufficient
annotation quality. Pre-qualification tests are of-
ten used to shift this distribution from the "average
worker" towards more experienced or dedicated
annotators; however, this requires a significantly
larger budget and greater micro-management in-
volvement from the researcher.

B.2 Consistency

Usually, when annotating a dataset, more than
one annotator is involved. This applies to crowd-
workers, experts, and even LLMs- in this study, we
use an ensemble of different LLMs and prompts.
The use of multiple annotators, similar to an en-
semble, is meant to overcome the variance between
individuals, which can arise from the subjective
nature of NLP tasks, different interpretations of
instructions, lack of experience, task difficulty, and
cognitive bias (Uma et al., 2021).

As such, a common practice in the NLP commu-
nity is to report Inter Annotator Agreement (IAA)-
a set of statistical measures used to evaluate the
agreement between individuals. Typically, IAA
can be viewed as an adjustment of the proportion
of pairwise agreements, where 0.0 indicates ran-
dom agreement. We focus on Fleiss’s « (Fleiss,
1971), as it accounts for label imbalance and mul-
tiple (> 2) annotators. High IAA, or low variance
between independent annotators, is considered an
indicator of high-quality annotation. In Table Ta-
ble 3, we report the agreement between annotators
across different approaches. For LLMs, we report
two variants: (1) same model, different prompts;
and (2) different models, where each model’s result
is the aggregation across prompts. For reference,
we also include the IAA from the original annota-
tions, as reported in the original papers: MNBM
reported an average Fleiss’s x of 0.696 for the hal-
lucination annotation task; BEGIN reported Krip-
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pendorff’s o (a generalization of Fleiss’s ) of 0.7;
VitaminC reported Fleiss’s x of 0.7065 on a sample
of 2,000 examples; and PAWS reported a 94.7%
agreement between a single annotator’s label and
the majority vote on the Wikipedia subset used in
TRUE.

Experts While it’s true that reconciliation natu-
rally leads to increased agreement, the significant
improvement in IAA we observed highlights its
importance. Though this phase is less common in
practice, it is crucial not only for increasing agree-
ment but also for improving the overall quality of
annotations and ensuring more reliable outcomes.
Interestingly, label changes in this phase were not
symmetric, as most changes (69.3%) were in the
direction of consistent — inconsistent, where one
annotator found an inconsistency that the other did
not (see all change details in Figure 11). It is impor-
tant to note that the « obtained by the experts (both
before and after reconciliation) was calculated on
a more challenging subset, where the original label
differed from the LLM prediction, and should be
interpreted with this context in mind. This is re-
flected in the decrease in x observed for all other
annotator groups on this subset.

LLMs GPT-4 and Pal.M2, the better-performing
LLMs on this task, show high IAA, with £ = 0.706
and k = 0.75, respectively, which is similar to the
experts’ reported . This suggests a comparable
level of variance and quality in annotation, pro-
viding further empirical evidence for considering
LLMs as annotators. This property adds to previ-
ous studies showing LLMs’ quality as surrogates
for human preferences (Zheng et al., 2023) or eval-
uations (Chiang and Lee, 2023).

Crowd-Sourcing. Crowd workers showed near-
random agreement, indicating relatively poor-
quality annotations. Figure 8 describes the dis-
tribution of annotations by MTurk workers. Only
40.8% of the examples were labeled unanimously,
whereas the rest included annotations from both
classes. In addition, if aggregating by majority
vote, we get that 75.8% of the examples are labeled
as consistent, which is far from the original distribu-
tion of classes. As mentioned before, even experts
may miss a small inconsistency nuance, and finding
it requires attention. Even from the subset of ex-

"These MTurk annotators were chosen with stricter pre-
qualification criteria than those in the TRUE dataset and do
not correspond to the MTurk line in the TRUE table.

consistent

inconsistent

Figure 8: Distribution of crowd-source annotators. Each
example was annotated by 3 workers. Plain segments
are unanimous annotation, while dotted segments indi-
cate examples where some annotators labeled as incon-
sistent, and other as consistent. For example, 19.8% of
the examples had two inconsistent annotation, and one
consistent annotation.

amples unanimously labeled as consistent, 37.9%
have a label of inconsistent in both original and
gold labels, which points to a lack of attention and
thoroughness.

SummEval. Table 5 shows the IAA analysis on
the SummEval benchmark. We report Krippen-
dorff’s o (Krippendorff, 1970), a generalization of
 to account for ordinal labeling. LLMs exhibit
high IAA (compared to experts’ IAA) of a = 0.57
and 62.9% agreement between models, with high
consistency across prompts for the same model.
Crowd-workers obtain decent results (maybe due
to stricter pre-qualification criteria of 10,000 ap-
proved HITs), yet they still fall short compared to
experts or LLMs.

B.3 Cost and Scalability

In MTurk platform, a total of 400 x 3 = 1200 an-
notations cost 572$, including 2 small pilot experi-
ments. All annotations were prepared within a few
hours. However, it demanded an additional and sig-
nificant time for review, after which rejected exam-
ples returned to the pool. This annotation-review
cycle was conducted for ~ 5 iterations. Infer-
ence via OpenAI’s API on GPT-4 cost ~ 4.5$ per
prompt. Inference via VertexAI’'s API on PaLM2
cost ~ 0.15% per prompt. Both took ~ 8 minutes
per prompt. Inference on Mistral and Llama3
was via the HuggingFace API, and its cost is esti-
mated by the cost of using a suitable Virtual Ma-
chine (VM) on Google Cloud Platform (GCP) for
the time of inference (1 minute per model)- ~ 0.1$
per prompt.
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Annotator group ‘ Krippendorff’s o ‘ % agreement ‘ #annotators

Experts | 0.584 | 604 | 3
MTurk’ \ 0.496 | 656 | 5
LLM (different prompts) 4
GPT-40 0.760 63.6
Gemini 1.5 Flash 0.733 79.7
LLM:s (different models) | 0.576 | 629 | 2

Table 5: Inter-Annotator Agreement in different annotator groups on the SummEval benchmark. %agreement is the

proportion of pairwise annotator comparisons.

LLM-based annotation is significantly cheaper
and faster than crowd-sourcing platforms like
MTurk, especially when considering the additional
time required for human review cycles. It is esti-
mated to be 100 to 1,000 times more cost-effective
than using human annotators, including experts.
This scalability and speed make LLMs a highly ef-
ficient alternative for large-scale annotation tasks.

C Annotation

C.1 Crowd-source

Each example was annotated by three annotators,
who in addition to the binary label were requested
to provide their confidence in their answer, and also
write a short explanation for why they chose this la-
bel. Pre-qualifications included 50+ approved HITs
and 97%+ approval rate, which are at standard scale
for the MTurk platform (Kazai et al., 2013; Hauser
et al., 2021; Chmielewski and Kucker, 2019). Also,
locations were limited to [USA, UK, Australia],
which are all English-speaker countries. We dis-
abled the possibility of right-click and Ctr1+c in
the platform (as suggested by (Veselovsky et al.,
2023a)), to prevent (as much as possible) the case
where generative-Al (e.g., ChatGPT) will be ap-
plied to solve the task instead of humans solv-
ing it themselves (as shown by (Veselovsky et al.,
2023b)). The maximum time allowed per HIT was
6 minutes, while the actual average execution time
was 2:20 minutes for all assignments, and 3 min-
utes for approved assignments. The guidelines pro-
vided to annotators and the annotation platform
layout are presented in Figure 9.

Each annotation was manually reviewed and was
rejected if the answers were not in line with the in-
structions, or if it was obvious that the task was not
done honestly. Overall, this task suffered from a
high rejection rate of 49.2% (1163 rejected, 1200
approved). The main rejection reasons were: lack
of meaningful explanation, obvious copy-paste an-

notations across different examples, explanations
contradicting the label annotation, and cases where
the explanation was a copy-paste of either the
grounding or the statement.
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Factual Consistency Evaluation - Instructions X

Thank you for participating in our research on factual consistency in texts.
Each example consists of two texts:

1. Grounding - A factual text.
2. Statement - A text to be evaluated

Task:
Your task is to determine if the Statement is factually consistent with the Grounding

Definition of Factual Consistency:

« Factual Consistency: The Statement accurately reflects and aligns with all the facts presented in
the Grounding. The Statement does not introduce any errors, new entities, or unsupported
information and is in full agreement with the Grounding.

« Factual Inconsistency: The Statement contains any inaccuracies, contradictions, or information
that cannot be supported by the Grounding or derived from it.

Answer Format:
Your answer should be binary: either Factually Consistent or Factually Inconsistent (choose the

appropriate answer in the "Your Answer" section).
Additional Information Required:

« Confidence Level: Indicate your confidence in your answer on a scale of 1 to 5 ("Your Confidence").
« Explanation: Provide a brief explanation for your answer ("Short Explanation” text box).

We appreciate your attention to detail and accuracy in this evaluation process. Thank you for your
valuable contribution.

Grounding: : o :
Your task is to determine if the Statement is

At the same time , Pope Francis Tong asked Bishop of factually consistent with the Grounding.
Hong Kong to stay for three years .

Your Answer:
Statement: O Factually Inconsistent

5 5 . O Factually Consistent
At the same time , Pope Francis asked Tong to remain ACHATY, SOnSIsteh

Bishop of Hong Kong for three more years .
Your Confidence:

Indicate your confidence in your answer on a
scale of 1to 5.

(Note: 0 is not part of the scale)

o 0

Short Explanation:

Provide a brief but meaningful explanation (at
least one sentence) for why you classified the
statement as factually consistent or inconsistent

Figure 9: Platform for crowd-sourcing annotation in Amazon Mechanical Turk (MTurk). (Top) Guidelines for the
task and definitions. (Bottom) Annotation layout for a single instance.
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Grounding

Kim Clark, from Kinross, died after being hit the car outside an address in South Street, Milnathort, on Tuesday. Police said Mrs Clark's family were understandably
upset at their loss and that she would be greatly missed. Officers said inquiries into the circumstances of the incident were ongoing.

Statement

police have named a 60-year-old woman who died after being struck by a car in perthshire.

Is the Statement factually consistent with the Grounding?

(O stars for 'inconsistent’, 10 stars for ‘consistent’)

Your Confidence

Short Explanation

Figure 10: Annotation platform on Label-Studio for experts

C.2 Experts

Experts annotation was using the platform of Label
Studio. ! Layout design is presented in Figure 10.
Examples were presented in random order, and nei-
ther the LLM prediction nor the original label were
presented during the annotation. In the first stage,
each example was annotated independently by both
experts. Afterward, the human experts began in a
second phase of a reconciliation, where a discus-
sion was made over examples they disagreed over.
This reconciliation phase ended up with a much
higher agreement and higher-quality labels. Com-
plete agreement was reached in nearly all cases;
only a very small number of examples remained un-
resolved, which may reflect inherent label variation
rather than clear annotation errors (Weber-Genzel
et al., 2024).

In the reconciliation phase, we observed that
most changes (69.3%) were from label 1 to label
0, indicating that contradictions might be hard to
find, and not all annotators catch them at first. For
the full distribution of label change in the reconcil-
iation phase, see Figure 11.

C.3 LLMs

To annotate a total of 160 x 4 = 640 exam-
ples from four different datasets, we used four
LLMs: GPT-4 (gpt-4-1106-preview) (Ope-
nAl, 2023), PaLM2 (text-bison@002) (Anil
et al., 2023), Mistral (7B)? (Jiang et al., 2023) and

"ttps://labelstud.io/
2https://huggingface.co/mistralai/
Mistral-7B-Instruct-ve.2

17.9%

12.8%

46.2%

051 23.1%
1-0

=23 Annotator #1

[Z2 Annotator #2

Figure 11: How experts’ annotations have changed after
the reconciliation phase. Most changes occur from 1
(consistent) to 0 (inconsistent).

Llama 3 (8B)? (Dubey et al., 2024).

Each model was run with four different prompts
(see full prompts in Figure 12). We used a variety
of terminology, as this task appears to have differ-
ent framings in different studies. For example, the
premise-hypothesis terminology from classic NLI
(MacCartney and Manning, 2009), or document-
statement used in (Tam et al., 2023). The ensemble
reported in the main text refers to ensembling GPT-
4 and PalLM?2 over four prompts, while the other
models are intended for extending our analysis to
more models.

For API models (GPT-4, PaLM?2), we set tem—
perature=0.0 and extracted the logit of the
generated token (functionality provided by both
APIs), if the generated token was either ' 0’ or
"1 as expected. This logit was then transformed

3https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct
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into a probability p; = P(y = t|z) via exponent
corresponding the generated token ¢, and 1 — p; for
the other label. To address the case where the first
generated token was an unrelated token such as '
", ’\n’, we set max_tokens=2 and took the
first appearance of either 0’ or ' 1. For all mod-
els, prompts and examples, ' 0’ or ‘1’ were in
the first two generated tokens. Rest of parameters
were set according to their default values.

For models available through the HuggingFace
API (e.g., Mistral, Llama 3), we can load the model
parameters and make inference locally. In that case,
we get access to logits for all tokens, instead of
just for the generated ones. Therefore, we applied
a similar procedure, where we seek for the first
appearance of either ' 0’ or 1’ to be the most
probable token to be generated, and then directly
extracted the logits of the "0’ and ' 1’ tokens.
These logits were transformed into probabilities
(P(y = 0|z), P(y = 1|x)) via a softmax function.

D Data

For our main experiments, we used the TRUE
benchmark for factual consistency. Specifically,
we focus on four TRUE datasets, one from each
task (summarization, dialogue, fact verification,
paraphrasing):

MNBM (Maynez et al., 2020): Summarization.
This dataset provides annotations for hallucinations
in generated summaries from the XSum dataset
(Narayan et al., 2018). Grounding refers to the
source document that the summary is based on,
while Generated Text consists of model-generated
summaries, which may include hallucinated infor-
mation not present in the source. Three human
annotators, trained for the task through two pilot
studies, annotated the dataset for the existence of
hallucinations. In TRUE, the binary annotations
were determined by majority vote.

BEGIN (Dziri et al., 2022): Dialogue. This
dataset evaluates groundedness in knowledge-
grounded dialogue systems, where responses are
expected to align with an external Grounding
source, typically a span from Wikipedia. Gener-
ated Text refers to model-generated dialogue re-
sponses that were fine-tuned on datasets like Wiz-
ard of Wikipedia (Dinan et al., 2019). Data was
annotated into entailment/neutral/contradiction la-
bels, by three human annotators, trained for the task
through two pilot studies, aggregated by majority

vote. In TRUE, binary annotations were then deter-
mined by the entailment/not-entailment partition.

VitaminC (Schuster et al., 2021): Fact Verifica-
tion. This dataset is based on factual revisions of
Wikipedia. The evidence, or Grounding, consists
of Wikipedia sentences, either before or after these
revisions. Most human involvement came from
creating Generated Text rather than the annotation
process, with annotators writing claim/evidence
pairs derived from Wikipedia revisions, inherently
generating labeled data for fact verification. Syn-
thetic examples from the FEVER dataset (Thorne
et al., 2018) were also included. Additionally, three
annotators reviewed 2,000 examples, presumably
to ensure data quality.

PAWS (Zhang et al.,, 2019): Paraphrasing.
This dataset consists of paraphrase and non-
paraphrase pairs. Grounding refers to source
sentences drawn from Quora and Wikipedia,
while Generated Text was automatically gener-
ated through controlled word swapping and back-
translation. Five human annotators annotated the
dataset with binary labels w.r.t paraphrasing cor-
rectness. The dataset includes both high- and low-
agreement annotations.
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promptl
Here are two texts:
TEXT 1. <..PREMISE..>.

TEXT 2. <..HYPOTHESIS..>.

Is TEXT 2 contradictory or is it factually inconsistent with TEXT 1? If yes answer 0.
Is TEXT 2 entailed or is it factually consistent with TEXT 1? If yes answer 1.

Refer only to the two texts above, and not any other external knowledge or context.
Answer only 0 or 1

Answer only with one token: 0 or 1

Answer:

N

AN

prompt2
DOCUMENT: <. .PREMISE..>.

QUESTION: Is the following STATEMENT factually consistent with the above document?

STATEMENT: <..HYPOTHESIS..>.

ANSWER FORMAT: 0 for No, 1 for Yes

Answer only with one token: 0 or 1

Answer:

prompt3

You are given the two following texts:
TEXT 1. <..PREMISE..>.

TEXT 2. <..HYPOTHESIS..>.

TEXT 1 is a fact. TEXT 2 is a statement. Is TEXT 2 factually consistent with TEXT 1?
Answer 0 for No, 1 for Yes.

Answer only with one token: 0 or 1

Answer:

N

prompt4 ﬂ\
Given the following texts:
<PREMISE> : <..PREMISE..>.

<HYPOTHESIS> : <..HYPOTHESIS..>.

Please assess the factual consistency of <HYPOTHESIS> with respect to <PREMISE>.
If the content of <HYPOTHESIS> aligns with the information provided in <PREMISE>, assign a label of 1.

If there are factual inconsistencies between <HYPOTHESIS> and <PREMISE>, assign a label of 0.

Target Format: either O (for Factual Inconsistency) or 1 (for Factual Consistency).

Answer only with one token: 0 or 1

Answer:

Figure 12: Four different prompt input templates to LLMs for obtaining binary labels
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Figure 13: A model-specific analysis: When LLMs disagree with original labels - who is correct? Overall trend
holds: as the LLM’s confidence grows, so does the precision of identifying an error in the original labels. To
maintain a balanced number of examples per bin, the bin edges from Figure 2 were slightly adjusted per model due
to natural variability and calibration differences. For simplicity in the shared plot across all models, we label the
bins as binl through bin5, where binl starts at 0.5 and bin5 ends at 1.0.

E Model-Specific Experiments

Our main analysis relies on an ensemble-based
approach, which abstracts away from individ-
ual model behavior and leverages their collective
strength. This design improves alignment with ex-
pert annotations, reduces variance, and avoids the
need for model selection or prompt-specific tuning.
As such, it provides a more stable and generaliz-
able signal than any single model. The ensemble
results are presented in Figure 2.

For completeness, we also provide a model-
specific analysis of the same phenomenon. Fig-
ure 13 reports the percentage of cases where ex-
perts agreed with the LLM prediction rather than
the original label, broken down by confidence bins
and shown separately for GPT-4, PaL. M2, LLaMA-
3, and Mistral. These curves correspond directly
to the red bars in Figure 2, but now reveal each
model’s contribution.

Across models, we observe the same overall
trend: when models express higher confidence in
a label that differs from the original annotation,
experts are increasingly likely to agree with them.
The magnitude and variance of this effect, however,
differ by model. Some models, such as LLaMA-3,
display clearer calibration, while others, such as

Mistral, show flatter patterns.

A single model is cheaper and can capture
the main trend, but its behavior varies by model.
Our ensemble reduces these differences, yield-
ing smoother calibration (Figure 2), more con-
sistent agreement with experts, and lower vari-
ance—benefits we believe justify the extra com-
pute.
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Impact of Label Error Handling on Fine-Tuning Performance
Starting from: Pre-trained DeBERTa model
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Figure 14: Similar experiments to the one in Figure 6, with small alterations. (Left) Starting from a different base
model - pre-trained DeBERTa~-v3-base. (Right) Dashed columns present results for when flipping or filtering
methods were applied only on the training set, but not the validation.

F Mislabeled Data Implications

F.1 Fine-tuning

Hardware. For the finetuning of DeBERTa mod-
els, both the base pre-trained model, and the NLI
model which is in the same size, in subsection 7.1,
we used 2 Quadro RTX6000 (24GB) GPUs.

Implementation. We finetuned starting from two
base models: DeBERTa-v3 #, and a fine-tuned ver-
sion of it on classic NLI datasets >. We used Hug-
gingFace trainer with early stopping of 4 epochs.
The finetuning procedure includes splitting the
training set into train and validation sets (where
validation size is 25% and train 75%), fine-tuning
on the train set, and choosing the best checkpoint
based on the validation ROC AUC. We ran all ex-
periments on five different seeds, affecting also the
train-validation split and the random set chosen for
ablation. We fine-tuned all variants with the same
hyperparameters, determined by the best perform-
ing on the no-manipulation baseline. This includes
30 epochs at most, batch size of 16, learning rate
of 5e-5 and weight-decay of 0.03. The rest were
set as the trainer and model default.

Additional Experiments. The left plot in Fig-
ure 14 presents the same experiment discussed in
subsection 7.1, but starting from the pre-trained
DeBERTa-v3-base. Same trends applies here,
where our LLM-confidence-based manipulations
of either flipping or filtering flagged examples out-
performs the baselines.

“microsoft/deberta-v3-base
SMoritzLaurer/DeBERTa-v3-base-mnli-fever-anli

The right plot in Figure 14 compares the per-
formance of these methods (starting from the NLI
model) when applied to both the training and val-
idation sets (solid bars) or only the training set
(dashed bars). The results are consistent, with no
statistically significant differences between the two
settings. Importantly, all variations outperform the
baseline, underscoring the critical role of a well-
curated training set in enhancing the model’s ability
to generalize effectively.

F.2 Model Evaluation

In subsection 7.2 we evaluated the following
models: GPT-4, PaLM2 (text-bison@002),
Mistral-v0.2 (7B), and Llama3 (8B), which are
covered in subsection 4.2; DeBERTa-v3 and NLI-
model, which is a fine-tuned version of it on NLI
datasets, as discussed in subsection 7.1; and GPT-
40, GPT-40-mini, Mistral-v0.3,° which share the
same implementation as GPT-4 or Mistral-v0.2.

Fine-Tuning vs. Zero-Shot Interestingly, the
overall trend of improved performance on the cor-
rected labels does not hold for the DeBERTa-based
fine-tuned models. Unlike the LLMs, which are
prompted in a zero-shot setting, the fine-tuned mod-
els are trained on the original dataset, which con-
tains label errors. As a result, the LLMs demon-
strate better generalization, while the fine-tuned
models may overfit to the noise in the training data.
A plausible explanation for this reversed trend lies
in the distributional prior learned from the training
set. In the original dataset, labels of 0 (inconsistent)

6https://huggingface.co/mistralai/
Mistral-7B-Instruct-vo.3
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are more frequent than in the corrected gold set.
For example, among examples where the original
and gold labels agree, the proportion of 1 (consis-
tent) labels is 36%, and the model (DeBERTa-v3-
base predicts 1 in 35% of those cases. In contrast,
among examples where the labels disagree, the
gold rate of 1 is 58%, yet the model predicts 1
in only 36% of the cases. This pattern suggests
that the model has learned a skewed prior from
the flawed dataset, underestimating the likelihood
of the consistent class, particularly in cases that
were originally mislabeled. Similar percentages
are observed for the NLI model as well.

G Statistical Analysis

G.1 Clopper-Pearson

As mentioned in subsection 5.1, we employed the
Clopper-Pearson exact method (Clopper and Pear-
son, 1934) to construct a 95% confidence interval
for the binomial proportion, adjusted by a finite
population correction (FPC). As we only have a
subset of examples we re-annotated by LLMs or
experts, we can not precisely determine what is
the error rate in the full dataset, but only construct
a confidence interval based on the re-annotated
subset. The Clopper-Pearson method provides an
exact confidence interval for a binomial proportion,
which means it gives a reliable estimate even with
small sample sizes. By applying FPC, we adjust
the interval because our sample is drawn from a
limited population. This adjustment helps refine
the estimate by taking into account the size of the
overall dataset compared to the sample.

G.2 Bootstrap sampling

In subsection 5.1, we use bootstrap sampling to
provide confidence intervals for each bin. While
not necessarily the first to introduce it, (Xia et al.,
2012) explored bootstrap confidence intervals on
ROC AUC. Unlike the method in Appendix G.1,
we do not make claims about the entire dataset,
but rather focus on the re-annotated subset we pos-
sess. To achieve this, we perform 100 bootstrap
samples from the empirical distribution of each bin,
sampling with replacement. We then measure the
agreement between the experts’ resolutions and the
LLM annotations, compared to its agreement with
the original label.

H Label Errors

Table 6 demonstrates one example per dataset, in
which the original label is, in fact, an error, the
LLM prediction marked it as a candidate, and the
expert annotators determined the correct gold label.
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Dataset: VITC

Grounding: The British Government and NHS have set up a Coronavirus isolation facility at Arrowe Park Hospital in
The Wirral for British People coming back on a special flight from Wuhan. Evacuation of foreign diplomats and citizens
from Wuhan. Due to the effective lockdown of public transport in Wuhan and Hubei province , several countries have
started to evacuate their citizens and/or diplomatic staff from the area , primarily through chartered flights of the home
nation that have been provided clearance by Chinese authorities.

Generated Text: There is a Coronavirus isolation facility at Arrowe Park Hospital that was set up by the NHS and
the British Government

Original Label: 0 LLM p: 0.99 Gold Label: 1
Explanation: Rephrasing of the first sentence, without any contradiction.

Dataset: BEGIN

Grounding: Hillary Clinton, the nominee of the Democratic Party for president of the United States in 2016, has
taken positions on political issues while serving as First Lady of Arkansas (1979-81; 1983-92), First Lady of the United
States (1993-2001);

Generated Text: She is the nominee in 2016.

Original Label: 0 LLM p: 0.98 Gold Label: 1
Explanation: She (Hillary Clinton) is indeed the nominee in 2016 as specifically stated in the
grounding.

Dataset: PAWS

Grounding: David was born in Coventry on 21 September 1933 , with his twin Charles and Jessamine Robbins , the
eighth and ninth children of twelve by Robbins.

Generated Text: David was born on September 21 , 1933 in Coventry with his twin father Charles and Jessamine
Robbins , the eighth and ninth child of twelve of Robbins

Original Label: 1 LLM p: 0.04 Gold Label: 0
Explanation: The generated text incorrectly states "twin father" instead of "twin" which is not the
same, and does not even make much sense in English.

Dataset: MNBM

Grounding: The John Deere tractor was pulled over by officers in the village of Ripley and had two other males
on board. The vehicle had been seen in nearby Harrogate at about 05:00 GMT with no headlights on. Police said the
driver had no licence, was not insured and did not have permission from the tractor’s owner. The vehicle was seized,
with the three due to be interviewed by officers. Posting on Twitter, Insp Chris Galley said: "A strange end to a night
shift. 15-year-old lad driving a tractor as a taxi for his drunk mates."

Generated Text: a 15-year-old boy has been stopped by police after being seen driving a taxi on a night taxi.

Original Label: 1 LLM p: 0.19 Gold Label: 0

Explanation: The generated text claims that the 15-year-old boy was "driving a taxi on a night
taxi", contradicting the grounding in which it was claimed that the boy was driving a tractor as a
taxi

Table 6: Annotation errors in the original datasets, discovered by LLMs and corrected by experts.
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