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Abstract

In this paper, we propose a “Generalization
Stress Test” to assess Large Language Mod-
els’ (LLMs) generalization ability under slight
and controlled perturbations, including option
length, problem types, and irrelevant noun
replacements. We achieve novel and signif-
icant findings that, despite high benchmark
scores, LLMs exhibit severe accuracy drops
and unexpected biases (e.g., preference for
longer distractors) when faced with these mi-
nor but content-preserving modifications. For
example, Qwen 2.5 1.5B’s MMLU score rises
from 60 to 89 and drops from 89 to 36 when
option lengths are changed without altering
the question. Even GPT4o experiences a 25-
point accuracy loss when problem types are
changed, with a 6-point drop across all three
modification categories. These analyses sug-
gest that LLMs rely heavily on superficial
cues rather than forming robust, abstract repre-
sentations that generalize across formats, lex-
ical variations, and irrelevant content shifts.
Code can be found in: https://github.com/
Qihoo360/LLMs-Generalization-Test.

1 Introduction

Large Language Models (LLMs) have achieved
near-human performance across a variety of natu-
ral language processing (NLP) benchmarks, from
elementary tests (Cobbe et al., 2021) to university-
level challenges (Hendrycks et al., 2021). This suc-
cess has spurred claims that LLMs are approach-
ing human-like generalization capabilities (Ope-
nAI, 2024; Bubeck et al., 2023; Jones and Bergen,
2024). However, it remains unclear whether their
high benchmark scores reflect genuine generaliza-
tion or if LLMs are simply exploiting superficial
cues that fail under slight perturbations.

While LLMs perform well in established bench-
marks, concerns have been raised about the validity
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of these evaluations (Chen et al., 2023; Ye et al.,
2023). Data contamination, where models unin-
tentionally learn from benchmark data included in
their training, can inflate performance estimates
(Brown et al., 2020; Xu et al., 2024; Ravaut et al.,
2024; Zhou et al., 2023). These issues suggest that
existing benchmarks have exposed patterns and
may not truly assess generalization.

Recent work has focused on uncovering the ac-
tual limits of LLM generalization. One direction
involves the development of dynamic evaluation
methods that modify the evaluation process on the
fly (Zhu et al., 2024; Yu et al., 2024), or extend the
modality (Wang et al., 2025). Another approach
emphasizes creating more challenging or adver-
sarial test sets that push models beyond their cur-
rent capabilities, such as MMLU-Pro (Wang et al.,
2024) and GSM-Plus (Li et al., 2024a). A third
line of inquiry involves introducing subtle modifi-
cations to benchmark datasets to test LLM robust-
ness, such as altering the order of multiple-choice
options or changing the format of questions (Zheng
et al., 2024; Li et al., 2024b; Gupta et al., 2024;
Alzahrani et al., 2024; Hong et al., 2025). While
these approaches have contributed to a better under-
standing of LLM performance, they either totally
change the original problems, increase the complex-
ity of the evaluation, or focus on relatively limited
formatting changes like option ID adjustments.

We find serious biases of recent SoTa LLMs
to common patterns by introducing an evaluation
framework, Generalization Stress Tests, which ex-
amines LLMs under three types of minor, content-
preserving perturbations:

• Altering option length (e.g., increasing the
length of distractors or correct options without
changing their semantic content).

• Changing problem types (e.g., converting
multiple-choice questions to boolean ques-
tions).
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Question:Christina is planning a birthday p
arty and needs .75 gift bags per invited gu
est, because 1/4 of attendees don't show u
p. She invited 16 friends. Gift bags are $2 e
ach. How much will she spend?

GPT4o’ answer: She will spend $24
because ... ✓

Question:Christina is planning a tr
easure hunt 
and needs .75 gift bags per invite
d guest, because 1/4 of attendees
don't show up. ...How much will s
he spend?

GPT4o’ answer: 
She will spend $18 because ...   ✕

Origin problem Modified problem

Replace 
irrelevant 
nouns.

Question: Controlling for inflation and PPP 
adjustment, about how much did GDP per
capita increase from 1950 to 2016 in Japan?

A. by 5 fold
B. by 10 fold

C. by 15 fold

D. by 20 fold
GPT4o’ answer: C. ✓

Lengthen 
Right 
options(RL) 
or Wrong
options 
(WL).

Question: ...\n A. ... \n B. ... \n C. ...

D.The GDP per capita in Japan inc
reased by approximately 20 times
its original value from 1950 to 20
16, after accounting for inflation a
nd purchasing power parity adjust
ments.

GPT4o’ answer: D. ✕

Question: 
In which English city would you find the dis
trict of Gosforth?
(A) Liverpool

(B) New Castle

(C) Birmingham
(D) Manchester

GPT4o’ answer: (B) ✓

From 
multichoice 
question 
(MCQ) to 
Bool 
Question 
(BQ)
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Question: 
In which English city would you fi
nd the district of Gosforth?

Answer: Liverpool

The answer is: _ (from True or 
False)

GPT4o’ answer: : True. ✕

Corresponding results
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Figure 1: Generalization stress tests and summarized results. LLMs do not generalize well across various option
lengths, problem types, and noun replacements. Tested models are Qwen2.5 1.5B, 7B, 72B, and GPT4o.

• Replacing irrelevant nouns (e.g., substituting
semantically irrelevant nouns in prompts).

As shown in Figure 1, these simple modifica-
tions, surprisingly, lead to substantial performance
degradation1. We observe that LLMs struggle to
generalize across varying option lengths, problem
types, and noun replacements. For example, Qwen
2.5 1.5B’s MMLU score drops from 89 to 36 when
option lengths are changed without altering the
question. Even GPT4o experiences a 25-point accu-
racy loss when question types are changed, with a
6-point drop across all three categories. These find-
ings reveal a critical limitation: LLMs are biased
to specific irrelevant patterns and fail to replicate
the human-like ability to ignore irrelevant format
details.

2 Methods: Generalization Stress Tests

We conduct generalization stress tests by applying
minor modifications to the original benchmark, fo-
cusing on variations in option length, scoring type,
and the replacement of irrelevant nouns.

We investigate typical tasks for LLMs that in-
clude multiple-choice questions (MCQ) and open-
ended question answering (Open-ended QA).

1We test GSM-8K for noun replacement, as some MMLU
cases lack irrelevant nouns.

2.1 Alter Option Length to Analyze LLMs’
Length Bias

Make the right option longer (RL):
Question: What is the capital of France?
A) Berlin
B) Madrid
C) Paris, a city renowned for its art, fashion,
and cuisine.
D) Rome

Make one wrong option longer (WL):
Question: What is the capital of France?
A) Berlin, known for its vibrant culture and
historical landmarks.
B) Madrid
C) Paris
D) Rome

Figure 2: An illustration of altering option length. The
ground truth of this question is C) Paris.

To analyze whether LLMs are generalized across
option length or whether LLMs are biased toward
long options in MCQ. We first make all options
in a problem longer by asking GPT4o2 to make
the options longer without including information
that could help answer the question. Refer to Ap-

2We use its API version provided by Microsoft Azure.
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pendix A for generation details.
As illustrated in Figure 2, we then design the fol-

lowing two types of lengthening problems: a)Make
one wrong option longer (WL), b)Make the right
options longer (RL).
Length Control: To assess the impact of op-
tion length on LLM generalization, we control the
length of the lengthened options in the WL con-
dition. Specifically, we ask GPT4o to generate
options of varying lengths: (a) < 10 tokens, (b) 10
to 20 tokens, and (c) > 20 tokens.
Paraphrase Verification: We also enlist human
experts to verify whether the paraphrased options
do not introduce unintended biases or hints. Details
can be found in the Appendix A.

2.2 Change Problem Type to Fairly Analyze
LLMs’ Scoring Bias

Cloze:
Question: What is the capital of France?
Answer: _ (Selected from whole vocabulary)

Bool questions:
1. Question: What is the capital of France?
Answer: Paris
The answer is _(Selected from True/False)
2. Question: What is the capital of France?
Answer: Berlin
The answer is _(Selected from True/False)
Require to judge both two propositions cor-
rectly.

Figure 3: An illustration of changing the scoring type
from MCQ to bool questions.

Previous work found LLMs do not generalize to
different option IDs in MCQ (Zheng et al., 2024)
and tried to solve this by changing the task to
cloze (Alzahrani et al., 2024). However, the cloze
task reduces the expected value of selecting the
correct answer. Therefore, we propose changing
the multiple-choice questions to Boolean questions,
requiring two judgments to be accurate, so that the
difficulty of the questions is as similar as possible
to that of multiple-choice questions.

As illustrated in Figure 3, we derive one true
proposition that concludes with the right option and
one false proposition that is a randomly selected
wrong option.

2.3 Replace Irrelevant Nouns to Analyze Bias
towards Irrelevant Content

Problem with irrelevant noun:
Question: John lives in France; what is his
country’s capital?
A) Berlin
B) Madrid
C) Paris
D) Rome
Answer: C

Problem after modifying the irrelevant
noun:
Question: Mike lives in France; what is his
country’s capital?
A) Berlin
B) Madrid
C) Paris
D) Rome
Answer: C

Figure 4: An illustration of replacing irrelevant nouns.

In open-ended QA like those in GSM8K (Cobbe
et al., 2021), the questions may contain nouns that
are unrelated to the answers. In this subsection, we
explore the impact of changes to these unrelated
nouns on the decision-making of large models. As
shown in Figure 4, we replaced nouns in the ques-
tions, such as names of people and animals, en-
suring that these replacements do not alter human
decision-making. Details are in Appendix B.
Semantic relevance control Additionally, regard-
ing noun replacements, we also examined the im-
pact of the semantic proximity of the replacements.
We conducted experiments in this area by instruct-
ing GPT-4o mini to perform replacements with
varying degrees of semantic similarity.

3 Experiments

We perform evaluations on harness framework
(Gao et al., 2024) and adopt its default setting.
We evaluate models of Llama3.1 series (Dubey
et al., 2024), Qwen2.5 series (Yang et al., 2024b),
and GPT4o. Llama3.1, and Qwen2.5 are the
most powerful small models, while GPT4o is
the most powerful LLM. We evaluate LLMs
on MMLU (Hendrycks et al., 2021), ARC-
Challenge (Clark et al., 2018), and GSM8k (Cobbe
et al., 2021). The first two are MCQ benchmarks,
and the last consists of open-ended QAs. Refer to
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Benchmark Model Origin RL WL

MMLU

Qwen2.5 1.5B 60.3 89.0 36.3
Qwen2.5 7B 73.7 90.1 55.6
Qwen2.5 72B 85.4 94.1 75.6
LLaMa3.1 8B 65.5 85.6 53.6
LLaMa3.1 70B 78.8 93.6 70.6
GPT4o mini 76.5 87.2 70.6
GPT4o 85.2 89.7 83.3

ARC-C

Qwen2.5 1.5B 77.3 88.9 68.1
Qwen2.5 7B 90.0 94.3 84.0
Qwen2.5 72B 95.8 97.2 94.4
LLaMa3.1 8B 78.1 85.2 74.7
LLaMa3.1 70B 91.8 96.3 90.8
GPT4o mini 91.8 95.1 91.4
GPT4o 96.5 97.1 95.5

Table 1: Performance on altering option length. RL
refers to lengthening the right option; WL refers to
lengthening the wrong option. The values are percent-
ages.

Settings <10 10 to 20 >20
Origin 65.5%

RL 70.0% 75.3% 84.0%
WL 64.5% 60.7% 61.6%

Table 2: The performance of LLaMa3.1 8B on MMLU
changes when gradually altering the length of correct
and incorrect options.

Appendix C for detailed experimental setups.

3.1 Results of Altering Option Length

LLMs struggle to generalize across option
length: From Table 1, it is evident that across
all LLMs, from 1.5B to GPT4o, scores increase
significantly when the length of the correct option
is extended and decrease significantly when we
make an incorrect option longer. Smaller models
generalize even worse. In Appendix D.1, we intro-
duce another setting of making all options longer,
in which our finding that LLMs are biased towards
the longer option persists.
Length matters, especially when we lengthen the
right option. As shown in Table 2, changing the
length can result in a difference of more than 10
points in the RL setting.

Another intriguing finding is that LLMs tend
to select the right option if we make all incorrect
options longer, refer to Appendix D.2.

3.2 Results of Altering Scoring Type

LLMs do not have invariant knowledge that can
generalize across scoring types. As in Table 3, all
models tend to score lower when the benchmarks
are changed from the original format to boolean
questions. Qwen2.5 1.5B and Llama3.1 8B score

Benchmark Model MCQ BQ Both

MMLU

Qwen2.5 1.5B 58.8 30.3 22.1
Qwen2.5 7B 72.4 54.7 46.7
Qwen2.5 72B 84.0 69.1 65.0
LLaMa3.1 8B 64.6 40.6 32.6
LLaMa3.1 70B 78.4 63.5 56.7
GPT4o mini 75.1 54.5 49.2
GPT4o 84.7 59.5 56.8

ARC-C

Qwen2.5 1.5B 74.0 40.4 35.2
Qwen2.5 7B 89.5 69.4 66.4
Qwen2.5 72B 95.0 85.8 84.4
LLaMa3.1 8B 77.4 53.6 47.1
LLaMa3.1 70B 92.1 82.7 79.2
GPT4o mini 90.6 79.7 76.6
GPT4o 96.2 79.6 76.2

Table 3: Performance on changing problem type from
multi-choice question (MCQ) to bool questions (BQ).
The values are percentages. “Both” means the percent-
ages of examples whose MCQ and BQ are both true.

only half the points in the MMLU’s "both" setting.
Smaller models generalize worse.3

3.3 Results of Replacing Irrelevant Nouns

Models Origin Replace Nouns
Qwen2.5 1.5B 62.5% 54.9%
Qwen2.5 7B 83.5% 78.0%
Qwen2.5 72B 92.3% 81.9%
Llama3.1 8B 54.7% 51.7%
Llama3.1 70B 80.8% 74.2%
GPT4o mini 71.3% 64.1%
GPT4o 86.7% 79.5%

Table 4: Performance of replacing nouns on GSM8K.
We report results on it since it has irrelevant nouns.

Replacing irrelevant nouns degrades perfor-
mance consistently across various models. As
seen in Table 5, the scores of all models drop when
the terms are renamed, with the magnitude of the
decrease being similar across models. GPT4o mod-
els still show a decline.

Models Origin High Medium Low
Llama3.1 8B 54.7% 51.5% 48.0% 44.0%
Qwen2.5 7B 83.5% 82.0% 78.1% 70.7%

Table 5: Model performance on replacing nouns with
various semantic relevance levels.

Replacing irrelevant nouns with semantically dis-
tant words further reduces the effectiveness.

4 Discussion

3The “MCQ” setting is equal to “Origin” setting in Table
1, the results are slightly different since we removed the in-
struction “Output the answer directly” to accommodate the
BQ setting.
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4.1 Reasons Behind Accuracy Drops

The above ablation of results reveals that LLMs are
severely biased to common but irrelevant patterns.
Now, we delve a little deeper into root causes.
Could the imbalance in the test data be caus-
ing biased results? On the MMLU benchmark, a
naïve policy that always selects the longest option
reaches 28.3% accuracy, only +3.3% above the 25
% random baseline. This small gain shows that the
length distribution of the options, by itself, is in-
sufficient to yield the substantial performance gap
reported in the paper.
Could the failures of large language models be
attributed to certain mechanisms, such as the
attention mechanism? Yes, we perform an analy-
sis of attention patterns and find that lengthening
options affects the attention mechanisms, causing
LLMs to attend more to that option. As in Table 6,

Condition A B C D
Origin 0.12 0.19 0.12 0.21
WL 0.10 0.16 0.26 0.17

Table 6: The attention scores of options. The scores are
from layer 0 and are averaged across all 32 heads over
24 option-orders; the numbers are the summed attention
weights on the choice tokens. A is the correct answer,
while C is an intentionally lengthened distractor.

the “WL” row shows that increasing the length of
option C shifts more attention toward it, confirming
a length-induced bias in the attention mechanism.

4.2 Generalization of Results

Could simple interventions (e.g., fine-tuning,
CoT) address these vulnerabilities? We inves-
tigate both aspects by adding simple mitigations
(fine-tuning) and Chain-of-Thought (CoT) prompt-
ing. On MMLU with Qwen2.5-7B, fine-tuning on
augmented perturbations narrows robustness vari-
ance: WL improves by +7.8% while RL decreases
by −12.3% versus the base model, partially miti-
gating length bias. CoT further shrinks the RL–WL
gap from 34.5% to 15.4%, but lowers overall accu-
racy (−10.7%), indicating that neither naive CoT
nor simple fine-tuning fully resolves the vulnerabil-
ity; stronger defenses (e.g., adversarial training or
architectural changes) are likely required. CoT re-
mains our default on GSM8K; here we additionally
report MMLU results in Table 7.
Could more proprietary LLMs, such as Gemini
and Claude, be fragile to these changes?

As we can see from Table 8, SoTA short CoT

Model Origin RL WL

Qwen2.5-7B 73.7 90.1 55.6
Qwen2.5-7B (fine-tuned) 69.1 77.8 63.4
Qwen2.5-7B (CoT) 63.0 71.7 56.3

Table 7: Accuracy (%) on MMLU for Qwen2.5-7B
under simple mitigations: fine-tuning and Chain-of-
Thought (CoT).

Model Ori. RL WL MCQ BQ

Qwen2.5 72B 85.4 94.1 75.6 84.0 69.1
GPT4o 85.2 89.7 83.3 84.7 59.5
Deepseek-v3 86.4 90.4 84.3 85.0 71.2
Claude3.5 sonnet 86.1 92.2 85.6 87.9 30.6
Gemini2.0 flash 85.8 90.3 85.0 86.1 41.3

Table 8: Accuracy (%) of SoTA short CoT models on
MMLU. ‘Ori.’ refers to ‘Origin’.

models, including Gemini-2.0-flash4, Claude-3.5-
sonnet5, and Deepseek-v3 (DeepSeek-AI, 2025),
are still sensitive to changes.

4.3 Compare to Work in the Pre-LLM Era

Indeed, early studies have shown the limited ro-
bustness of LLMs from 2018 to 2020 (Naik et al.,
2018; Zhang et al., 2019; Ribeiro et al., 2020).
However, those analyses were limited to less than
1B-parameter models, whereas modern LLMs ex-
hibit strong generalization abilities that may alter
robustness patterns. Our work extends this line
by examining SoTa models on comprehensive and
premium-quality benchmarks and uncovers signifi-
cant limitations of these capable LLMs.

4.4 Rank Changes of Models

As in D.3, the rank of models on the MMLU leader-
board changes across different settings.

5 Conclusion

This paper finds that LLMs exhibit significant
performance degradation when faced with slight
changes in question format, option length, or ir-
relevant content shifts. These findings underscore
that LLMs rely on superficial patterns rather than
robust, generalizable reasoning. By introducing
the "Generalization Stress Tests," we offer novel
understandings towards evaluating LLMs’ true gen-
eralization capabilities.

4Gemini 2: https://blog.google/technology/google-
deepmind/google-gemini-ai-update-december-2024/

5Claude 3.5 sonnet:
https://www.anthropic.com/news/claude-3-5-sonnet
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Limitations

This work focuses solely on non-chain-of-thought
LLMs, such as GPT-4o, and does not consider
emerging O1.
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A Prompts and Verification in Altering
Option Length

A.1 Prompts

We chose the GPT-4o to lengthen options.
The default prompt to lengthen options is:

The user will give you a question, the choices, and
the answer from a dataset. Rewrite the four choices
into longer ones. Make sure not to change the
question willingly. Make sure that the rewritten
options do not contain a hint of the correct answer.
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The prompt to control option length is: We
concatenate the default prompt to one of the fol-
lowing prompts.

• Make sure that each rewritten option contains
no more than 10 words.

• Make sure that each rewritten option at least
10 words and no more than 20 words.

• Make sure that each rewritten option contains
at least 20 words.

We set the temperature to 0, and the other setting
is the same as the default.

A.2 Verification Process

We manually verified the rewritten sentences to
check whether lengthening the sentence introduced
factors related to the answer or changed the ques-
tion’s meaning. We manually checked 100 exam-
ples from MMLU and found that 99 had no issues,
while 1 changed the original meaning of the ques-
tion. The rewriting accuracy was 99%.

B Prompts in Replacing Irrelevant Nouns

We found that GPT-4o and GPT-4o mini perform
similarly on this task. To reduce carbon emissions,
we chose the GPT-4o mini.

The prompt to simply replace irrelevant
nouns is: Assist in creatively substituting nouns
in mathematical problems to prevent students from
memorizing solutions. The replacements should
be imaginative, ensuring the mathematical relation-
ships and the accuracy of the solutions are pre-
served. “input_text” Other than replacing nouns,
do not alter the original word order sentence struc-
ture, or add or remove any sentences. Give the
modified question directly.

The prompt to alter semantic relevance is:
Substitute nouns and some relevant words in the
mathematical problems creatively to prevent stu-
dents from memorizing solutions. The replace-
ments should be done in three levels:

• Level 1: Only replace nouns with semanti-
cally similar words (e.g., ’apple’ becomes ’ba-
nana’).

• Level 2: Replace nouns and verbs with words
that differ in meaning but are still within the
realm of common sense (e.g., ’apple’ becomes
’elephant’, ’eat fruit’ becomes ’drink coke’).

Bench Model Ori. AL RL WL

MMLU

Qwen2.5 1.5B 60.3 54.7 89.0 36.3
Qwen2.5 7B 73.7 69.2 90.1 55.6
Qwen2.5 72B 85.4 81.3 94.1 75.6
LLaMa3.1 8B 65.5 64.3 85.6 53.6
LLaMa3.1 70B 78.8 76.0 93.6 70.6

ARC-C

Qwen2.5 1.5B 77.3 67.3 88.9 68.1
Qwen2.5 7B 90.0 85.3 94.3 84.0
Qwen2.5 72B 95.8 93.1 97.2 94.4
LLaMa3.1 8B 78.1 78.6 85.2 74.7
LLaMa3.1 70B 91.8 89.9 96.3 90.8

Table 9: Performance on altering option length. AL
refers to lengthening all options. RL refers to length-
ening the right option. WL refers to lengthening the
wrong option. The values are percentages.

• Level 3: Replace words as much as possible
with highly imaginative and fantastical words,
if you think it still makes sense in mathemat-
ical problems. (e.g., ’apple’ becomes ’alien
gemstone’).

Apart from replacing nouns and some relevant
words, maintain the original word order, sentence
structure, and do not add or remove any sentences.
Give three modified sentences directly, one for each
level, only separated by ’###’. Don’t return any-
thing else including ’Level 1’, ’Level 2’, ’Level
3’ but only "###". This is the original question:
input_text

We set temperature to 0.1, top-p to 1, top-k to 0,
and repetition_penalty to 0.

C Experiment Setup Details

This section outlines the foundational setup of our
experiments and analyses, including the evaluation
framework and methods employed, as well as the
benchmarks and models evaluated.

C.1 Evaluation Protocol

We perform evaluations on the Harness framework
(Gao et al., 2024). We chose Harness because it is
a flexible, configurable, reproducible framework.
Unless specified, we follow the default parameter
of the harness. Unless otherwise specified, our
evaluations are conducted in a 5-shot manner, with
few-shot examples drawn from the benchmarks’
corresponding training sets.

C.2 Models

We evaluate models of Llama3.1 series (Dubey
et al., 2024), Qwen2 series (Yang et al., 2024a),
and GPT4o. Llama3.1 and Qwen2.5 are the most
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powerful small models, while GPT4o is the most
powerful LLM. We list all models below.

• Llama3.1 8B, Llama3.1 70B;

• Qwen2.5 1.5B, Qwen2.5 7B, Qwen2.5 72B;

• GPT4o, GPT4o mini.

C.3 Benchmarks
We evaluate LLMs on MMLU, ARC, Helaswag,
GSM-MCQ, and GSM8k. The first four are MCQ
benchmarks, and the last consists of open-ended
questions.

• MMLU (Hendrycks et al., 2021) is a multi-
task benchmark that covers 57 tasks ranging
from elementary to college level. These tasks
cover multiple disciplines, e.g., math, physics,
law, history, etc. The whole test set consists
of 14,042 examples. Following common prac-
tice, we calculate the accuracy of each task
and report the average score across all tasks.

• ARC (Clark et al., 2018) is also a multitask
dataset that includes data from eight types of
tasks, testing aspects such as common sense,
multi-hop reasoning, and algebraic operations,
with 3,548 samples. ARC has two subsets:
one is ARC-Challenge (abbreviated as ARC-
C), and the other is ARC-Easy (abbreviated
as ARC-E). The challenge set includes only
those data that cannot be answered through re-
trieval and word co-occurrence methods, mak-
ing it more difficult.

• GSM-8K (Cobbe et al., 2021) examines multi-
step math word problems, which are relatively
easy and designed to be solvable by middle
school students. GSM8K is presented in an
open-ended question format, unlike multiple-
choice questions. It consists of 1,319 test ques-
tions.

C.4 Budget
We performed experiments with an H800 GPU; the
total cost of the experiments was about 1000 GPU
hours.

C.5 Random Seeds
All reported numbers are from a single wrong,
since the model is deterministic with our default
decoding temperature T = 0, thus, changing
seeds has no effect. We nevertheless tested ro-
bustness at T = 0.5 and T = 1.0 while varying

Python/NumPy/Torch seeds; results for Qwen-2.5
7B on MMLU are shown below. The RL/WL gap
persists, and our conclusions remain unchanged.

Temp. Seed Origin RL WL

0
0, 1234, 1234 73.7 90.1 55.7
1, 11, 111 73.7 90.1 55.7
2, 22, 222 73.7 90.1 55.7

0.5
0, 1234, 1234 71.6 88.2 54.9
1, 11, 111 71.5 88.5 54.9
2, 22, 222 71.5 88.3 55.3

1.0
0, 1234, 1234 67.9 83.4 52.2
1, 11, 111 67.3 83.8 51.9
2, 22, 222 67.2 83.8 53.0

Table 10: Model accuracy (%) for Qwen-2.5 7B on
MMLU under different temperatures and seeds. Num-
bers are averaged over three runs when applicable; at
T = 0 the model is deterministic. Each seed setting con-
tains three seeds regarding Python, NumPy, and Torch.

D Additional Results

D.1 Making All Options longer

We can see from Table 9 that LLaMa is more robust
than Qwen, and larger models are more robust than
smaller models, when we make all options longer.
Besides, even if we introduce the setting of AL,
our conclusion that LLMs are vulnerable to option
lengths and biased to long options is not changed.

D.2 Make All Wrong Options Longer

Model origin WL WL-ALL
Llama3.1 8B 65.5% 53.6% 64.8%
Llama3.1 70B 78.8% 70.6% 82.4%
gpt-4o 85.2% 83.3% 85.6%

Table 11: Results of making all wrong options longer
on the MMLU benchmark.

Making all wrong options could expose the right
answer. From Table 11, we can see that if all the
incorrect options are lengthened, the model will
choose the only correct option that hasn’t been
lengthened.

D.3 Rank Changes of Models

Note of Kendall τ . Kendall τ is a non-parametric
rank-correlation coefficient that measures how sim-
ilarly two lists are ordered by comparing the bal-
ance of concordant versus discordant item pairs,
ranging from −1 (complete disagreement) to +1
(perfect agreement).
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Table 12: Accuracy (%), rank, and rank changes of models on MMLU under different protocols.

Model
Origin RL WL

Score Rank Score Rank ∆Rank Score Rank ∆Rank

Qwen2.5 1.5B 60.3 7 89.0 5 ↑ 2 36.3 7 —
Qwen2.5 7B 73.7 5 90.1 3 ↑ 2 55.6 5 —
Qwen2.5 72B 85.4 1 94.1 1 — 75.6 2 ↓ 1
LLaMa 3.1 8B 65.5 6 85.6 7 ↓ 1 53.6 6 —
LLaMa 3.1 70B 78.8 3 93.6 2 ↑ 1 70.6 3 —
GPT-4o mini 76.5 4 87.2 6 ↓ 2 70.6 3 ↑ 1
GPT-4o 85.2 2 89.7 4 ↓ 2 83.3 1 ↑ 1

Kendall τ — 0.52 0.88

Table 13: Accuracy (%), rank, and rank changes of
models on MMLU (MCQ vs. BQ).

Model MCQ BQ

Score Rank Score Rank ∆Rank

Qwen2.5 1.5B 58.8 7 30.3 7 —
Qwen2.5 7B 72.4 5 54.7 4 ↑ 1
Qwen2.5 72B 84.0 2 69.1 1 ↑ 1
LLaMa 3.1 8B 64.6 6 40.6 6 —
LLaMa 3.1 70B 78.4 3 63.5 2 ↑ 1
GPT-4o mini 75.1 4 54.5 5 ↓ 1
GPT-4o 84.7 1 59.5 3 ↓ 2

Kendall τ — 0.71

As we can see, the rank of the LLMs changes when
we apply the perturbation. The Kendall τ between
the WL and RL rankings is 0.39; since a Kendall
τ below 0.4 is not considered strongly correlated,
switching the evaluation protocol still has a pro-
nounced influence on the rank shifts.
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