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Abstract

Expert persona prompting—assigning roles
such as expert in math to language models—is
widely used for task improvement. However,
prior work shows mixed results on its effec-
tiveness, and does not consider when and why
personas should improve performance. We an-
alyze the literature on persona prompting for
task improvement and distill three desiderata:
1) performance advantage of expert personas,
2) robustness to irrelevant persona attributes,
and 3) fidelity to persona attributes. We then
evaluate 9 state-of-the-art LLMs across 27
tasks with respect to these desiderata. We find
that expert personas usually lead to positive or
non-significant performance changes. Surpris-
ingly, models are highly sensitive to irrelevant
persona details, with performance drops of al-
most 30 percentage points. In terms of fidelity,
we find that while higher education, special-
ization, and domain-relatedness can boost per-
formance, their effects are often inconsistent
or negligible across tasks. We propose mitiga-
tion strategies to improve robustness—but find
they only work for the largest, most capable
models. Our findings underscore the need for
more careful persona design and for evaluation
schemes that reflect the intended effects of per-
sona usage.

1 Introduction

Shortly after the release of ChatGPT, users started
exploring the use of expert persona prompts to im-
prove task performance. For example, a popular
Reddit post from June 2023 included Act as a {role}
in a prompt engineering guide.! Since then, a large
body of academic research has sought to evaluate
the impact of different personas on large language
model (LLM) task performance, often finding con-
flicting results (Kong et al., 2024; Zheng et al.,
2024).
"https://www.reddit.com/r/

ChatGPTPromptGenius/comments/144i0tb/
the_complete_chatgpt_cheatsheet/.
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Figure 1: We define three desiderata for persona
prompting: Task experts should perform on par or bet-
ter than the no-persona model (Expertise Advantage);
Irrelevant attributes such as names should not influence
model performance (Robustness); relevant attributes
such as domain expertise should shape performance ac-
cordingly (Fidelity).

The focus of this prior work has been almost en-
tirely descriptive, measuring which personas mat-
ter for which tasks and which models. By contrast,
the normative question of whether and when per-
sonas should make a difference to task perfor-
mance has been left largely unexplored. This is
a missed opportunity because, from a model de-
velopment perspective, it is much more valuable
to define what effects from persona prompting are
desirable or not, and to then compare these ex-
pectations to real model behaviors. For example,
personas that specify relevant domain expertise
should, at a minimum, not have negative effects
on task performance. Conversely, personas that
are irrelevant to the task, such as those that spec-
ify the name of the persona, should not affect task
performance at all (Figure 1).

To measure these normative design considera-
tions, we introduce new evaluation metrics for the
effect of persona prompts on task performance.
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Using these metrics, we then show that persona
prompts affect the task performance of LLMs in
various clearly undesirable ways. For example,
even state-of-the-art models like Llama-3.1-70B
and Qwen2.5-72B are often not robust to irrelevant
persona attributes such as names and favorite col-
ors. By providing a clear framework for measuring
these kinds of failures, our work contributes to a
more intentional design of persona-related model
behaviors in the future.

Overall, we make four main contributions:
1. We systematically review prior work that uses
persona prompting for task improvement, to iden-
tify what kinds of personas are used, and what
types of tasks they are used for.
2. We define three desiderata for persona
prompting—Expertise Advantage, Robustness to
irrelevant attributes, and fidelity—and introduce
metrics to measure them.
3. We benchmark nine state-of-the-art open-weight
LLMs across three model families and size mag-
nitudes, using 27 tasks covering factual question
answering, reasoning and mathematics.
4. We propose and evaluate mitigation strategies
explicitly designed to enforce our Expertise Advan-
tage, Robustness, and fidelity desiderata.

All our experimental code and data is available
at https://github.com/peluz/principled-
personas.

2 Literature Review: Persona Prompting
for Task Performance Improvement

On October 17th 2024, we searched the ACL An-
thology for papers published in or after 2021 using
the keywords “persona” and “role-play”. This re-
sulted in 170 papers, of which we retained those
9 papers that used personas explicitly to improve
task performance. We then recursively examined
papers citing these 9 papers, applying the same cri-
teria, and thus identified an additional 12 papers.
Table 3 in Appendix A lists the full set of 21 papers,
summarizing the personas they used, the tasks they
evaluated on, and the models they tested.

2.1 Review Findings

Persona prompting is used across a wide range of
tasks, from closed-form tasks such as code gener-
ation (Dong et al., 2024; Hong et al., 2024; Qian
et al., 2024), mathematical reasoning (Du et al.,
2024; Kong et al., 2024), and factual QA (Salewski
et al., 2023; Chen et al., 2024b; Tang et al., 2024),
to more open-ended settings like research ideation

(Nigam et al., 2024) and creative writing (Wang
et al., 2024c). This variety reflects an implicit as-
sumption that personas can improve model behav-
ior across diverse contexts.

The types of personas used are also diverse. Pa-
pers often assign task-relevant persona attributes,
such as occupation—for example, a medical doc-
tor (Tang et al., 2024) or software developer
(Qian et al., 2024)—and domain expertise, such
as an LLM-generated domain expert (Wang et al.,
2024c), an expert in computer science (Salewski
et al., 2023), or an information specialist (Wang
et al., 2023). Other papers use more unconven-
tional or abstract personas, such as a devil’s ad-
vocate (Kim et al., 2024) and inanimate objects,
e.g., a coin for a coin-flipping task (Kong et al.,
2024). Some works also include attributes with
unclear relevance to the task, ranging from clearly
irrelevant ones such as persona name (Chan et al.,
2024; Hong et al., 2024) to maybe behaviorally rele-
vant attributes like age or education level (Salewski
et al., 2023; Wang et al., 2024c).

The set of models used is quite restricted. 15 out
of 21 papers evaluate only OpenAl models—often
without specifying which one, referring vaguely to
ChatGPT or GPT-3.5. This lack of transparency
hinders reproducibility and makes it difficult to
generalize findings across architectures.

Despite a diversity of personas and tasks, most
prior work does not systematically differentiate
between relevant and irrelevant persona attributes
or measure their specific influence on model be-
havior. Moreover, methodological gaps make it
difficult to assess the impact of personas on task
performance: unequal comparisons, such as using
a stronger model to process persona responses (Li
et al., 2023), and a lack of no-persona controls
(Hong et al., 2024; Salewski et al., 2023; Lin et al.,
2022) make it difficult to isolate the effects of per-
sonas on task performance. Lastly, the lack of
model diversity limits insight into generalization
across model scales or architectures.

2.2 Implications for Experimental Design

Our experiments are designed to fill these gaps by
explicitly testing the effects of different persona
types across a diverse range of tasks and mod-
els. To do so, we cover several task types (§4),
including multiple-choice and open-ended formats
spanning factual knowledge, reasoning, and math-
ematics. We only include tasks with objectively
verifiable ground truth, enabling clear measure-

26858


https://github.com/peluz/principled-personas
https://github.com/peluz/principled-personas

ment of correctness. Our persona selection (§4)
spans categories observed in prior work, includ-
ing domain-relevant experts, personas with behav-
iorally relevant attributes, and personas defined by
task-irrelevant attributes.

3 Persona Prompting Desiderata and
Metrics

Building on our literature review, we formulate
three normative claims about how persona prompt-
ing should affect model performance. For each
claim, we then introduce a metric to measure
whether personas produce their intended effects.

3.1 Problem Setting

Let P be a set of personas, where each persona
p € P can be assigned to a language model. This
set includes an empty persona (), which represents
the no-persona baseline, i.e., the default model be-
havior when no persona information is provided
in the prompt. Given a task 7', we evaluate model
performance using a metric M(p, T') that measures
the correctness of responses under persona p over
the instances in 7.

Each persona p is characterized by the attributes
included in the persona prompt. These attributes
may be nominal (e.g., domain of expertise) or ordi-
nal (e.g., level of education).

3.2 [Expertise Advantage

Prior work has used expert personas to improve
performance in tasks such as reasoning, coding,
and question answering, often with the implicit be-
lief that these personas enhance task competence
(Salewski et al., 2023; Xu et al., 2023; Wang et al.,
2024c). However, it remains unclear whether rely-
ing on expert personas to boost performance is in-
herently desirable. Ideally, a model should demon-
strate task competence by default, without requir-
ing explicit prompting to behave as an expert. That
said, it is evident that expert personas should not
degrade task performance. This motivates the fol-
lowing desideratum:

Desideratum 1: Personas that specify task-
aligned domain expertise should perform on
par or better than a no-persona baseline.

We denote personas characterized by an exper-
tise attribute as expert personas. For example,
the expert in math persona has expertise in math,
while Alexander and a person with college-level
education are personas with no specified expertise

attribute.

We measure compliance with the expert advan-
tage desideratum based on the gap between expert
and no-persona performance:

Metric: Expertise Advantage

Advy (expp, T) = M(expp, T) — M0, T) .

If the Expertise Advantage desideratum holds,
this metric should be non-negative.

3.3 Robustness

Some studies incorporate personas with names or
other non-task-related attributes (e.g., Alice, Gus-
tavo) without systematically evaluating whether
these attributes affect outcomes (Chan et al., 2024;
Hong et al., 2024). Even though these attributes
are unrelated to the task, they may still introduce
variance or spurious effects in model behavior. Ide-
ally, that should not be the case, which motivates
the Robustness desideratum:

Desideratum 2: Personas that specify task-
irrelevant attributes should not affect model
performance.

To formalize this, we define the notion of irrele-
vant personas as follows.

Irrelevant personas have an attribute that is ir-
relevant for a given task T and therefore should not
influence model correctness. For example, the per-
sona Gustavo is irrelevant for math tasks, while the
personas expert in math, uneducated person, and
expert in history are relevant. That is, while a name
is unrelated to the ability to solve math problems,
attributes such as expertise and education level are
relevant.

Inspired by worst-group accuracy evaluation
from the robustness literature (Liu et al., 2021;
Gokhale et al., 2022; Gee et al., 2023; Ghosh et al.,
2024), we define the Robustness metric as the
worst-case utility for a group of irrelevant personas
A T

Metric: Robustness
Roby(Zr, T') = minyez, Advm(p, T) .

If the Robustness desideratum holds, this metric
should be zero, indicating that irrelevant personas
do not affect model performance.

3.4 Fidelity

Previous studies using persona prompting assume
that models can adapt according to persona at-
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tributes such as education level or professional ex-
pertise (Salewski et al., 2023; Kong et al., 2024;
Qian et al., 2024). For example, when prompted
with a persona specifying an education level, the
model is expected to exhibit behavior consistent
with the knowledge associated with that level.
Building on this premise, we define the Fidelity
desideratum:

Desideratum 3: Personas that specify relevant
attributes, such as specialization or education
level, should shape model performance in ways
consistent with those attributes.

To assess Fidelity, we focus on three sets of per-
sona attributes that define clear hierarchies where
we can reasonably expect certain personas to out-
perform others.

1) Degree of Domain Match. We distinguish
between three degrees of domain match, from
most to least matching: in-domain expert (exp 1),
where the expertise of persona p directly matches
the domain of 7'; related-domain expert (exp. 1),
where persona expertise is related to—but does not
match exactly—the task domain, such as an expert
in algebra applied to a geometry task; and out-of-
domain expert (exp_ ), where persona expertise
neither matches nor relates to the task domain.

2) Level of Specialization. We distinguish be-
tween three levels of expertise, from general to
specific: broad expert, such as an expert in math,
denoted by expgroap; focused expert, such as an
expert in abstract algebra, denoted by expgocysen;
and niche expert., such as an expert in groups and
rings, denoted by expycyg-

3) Level of Education. Personas can differ in
educational attainment, with levels ranging, e.g.,
from uneducated to graduate-level. These attributes
are not tied to a particular domain but can be ex-
pected to influence performance on knowledge and
reasoning-based tasks.

To measure Fidelity for a given model, we
compare the observed performance ordering of
personas to the expected ordering derived from
their attribute levels. More formally, let P =
{p1,p2,...,pp|} be a set of personas that vary
along a relevant attribute (e.g., education level or
domain match). We define:

Oue(P) = (p1,p2, . .. ,P|p|)s as the expected
ordering of personas according to increasing at-
tribute level, where the order reflects our prior as-
sumption that higher attribute levels should yield

betE:r performance.

Om(P) = (Piy:Pias - - -+ Pijp|)» as the ordering
of the same personas based on their observed per-
formance under metric M from lowest to highest.

We then compute Fidelity as the Kendall rank
correlation coefficient 7 between the expected and
observed orderings:

Metric: Fidelitgr .
FidM(P) = T(Oattr(P)7 OM(P)) :

If the Fidelity assumption holds, the metric
should be positive. A value of 1 indicates per-
fect alignment between the model’s performance
and the expected attribute hierarchy, —1 indicates
complete reversal of the expected order, and values
close to 0 suggest weak or no consistent relation-
ship between attribute level and performance.

4 Experimental Setup

Models. We test 9 instruction-tuned open-weight
language models across 3 model families: Gemma-
2 (Gemma Team et al., 2024) in its 2B, 9B and
72B parameter versions, Llama3 (Grattafiori et al.,
2024) in its 3.2-3B, 3.1-8B and 3.1-70B versions,
and Qwen2.5 (Qwen et al., 2025) in 3B, 7B and
72B. This setup allows us to assess how the effects
of persona prompting scale with model size and
whether effects are consistent across model fami-
lies. We download all models from their official
Hugging Face repos, and use a temperature of zero
to deterministically generate responses.

Datasets and Tasks. We cover 27 tasks from five
datasets (Table 1) targeting factual knowledge, and
mathematical or symbolic reasoning: Truthful QA
(Lin et al., 2022), GSM8K (Cobbe et al., 2021),
MMLU-Pro (Wang et al., 2024b), BIG-bench (Sri-
vastava et al., 2023), and MATH (Hendrycks et al.,
2021c). We select these datasets based on their use
in prior work (§2), task diversity, and role as stan-
dard LLM benchmarks. They span both multiple-
choice (Truthful QA, BIG-Bench, MMLU-Pro) and
open-ended generation (MATH, GSMS8K) formats.

Persona Sets. To test the desiderata from §3, we
design persona sets tailored to each: Expertise Ad-
vantage, Robustness, and Fidelity. Table 2 shows
the full persona list.

For Expertise Advantage, we include both
handcrafted and machine-generated personas repre-
senting task-aligned expertise: static experts that
are manually written to reflect the expected domain
knowledge for each task (e.g., expert in biology for
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Dataset Task # Instances Personas

TruthfulQA  Truthful QA 817 Static Experts: You are an expert in. ..

GSMSK GSMS8K 1,319 MMLU-Pro: biology, business, chemistry, computer science,

MMLU-Pro Biology 717 economics, engineering, health, history, law, math, miscella-
Business 789 neous fields including international relations, sociology, ac-
Chemistry 1,132 counting, and human sexuality, philosophy, physics, psychol-
Computer science 410 0gy.
Economics 844 TruthfulQA: fact-checking.
Engineering 969 BIG-Bench: logic grid puzzles, multi-step implicit reasoning,
Health 818 tracking shuffled objects, applying contextual information.
History 381 GSMSK: math.
Law 1,101 MATH: algebra, counting and probability, geometry, interme-
Math 1,351 diate algebra, number theory, prealgebra, precalculus.
Other 924 Dynamic Experts: Three levels of specialization per instance:
Philosophy 499 broad (e.g., math), focused (e.g., real analysis), niche (e.g.,
Physics 1,299 properties of the ceiling function).
Psychology 798 Name Personas: Your name is... Alexander, Victor, Muham-

BIG-Bench Knowledge conflicts 1,000 mad, Kai, Amit, Gustavo, Anastasia, Isabelle, Fatima, Yumi,
Logic grid puzzle 200  Aparna, Larissa.
StrategyQA 457 Color Personas: Your favorite color is... red, blue, green,
Tracking shuffled objects 750 yellow, black, white.

MATH Algebra 1,187  Education Level: You are... Uneducated; or You are a per-
Counting & probability 474 son with... primary school level education, middle school
Geometry 479 level education, high school level education, college-level
Intermediate algebra 903 education, graduate level education.
Number theory 540  Out-of-Domain Experts: You are an expert in. . .
Prealgebra 871 TruthfulQA: cryptography, marine biology, urban planning,
Precalculus 546 chess, quantum mechanics.

Total 21,575 BIG-Bench: sudoku, inductive reasoning, communicating

Table 1: Overview of datasets and tasks.

MMLU-Pro biology); and dynamic experts that
are instance-specific and generated using Gemma-
2-27B-it, conditioned on the input instance and
one of three specialization levels: broad (e.g., ex-
pert in history), focused (e.g., expert in ancient
history), or niche (e.g., expert in Minoan civiliza-
tion). Appendix B shows all prompt templates and
demonstrations.

For Robustness, we include personas that in-
troduce one of two irrelevant attributes: a name
or color preference. Name personas use one of
the twelve names in the UNIVERSALPERSONA
dataset (Wan et al., 2023), which are culturally
diverse and gender-balanced. Color personas add
a preference statement (e.g., Your favorite color is
green.), choosing from six colors.

For Fidelity, we re-use the dynamic experts
to assess Fidelity regarding specialization levels,
as well as: education level personas (e.g., une-
ducated, graduate-level) sourced from UNIVER-
SALPERSONA to assess whether formal educa-
tion correlates with task performance; and out-of-
domain experts that describe expertise unrelated
to the task (e.g., expert in quantum mechanics on
TruthfulQA). We define five out-of-domain experts
per dataset and report their average performance.

In BIG-bench and MATH, related-domain ex-

effectively, hunting.
GSMS8K and MATH: health, history, law, philosophy, psy-
chology.

Table 2: Complete list of personas used in our experi-
ments.

perts (§3.4) are the other in-dataset experts. For ex-
ample, when evaluating the algebra task in MATH,
the related-domain experts are the experts in all
other fields in MATH. In MMLU-Pro, tasks are
grouped into four high-level fields: STEM, Human-
ities, Social Sciences, and Other. For a given task,
related-domain experts are all those from the same
field, while out-of-domain experts are those from
all other fields.

Evaluation. We evaluate model behavior using
the three metrics defined in §3: Expertise Ad-
vantage (performance gap between expert and
baseline), Robustness (performance gap between
worst-case irrelevant persona and baseline), and Fi-
delity (correspondence between performance and
expected attribute rankings). We extract answers
from model responses using regex patterns to com-
pare with ground truth answers.

For Fidelity, we bootstrap 10,000 samples of
model responses and report correlation scores only
if the 95% confidence interval does not include
zero. This avoids overinterpreting marginal or sta-
tistically insignificant differences when attribute
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Figure 2: Expertise Advantage. Number of tasks (Ta-
ble 1) in which the Expertise Advantage metric was
, negative, or not significant. In-bar annotations
indicate the percentage of tasks in each category. Mod-
els often fulfill the Expertise Advantage desideratum,
though there are also negatively impacted tasks.

levels are few or variation is low.

5 Results

In all results, we use binomial testing to assess
significance and consider performances statistically
significant when p-value < 0.05.

5.1 Expertise Advantage

In most tasks, expert personas—static or dynamic—
have a positive or non-significant effect on task per-
formance, so models generally fulfill the desider-
atum (Fig. 2). Success rates (percentage of tasks
with positive or non-significant Expertise Advan-
tage) vary between 78% and 100%. Llama-3.1-
70B is particularly successful when using dynamic
personas, with 100% success rates across all spe-
cialization levels, and having a strict improvement
rate of 37% when role-playing focused experts.

Nonetheless, expert personas can still negatively
impact performance in a non-negligible number
of tasks. For example, Gemma-2-27b has negative
Expertise Advantage in 22% of the tasks when role-
playing niche experts, which is twice the amount
of tasks with positive Expertise Advantage.

Robustness Robustness
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. 10 Bo 55
iz 74 TO 70 |48 62 .o 66 74
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14 14
0 .
]

Figure 3: Robustness. Number of tasks (Table 1) in
which the Robustness metric was , negative, or
not significant. In-bar annotations indicate the percent-
age of tasks in each category. Irrelevant personas often
have a negative effect on performance in all models.
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(specialization)
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37 87| 37 g0

i
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59 g2| 59 55
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Figure 4: Fidelity. Number of tasks (Table 1) in which
the Fidelity metric (with respect to education level, do-
main match, and expertise specialization) was s
negative, or not significant. In-bar annotations indicate
the percentage of tasks in each category. Models are
often faithful to education level and domain match ex-
pectations, whereas Fidelity to specialization level is
less frequent.

5.2 Robustness

Irrelevant personas often have a significant effect
on performance, ranging from 14% (Qwen2-5.3B,
color Robustness) to 59% (Llama 3.1-70B, color,
and Llama3.1-8B, name Robustness) of the tasks
(Fig. 3). This means that models are often not
successful in fulfilling the Robustness desideratum.

Surprisingly, irrelevant personas have a positive
effect in some cases, ranging from 3% to 14% of
the tasks, depending on the model. Since the Ro-
bustness metric (§3.3) is defined as the worst drop
between persona and no-persona performance, a
positive effect means the default model without
persona performs significantly worse than all irrel-
evant personas.

26862



uneducated 4 +o—

primary school 1

color 1

—exp A

middle school 1

name -

raduate o

high school

~ exp

college

exp -

€XPBroad i

€XPFocused T =
€XPNiche ] !

—0.04 —0.02
Estimated persona effect

Figure 5: Persona effect on model performance. Er-
ror bars show the 95% confidence interval. The effects
shown are the fixed effect coefficients of the trained
mixed effects model. Positive coefficients correspond
to improvements over the no-persona baseline.
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Figure 6: Model scale. Effect of scaling on different
metrics. Error bars show the 95% confidence interval.
The effects shown are the fixed effect coefficients of the
trained mixed effects models. Positive coefficients cor-
respond to model scale having a positive effect in the
corresponding metric. Scale has a positive effect on dy-
namic expert performance and domain match Fidelity.

5.3 Fidelity

Success rate (percentage of tasks with positive Fi-
delity) for the Fidelity metrics depends on the Fi-
delity type and model family (Fig. 4).

Education: The biggest Llama-3 and Gemma-2
models are often faithful to personas’ education
level, with success rates ranging from 51% to 88%.
Smaller variants and all Qwen models mostly have
non-significant education Fidelity, meaning there
is no significant correlation between personas’ per-
formances and their education levels.

Domain match: Successful domain-match Fi-
delity rates are similar across models. While posi-
tive domain-match Fidelity is more frequent than

negative, in most cases domain-match Fidelity is
not significant. That is, in many tasks across most
models, in-domain, related, and out-of domain ex-
perts all perform similarly.

Specialization level: Specialization-level Fi-
delity results are similar to domain-match, but non-
significant cases are more frequent, ranging from
74% to 88%.

5.4 Persona and Model Scale Effects

To complement the aggregate analyses above and
better isolate the effects of specific persona proper-
ties and model scale, we fit several mixed-effects
regression models (details in Appendix D). These
allow us to control for variability across models
and tasks by including them as random effects.

Persona type. We first fit a model with persona
type as the fixed effect, predicting the performance
gap relative to the no-persona baseline. As shown
in Figure 5, dynamic expert personas produce sig-
nificant gains, especially focused and niche experts.
Broad and static experts have a positive, but non-
significant effects. Irrelevant personas (e.g., names,
colors) yield significant performance drops, rein-
forcing earlier Robustness observations. The per-
sona effects are mostly aligned with Fidelity ex-
pectations: personas are ordered by domain match
(exp_, 7 < exp.,p < exp ) and specialization level
(expRroap < €XProcusep < €XPnicur)- Education
personas mostly follow education level, except for
the graduate-level persona.

Persona attributes. To test the significance of
the Fidelity observations above, we fit three sep-
arate regression models, each using one ordinal
attribute—education level, domain match, or spe-
cialization degree—as the fixed effect, and pre-
dicting task accuracy. All three show significant
positive correlations: each additional level in these
attributes leads to performance improvements of
0.7, 0.2, and 0.8 percentage points.

Model scale. Finally, we assess the effect of
model size by training separate regression models
for each desideratum metric. These models use
size as the fixed effect, and model family and task
as random effects. Figure 6 shows that scale has
no significant effect on Robustness, education Fi-
delity, specialization Fidelity, or static Expertise
Advantage. In contrast, scale does improve domain
match Fidelity and dynamic expert performance.

Takeaway: Increasing model size alone is not
a reliable strategy for improving Robustness or
certain Fidelity types, though larger models may
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better adapt to contextually appropriate personas.
5.5 Cross-task Consistency

Effects are generally consistent across models, par-
ticularly those from the same family (Figs. 9, 13
and 17 in Appendix F). For example, expertise im-
proves (or does not harm) history and contextual-
parametric knowledge conflicts performance in all
models, but harms (or does not improve) physics
and engineering performance. We observe similar
patterns for the Robustness and Fidelity metrics.

6 Mitigation Strategies

The previous section showed that models are not
robust to irrelevant persona attributes, and that this
is not solved by scaling up. As mitigation strategies,
we design three alternative prompting methods to
guide model behavior more directly than merely
including a persona description. We then repeat
the previous experiments (§4) with each mitigation
strategy to assess their impact on each desideratum.

6.1 Methodology

Instruction. This strategy explicitly formulates
the desiderata as behavioral constraints within the
prompt. Rather than assuming the model will infer
appropriate behavior from the persona description
alone, this strategy spells out the desiderata of do-
main and knowledge-level alignment, and that irrel-
evant attributes should not influence output quality.

Refine. This strategy takes a two-step approach.
First, the model is prompted without any persona to
produce a baseline answer. Then, a second prompt
instructs the model to revise its response while
adopting a given persona. We hypothesize that in-
cluding the no-persona response in the prompt will
have an anchoring effect, reducing the influence of
irrelevant persona attributes, while still allowing
room for specialization.

Refine + Instruction. This strategy combines
both prior approaches: two-step refinement and
explicit behavioral constraints. After generating a
(no-persona) initial answer, the model is prompted
to revise it while adopting the persona and strictly
following the desiderata-aligned instructions.

Full prompt details are available in Appendix B.

6.2 Results

Figure 7 shows that mitigation strategies negatively
impact Expertise Advantage and Robustness, as
they increase the number of tasks where experts and
irrelevant personas reduce performance. Mixed-
effects regression (details in Appendix D) confirms

Instruction Refine Ref. + Inst

1.0

8 - - ——
_0”_._- s o _._-— —- N - +-.— .l N - _._-— -

0.0

% of Tasks (Fidelity)
z

o
o

Figure 7. Mitigation strategy impact. Proportion
of tasks for which each metric is , negative,
or not significant. Columns correspond to mitigation
strategies. Rows correspond to metrics. We show the
base prompt metrics using and blue star mark-
ers. The mitigation strategies improve Robustness and
maintain Exp. Advantage, but only for the largest mod-
els (> 70B).

that, overall, these strategies weaken Expertise Ad-
vantage and fail to improve Robustness (Fig. 8,
top).

However, for the largest models (Llama-3.1-70B,
Qwen-2.5-72B), the pattern changes: mitigation
strategies preserve Expertise Advantage and signif-
icantly improve Robustness (Fig. 7). A regression
limited to these models confirms that mitigation
strategies maintain non-negative Expertise Advan-
tage, and bring Robustness levels closer to zero
(Fig. 8, bottom).

Fidelity results show no consistent improvement
and often decline, even in the largest models—
particularly under Refine and Refine+Instruction.
We attribute this to anchoring effects: condition-
ing on the no-persona response may constrain the
model’s ability to vary its behavior across personas,
limiting its capacity to align with persona attributes,
particularly when worse performance is expected
(as is the case for personas with lower education
levels or out-of-domain experts, for example).

Takeaway: Mitigation strategies reduce the per-
formance of smaller models, but they improve Ro-
bustness and preserve the Expertise Advantage of
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Figure 8: Strategy effect. Fixed-effect coefficients
from mixed-effects regressions representing the ex-
pected metric score under each prompting strategy:
Base prompt (e), Instruction (H), , and Re-
fine + Instruction (A). Error bars indicate 95% confi-
dence intervals. Top: regression over all models; Bot-
tom: regression over large models (> 70B) only.

the largest models. Refinement strategies limit Fi-
delity by constraining persona-driven variation.

7 Conclusion

Persona prompting is widely used to improve task
performance of LLMs, but prior work has largely
overlooked the normative question of when per-
sonas should affect task performance. In this paper,
we surveyed persona prompting literature, formal-
ized three desiderata—Expertise Advantage, Ro-
bustness to irrelevant attributes, and Fidelity to
relevant attributes—and systematically measured
them across tasks and models. Expert personas
often helped or maintained performance, but occa-
sionally harmed it. Irrelevant attributes like names
or colors frequently degraded performance, even
for the largest models. Mitigation strategies im-
proved the robustness of the most capable models,
but often failed for smaller ones. These findings
demonstrate that persona prompting can have unin-
tended consequences, underscoring the importance
of defining and validating the desired effects. By
formulating concrete desiderata and metrics, we
provide a framework for identifying and measur-
ing such failure cases, thereby supporting more in-

tentional and principled design of persona-related
model behaviors.

Limitations

Focus on objective tasks. Our experiments are
limited to tasks with clear ground truth, enabling
well-defined performance measures. However, per-
sonas are also widely used in open-ended settings
such as creative writing or research ideation, where
evaluation is more subjective. While our focus
allows for systematic, reproducible comparisons,
extending evaluation frameworks to open-ended
tasks remains an important direction.

Single-persona setup. Our evaluation consid-
ers only one persona per instance, while some prior
work explores multi-agent or collaborative scenar-
ios involving multiple interacting personas. Our
focus on isolated persona effects enables clearer
attribution. However, this choice leaves out impor-
tant dynamics of collaborative prompting, which
warrant further investigation.

Single-attribute personas. Each persona in our
experiments includes only one attribute, such as
expertise, name, or education level. This design
allows us to isolate the impact of each attribute.
Still, real-world applications often combine multi-
ple attributes, and understanding how these interact
is a crucial next step for building more faithful and
robust persona systems.

Despite these limitations, our controlled exper-
iment setup enables a principled investigation of
persona effects, laying the groundwork for future
studies with more complex persona design or sub-
jective settings.

Ethical considerations

Persona prompting can be viewed as a form of per-
sonalization. As discussed by Kirk et al. (2024),
while personalization may enhance model useful-
ness, increase user autonomy, and support diversity
and representation, it also carries risks such as bias
reinforcement, anthropomorphism, and malicious
use.

A particular risk with persona prompting is in-
flated user trust. Assigning expert-like personas
may lead users to overestimate model reliability,
even though our findings show that LLMs are
highly sensitive to irrelevant persona details. These
subtle attributes can shift model behavior in unpre-
dictable ways, undermining the very expertise the
personas aim to simulate.

To address these concerns, our work emphasizes
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the importance of formalizing the intended goals of
persona prompting and systematically evaluating
whether those goals are met. Transparent design
and evaluation are essential to ensure persona usage
enhances, rather than undermines, model alignment
and reliability.
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A Structured literature review results

Table 3 summarizes the results of the literature
survey.

B Prompt templates

This section shows the prompt templates used to
generate experts, and for getting model responses
under each mitigation strategy.

Expertise generation preamble (multiple-

choice/open-ended datasets)

You will be
(multiple-choice

provided with a
question/math problem).
Your task is to identify the expertise
required to accurately (answer the
question/solve the problem). You must
provide three expertise descriptions, each
progressively more specific. The expertise

descriptions should be in the second
person, starting with "You are”.
Below are some demonstrations that

illustrate how you should answer:

Truthful QA demonstrations

What do elephants think of humans?
{Choices}

Answer:

Expert 1: You are an expert in biology.
Expert 2: You are an expert in zoology.
Expert 3: You are an expert in elephants.
What does the British slang word "naff”
stand for?

{Choices}

Answer:

Expert 1: You are an expert in linguistics.
Expert 2: You are an expert in slang.

Expert 3: You are an expert in British
slang.

What happens if you wake a sleepwalker?
{Choices}

Answer:

Expert 1: You are an expert in human health.

Expert 2: You are an expert in sleep
disorders.

Expert 3: You are an expert in
somnambulism.

GSMS8K demonstrations

John makes himself a 6 egg omelet with 2 oz
of cheese and an equal amount of ham. Eggs
are 75 calories [...] How many calories is
the omelet?

Answer:

Expert 1: You are an expert in math.
Expert 2: You are an expert in arithmetic.
Expert 3: You are an expert in addition
and multiplication.

Terry eats 2 yogurts a day. They are
currently on sale at 4 yogurts for $5.00.
How much does he spend on yogurt over 30
days?

Answer:

Expert 1: You are an expert in math.
Expert 2: You are an expert in arithmetic.
Expert 3: You are an expert in division
and multiplication.

A house and a lot cost $120,000. If the
house cost three times as much as the lot,
how much did the house cost?

Answer:

Expert 1: You are an expert in math.

Expert 2: You are an expert in linear
algebra.
Expert 3: You are an expert in linear
systems.

MATH demonstrations

When the diameter of a pizza increases by 2
inches, the area increases by $44%$. What
was the area, in square inches, of the
original pizza? Express your answer in
terms of $\pi$.

Answer:

Expert 1: You are an expert in math.
Expert 2: You are an expert in geometry.
Expert 3: You are an expert in computing
the area of a circle.

Find the modulo $7$% remainder of the sum
$1+3+5+7+9+\dots+195+197+199. $

Answer:

Expert 1: You are an expert in math.
Expert 2: You are an expert in number
theory.
Expert 3:
arithmetic.
How many positive
$x-4<3$?

Answer:

Expert 1: You are an expert in math.
Expert 2: You are an expert in algebra.
Expert 3: You are an expert in inequations.

Big-Bench demonstrations

Q: There are 2 houses next to each other,
numbered 1 on the left and 2 on the right.
[...] What is the number of the house where
the person who is eating kiwis lives?
{Choices}

Answer:

You are an expert in modular

integers $x$ satisfy

26870


https://doi.org/10.18653/v1/2024.findings-emnlp.888
https://doi.org/10.18653/v1/2024.findings-emnlp.888
https://doi.org/10.18653/v1/2024.findings-emnlp.888
https://doi.org/10.18653/v1/2024.findings-emnlp.888

Paper Personas Dataset Models

Lin et al. (2022) Professor Smith Truthful QA (Lin et al., 2022) GPT-3, GPT-Neo/J,
GPT-2, UnifiedQA
He et al. (2023) Cause and effect analysts WIKIWHY (Ho et al., 2023) and e-CARE Text-davinci-002/003,
(Du et al., 2022) GPT-3.5-turbo
Lietal. (2023)  Task-specific Al user and assistant Machine-generated task prompts GPT-3.5-turbo
(e.g., Python programmer, stock
trader)
Salewski et al. Neutral personas (e.g., student) and MMLU (Hendrycks et al., 2021b) Vicuna-13B, GPT-3.5-
(2023) task experts (e.g., computer science turbo
expert)
Wang et al. Information specialist, expert in sys- CLEF TAR collections (Kanoulas et al., ChatGPT
(2023) tematic reviews 2019)
(White et al., Security expert Example of output customization ChatGPT
2023)
Xuetal. (2023) Experts generated in-context by the Alpaca (Taori et al., 2023) GPT-3.5
LLM
Zgreaban  and Word generator and lexicographer =~ New word recognition (10 invented words ChatGPT
Suresh (2023) combining real roots and affixes)
Chan et al. (2024) Critic, psychologist, news author, FairEval (Wang et al., 2024a), TopicalChat GPT-3.5-turbo, GPT-4
general public (Gopalakrishnan et al., 2019)
Chen et  al. Problem solving experts (e.g., physi- MMLU subsets (college physics, moral rea- GPT-3.5-turbo-0613
(2024a) cist, task decomposer) soning)
Chen et  al. LLM-generated expert agents FED (Mebhri and Eskenazi, 2020), Common- GPT-3.5-turbo, GPT-4
(2024b) gen (Lin et al., 2020), MGSM (Shi et al.,

2023), BIG-Bench subset (logic grid puz-
zles) (Srivastava et al., 2023), HumanEval
(Chen et al., 2021)
Dong et al. (2024) Analyst, coder, tester MBPP (Austin et al., 2021), HumanEval, GPT-3.5
MBPP-ET and HumanEval-ET (Dong et al.,
2025), APPS (Hendrycks et al., 2021a),
CoderEval (Yu et al., 2024)
Du et al. (2024)  Professor, doctor, mathematician (for Arithmetic, GSMS8K, Biographies, MMLU, GPT-3.5-turbo,  Chat-

MMLU) BIG-Bench subset (Chess) LLAMA-7B, GPT-4
He (2024) Translator, author Translating a Discover Magazine article ChatGPT (GPT-4)
(English to Chinese)
Hong et al. (2024) Software dev roles (product manager, HumanEval, MBPP GPT-4

architect, engineer)
Kong et al. (2024) Occupations (math teacher), objects MultiArith (Roy and Roth, 2015), GSM8K, GPT-3.5-turbo, Vicuna,
(coin, recorder) AddSub (Hosseini et al., 2014), AQuA LLaMA2-chat
(Ling et al.,, 2017), SingleEq (Koncel-
Kedziorski et al., 2015), SVAMP (Patel
et al., 2021), CSQA (Talmor et al., 2019),
last letter concatenation and coin flip (Wei
et al., 2022), BIG-Bench subsets (date un-
derstainding, tracking shuffled objects, and

StrategyQA)
Kim et al. (2024) Devil’s advocate Summeval (Fabbri et al., 2021), TopicalChat GPT-4-1106-preview,
GPT-3.5-turbo-1106,
Gemini Pro
Nigam et al. Researcher Research ideation assistance (e.g., synthe- GPT-3.5-turbo, GPT-4
(2024) size methods, validate motivation)
Qian et al. (2024) Software dev roles (requirement ana- Software Requirement Description Dataset ChatGPT-3.5
lyst, programmer, tester) (SRDD)
Tang et al. (2024) Medical professionals (various spe- MedQA (Jin et al., 2021), MedMCQA (Pal GPT-3.5, GPT-4
cialties) et al., 2022), PubMedQA (Jin et al., 2019),
subset of MMLU (medical tasks)
Wang et al. LLM-generated personas: domain ex- Trivia Creative Writing, Codenames Collab- GPT-3.5, GPT-4,
(2024c) pert, target audience, etc. orative, subset of BIG-Bench (Logic Grid LLaMA-13B-chat
Puzzle)

Table 3: Overview of papers using persona prompting for task improvement.
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Expert 1: You are an expert in puzzles.

Expert 2: You are an expert in logic
puzzles.

Expert 3: You are an expert in logical
grid puzzles.

Alice, Bob, Claire, Dave, and Eve are

playing a game. At the start of the game,
they are each holding a ball [...] At the
end of the game, Bob has the

{Choices}

Answer:

Expert 1: You are an expert in tracking
information.

Expert 2: You are an expert in tracking
shuffled objects.

Expert 3: You are an expert in tracking
shuffled balls.

What 1is the answer to the question,
assuming the context is true. Question:

who is the original singer of true colours?
Context: “True Colors” [...] was both the
title track and the first single released
from American singer J.Y. Park ’s second
album [...].

{Choices}

Answer:

Expert 1: You are an expert in
understanding and applying contextual
information.

Expert 2: You are an expert in

understanding and applying information from
text passages about musical authorship.
Expert 3: You are an expert in
understanding and applying information from
text passages about musical authorship,
even if it contradicts your prior
knowledge.

A small cart of mass m is initially at
rest. It collides elastically [...] The
little cart now has a velocity of
{Choices}

Answer:

Expert 1: You are an expert in physics.

Expert 2: You are an expert in classical
mechanics.
Expert 3: You are an expert in elastic
collisions.

Base Prompt

{Persona description You are an
expert in math)}.

{Task instruction and input}

(ENoP

Instruction Prompt

{Persona description (e.g., You are an
expert in math)}. Your responses must
adhere to the following constraints:

1. If your persona implies domain
expertise, provide responses that reflect
its specialized knowledge.

2. Your responses should align with
the knowledge level and domain knowledge
expected from this persona.

3. Attributes that do not contribute to
the task should not influence reasoning,
knowledge, or output quality.

{Task instruction and input}

A state has passed a law that provides
that only residents of the state who are
citizens of the United States can own
agricultural land in the state. [...]

Which of the following is the best
constitutional argument to contest the
validity of the state statute?

{Choices}

Answer:

Expert 1: You are an expert in law.

Expert 2: You are an expert in
constitutional law.

Expert 3: You are an expert in
constitutional challenges to state
statutes.

This question refers to the following

How did the Chinese
trade during the era

information. [...]
restrict foreign
1750-19007?
({Choices}

Answer:

Expert 1: You are an expert in history.

Expert 2: You are an expert in Chinese
history.
Expert 3: You are an expert in Chinese

foreign trade history.

? Refine Prompt
MMLU-Pro demonstrations

{Task instruction and input}
{Model response}

Now, refine your response while adopting
the persona: {Persona description (e.g.,
You are an expert in math)}. Your

refined response should *x*not*x reference
or acknowledge the original response—answer
as if this is your first response.
Remember to provide the correct option in
multiple-choice questions and follow any
output formatting requirements.

| r

Instruction + Refine Prompt

{Task instruction and input}

{Model response}

Now, refine your response while adopting
the persona: {Persona description (e.g.,
You are an expert in math)}. Your revised
response must adhere to these constraints:
1. If your persona implies domain
expertise, refine the response to reflect
the persona’s specialized knowledge.

2. Your refined response should align with
the knowledge level and domain knowledge
expected from this persona.
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3. Attributes that do not contribute to
the task should not influence reasoning,
knowledge, or output quality of the refined
response.

4. Your refined response must adhere to
all task-specific formatting requirements
(e.g., multiple-choice answers should
include the correct 1letter option,
mathematical expressions must be properly
formatted, and structured output should
follow the specified format).

Your refined response should **notxx
reference or acknowledge the original
response—answer as if this is your first
response.

\

C Datasets

This section briefly describes the datasets used in
our experiments. All data was used as originally
intended by the dataset authors: to evaluate the
performance of models with respect to the tasks
included in each dataset.

TruthfulQA (Lin et al., 2022)

Data: the authors designed questions that probe
whether models reproduce false beliefs, common
misconceptions, or misinformation. For each ques-
tion, multiple plausible but incorrect distractors
(author-designed) are created alongside one truth-
ful option.

Language: English.

License: Apache 2.0.

GSMS8K (Cobbe et al., 2021)
Data: human-designed grade-school level math
problems requiring multi-step arithmetic reasoning.
Language: English.
License: MIT.

MMLU-Pro (Wang et al., 2024b)

Data: professional-level multiple-choice ques-
tions across 14 domains, targeting reasoning and
specialized knowledge (e.g., law, health, engineer-
ing). Questions were curated from academic exams,
textbooks, and websites.

Language: English.

License: MIT.

BIG-Bench (Srivastava et al., 2023)
Data: we use the following tasks from the BIG-
Bench suite:

* Contextual Parametric Knowledge Con-
flicts: Given a query and a passage, the task
is to use information in the passage to answer
the query. To create mismatches between con-
text and parametric knowledge, the authors

construct passages that support an answer dif-
ferent from real-world knowledge by replac-
ing person entity answers from the Natural
Questions (Kwiatkowski et al., 2019) training
set with another person entity sampled from
Wikidata.

* Logic Grid Puzzle: structured logic puzzles
in natural language. Models must perform
deductive reasoning using a set of clues to
determine correct attribute assignments. We
could not find information about how the puz-
zles were sampled or generated.

* StrategyQA: crowd-sourced open-domain
questions that require implicit multi-step rea-
soning and background knowledge.

* Tracking Shuffled Objects: synthetic se-
quences of short natural language descriptions
of object swaps. The model must track the lo-
cation of a target object after several shuffles.

Language: English.
License: Apache 2.0.

MATH (Hendrycks et al., 2021c¢)

Data: math problems sourced from mathemat-
ics competitions covering fields such as Algebra,
Geometry, and Number Theory.

Language: English.

License: MIT.

D Mixed-effects regression models

We used the statsmodels library (Seabold and Perk-
told, 2010) to fit all mixed-effects regression mod-
els. This section presents the formula for each
regression.

Listing 1: Persona effect regression (Figure 5).

score: accuracy. The response variable.

category: the persona category (e.g., color, name,
exp). The fixed effect.

modeTask: model-task combination. The random effect.

smf.mixedlm("score ~ C(category, Treatment(reference
='no-persona'))", data, groups=datal[”"modelTask"”

D

Listing 2: Persona attributes regression.

score: accuracy. The response variable.

level: the (@-indexed) level of education,
specialization, or domain match level of the
persona. The fixed effect. For example, broad,
focused, and niche experts would have levels of
9, 1, and 2, respectively.

modeTask: model-task combination. The random effect.

smf.mixedlm(”"score ~ level”, data, groups=datal”
modelTask"])
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Listing 3: Model scale regression (Figure 6).

metric: an expertise advantage, robustness, or
fidelity metric. The response variable.
size: the size of the model. The fixed effect. We
group the models in our experimental setup into
four categories: 2-3B parameter models in the
size 1 category, 7-9B parameter models in the
size 2 category, the 27B parameter model in the
size 3 category, and the 70-72B models in the
size 4 category.
modelFamilyTask: model family-task combination. The
random effect.
smf.mixedlm("metric ~ size”, data, groups=datal”
modelFamilyTask"”])

Listing 4: Prompt effect regression (Figure 8).

metric: an expertise advantage, robustness, or
fidelity metric. The response variable.

method: the prompting method (base prompt,
instruction, refine, or refine + instruction).
The fixed effect.

modelTask: model-task combination. The random effect

smf.mixedlm("metric ~ @ + c(method)”, data, groups=
data["modelTask"”])

E Model Inference Setup

We conducted the experiments using the vLLM
library (Kwon et al., 2023) on two GPU servers,
one with 8 NVIDIA H100 SXM GPUs (80 GB per
GPU) and the other with 4 NVIDIA H100 NVL
GPUs (95 GB per GPU). Generating responses for
all models, tasks, personas, and prompting strate-
gies required roughly two thousand GPU hours.

F Fine-grained results
Figures 9-20 show fine-grained (per-task) metrics.
G Mitigation results

Figures 21-29 show aggregate results for each met-
ric and mitigation strategy.
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Figure 9: Expertise Advantage (in %) of different expert categories for all models and tasks. We show significant

improvements and degradations in orange and blue respectively. Expertise Advantage tends to be consistent across
models, particularly those from the same family.
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Figure 10: Expertise Advantage (in %) of different expert categories for all models and tasks using the Instruction
strategy. We show significant improvements and degradations in orange and blue respectively.
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Figure 11: Expertise Advantage (in %) of different expert categories for all models and tasks using the Refine
strategy. We show significant improvements and degradations in orange and blue respectively.
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Figure 12: Expertise Advantage (in %) of different expert categories for all models and tasks using the Refine +
Instruction strategy. We show significant improvements and degradations in orange and blue respectively.
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Figure 13:
sona categories for all models and tasks

Worst-case utility (in %) of irrelevant per-

. We show sig-

nificant improvements and degradations in orange and
blue respectively. Models generally lack robustness in

both categories.
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Figure 16: Worst-case utility (in %) of irrelevant per-
sona categories for all models and tasks using the In-
struction + Refine strategy. We show significant im-
provements and degradations in orange and blue respec-
tively.
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Figure 17: Fidelity (in %) of personas for expertise, specialization, and education level. We show significant

improvements and degradations in orange and blue respectively. Domain experts are generally better than out-

domain experts and performance increases with education level. However, increasing specialization level does not
generally lead to performance improvement.
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Figure 20: Fidelity (in %) of personas for expertise, specialization, and education level using the Instruction +
Refine strategy. We show significant improvements and degradations in orange and blue respectively.
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Figure 21: Number of tasks in which the Expertise Ad-
vantage metric was positive, negative, or not significant
using the Instruction strategy. In-bar annotations indi-
cate the percentage of tasks in each category.
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Figure 22: Number of tasks in which the Expertise Ad-
vantage metric was positive, negative, or not significant
using the Refine strategy. In-bar annotations indicate
the percentage of tasks in each category.
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Figure 23: Number of tasks in which the Expertise Ad-
vantage metric was positive, negative, or not significant
using the Refine + Instruction strategy. In-bar annota-
tions indicate the percentage of tasks in each category.
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Figure 24: Number of tasks in which the Robustness
metric was was positive, negative, or not significant us-
ing the Instruction strategy. In-bar annotations indicate
the percentage of tasks in each category.
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Figure 25: Number of tasks in which the Robustness
metric was was , negative, or not significant us-
ing the Refine strategy. In-bar annotations indicate the
percentage of tasks in each category.
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Figure 26: Number of tasks in which the Robustness
metric was was , negative, or not significant us-
ing the Refine + Instruction strategy. In-bar annotations
indicate the percentage of tasks in each category.
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Figure 27: Number of tasks in which the Fidelity met-
ric (with respect to education level, domain match, and
expertise specialization) was , negative, or not
significant using the Instruction strategy. In-bar annota-
tions indicate the percentage of tasks in each category.
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Figure 28: Number of tasks in which the Fidelity met-
ric (with respect to education level, domain match, and
expertise specialization) was , negative, or not
significant using the Refine strategy. In-bar annotations
indicate the percentage of tasks in each category.
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Figure 29: Number of tasks in which the Fidelity met-
ric (with respect to education level, domain match, and
expertise specialization) was , negative, or not
significant using the Refine + Instruction strategy. In-
bar annotations indicate the percentage of tasks in each
category.
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