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Abstract

Large language models (LLMs) often lever-
age adapters, such as low-rank-based adapters,
to achieve strong performance on downstream
tasks. However, storing a separate adapter for
each task significantly increases memory re-
quirements, posing a challenge for resource-
constrained environments such as mobile de-
vices. Although model merging techniques
can reduce storage costs, they typically re-
sult in substantial performance degradation.
In this work, we introduce HydraOpt, a new
model merging technique that capitalizes on
the inherent similarities between the matrices
of low-rank adapters. Unlike existing meth-
ods that produce a fixed trade-off between stor-
age size and performance, HydraOpt allows
us to navigate this spectrum of efficiency and
performance. Our experiments show that Hy-
draOpt significantly reduces storage size (48%
reduction) compared to storing all adapters,
while achieving competitive performance (0.2-
1.8% drop). Furthermore, it outperforms ex-
isting merging techniques in terms of perfor-
mance at the same or slightly worse storage
efficiency.

1 Introduction

Large language models (LLMs) have become a
driving force behind many natural language pro-
cessing tasks today, including text summarization
(Liu et al., 2024b), smart-reply (Bastola et al.,
2023) and question-answering (Sticha et al., 2024).
While modern LLMs are pre-trained to perform
a diverse set of tasks, their performance on spe-
cific tasks can be improved by updating its param-
eters on task-specific datasets. However, this fine-
tuning process becomes computationally impracti-
cal due to the growing size of LLMs, especially for
resource-constrained environments such as mobile
devices.

One approach to reduce the computational com-
plexity of the fine-tuning process is parameter-
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Figure 1: Performance and storage efficiency trade-
off. Average performance over 5 applications and 8
languages. Existing merging techniques reduce stor-
age costs at significant performance drops. Our method
performs similarly at the same efficiency level and im-
proves if more storage is available, achieving perfor-
mance similar to LoRAs.

efficient fine-tuning (PEFT) (Hu et al., 2022; Xu
et al., 2023; Lialin et al., 2023), where only a small
set of parameters is updated while keeping the pa-
rameters of the LLMs frozen. For example, low-
rank-based adapters such as LoRA (Hu et al., 2022)
and VeRA (Kopiczko et al., 2024) have facilitated
the use of LLMs for on-device applications, as one
can store separate adapters for different tasks and
switch to the corresponding parameters when the
user wishes to perform a specific task (Gunter et al.,
2024). However, storing separate adapters becomes
costly for on-device settings where the memory is
limited. Model merging techniques (Wortsman
et al., 2022; Ilharco et al., 2023; Yadav et al., 2024;
Yu et al., 2024) address this issue by combining
multiple adapters into one adapter used for all tasks.
However, such techniques significantly disrupt the
performance with no control.

In this work, we propose a new model merg-
ing method (HydraOpt) that allows controllable
efficiency-performance trade-off, unlike existing
methods that result in a single storage size and
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performance. HydraOpt achieves competitive per-
formance compared to storing all adapters but with
reduced storage size and improves over the perfor-
mance of existing merging techniques at a slightly
worse storage efficiency (Fig. 1). Our contributions
are three-fold:

• Building on the similarity between low-rank-
based adapters, we introduce a new model
merging strategy called HydraOpt that can
navigate the efficiency-performance trade-off
of model merging.

• We design a comprehensive evaluation frame-
work that consists of 40 tasks derived from
5 applications and 8 languages. We conduct
experiments to assess the impact of merging
adapters across applications, languages, and
tasks.

• Our experiments demonstrate that Hy-
draOpt finds a better trade-off between effi-
ciency and performance across different low-
rank-based adapters and LLMs. While main-
taining comparable performance to existing
model merging methods at similar storage lev-
els, HydraOpt consistently outperforms them
when a modest increase in storage is permit-
ted.

2 Related Work

Parameter-efficient Fine-tuning (PEFT) tech-
niques adapt models efficiently via training rel-
atively few parameters, making them especially
suitable for fine-tuning large language models
(Ding et al., 2022; Han et al., 2024). Low-rank-
based adapters (Hu et al., 2022; Liu et al., 2024a;
Kopiczko et al., 2024; Malinovsky et al., 2024;
Ceritli et al., 2024), in particular, have become
widely adopted, having small additional storage re-
quirements thanks to their compact size, which
makes them suitable for deployment to mobile
devices (Gunter et al., 2024). LoRA (Hu et al.,
2022) introduces two low-dimensional trainable
parameters A ∈ Rr×k and B ∈ Rd×r which are
used to approximate the weight updates ∆W , i.e.,
∆W = BA where rank r << min(d, k). Then,
the LLM parameters can be updated such that
W = W +∆W . Performance of LoRA has been
further improved in its many extensions, such as
AdaLoRA (Zhang et al., 2023) and DoRA (Liu
et al., 2024a).

Various approaches to improve efficiency of
LoRA have also been proposed (Kopiczko et al.,
2024; Renduchintala et al., 2024). In particular,
VeRA (Kopiczko et al., 2024) has become popu-
lar for improving storage and parameter efficiency
of LoRA, while maintaining competitive perfor-
mance. VeRA introduces the following model
update: ∆W = ΛbBΛdA where the parameters
B ∈ Rd×r and A ∈ Rr×k are shared across the lay-
ers while the parameters Λb ∈ Rd and Λd ∈ Rr

are defined per each layer. The resulting method
reduces the number of trainable parameters, as the
layer-specific parameters are defined as vectors
rather than matrices.
Model Merging: Multiple task-specific models
can be combined into a single model capable of
multi-tasking via a process called model merging.
Task Arithmetic (Wortsman et al., 2022; Ilharco
et al., 2023) represents the simplest option, and
it combines the weights of multiple models as a
weighted average. Various more advanced tech-
niques have been developed, including TIES (Ya-
dav et al., 2024) and DARE (Yu et al., 2024). TIES
first resets the values of parameters that changed
little, then elects the sign in case of conflicts, and
merges only sign-aligned parameters. DARE drops
part of the weight changes and then rescales the
remaining ones accordingly. Other methods (Xiao
et al., 2024; Huang et al., 2024; Hammoud et al.,
2024; Shenaj et al., 2025) use data to improve
merging, however, that is beyond the scope of the
present work.
On-device LLMs: LLMs typically include bil-
lions of parameters, which requires significant re-
sources, such as high-end GPUs, even for infer-
ence only (Borzunov et al., 2024). However, in
many use cases, it is desirable to perform compu-
tations locally without transferring data to remote
servers (Dhar et al., 2021), for example, when us-
ing sensitive data stored on resource-constrained
devices. Real-world examples include generat-
ing personalized replies or summarizing private
conversations, where maintaining data privacy is
paramount. As a solution, smaller LLMs (e.g., 1–3
billion parameters) have been developed for on-
device deployment. These models utilize model
compression strategies paired with a smaller size
to support efficient on-device inference. Promi-
nent examples include Llama 3.2 1B (Dubey et al.,
2024), StableLM2 1.6B (Bellagente et al., 2024)
and Qwen2.5 1.5B (Yang et al., 2024; Qwen Team,
2024). Due to their relatively small size, it is stan-
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dard practice to include single-task adapters on the
device to enable the small LLMs to perform the
individual tasks, instead of relying on instruction
following (Gunter et al., 2024; Dong et al., 2024).

3 Proposed Method

3.1 Motivation

Our work stems from the analysis of the asymmet-
ric behaviour of low-rank adaptation matrices. Zhu
et al. (2024) demonstrate that the B parameters
in LoRA exhibit distinct values when fine-tuned
across different tasks, while the A parameters re-
main relatively similar when initialized identically,
despite being fine-tuned on diverse tasks. Simi-
larly, Tian et al. (2024) observe that when multiple
LoRA adapters are trained on separate datasets, the
A parameters tend to converge to similar values,
whereas the B parameters become more differenti-
ated.

We observe similar patterns when fine-tuning
Llama-3.2-3B-Instruct on five distinct text genera-
tion tasks in English. Fig. 2 illustrates the similarity
between these LoRA adapters computed via Mean
Absolute Error. The plot indicates that the A param-
eters are more similar to each other compared to
the B parameters. We report in Fig. 10 an analysis
using Canonical Correlation Analysis (CCA), as in
Zhu et al. (2024). We further confirm these results
with t-SNE visualizations in Fig. 11 following the
approach of Tian et al. (2024).

These findings suggest that the A parameters
capture cross-domain commonalities, while the B
parameters adapt to task-specific knowledge. This
behavior may stem from the initialization schemes
for low-rank-based adapters, where B is typically
initialized as a zero matrix, while A is sampled
from a Gaussian distribution. These behaviors can
also be observed in VeRA as Λb is initialized as
zero vector and Λd is sampled from a Gaussian
distributions.

3.2 Our Method: HydraOpt

We propose HydraOpt for merging a set of
low-rank-based adapters parameters (e.g. LoRA)
{Bi, Ai}Ki=1. As shown in Fig. 3, HydraOpt ap-
proximates the given set of parameters by learning
a shared A′ parameter and a set of B′ parameters
{B′

i}Mi=1. The approximation to the original model
updates is driven by the following loss function:

0 5 10 15 20 25
Layer Index

0.002

0.004

0.006

0.008

0.010

0.012

Av
er

ag
e 

Pa
irw

ise
 S

im
ila

rit
y

A
B

Figure 2: Similarity between A and B matrices of
LoRAs measured using Mean Absolute Error on query
matrices of Llama-3.2-3B-Instruct fine-tuned on 5 ap-
plications in English.

ℓ =

K∑

i=1

f


BiAi,

M∑

j=1

σ(C′
i/T )(j)B

′
jA

′


 , (1)

where f is a distance function that measures the
similarity between two model updates ∆Wi :=
BiAi and ∆W ′

j := B′
jA

′. Here, σ denotes the
softmax function with the temperature term T , and
C′

i ∈ RM is a trainable vector of coefficients with
the coefficient C ′

i,j representing how likely it is
to use B′

j for the ith task. The softmax function
approximates categorical one-hot encoded vectors
for small values, hence guiding the model to use
mostly one B′

j parameter for a given task.
Given the sparsity of adapter parameters, we

choose Mean Absolute Error as the distance func-
tion f to induce sparsity (Bach et al., 2012).
We then calculate the gradients of the objec-
tive function Eq. (1) to update the parameters
A′, {B′

i}Mi=1, {C′
i}Ki=1 using an iterative optimiza-

tion algorithm. For instance, the update rule for A′

using Gradient Descent becomes A′ = A′ − η∇ℓ
where η is the learning rate and ℓ is the loss.

The coefficients C′
i are initialized using a Gaus-

sian distribution and updated during training. We
remark that this only brings a minimal increase in
memory footprint during training, since the num-
ber of coefficients is much smaller than the number
of LoRA parameters. Moreover, these coefficients
are discarded once the training is over, after we
associate each task with a B′ parameter. Therefore,
the inference stage is unaltered.

HydraOpt allows us to walk the efficiency-
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Figure 3: An overview of HydraOpt. We approximate
K sets of LoRA parameters by learning a shared A′

parameter and a set of task-specific parameters {B′
i}Mi=1.

performance trade-off of model merging. In the
most aggressive parameter sharing scheme, Hy-
draOpt constructs one set of LoRA parameters
{B′, A′}, which causes performance drops due to
the reduced flexibility of the approximation simi-
larly to existing model merging techniques. How-
ever, by adjusting the level of parameter sharing,
we obtain both efficient and accurate model merg-
ing solutions.

In the special case of K = M , we omit the
coefficients C′

i by learning a separate B′ parameter
for each task. Specifically, we modify the loss
function in Eq. (1) to be:

ℓ =

K∑

i=1

f(BiAi, B
′
iA

′). (2)

The reduction in parameter size using Hy-
draOpt depends on the number of LoRAs to merge
and the size of LoRA parameters. For one layer
of an LLM, the number of parameters required
by LoRA becomes K × r × (d + k) for K tasks,
whereas HydraOpt requires M × r × d + r × k
parameters where M denotes the number of B′ pa-
rameters. Assuming that the A and B parameters
are the same size, the total number of parameters
reduces to 60% when merging 5 pairs of LoRA pa-
rameters (Fig. 12 in Appendix A.3). The reduction
rate asymptotically reaches 50% as the number of
LoRAs increases, while it can be greater than 50%
if the A is larger than B.

Notice that the objective functions in Eq. (1)-
(2) do not utilize any external task-specific sam-
ples. Instead, they treat the given set of LoRA
parameters {Bi, Ai}Ki=1 as the target pseudo-labels

Algorithm 1 HydraOpt

Require: Adapter parameters {Ai, Bi}Ki=1, tar-
get number of B′ parameters M , number of
epochs E, temperature T , optimizer

1: Initialize A′, {B′
i}Mi=1, {C′

i}Ki=1

2: for e in E do
3: if K ̸= M then
4: Calculate the loss ℓ using Eq. (1)
5: else
6: Calculate the loss ℓ using Eq. (2)
7: Parameter update using the optimizer:
8: A′ ← argmin

A′
ℓ

9: {B′
i}Mi=1 ← argmin

{B′
i}Mi=1

ℓ

10: {C′
i}Ki=1 ← argmin

{C′
i}Ki=1

ℓ

11: Use A′ for all tasks
12: for i-th task in 1, 2, ...,K do
13: if K ̸= M then
14: j ← argmax

j∈{1,2,...,M}
C ′
i,j

15: Use B′
j rather than Bi

16: else
17: Use B′

i rather than Bi

and updates the trainable HydraOpt parameters
A′, {B′

i}Mi=1, {C′
i}Ki=1 during the training. There-

fore, our technique is classified as a data-free model
merging method. Algorithm 1 provides a brief de-
scription of HydraOpt.

Note that HydraOpt differs from HydraLoRA
(Tian et al., 2024) in two main aspects. First, Hy-
draLoRA simultaneously trains multiple adapters
for multiple tasks where the A parameters are
shared across tasks. In contrast, we tackle the
problem of merging LoRA adapters that have been
trained independently for individual tasks. Sec-
ondly, HydraOpt allows choosing the number of B’
parameters lower than the number of tasks to navi-
gate the performance-efficiency trade-off, whereas
HydraLoRA learns a separate B’ parameter for
each task, leading to a static and predefined trade-
off choice.

4 Experiments

In this section, we describe our experimental setup
(Sec. 4.1) and discuss the main results (Sec. 4.2),
the ablation studies (Sec. 4.3) and empirical com-
putational complexity analysis (Sec. 4.4).
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4.1 Setup

Tasks: We conduct experiments on 40 downstream
tasks in total, each of which is a text generation
application in a specific language. We tackle 5
applications. (i) Grammar Correction (GC): to gen-
erate the correct form of a given input containing
grammar errors. (ii) Smart Reply (SR): to generate
a response to a given textual message. (iii) Text
Summarization (TS): to generate a shorter version
of a given sentence. (iv) Tone Adjustment (TA): to
re-write a given text in a specific style. (iv) Ques-
tion Answering (QA): to answer a given question.
Each application is considered in 8 different lan-
guages: EN, DE, ES, FR, IT, JA, KO, ZH1.
Datasets: We use Cambridge English Write & Im-
prove (W&I) (Bryant et al., 2019) for GC, Persona-
Chat Synthetic (Jandaghi et al., 2024) for SR, SAM-
Sum (Gliwa et al., 2019) for TS, Sound Natural
(Einolghozati et al., 2020) rephrased using the fine-
tuned RedPajama-INCITE-Base-3B-v1 model (Ut-
sav, 2023) for TA, and SQuAD (Rajpurkar et al.,
2016) for QA. As these datasets are collected in
English, we utilize machine-translation for the re-
maining languages. Specifically, we use OPUS-
MT (Tiedemann and Thottingal, 2020) for transla-
tion to French, German, Italian and Spanish, and
M2M100 (Fan et al., 2021) for translation to Chi-
nese, Japanese and Korean. However, the transla-
tion process fixes the grammar errors in the input
text (as also mentioned in Luhtaru et al., 2024).
Therefore, we used datasets collected in the origi-
nal languages for Grammar Correction, namely EC-
Spell (Lv et al., 2023) for Chinese, Merlin (Boyd
et al., 2014) for Italian, and GitHub Typo Corpus
(Hagiwara and Mita, 2020) for the remaining lan-
guages. Table 7 presents a summary of the em-
ployed datasets, including their links and number
of samples. Table 8 lists the prompts that we have
used for each case.
Evaluation Metrics: Following the literature,
we report F05 (↑) (Bryant et al., 2017) for GC2,
Weighted Rouge (↑) for SR, RougeL (↑) for TS
and TA, and F1 (↑) for QA. Given the page limit,
we report the average of these metrics as aggre-
gated overview when needed, with individual re-
sults reported in Appendix A.3 for completeness.
Additionally, we report the storage (S, %, ↓) as the
percentage of the parameters compared to storing

1Abbreviated for English, German, Spanish, French, Ital-
ian, Japanese, Korean, Chinese, respectively

2We use ChERRANT (Zhang et al., 2022) for Chinese.

Table 1: Performance on 5 English applications using
Llama-3.2-1B-Instruct LoRA-finetuned. S represents
the percentage of the parameters compared to storing 5
LoRAs.

Method S (%) GC SR TS TA QA Avg

Zero-shot 0 13.1 5.1 23.4 27.6 15.8 17.0
LoRA 100 35.1 23.0 38.2 58.1 61.5 43.2
TA 20 25.9 11.4 32.3 51.7 28.7 30.0
TIES 20 25.1 13.2 31.1 51.7 26.9 29.6
DARE 20 21.6 7.4 27.1 39.0 19.7 23.0
DARE-TIES 20 22.5 7.9 27.4 44.0 20.9 24.5
HydraOpt(M=1) 20 26.3 9.0 32.3 50.4 27.6 29.1
HydraOpt(M=2) 28 26.9 17.6 31.7 53.0 28.2 31.5
HydraOpt(M=5) 52 33.1 21.7 37.1 57.1 59.9 41.8

all individual adapters.
Models: We use Llama-3.2-1B-Instruct
(Grattafiori et al., 2024) for our main exper-
iments due to its size suitable for on-device
deployment. However, we also present analyses
with different model sizes (2B, 3B, and 3.5B)
and architectures (Gemma2, Gemma Team,
2024, and Phi-3, Abdin et al., 2024) to prove the
generalization of our method.
Baseline Methods: For fair comparison, we com-
pare our method with existing data-free model
merging techniques such as Task Arithmetic (TA,
Ilharco et al. 2023), TIES (Yadav et al., 2024),
DARE (Yu et al., 2024), and DARE-TIES3.
Implementation Details: We set the LoRA rank
to 32, α to 128 and dropout to 0.05 throughout
the experiments. We utilize the AdamW optimizer
with a learning rate of 5e-5 and a batch size of 3.
Please see Appendix A.1 for further details.

4.2 Main Results

Merging 5 LoRA adapters in a language: We
first consider a typical model merging scenario
where multiple LoRA adapters are obtained by fine-
tuning the same model (Llama-3.2-1B-Instruct in
this case) across different applications. Table 1
presents a comparison of the methods in terms of
storage efficiency and performance. The highest-
performing state-of-the-art method is TA that re-
duces average performance by 13.2% at the storage
occupancy of 20%.

HydraOpt exhibits similar performance at the
same storage and starts outperforming TA as the
extent of storage size reduction is sacrificed. Specif-

3See the dare ties function at https://github.
com/huggingface/peft/blob/main/src/peft/
utils/merge_utils.py [Accessed on 17 May 2025]
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Figure 4: Average performance on 5 applications in
different languages using Llama-3.2-1B-Instruct. In
this figure, we report the relative average score com-
pared to LoRA.

ically, we obtain a 1.5% gain over TA in average
performance when an additional 8% storage size is
used. If more storage is available, we can approach
the LoRA upper bound: namely, HydraOpt(M=5)
is only 1.4% lower than LoRA in terms of average
performance, while saving ∼50% storage.

We note that HydraOpt introduces additional
runtime; however, the merging operation is still
reasonably fast with relatively small GPU memory
overhead (please see Table 6 for a comparison of
the methods in terms of runtime and memory).
Merging 5 LoRA adapters (multiple languages):
We performed the same 5-way merging experiment
in multiple languages and we observe similar im-
provements across the board as shown in Fig. 4.
Different LLMs: Next, we test the generalization
of our approach across different LLM sizes and
architectures (Llama 1B, Llama 3B, Gemma 2B,
Phi3.5B). In Table 2, we observe a consistent trend
across model types and sizes.

HydraOpt(M=5) consistently improves average
performance over the baselines at a small storage
size cost.
Different low-rank-based adapter types: In this
experiment, we demonstrate how HydraOpt can be
extended to other low-rank-based adapters. In par-
ticular, we consider VeRA (Kopiczko et al., 2024)
for its efficiency and competitive performance com-
pared to LoRA.

Similarly to the application of HydraOpt to a
set of LoRA parameters, we merge a set of VeRA
parameters by learning a new set of parameters Λ′

b

and Λ′
d with the latter shared across multiple tasks.

Note that for simplicity, we discard the merging
of the parameters A and B as they are initialized
similarly across the tasks and kept frozen during

Table 2: Average performance on 5 English ap-
plications for different LoRA-finetuned LLMs.
We use Llama-3.2-1B-Instruct (L1B), Llama-3.2-3B-
Instruct (L3B), Gemma-2-2B-it (G2B), and Phi-3.5-
mini-instruct (P3.5B), and report the average of indi-
vidual metrics for each model.

Method S (%) L1B L3B G2B P3.5

Zero-shot 0 17.0 20.1 20.8 14.9
LoRA 100 43.2 47.8 47.9 45.4
TA 20 30.0 37.4 37.7 33.3
TIES 20 29.6 35.0 35.1 34.1
DARE 20 23.0 38.6 24.6 20.1
DARE-TIES 20 24.5 27.4 25.7 20.1
HydraOpt(M=1) 20 29.1 36.5 36.0 30.6
HydraOpt(M=2) 28 31.5 41.3 40.3 40.8
HydraOpt(M=5) 52 41.8 46.0 47.5 45.2

Table 3: Average performance on 5 English applica-
tions using Llama-3.2-1B-Instruct VeRA-finetuned.
S represents the percentage of the parameters compared
to storing 5 VeRAs.

Method S (%) Avg

Zero-shot 0.0 17.2
VeRA 100.0 39.0
TA 20.0 0.3
TIES 20.0 27.8
DARE 20.0 28.6
DARE-TIES 20.0 27.7
HydraOpt(M=1) 20.0 26.9
HydraOpt(M=2) 20.7 27.5
HydraOpt(M=3) 21.4 29.9
HydraOpt(M=4) 22.1 35.8
HydraOpt(M=5) 22.7 36.4

fine-tuning.
Table 3 presents the results. The best state-of-

the-art approach is TIES in this case, while TA,
which worked well on LoRA, achieves a signifi-
cantly lower score here. Even though TIES per-
forms better than our method at 20% storage ef-
ficiency, we remark once again that our approach
allows us to achieve much higher performance at
the minimal cost of 2.7% additional storage.
Evaluation across languages and merging se-
tups: We extend our setup to multiple languages
in Table 4. Firstly, we merge 5 LoRA adapters in
each language and report the average performance
across 8 languages (application block). Secondly,
we apply merging across languages rather than ap-
plications, i.e., merging 8 LoRA adapters for each
application (languages block). Finally, we merge
all 40 LoRA adapters, each of which corresponds to
an application in a given language (task block). De-
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Table 4: Average performance on 40 tasks us-
ing Llama-3.2-1B-Instruct (L1B) and Llama-3.2-3B-
Instruct (L3B) LoRA-finetuned. S represents the per-
centage of parameters compared to storing all 40 Lo-
RAs.

Method S (%) L1B L3B Avg

Zero-shot 0.0 12.3 15.1 13.7
LoRA 100.0 28.1 33.2 30.7
TA 20.0 19.3 24.1 21.7
TIES 20.0 17.9 20.5 19.2
DARE 20.0 15.0 24.2 19.6
DARE-TIES 20.0 15.6 18.4 17.0
HydraOpt(M=1) 20.0 18.9 23.3 21.1
HydraOpt(M=2) 28.0 19.5 26.6 23.1
HydraOpt(M=5) 52.0 26.9 32.4 29.6
TA 12.5 24.6 29.1 26.9
TIES 12.5 24.7 25.3 25.0
DARE 12.5 15.8 19.0 17.4
DARE-TIES 12.5 17.1 21.1 19.1
HydraOpt(M=1) 12.5 23.9 27.4 25.6
HydraOpt(M=3) 22.5 24.7 29.7 27.2
HydraOpt(M=8) 47.5 26.6 32.1 29.4
TA 2.5 18.0 21.8 19.9
TIES 2.5 17.4 18.7 18.0
DARE 2.5 14.0 16.7 15.3
DARE-TIES 2.5 14.2 16.6 15.4
HydraOpt(M=1) 2.5 17.5 22.0 19.8
HydraOpt(M=40) 41.5 21.9 25.2 23.5

ap
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tailed individual results are reported in Appendix
A.3.

The results highlight that our method is in line
with existing state-of-the-art merging methods for
the highest storage efficiency levels, however, it
enables large accuracy gains when small additional
storage is available.
Merging Across Applications: Our approach per-
forms comparably to the best state-of-the-art
method (TA), with only a 0.6% drop in perfor-
mance. However, by utilizing 8% more storage,
HydraOpt achieves a 1.4% performance gain over
TA. Additionally, when a 48% reduction in stor-
age size is acceptable, the average performance
drop compared to the upper bound individual LoRA
adapters can be reduced to 1.1%.
Merging Across Languages: In this setting, TA
achieves the best performance at 12.5% storage
efficiency, with an average performance drop of
3.8% compared to individual LoRA adapters. Hy-
draOpt surpasses TA with just a 10% increase
in storage, and the performance gap continues to
widen as storage size increases. At 47.5% stor-
age efficiency, HydraOpt incurs only a 1.3% drop
compared to individual LoRA adapters.
Merging Across Tasks: In this most challenging
setup, TA and HydraOpt exhibit similar perfor-

Table 5: Impact of LoRA rank on average perfor-
mance for 5 English applications using Llama-3.2-
1B-Instruct LoRA-finetuned. We report the percent-
age of the parameters compared to storing all 5 LoRA
parameters (denoted by S) and the average score.

Method S (%) r = 8 r = 16 r = 32

Zero-shot 0 17.0 17.0 17.0
LoRA 100 39.2 41.7 43.2
TA 20 28.4 28.9 30.0
TIES 20 28.1 29.1 29.6
DARE 20 20.7 21.8 23.0
DARE-TIES 20 22.4 23.8 24.5
HydraOpt(M=1) 20 27.1 28.3 29.1
HydraOpt(M=2) 28 30.0 31.0 31.5
HydraOpt(M=5) 52 38.5 40.0 41.8

mance at the most constrained storage efficiency
of 2.5%. However, as storage size increases to
41.5%, our approach narrows the gap with individ-
ual LoRA adapters to as little as 7.2%.

4.3 Ablation Studies

We fine-tune Llama-3.2-1B-Instruct using the En-
glish data and perform several ablation studies
when merging 5 LoRA adapters.
Impact of LoRA rank: First, we investigate
whether the benefits of HydraOpt remain the same
across the LoRA rank r ∈ {8, 16, 32}. As shown in
Table 5, HydraOpt begins to improve over the per-
formance of the leading competitor method when
the storage is increased by 8%. Moreover, a 48% re-
duction in storage size leads to competitive perfor-
mance with storing all individual LoRA adapters.
Impact of the distance function: Next, we an-
alyze the choice of distance function f used for
calculating the loss during training. In particular,
we compare mean absolute error (MAE) with three
alternative loss functions based on cosine similarity
(CS), Frobenius norm (FRO), and mean squared
error (MSE). Fig. 5 shows that MAE and FRO lead
to better performance than CS and MSE. This re-
sult is not surprising as the optimization is done
over the sparse LoRA parameters, which can be bet-
ter learned using sparsity-inducing penalties (Bach
et al., 2012).
Analysis of existing merging methods at higher
storage sizes: We apply existing merging methods
only on the A parameters for comparison with our
method at a reduced storage efficiency level. The
existing merging methods lead to a performance
drop as shown in Fig. 6, which can be explained
by the lack of adaptation on the B parameters after
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Table 6: Comparison of the methods in terms of runtime and GPU memory. Merging is applied to 5 English
applications using Llama-3.2-3B-Instruct LoRA-finetuned.

Metric TA TIES DARE DARE-TIES HydraOpt(M=1) HydraOpt(M=2) HydraOpt(M=3) HydraOpt(M=4) HydraOpt(M=5)

Runtime (mins) 0.7 0.6 0.7 0.7 10.6 13.9 17.2 20.6 8.6
GPU (GB) 19.6 19.6 19.6 19.6 20.5 20.7 21.0 21.3 20.7
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Figure 5: Impact of distance function used during
training. We report average performance on 5 En-
glish applications using Llama-3.2-1B-Instruct LoRA-
finetuned.
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Figure 6: Impact of storage efficiency level. We report
average performance on 5 English applications using
Llama-3.2-1B-Instruct LoRA-finetuned.

obtaining the new shared A parameters. HydraOpt,
on the other hand, iteratively adapts the B′ parame-
ters to the shared A′ parameter to approximate the
original model updates ∆W .

4.4 Runtime and GPU Memory Analysis

In this section, we analyze the time and GPU
memory required to merge the LoRA parameters.
Specifically, we use the LoRA parameters obtained
by fine-tuning Llama-3.2-3B-Instruct using the En-
glish data. Table 6 compares the methods, which
show that HydraOpt introduces additional runtime;
however, the merging operation is still reasonably

fast with relatively small GPU memory overhead.
Given that the merging operation is going to be
performed at the server side, HydraOpt provides a
practical solution for real-world scenarios.

5 Conclusion

On-device applications of LLMs often leverage
parameter-efficient fine-tuning methods, such as
low-rank-based adapters, for downstream tasks.
However, the need to deploy a separate adapter
for each task results in substantial storage over-
head, a critical challenge for resource-constrained
environments such as mobile devices. While model
merging techniques offer a potential solution by re-
ducing the storage size, they often come at the cost
of significant performance degradation on down-
stream tasks, making them impractical for real-
world deployment.

In this work, we introduce HydraOpt, a new
model merging technique that effectively addresses
the trade-off. HydraOpt achieves competitive per-
formance (0.2-1.8% drop) compared to storing all
LoRA adapters, while significantly reducing pa-
rameter size (48% reduction). Furthermore, it con-
sistently outperforms the performance of existing
model merging methods at slightly worse efficiency
levels. HydraOpt thus enables efficient storage uti-
lization without compromising task-specific perfor-
mance for deploying LLMs on-device.

Limitations

Despite the encouraging results obtained using Hy-
draOpt, there are certain limitations in our current
study that are worth acknowledging. For instance,
this paper considers the generic case of data-free
model merging where there is no assumption on
the presence of data. Therefore, its performance
is upper bounded by LoRA parameters. An in-
teresting research direction may be considering
data-driven merging scenarios, for which we ex-
pect similar gains in terms of efficiency and per-
formance. Moreover, we tested HydraOpt with
low-rank-based adapters such as LoRA and VeRA
due to their popularity and efficiency-performance
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trade-offs. Exploring its applications to other types
of adapters would be a valuable direction for fu-
ture work. Finally, we believe that our proposed
method can be used in more general cross-modal
and multi-modal tasks, which are getting more and
more attention in the literature.

Potential Risks

This work investigates the efficiency-performance
trade-off of serving LLMs for text generation appli-
cations on mass accessible devices. Even though
our work can reduce the storage costs of LLMs, it
does not change the inference complexity and its
impact on the environment. Moreover, we did not
evaluate how our method impacts LLMs in terms
of fairness across different population subgroups,
which needs to be verified using additional safe-
guarding tools.
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Schöne, Barbora Stindlová, and Chiara Vettori. 2014.
The MERLIN corpus: Learner language and the
CEFR. In LREC.

Christopher Bryant, Mariano Felice, Øistein E Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared

task on grammatical error correction. In Workshop
on innovative use of NLP for building educational
applications.

CJ Bryant, Mariano Felice, and Edward Briscoe. 2017.
Automatic annotation and evaluation of error types
for grammatical error correction. In ACL.

Taha Ceritli, Savas Ozkan, Jeongwon Min, Eunchung
Noh, Cho Jung Min, and Mete Ozay. 2024. A study
of parameter efficient fine-tuning by learning to effi-
ciently fine-tune. In EMNLP Findings, pages 15819–
15836.

Sauptik Dhar, Junyao Guo, Jiayi (Jason) Liu, Samarth
Tripathi, Unmesh Kurup, and Mohak Shah. 2021. A
survey of on-device machine learning: An algorithms
and learning theory perspective. ACM Trans. Internet
Things, 2(3).

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, and 1 others. 2022.
Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models.
arXiv preprint arXiv:2203.06904.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui.
2024. A survey on in-context learning. In EMNLP.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Arash Einolghozati, Anchit Gupta, Keith Diedrick, and
Sonal Gupta. 2020. Sound natural: Content rephras-
ing in dialog systems. In EMNLP.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, and 1 others. 2021. Beyond english-
centric multilingual machine translation. Journal of
Machine Learning Research, 22(107):1–48.

Gemma Gemma Team. 2024. Gemma 2: Improving
open language models at a practical size. arXiv
preprint arXiv:2408.00118.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summariza-
tion. In ACL.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The Llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

26895



Tom Gunter, Zirui Wang, Chong Wang, Ruoming Pang,
Andy Narayanan, Aonan Zhang, Bowen Zhang, Chen
Chen, Chung-Cheng Chiu, David Qiu, and 1 others.
2024. Apple intelligence foundation language mod-
els. arXiv preprint arXiv:2407.21075.

Masato Hagiwara and Masato Mita. 2020. GitHub typo
corpus: A large-scale multilingual dataset of mis-
spellings and grammatical errors. In LREC.

Hasan Hammoud, Umberto Michieli, Fabio Pizzati,
Philip Torr, Adel Bibi, Bernard Ghanem, and Mete
Ozay. 2024. Model merging and safety alignment:
One bad model spoils the bunch. In EMNLP Find-
ings.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and
Sai Qian Zhang. 2024. Parameter-efficient fine-
tuning for large models: A comprehensive survey.
In TMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In ICLR.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2024. Lorahub: Effi-
cient cross-task generalization via dynamic lora com-
position. In COLM.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2023. Editing
models with task arithmetic. In ICLR.

Pegah Jandaghi, XiangHai Sheng, Xinyi Bai, Jay Pujara,
and Hakim Sidahmed. 2024. Faithful persona-based
conversational dataset generation with large language
models. In NLP4ConvAI.

Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M
Asano. 2024. VeRA: Vector-based random matrix
adaptation. ICLR.

Vladislav Lialin, Vijeta Deshpande, and Anna
Rumshisky. 2023. Scaling down to scale up: A guide
to parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.15647.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024a. DoRA: Weight-
decomposed low-rank adaptation. In ICML.

Yixin Liu, Kejian Shi, Katherine S He, Longtian Ye,
Alexander R Fabbri, Pengfei Liu, Dragomir Radev,
and Arman Cohan. 2024b. On learning to summarize
with large language models as references. In NAACL.

Agnes Luhtaru, Elizaveta Korotkova, and Mark Fishel.
2024. No error left behind: Multilingual grammatical
error correction with pre-trained translation models.
In EACL.

Qi Lv, Ziqiang Cao, Lei Geng, Chunhui Ai, Xu Yan, and
Guohong Fu. 2023. General and domain-adaptive
chinese spelling check with error-consistent pretrain-
ing. ACM Transactions on Asian and Low-Resource
Language Information Processing, 22(5):1–18.

Grigory Malinovsky, Umberto Michieli, Hasan Abed
Al Kader Hammoud, Taha Ceritli, Hayder Elesedy,
Mete Ozay, and Peter Richtárik. 2024. Randomized
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A Appendix

We provide information about the datasets in
Sec. A.1, report analyses about the similarity be-
tween LoRA parameters in Sec. A.2, and give more
detailed results in Sec. A.3.

A.1 Implementation Details
Table 7 provides a summary of the datasets used in
our experiments and additional information about
our implementation. Table 8 describes the prompts
that we have used. For tone adjustment, we con-
sider four tones, namely professional, casual, witty
and (neutral) paraphrasing, which are combined to
create a larger dataset. We utilize NVIDIA A40
for our experiments. Adapters are applied to the
query, key, value, and output matrices for Llama-
3.2-3B-Instruct, Llama-3.2-1B-Instruct, and Phi-
3.5-mini-instruct, and to the query and value for
Gemma-2-2B-it. Uniform merging coefficients are
used for TA and DARE, whereas unary coefficients
are used for TIES and DARE-TIES. We provide an
implementation of our method in Figures 7, 8, 9.

A.2 Similarities Between LoRA Parameters
We perform Canonical Correlation Analysis (CCA)
goodness of fit following Zhu et al. (2024) using
LoRA matrices A and B obtained by fine-tuning
Llama-3.2-3B-Instruct on English data. Fig. 10
indicates that A parameters result in higher simi-
larity scores than B parameters. Similarly, Fig. 11
illustrates a similar trend using t-SNE plots where
A parameters tend to converge to similar values.

A.3 Additional Results
Fig. 12 illustrates how the number of parameters to
store changes using HydraOpt. We also present de-
tailed evaluations for Llama-3.2-3B-Instruct when
merging across applications (Tables 9-10), lan-
guages (Tables 11-12) and tasks (Table 13). More-
over, the average scores are reported in Table 14.
Similarly, we present the detailed results under
different ranks for Llama-3.2-3B-Instruct in Ta-
ble 15, and the results for Gemma-2-2B-it LoRA-
finetuned (Table 16) and for Phi-3.5-mini-instruct
LoRA-finetuned (Table 17). Finally, we investi-
gated the impact of the machine-translated prompts
on the performance. Specifically, we used native
speakers to make the prompts more natural (see
Table 18) and repeated a subset of the experiments
(Table 19).
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1 class HydraOpt(nn.Module):
2 def __init__(
3 self,
4 lora_parameters,
5 lora_names,
6 M,
7 T,
8 ) -> None:
9 super().__init__()

10

11 self.K = len(lora_names)
12 self.M = M
13 self.T = T
14

15 # trainable parameters
16 self.A_prime = nn.ModuleDict({})
17 self.B_primes = nn.ModuleDict({})
18 self.C_primes = None if self.K == self.M else nn.ParameterDict({})
19

20 keys = lora_parameters[lora_names[0]].keys()
21 for i in range(M):
22 peft_model_id = lora_names[i]
23 for key in keys:
24 # ’.’ can’t be used in module_dict
25 key_ = key.replace(".", "_")
26

27 # initialize the shared A_prime
28 if i == 0 and "lora_A" in key:
29 r, in_features = lora_parameters[peft_model_id][key].shape
30 self.A_prime[key_] = nn.Linear(in_features, r, bias=False)
31 nn.init.kaiming_uniform_(
32 self.A_prime[key_].weight, a=math.sqrt(5)
33 )
34

35 # initialize the B_primes
36 if "lora_B" in key:
37 out_features, r = lora_parameters[peft_model_id][key].shape
38 self.B_primes[f"{key_}_{i}"] = nn.Linear(
39 r, out_features, bias=False
40 )
41 nn.init.zeros_(self.B_primes[f"{key_}_{i}"].weight)
42

43 # define coefficients if needed
44 if self.K != self.M:
45 for i in range(self.K):
46 for key in keys:
47 key_ = key.replace(".", "_")
48

49 if "lora_B" in key:
50 self.C_primes[f"{key_}_{i}"] = nn.Parameter(
51 nn.functional.softmax(
52 torch.randn(M) / T, dim=-1
53 )
54 )
55

56 def forward(self):
57 return self.A_prime, self.B_primes, self.C

Figure 7: Implementation of HydraOpt module.
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Table 7: Dataset statistics. Information about the datasets.

Task Dataset Language # Training Samples # Validation Samples # Test Samples

Grammar Error Correction

ECSpell Chinese 6,680 750 750
Cambridge English Write & Improve (W&I) English 23,523 2,526 2,639

Merlin Italian 572 79 81

GitHub Typo Corpus

French 616 240 227
German 412 119 132
Japanese 1,043 325 321
Korean 255 75 93
Spanish 348 137 116

Smart Reply Persona-Chat Synthetic English 225,061 25,847 24,479
Text Summarization SAMSum English 14,732 818 819

Tone Adjustment Sound Natural All 2,245 321 642
Question Answering SQuAD English 65,699 21,900 10,570

1 def hydra_loss(
2 A_prime, B_primes, C_primes, M, lora_parameters, lora_names, T
3 ):
4

5 keys = list(lora_parameters[lora_names[0]].keys())
6 K = len(lora_names)
7 J = len(keys)
8

9 for i, peft_model_id in enumerate(lora_names):
10 for j in range(J):
11 if j % 2 == 0:
12 A_key = keys[j]
13 B_key = keys[j + 1]
14 A_key_ = A_key.replace(".", "_")
15 B_key_ = B_key.replace(".", "_")
16

17 if "lora" not in A_key or "lora" not in B_key:
18 continue
19

20 # calculate the original model update
21 delta_W = lora_parameters[peft_model_id][B_key] @ lora_parameters[

peft_model_id][A_key]
22

23 if K == M:
24 delta_W_prime = (
25 B_primes[f"{B_key_}_{i}"].weight @ A_prime[A_key_].weight
26 )
27 else:
28 delta_W_prime = torch.stack(
29 [
30 nn.functional.softmax(
31 C_primes[f"{B_key_}_{i}"] * T, dim=-1
32 )[l]
33 * B_primes[f"{B_key_}_{l}"].weight
34 @ A_prime[A_key_].weight
35 for l in range(M)
36 ]
37 ).sum(dim=0)
38 if i == 0 and j == 0:
39 total_loss = nn.functional.l1_loss(delta_W, delta_W_prime)
40 else:
41 total_loss += nn.functional.l1_loss(delta_W, delta_W_prime)
42

43 return total_loss / (K * J)

Figure 8: Implementation of HydraOpt loss function.
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1 def hydraopt_merging(lora_parameters, lora_names, M, lr=0.01, epochs=1000, T=5.0):
2

3 hydraopt = HydraOpt(lora_parameters, lora_names, M=M, T=T)
4 hydraopt = hydraopt.to("cuda:0")
5

6 keys = list(lora_parameters[lora_names[0]].keys())
7

8 # move each pair of LoRA parameters to GPU
9 for i, peft_model_id in enumerate(lora_names):

10 for j in range(len(keys)):
11 if j % 2 == 0:
12 A_key = keys[j]
13 B_key = keys[j + 1]
14 if "lora" not in A_key or "lora" not in B_key:
15 continue
16 else:
17 lora_parameters[peft_model_id][B_key] = lora_parameters[

peft_model_id][B_key].to("cuda:0")
18 lora_parameters[peft_model_id][A_key] = lora_parameters[

peft_model_id][A_key].to("cuda:0")
19

20

21 optimizer = torch.optim.AdamW(hydraopt.parameters(), lr=lr)
22 for epoch in range(epochs):
23 optimizer.zero_grad()
24

25 # get the current parameters
26 A_prime, B_primes, C_primes = hydraopt()
27

28 # calculate the loss based on the distance to the original LoRA updates
29 loss = hydra_loss(
30 A_prime,
31 B_primes,
32 C_primes,
33 M,
34 lora_parameters,
35 lora_names
36 )
37

38 # backward pass
39 loss.backward()
40

41 # update weights
42 optimizer.step()
43

44 # obtain the mapping between the lora_Bs and B_primes parameters
45 B_mapping = {}
46 for task_index in range(len(lora_names)):
47 B_mapping[task_index] = {}
48 for key in keys:
49 key_ = key.replace(".", "_")
50 if "lora_B" in key:
51 if hydraopt.K == hydraopt.M:
52 selected_B_prime = task_index
53 else:
54 selected_B_prime = nn.functional.softmax(
55 hydraopt.C_primes[f"{key_}_{task_index}"] / T, dim=-1
56 ).argmax()
57 B_mapping[task_index][key] = selected_B_prime
58

59 return A_prime, B_primes, B_mapping

Figure 9: Implementation of HydraOpt merging.
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Problem Type Language Prompt

Grammar Error Correction

English Remove all grammatical errors from this text:
Spanish Quita todos los errores gramaticales de este texto:
French Supprimez tous les erreurs grammaticales de ce texte:
German Verbessere alle grammatischen Fehler in diesem Text:
Italian Rimuovi tutti gli errori grammaticali da questo testo:

Chinese 除文本中的所有法:
Korean 주어진사용자의입력에오타나문법오류가있으면고친다:

Japanese このテキストからすべての文法エラを削除する:

Smart Reply

English Suggest a reply for the following text:
Spanish Sugiera una respuesta para el texto siguiente:
French Propose une réponse pour le texte suivant:
German Schlagen Sie eine Antwort für den folgenden Text vor:
Italian Suggerisci una risposta per il seguente testo:

Chinese 建以下文本行回:
Korean 다음텍스트에대한답변을제안하시오:

Japanese 次のテキストにする返信を提案します:

Text Summarization

English Summarize the following text:
Spanish Resume el siguiente texto:
French Résume le texte suivant:
German Zusammenfassen Sie den folgenden Text:
Italian Riassumi il seguente testo:

Chinese 一下下面的文字:
Korean 다음텍스트를요약하시오:

Japanese 次の文章を要約します:

Tone Adj. (Professional)

English Changes a given user’s input sentence or text to the Professional style:
Spanish Cambia la oración o el texto introducido por un usuario al estilo Profesional:
French Transforme la phrase ou le texte saisi par un utilisateur en style Professionnel:
German ändert die Eingabe eines bestimmten Benutzers in einen Professionellen Stil:
Italian Cambia la frase o il testo immesso da un utente in stile Professionale:

Chinese 定用的入句子或文本更改格:
Korean 주어진사용자의입력을전문적인문체로변경한다:

Japanese 指定されたユザの入力文またはテキストをプロフェッショナルスタイルに更する:

Tone Adj. (Casual)

English Changes a given user’s input sentence or text to the Casual style:
Spanish Cambia la oración o el texto introducido por un usuario al estilo Informal:
French Transforme la phrase ou le texte saisi par un utilisateur en style Informel:
German ändert die Eingabe eines bestimmten Benutzers in einen Freundlichen Stil:
Italian Cambia la frase o il testo immesso da un utente in stile Informal:

Chinese 定用的入句子或文本更改日常格:
Korean 주어진사용자의입력을평범한문체로변경한다:

Japanese 指定されたユザの入力文またはテキストをカジュアルスタイルに更する:

Tone Adj. (Witty)

English Changes a given user’s input sentence or text to the Witty style:
Spanish Cambia la oración o el texto introducido por un usuario al estilo Ingenioso:
French Transforme la phrase ou le texte saisi par un utilisateur en style Spirituel:
German ändert die Eingabe eines bestimmten Benutzers in einen Witziger Stil:
Italian Cambia la frase o il testo immesso da un utente in stile Spiritoso:

Chinese 定用的入句子或文本更改机智格:
Korean 주어진사용자의입력을재치있는문체로변경한다:

Japanese 指定されたユザの入力文またはテキストをウィットに富んだスタイルに更する:

Tone Adj. (Paraphrase)

English Paraphrase the following text:
Spanish Parafrasea el siguiente texto:
French Paraphraser le texte suivant:
German Fassen Sie den folgenden Text zusammen:
Italian Parafrasare il testo seguente:

Chinese 解以下文字:
Korean 다음텍스트를의역하세요:

Japanese 次のテキストを言い換えてください:

Question Answering

English Answer the following question:
Spanish Responde a la siguiente pregunta:
French Réponds à la question suivante:
German Beantworten Sie die folgende Frage:
Italian Rispondi alla seguente domanda:

Chinese 回答以下:
Korean 다음질문에답하시오:

Japanese 次の質問に答えましょう:

Table 8: Prompts for each application and language. Details about the prompts we have used.
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Figure 10: Similarity between A and B matrices of
LoRAs measured using Canonical Correlation Analysis
(CCA) goodness of fit as conducted by Zhu et al. (2024)
on query matrices of Llama-3.2-3B-Instruct fine-tuned
on English data.

Table 9: Performance when merging across 5 applica-
tions using Llama-3.2-3B-Instruct for En (English),
De (German), Es (Spanish), and Fr (French). Re-
sults are reported per each language (L) and application
separately.

Method L S (%) GC SR TS TA QA Avg

Zero-shot

En

0 14.0 5.4 26.9 30.1 24.2 20.1
LoRA 100 39.2 24.5 41.4 59.1 74.7 47.8
TA 20 27.0 13.6 34.1 53.7 58.8 37.4
TIES 20 26.2 14.9 32.4 53.3 48.2 35.0
DARE 20 27.4 14.9 34.5 54.2 61.9 38.6
DARE TIES 20 21.6 8.3 29.2 45.2 33.0 27.4
HydraOpt(M=1) 20 26.6 10.2 33.9 52.2 59.6 36.5
HydraOpt(M=2) 30 27.4 22.9 34.6 54.8 67.0 41.3
HydraOpt(M=3) 40 28.9 24.6 36.0 58.8 73.2 44.3
HydraOpt(M=4) 50 36.0 24.7 39.6 57.6 72.3 46.0
HydraOpt(M=5) 60 36.5 24.7 40.9 58.8 73.3 46.8
Zero-shot

De

0 9.4 2.8 17.7 20.3 10.9 12.2
LoRA 100 41.2 13.8 32.4 44.8 47.2 35.9
TA 20 22.9 6.7 23.6 41.2 22.6 23.4
TIES 20 19.5 6.8 22.9 40.9 18.7 21.8
DARE 20 26.4 6.6 20.5 42.7 29.4 25.1
DARE TIES 20 12.1 4.1 20.9 30.0 15.6 16.5
HydraOpt(M=1) 20 23.2 5.6 25.2 37.1 22.8 22.8
HydraOpt(M=2) 30 25.8 9.6 26.2 43.4 34.8 28.0
HydraOpt(M=3) 40 24.4 12.4 27.2 43.4 43.1 30.1
HydraOpt(M=4) 50 24.6 13.4 29.7 43.7 45.3 31.3
HydraOpt(M=5) 60 31.1 13.8 31.7 44.8 46.4 33.5
Zero-shot

Es

0 7.7 2.8 22.4 33.6 16.6 16.6
LoRA 100 34.3 15.8 34.9 46.3 53.8 37.0
TA 20 22.6 7.9 28.4 44.2 29.9 26.6
TIES 20 16.9 8.7 27.0 44.3 23.7 24.1
DARE 20 23.3 7.9 28.5 45.2 30.0 27.0
DARE TIES 20 8.4 4.8 24.1 37.9 21.2 19.3
HydraOpt(M=1) 20 20.8 6.3 29.2 42.5 28.6 25.5
HydraOpt(M=2) 30 24.7 11.7 30.3 44.2 35.2 29.2
HydraOpt(M=3) 40 25.3 15.1 31.5 45.4 46.8 32.8
HydraOpt(M=4) 50 22.9 13.6 32.8 40.8 52.4 32.5
HydraOpt(M=5) 60 31.2 15.1 34.5 46.1 53.1 36.0
Zero-shot

Fr

0 10.2 3.6 20.8 28.5 11.3 14.9
LoRA 100 30.2 15.0 34.0 47.8 42.8 34.0
TA 20 20.8 7.6 28.1 46.0 29.0 26.3
TIES 20 16.4 8.8 27.6 46.1 25.8 24.9
DARE 20 19.9 8.3 25.9 47.1 29.2 26.1
DARE TIES 20 13.1 5.5 23.5 36.9 14.5 18.7
HydraOpt(M=1) 20 19.3 6.8 28.7 43.3 27.4 25.1
HydraOpt(M=2) 30 20.4 11.3 30.2 45.9 32.7 28.1
HydraOpt(M=3) 40 22.4 13.9 30.6 46.8 37.7 30.3
HydraOpt(M=4) 50 24.9 14.1 31.6 29.9 41.3 28.4
HydraOpt(M=5) 60 30.8 14.9 33.8 47.8 42.4 34.0
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Figure 11: t-SNE plots using LoRA parameters for query matrices of Llama-3.2-3B-Instruct fine-tuned across
5 applications in English. Numbers indicate which layer the parameter comes from. Shapes/colors indicate the
application the model is fine-tuned for. The differences in the LoRA parameters for different tasks arise mainly
from the B matrices.
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Figure 12: The reduction in parameter size when
using HydraOpt(M=K), assuming that the parameters
A and B are the same size.
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Table 10: Performance when merging across 5 appli-
cations using Llama-3.2-3B-Instruct for It (Italian),
Ja (Japanese), Ko (Korean), and Zh (Chinese). Re-
sults are reported per each language (L) and application
separately.

Method L S (%) GC SR TS TA QA Avg

Zero-shot

It

0 26.9 2.3 18.9 29.5 13.5 18.2
LoRA 100 36.0 12.7 32.3 44.9 47.3 34.6
TA 20 34.0 6.0 25.3 43.4 21.0 26.0
TIES 20 31.1 6.7 24.7 43.4 18.4 24.9
DARE 20 29.7 6.0 24.9 44.5 23.8 25.8
DARE TIES 20 27.6 3.7 20.1 36.6 15.9 20.8
HydraOpt(M=1) 20 33.3 5.0 26.1 41.1 19.2 24.9
HydraOpt(M=2) 30 33.2 8.5 26.8 43.0 31.9 28.7
HydraOpt(M=3) 40 35.9 12.9 27.4 43.6 42.1 32.4
HydraOpt(M=4) 50 33.5 12.2 29.8 35.0 46.2 31.3
HydraOpt(M=5) 60 35.1 13.1 31.8 44.7 46.7 34.3
Zero-shot

Ja

0 4.1 4.7 19.5 35.6 12.6 15.3
LoRA 100 23.3 11.9 29.2 40.1 31.1 27.1
TA 20 10.9 6.0 25.0 40.2 20.7 20.6
TIES 20 6.3 7.0 24.5 39.9 18.6 19.2
DARE 20 9.4 5.8 25.2 40.0 22.0 20.5
DARE TIES 20 7.1 5.7 22.0 38.0 14.0 17.3
HydraOpt(M=1) 20 11.9 6.1 25.1 39.8 18.4 20.3
HydraOpt(M=2) 30 13.3 8.2 25.2 40.2 22.7 21.9
HydraOpt(M=3) 40 15.0 9.6 24.5 40.0 28.2 23.5
HydraOpt(M=4) 50 18.1 11.2 26.4 37.7 26.3 24.0
HydraOpt(M=5) 60 22.3 11.6 28.4 40.1 30.3 26.5
Zero-shot

Ko

0 7.7 0.9 9.4 25.7 11.5 11.0
LoRA 100 16.6 5.8 15.6 31.6 24.8 18.9
TA 20 6.9 2.1 13.0 31.2 11.8 13.0
TIES 20 8.6 2.4 12.4 31.0 8.3 12.5
DARE 20 7.1 2.2 13.2 31.2 9.9 12.7
DARE TIES 20 7.9 1.7 10.7 28.0 12.3 12.1
HydraOpt(M=1) 20 7.8 1.9 12.4 30.6 12.3 13.0
HydraOpt(M=2) 30 9.0 3.0 12.4 31.2 15.7 14.2
HydraOpt(M=3) 40 8.8 4.2 13.2 25.9 22.5 14.9
HydraOpt(M=4) 50 9.4 5.1 13.2 29.7 22.2 15.9
HydraOpt(M=5) 60 15.4 5.7 15.7 31.4 24.5 18.5
Zero-shot

Zh

0 3.7 1.6 20.2 24.8 12.1 12.5
LoRA 100 48.6 7.9 27.6 37.3 30.1 30.3
TA 20 10.6 3.7 24.1 37.8 19.9 19.2
TIES 20 10.3 3.9 23.6 37.0 18.4 18.6
DARE 20 6.3 3.7 23.4 37.9 19.3 18.1
DARE TIES 20 6.2 2.4 21.0 30.2 14.6 14.9
HydraOpt(M=1) 20 11.7 3.4 24.2 36.2 18.0 18.7
HydraOpt(M=2) 30 17.0 4.9 24.9 38.0 23.2 21.6
HydraOpt(M=3) 40 38.1 7.0 24.7 37.9 27.8 27.1
HydraOpt(M=4) 50 44.0 6.4 24.9 35.7 28.3 27.8
HydraOpt(M=5) 60 46.4 7.3 27.1 37.1 29.6 29.5

Table 11: Performance when merging across 8 lan-
guages using Llama-3.2-3B-Instruct. Results are re-
ported per each language (L) and application separately.

Method L S (%) GC SR TS TA QA Avg

Zero-shot

En

0 14.0 5.4 26.9 30.1 24.2 20.1
LoRA 100.0 39.2 24.5 41.4 59.1 74.7 47.8
TA 12.5 27.6 15.3 35.8 49.6 75.5 40.8
TIES 12.5 28.2 16.3 36.0 49.7 76.2 41.3
DARE 12.5 17.2 7.6 29.4 35.5 34.5 24.9
DARE TIES 12.5 19.4 8.6 30.5 40.0 41.6 28.1
HydraOpt(M=1) 12.5 26.1 14.1 34.4 48.1 73.4 39.2
HydraOpt(M=2) 17.5 27.1 16.7 35.3 50.3 72.6 40.4
HydraOpt(M=3) 22.5 29.5 17.9 36.9 51.6 71.2 41.4
HydraOpt(M=4) 27.5 29.3 19.4 37.1 53.4 69.8 41.8
HydraOpt(M=5) 32.5 36.2 21.2 41.2 57.0 63.0 43.7
HydraOpt(M=6) 37.5 38.9 23.4 40.5 58.2 67.0 45.6
HydraOpt(M=7) 42.5 39.1 24.1 41.0 57.9 72.4 46.9
HydraOpt(M=8) 47.5 36.9 23.9 41.1 58.5 73.3 46.7
Zero-shot

De

0 9.4 2.8 17.7 20.3 10.9 12.2
LoRA 100.0 41.2 13.8 32.4 44.8 47.2 35.9
TA 12.5 30.5 7.7 31.5 41.2 46.2 31.4
TIES 12.5 29.4 7.7 31.7 41.5 46.5 31.3
DARE 12.5 12.4 4.2 21.9 28.5 17.3 16.9
DARE TIES 12.5 14.1 4.9 24.2 31.3 21.8 19.2
HydraOpt(M=1) 12.5 25.8 7.2 29.9 39.7 47.1 30.0
HydraOpt(M=2) 17.5 26.8 7.8 30.6 41.6 46.9 30.7
HydraOpt(M=3) 22.5 27.1 8.0 30.6 43.0 48.0 31.3
HydraOpt(M=4) 27.5 25.7 8.2 30.6 42.4 45.9 30.5
HydraOpt(M=5) 32.5 32.3 9.7 31.4 43.5 48.7 33.1
HydraOpt(M=6) 37.5 26.9 8.6 31.2 43.9 45.7 31.3
HydraOpt(M=7) 42.5 31.4 9.3 31.5 44.7 44.8 32.4
HydraOpt(M=8) 47.5 31.0 12.1 31.6 44.5 46.3 33.1
Zero-shot

Es

0 7.7 2.8 22.4 33.6 16.6 16.6
LoRA 100.0 34.3 15.8 34.9 46.3 53.8 37.0
TA 12.5 32.6 9.4 34.6 34.0 48.5 31.9
TIES 12.5 33.1 9.0 34.8 29.7 49.3 31.2
DARE 12.5 9.8 4.9 26.8 37.8 24.9 20.8
DARE TIES 12.5 12.0 5.8 28.8 39.2 31.7 23.5
HydraOpt(M=1) 12.5 26.1 9.0 33.1 32.6 45.6 29.3
HydraOpt(M=2) 17.5 28.6 9.4 33.5 43.6 48.0 32.6
HydraOpt(M=3) 22.5 28.4 10.3 33.9 44.2 49.3 33.2
HydraOpt(M=4) 27.5 26.6 11.4 34.6 45.7 53.1 34.3
HydraOpt(M=5) 32.5 29.2 10.4 34.7 45.7 51.5 34.3
HydraOpt(M=6) 37.5 28.6 12.0 34.1 45.1 53.3 34.6
HydraOpt(M=7) 42.5 27.3 11.3 33.7 37.8 52.9 32.6
HydraOpt(M=8) 47.5 31.7 13.5 34.5 46.1 52.5 35.7
Zero-shot

Fr

0 10.2 3.6 20.8 28.5 11.3 14.9
LoRA 100.0 30.2 15.0 34.0 47.8 42.8 34.0
TA 12.5 29.3 9.4 34.1 45.3 41.0 31.8
TIES 12.5 30.4 9.6 34.4 45.0 42.2 32.3
DARE 12.5 13.5 5.5 24.8 35.7 18.0 19.5
DARE TIES 12.5 14.3 6.4 26.5 37.6 26.3 22.2
HydraOpt(M=1) 12.5 24.2 9.2 32.6 44.0 38.5 29.7
HydraOpt(M=2) 17.5 29.8 9.1 33.5 45.2 39.1 31.3
HydraOpt(M=3) 22.5 26.7 9.7 33.8 45.9 40.8 31.4
HydraOpt(M=4) 27.5 29.5 9.4 33.6 46.9 41.9 32.3
HydraOpt(M=5) 32.5 31.6 9.6 33.7 47.4 40.2 32.5
HydraOpt(M=6) 37.5 31.1 10.3 33.8 47.8 41.8 32.9
HydraOpt(M=7) 42.5 30.3 10.2 33.0 46.8 39.0 31.9
HydraOpt(M=8) 47.5 31.4 13.6 33.9 47.6 41.9 33.7
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Table 12: Performance when merging across 8 lan-
guages using Llama-3.2-3B-Instruct. Results are re-
ported per each language (L) and application separately.

Method L S (%) GC SR TS TA QA Avg

Zero-shot

It

0 26.9 2.3 18.9 29.5 13.5 18.2
LoRA 100.0 36.0 12.7 32.3 44.9 47.3 34.6
TA 12.5 34.0 6.3 32.4 42.8 45.3 32.2
TIES 12.5 34.2 6.1 32.6 42.4 46.3 32.3
DARE 12.5 28.6 3.6 21.6 35.9 18.9 21.7
DARE TIES 12.5 30.3 4.1 23.7 37.1 23.3 23.7
HydraOpt(M=1) 12.5 33.1 5.9 31.1 41.8 43.1 31.0
HydraOpt(M=2) 17.5 33.8 6.6 30.9 42.1 45.0 31.7
HydraOpt(M=3) 22.5 35.0 6.3 32.1 42.6 44.3 32.1
HydraOpt(M=4) 27.5 35.3 7.4 31.0 43.1 45.5 32.4
HydraOpt(M=5) 32.5 35.5 7.7 31.0 43.4 46.1 32.7
HydraOpt(M=6) 37.5 34.7 9.7 31.8 43.8 45.5 33.1
HydraOpt(M=7) 42.5 35.8 6.8 31.5 42.6 45.6 32.5
HydraOpt(M=8) 47.5 35.0 11.4 31.7 44.5 46.3 33.8
Zero-shot

Ja

0 4.1 4.7 19.5 35.6 12.6 15.3
LoRA 100.0 23.3 11.9 29.2 40.1 31.1 27.1
TA 12.5 18.8 6.1 27.3 40.4 29.6 24.5
TIES 12.5 21.5 5.9 27.5 39.7 30.4 25.0
DARE 12.5 8.9 5.4 22.5 37.9 17.6 18.5
DARE TIES 12.5 11.1 5.9 23.6 38.5 22.3 20.3
HydraOpt(M=1) 12.5 15.0 6.1 26.3 40.2 28.6 23.2
HydraOpt(M=2) 17.5 16.6 6.4 26.7 40.8 28.7 23.8
HydraOpt(M=3) 22.5 18.3 6.9 26.4 40.4 28.7 24.1
HydraOpt(M=4) 27.5 19.1 7.3 27.4 40.9 29.5 24.8
HydraOpt(M=5) 32.5 20.8 8.0 28.4 40.8 29.1 25.4
HydraOpt(M=6) 37.5 21.3 7.9 28.7 38.9 28.5 25.0
HydraOpt(M=7) 42.5 22.2 5.0 28.3 37.5 29.9 24.6
HydraOpt(M=8) 47.5 21.6 9.8 28.1 40.2 30.0 25.9
Zero-shot

Ko

0 7.7 9.4 25.7 4.2 11.5 11.0
LoRA 100.0 16.6 5.8 15.6 31.6 24.8 18.9
TA 12.5 12.8 2.0 14.0 31.3 19.7 16.0
TIES 12.5 13.8 1.8 14.7 30.9 20.2 16.3
DARE 12.5 12.8 1.6 11.3 28.0 17.4 14.2
DARE TIES 12.5 13.9 1.6 11.8 28.7 19.2 15.0
HydraOpt(M=1) 12.5 14.1 2.1 13.3 30.6 19.4 15.9
HydraOpt(M=2) 17.5 13.8 2.4 13.7 31.0 20.8 16.3
HydraOpt(M=3) 22.5 16.1 2.5 14.3 30.9 22.8 17.3
HydraOpt(M=4) 27.5 13.4 2.9 14.5 31.8 21.4 16.8
HydraOpt(M=5) 32.5 16.5 3.8 15.3 30.5 22.6 17.7
HydraOpt(M=6) 37.5 11.2 3.1 15.0 31.1 25.3 17.1
HydraOpt(M=7) 42.5 13.3 2.5 15.4 29.2 23.2 16.7
HydraOpt(M=8) 47.5 15.2 4.5 15.2 31.3 24.5 18.2
Zero-shot

Zh

0 3.7 1.6 20.2 24.8 12.1 12.5
LoRA 100.0 48.6 7.9 27.6 37.3 30.1 30.3
TA 12.5 24.6 4.0 27.1 37.3 28.6 24.3
TIES 12.5 28.4 4.0 27.4 37.4 29.2 25.3
DARE 12.5 6.5 2.2 21.9 30.1 16.5 15.4
DARE TIES 12.5 7.8 2.6 23.0 31.4 20.3 17.0
HydraOpt(M=1) 12.5 12.6 3.6 26.1 36.4 26.5 21.0
HydraOpt(M=2) 17.5 19.6 3.9 26.7 36.8 28.0 23.0
HydraOpt(M=3) 22.5 38.3 4.4 26.6 38.2 28.2 27.2
HydraOpt(M=4) 27.5 41.9 5.0 27.0 37.5 29.2 28.1
HydraOpt(M=5) 32.5 43.1 5.2 27.1 37.6 27.7 28.1
HydraOpt(M=6) 37.5 43.8 4.9 27.3 35.1 29.2 28.1
HydraOpt(M=7) 42.5 43.4 4.7 24.3 36.1 26.2 26.9
HydraOpt(M=8) 47.5 46.2 6.9 27.0 37.3 29.6 29.4

26906



Table 13: Performance when merging across 40 tasks using Llama-3.2-3B-Instruct. Results are reported per
each language (L) and application separately.

Method L S (%) GC SR TS TA QA Avg

Zero-shot

En

0 14.0 5.4 26.9 30.1 24.2 20.1
LoRA 100.0 39.2 24.5 41.4 59.1 74.7 47.8
TA 2.5 23.9 8.7 30.6 49.0 40.5 30.5
TIES 2.5 23.3 8.7 30.3 48.2 35.9 29.3
DARE 2.5 15.7 6.6 28.2 33.7 25.9 22.0
DARE-TIES 2.5 15.6 6.6 28.2 33.7 25.8 22.0
HydraOpt(M=1) 2.5 24.2 7.8 30.3 49.1 42.3 30.8
HydraOpt(M=40) 41.5 28.9 22.1 35.6 57.0 71.3 43.0
Zero-shot

De

0 9.4 2.8 17.7 20.3 10.9 12.2
LoRA 100.0 41.2 13.8 32.4 44.8 47.2 35.9
TA 2.5 20.6 6.0 24.9 35.5 19.4 21.3
TIES 2.5 17.5 6.0 24.2 34.9 18.1 20.2
DARE 2.5 11.5 3.2 19.3 25.3 12.6 14.4
DARE-TIES 2.5 11.8 3.3 19.1 25.4 12.5 14.4
HydraOpt(M=1) 2.5 22.7 5.6 25.6 34.3 21.3 21.9
HydraOpt(M=40) 41.5 20.3 7.2 27.7 42.4 31.2 25.8
Zero-shot

Es

0 7.7 2.8 22.4 33.6 16.6 16.6
LoRA 100.0 34.3 15.8 34.9 46.3 53.8 37.0
TA 2.5 19.2 6.8 28.9 41.5 25.4 24.4
TIES 2.5 15.5 6.5 28.3 40.0 22.8 22.6
DARE 2.5 7.9 3.7 24.0 36.6 19.7 18.4
DARE-TIES 2.5 7.4 3.8 23.6 36.2 19.1 18.0
HydraOpt(M=1) 2.5 20.3 6.2 29.2 42.3 27.6 25.1
HydraOpt(M=40) 41.5 17.7 8.8 31.5 42.6 24.4 25.0
Zero-shot

Fr

0 10.2 3.6 20.8 28.5 11.3 14.9
LoRA 100.0 30.2 15.0 34.0 47.8 42.8 34.0
TA 2.5 17.5 7.2 27.5 43.2 23.3 23.8
TIES 2.5 15.8 7.2 26.7 42.1 20.4 22.4
DARE 2.5 12.4 4.5 22.1 33.5 12.1 16.9
DARE-TIES 2.5 12.3 4.6 22.0 33.7 11.8 16.9
HydraOpt(M=1) 2.5 19.2 6.8 28.9 42.1 24.6 24.3
HydraOpt(M=40) 41.5 23.3 8.4 31.2 45.2 27.1 27.0
Zero-shot

It

0 26.9 2.3 18.9 29.5 13.5 18.2
LoRA 100.0 36.0 12.7 32.3 44.9 47.3 34.6
TA 2.5 33.0 4.9 26.7 41.7 19.7 25.2
TIES 2.5 30.5 4.8 26.0 40.6 18.1 24.0
DARE 2.5 26.7 2.7 19.7 34.6 15.2 19.8
DARE-TIES 2.5 26.6 2.7 19.6 34.7 14.9 19.7
HydraOpt(M=1) 2.5 33.5 5.1 27.2 41.2 19.1 25.2
HydraOpt(M=40) 41.5 33.2 5.9 29.2 41.4 20.7 26.1
Zero-shot

Ja

0 4.1 4.7 19.5 35.6 12.6 15.3
LoRA 100.0 23.3 11.9 29.2 40.1 31.1 27.1
TA 2.5 9.8 6.2 22.5 39.3 18.9 19.3
TIES 2.5 9.4 6.0 22.3 39.2 18.0 19.0
DARE 2.5 6.3 4.9 20.7 37.2 13.0 16.4
DARE-TIES 2.5 6.1 5.0 20.8 37.3 12.9 16.4
HydraOpt(M=1) 2.5 11.6 6.2 23.3 39.3 17.7 19.6
HydraOpt(M=40) 41.5 13.8 6.4 23.3 39.1 24.5 21.4
Zero-shot

Ko

0 7.7 0.9 9.4 25.7 11.5 11.0
LoRA 100.0 16.6 5.8 15.6 31.6 24.8 18.9
TA 2.5 9.0 1.6 10.6 30.7 13.1 13.0
TIES 2.5 8.1 1.8 10.6 30.6 12.3 12.7
DARE 2.5 9.1 1.3 10.1 27.4 12.1 12.0
DARE-TIES 2.5 8.9 1.4 10.0 27.5 11.9 11.9
HydraOpt(M=1) 2.5 8.4 1.6 11.2 30.3 13.5 13.0
HydraOpt(M=40) 41.5 13.8 1.8 10.7 30.8 15.5 14.5
Zero-shot

Zh

0 3.7 1.6 20.2 24.8 12.1 12.5
LoRA 100.0 48.6 7.9 27.6 37.3 30.1 30.3
TA 2.5 7.9 3.1 22.6 35.2 15.9 16.9
TIES 2.5 6.7 2.9 22.7 34.9 15.2 16.5
DARE 2.5 4.2 1.8 20.4 29.1 13.1 13.7
DARE-TIES 2.5 4.5 1.9 20.4 29.5 12.8 13.8
HydraOpt(M=1) 2.5 7.9 2.6 22.9 33.3 15.2 16.4
HydraOpt(M=40) 41.5 12.5 3.7 24.7 35.6 16.3 18.5
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Table 14: Performance on 40 tasks using Llama-3.2-
3B-Instruct LoRA-finetuned after merging LoRAs
across applications, languages and tasks. S represents
the percentage of parameters compared to storing all 40
LoRAs.

Method S (%) GC SR TS TA QA Avg

Zero-shot 0.0 10.5 3.0 19.5 28.5 14.1 15.1
LoRA 100.0 33.7 13.4 30.9 44.0 44.0 33.2
TA 20.0 19.5 6.7 25.2 42.2 26.7 24.1
TIES 20.0 14.9 6.0 22.9 38.7 20.1 20.5
DARE 20.0 18.7 6.9 24.5 42.9 28.2 24.2
DARE-TIES 20.0 13.0 4.5 21.5 35.3 17.6 18.4
HydraOpt(M=1) 20.0 19.3 5.7 25.6 40.4 25.8 23.3
HydraOpt(M=2) 28.0 21.3 10.0 26.3 42.6 32.9 26.6
HydraOpt(M=3) 36.0 24.8 12.5 26.9 42.7 40.2 29.4
HydraOpt(M=4) 44.0 26.7 12.6 28.5 38.8 41.8 29.7
HydraOpt(M=5) 52.0 31.1 13.3 30.5 43.9 43.3 32.4
TA 12.5 26.3 7.5 29.6 40.2 41.8 29.1
TIES 12.5 21.4 6.3 26.9 37.5 34.2 25.3
DARE 12.5 13.7 4.4 22.5 33.7 20.6 19.0
DARE-TIES 12.5 15.4 5.0 24.0 35.5 25.8 21.1
HydraOpt(M=1) 12.5 22.1 7.1 28.4 39.2 40.3 27.4
HydraOpt(M=2) 17.5 24.5 7.8 28.8 41.4 41.1 28.7
HydraOpt(M=3) 22.5 27.4 8.2 29.3 42.1 41.6 29.7
HydraOpt(M=4) 27.5 27.6 8.9 29.5 42.7 42.0 30.1
HydraOpt(M=5) 32.5 30.6 9.4 30.4 43.2 41.1 31.0
HydraOpt(M=6) 37.5 29.6 10.0 30.3 43.0 42.0 31.0
HydraOpt(M=7) 42.5 30.3 9.2 29.8 41.6 41.8 30.6
HydraOpt(M=8) 47.5 31.1 12.0 30.4 43.7 43.1 32.1
TA 2.5 17.6 5.6 24.3 39.5 22.0 21.8
TIES 2.5 13.7 4.6 22.2 35.5 17.7 18.7
DARE 2.5 11.7 3.6 20.5 32.2 15.4 16.7
DARE-TIES 2.5 11.6 3.6 20.4 32.3 15.2 16.6
HydraOpt(M=1) 2.5 18.5 5.2 24.8 39.0 22.7 22.0
HydraOpt(M=40) 41.5 20.4 8.0 26.7 41.8 28.9 25.2
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Table 15: Performance on 5 English applications us-
ing Llama-3.2-1B-Instruct LoRA-finetuned at vari-
able rank. S represents the percentage of the parameters
compared to storing 5 LoRAs. Results are reported per
each application separately.

Rank Method S (%) GC SR TS TA QA Avg

Zero-shot 0.0 13.1 5.1 23.4 27.6 15.8 17.0

8

LoRA 100.0 26.9 20.4 35.4 56.3 57.2 39.2
TA 20.0 25.4 10.6 30.1 51.1 24.6 28.4
TIES 20.0 23.9 11.8 28.8 51.6 24.6 28.1
DARE 20.0 17.8 6.7 25.2 35.0 18.9 20.7
DARE TIES 20.0 19.9 7.5 26.0 38.6 19.8 22.4
HydraOpt(M=1) 20.0 25.1 8.5 29.9 48.0 23.8 27.1
HydraOpt(M=2) 28.0 24.6 15.5 30.0 50.6 29.5 30.0
HydraOpt(M=3) 36.0 25.5 18.7 30.4 53.5 41.4 33.9
HydraOpt(M=4) 44.0 26.3 19.1 30.1 55.9 40.2 34.3
HydraOpt(M=5) 52.0 26.5 20.0 32.8 56.7 56.4 38.5

16

LoRA 100.0 32.6 21.6 36.9 57.2 60.4 41.7
TA 20.0 25.6 10.6 31.2 50.7 26.5 28.9
TIES 20.0 24.6 13.1 29.6 52.6 26.0 29.2
DARE 20.0 18.7 7.0 26.1 37.8 19.6 21.8
DARE TIES 20.0 20.8 7.7 27.0 42.6 20.9 23.8
HydraOpt(M=1) 20.0 26.1 8.9 31.6 49.6 25.2 28.3
HydraOpt(M=2) 28.0 25.6 18.4 31.3 51.9 28.0 31.0
HydraOpt(M=3) 36.0 26.7 20.7 31.1 56.1 43.5 35.6
HydraOpt(M=4) 44.0 26.4 20.1 34.0 56.0 57.1 38.7
HydraOpt(M=5) 52.0 29.1 20.3 36.2 56.3 58.0 40.0

Table 16: Performance on 5 English applications us-
ing Gemma-2-2B-it LoRA-finetuned. S represents
the percentage of the parameters compared to storing
5 LoRAs. Results are reported per each application
separately.

Method S (%) GC SR TS TA QA Avg

Zero-shot 0.0 19.4 4.3 27.4 31.0 21.7 20.8
LoRA 100.0 40.0 24.4 41.1 58.0 75.8 47.9
TA 20.0 29.5 14.9 34.9 51.4 57.9 37.7
TIES 20.0 28.6 14.9 33.0 51.4 47.7 35.1
DARE 20.0 23.1 4.5 28.9 38.6 27.8 24.6
DARE TIES 20.0 24.0 5.0 29.0 41.1 29.5 25.7
HydraOpt(M=1) 20.0 29.3 12.2 35.9 49.4 53.5 36.0
HydraOpt(M=2) 28.0 28.7 20.7 36.1 53.6 62.5 40.3
HydraOpt(M=3) 36.0 28.5 23.1 37.2 57.1 67.3 42.6
HydraOpt(M=4) 44.0 26.5 23.2 39.2 56.5 72.8 43.7
HydraOpt(M=5) 52.0 39.2 23.7 40.8 58.1 75.8 47.5

Table 17: Performance on 5 English applications us-
ing Phi-3.5-mini-instruct LoRA-finetuned. S repre-
sents the percentage of the parameters compared to stor-
ing 5 LoRAs. Results are reported per each application
separately.

Method S (%) GC SR TS TA QA Avg

Zero-shot 0.0 19.1 2.6 23.6 21.5 7.5 14.9
LoRA 100.0 33.3 25.1 39.9 58.0 71.0 45.4
TA 20.0 26.8 10.3 33.1 49.4 47.0 33.3
TIES 20.0 26.7 12.9 32.1 52.3 46.4 34.1
DARE 20.0 22.3 3.7 25.9 38.1 10.8 20.1
DARE TIES 20.0 22.3 3.7 25.9 38.1 10.8 20.1
HydraOpt(M=1) 20.0 26.7 7.4 33.7 45.6 39.5 30.6
HydraOpt(M=2) 28.0 27.4 18.4 34.7 52.2 71.1 40.8
HydraOpt(M=3) 36.0 28.0 23.3 36.7 57.5 71.0 43.3
HydraOpt(M=4) 44.0 29.7 21.0 36.8 56.8 67.7 42.4
HydraOpt(M=5) 52.0 32.7 25.0 40.0 57.7 70.7 45.2
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Problem Type Language Prompt

Grammar Error Correction
English Remove all grammatical errors from this text:
Japanese このテキストからすべての文法エラを削除します:

Smart Reply
English Suggest a reply for the following text:
Japanese 次のテキストにする返信を提案します:

Text Summarization
English Summarize the following text:
Japanese 次の文章を要約します:

Tone Adj. (Professional)
English Changes a given user’s input sentence or text to the Professional style:
Japanese 指定されたユザの入力文またはテキストをプロフェッショナルスタイルに更します:

Tone Adj. (Casual)
English Changes a given user’s input sentence or text to the Casual style:
Japanese 指定されたユザの入力文またはテキストをカジュアルスタイルに更します:

Tone Adj. (Witty)
English Changes a given user’s input sentence or text to the Witty style:
Japanese 指定されたユザの入力文またはテキストをウィットに富んだスタイルに更します:

Tone Adj. (Paraphrase)
English Paraphrase the following text:
Japanese 次のテキストを言い換えます:

Question Answering
English Answer the following question:
Japanese 次の質問に答えます:

Table 18: New prompts for each application in Japanese. These are used for comparison with the prompts in
Table 7. Please see Table 19.

Table 19: Performance when merging across 5 ap-
plications in Japanese using Llama-3.2-1B-Instruct.
The results are consistent with our initial findings that
HydraOpt continues to provide a strong balance between
performance and efficiency.

Method L S (%) GC SR TS TA QA Avg

Zero-shot

Old Prompt

0 3.7 4.3 18.4 34.6 6.7 13.5
LoRA 100.0 12.9 9.1 27.5 39.4 23.1 22.4
TA 20.0 6.0 6.0 23.8 39.5 10.4 17.1
TIES 20.0 3.1 5.7 22.3 39.4 9.6 16.0
DARE 20.0 6.3 5.2 20.0 37.1 8.2 15.4
DARE TIES 20.0 5.8 5.6 20.0 38.2 8.7 15.7
HydraOpt(M=1) 20.0 8.6 6.2 22.0 39.8 10.1 17.3
HydraOpt(M=2) 28.0 9.2 7.0 19.7 39.7 10.1 17.1
HydraOpt(M=3) 36.0 10.4 6.5 19.0 40.1 11.6 17.5
HydraOpt(M=4) 44.0 6.0 3.9 20.5 38.0 15.6 16.8
HydraOpt(M=5) 52.0 12.4 8.4 25.6 39.5 21.9 21.6
Zero-shot

New Prompt

0 3.4 4.8 19.4 34.4 8.4 14.1
LoRA 100.0 11.5 8.7 27.4 39.2 23.4 22.0
TA 20.0 2.9 5.6 20.0 37.7 13.4 15.9
TIES 20.0 2.2 6.1 20.1 37.0 11.6 15.4
DARE 20.0 5.4 5.6 20.6 36.8 9.9 15.7
DARE TIES 20.0 6.1 5.5 21.4 36.3 10.1 15.9
HydraOpt(M=1) 20.0 8.2 6.4 22.1 39.4 12.3 17.7
HydraOpt(M=2) 28.0 8.9 7.5 19.2 38.6 11.3 17.1
HydraOpt(M=3) 36.0 9.5 8.4 19.4 39.5 12.8 17.9
HydraOpt(M=4) 44.0 6.2 4.0 13.8 38.3 17.0 15.9
HydraOpt(M=5) 52.0 13.9 7.6 23.6 39.2 21.5 21.2
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