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Abstract

Large language models (LLMs) often lever-
age adapters, such as low-rank-based adapters,
to achieve strong performance on downstream
tasks. However, storing a separate adapter for
each task significantly increases memory re-
quirements, posing a challenge for resource-
constrained environments such as mobile de-
vices. Although model merging techniques
can reduce storage costs, they typically re-
sult in substantial performance degradation.
In this work, we introduce HydraOpt, a new
model merging technique that capitalizes on
the inherent similarities between the matrices
of low-rank adapters. Unlike existing meth-
ods that produce a fixed trade-off between stor-
age size and performance, HydraOpt allows
us to navigate this spectrum of efficiency and
performance. Our experiments show that Hy-
draOpt significantly reduces storage size (48%
reduction) compared to storing all adapters,
while achieving competitive performance (0.2-
1.8% drop). Furthermore, it outperforms ex-
isting merging techniques in terms of perfor-
mance at the same or slightly worse storage
efficiency.

1 Introduction

Large language models (LLMs) have become a
driving force behind many natural language pro-
cessing tasks today, including text summarization
(Liu et al., 2024b), smart-reply (Bastola et al.,
2023) and question-answering (Sticha et al., 2024).
While modern LLMs are pre-trained to perform
a diverse set of tasks, their performance on spe-
cific tasks can be improved by updating its param-
eters on task-specific datasets. However, this fine-
tuning process becomes computationally impracti-
cal due to the growing size of LLMs, especially for
resource-constrained environments such as mobile
devices.

One approach to reduce the computational com-
plexity of the fine-tuning process is parameter-
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Figure 1: Performance and storage efficiency trade-
off. Average performance over 5 applications and 8
languages. Existing merging techniques reduce stor-
age costs at significant performance drops. Our method
performs similarly at the same efficiency level and im-
proves if more storage is available, achieving perfor-
mance similar to LoRAs.

efficient fine-tuning (PEFT) (Hu et al., 2022; Xu
et al., 2023; Lialin et al., 2023), where only a small
set of parameters is updated while keeping the pa-
rameters of the LLMs frozen. For example, low-
rank-based adapters such as LoRA (Hu et al., 2022)
and VeRA (Kopiczko et al., 2024) have facilitated
the use of LLMs for on-device applications, as one
can store separate adapters for different tasks and
switch to the corresponding parameters when the
user wishes to perform a specific task (Gunter et al.,
2024). However, storing separate adapters becomes
costly for on-device settings where the memory is
limited. Model merging techniques (Wortsman
et al., 2022; Ilharco et al., 2023; Yadav et al., 2024,
Yu et al., 2024) address this issue by combining
multiple adapters into one adapter used for all tasks.
However, such techniques significantly disrupt the
performance with no control.

In this work, we propose a new model merg-
ing method (HydraOpt) that allows controllable
efficiency-performance trade-off, unlike existing
methods that result in a single storage size and
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performance. HydraOpt achieves competitive per-
formance compared to storing all adapters but with
reduced storage size and improves over the perfor-
mance of existing merging techniques at a slightly
worse storage efficiency (Fig. 1). Our contributions
are three-fold:

* Building on the similarity between low-rank-
based adapters, we introduce a new model
merging strategy called HydraOpt that can
navigate the efficiency-performance trade-off
of model merging.

* We design a comprehensive evaluation frame-
work that consists of 40 tasks derived from
5 applications and 8 languages. We conduct
experiments to assess the impact of merging
adapters across applications, languages, and
tasks.

* Our experiments demonstrate that Hy-
draOpt finds a better trade-off between effi-
ciency and performance across different low-
rank-based adapters and LL.Ms. While main-
taining comparable performance to existing
model merging methods at similar storage lev-
els, HydraOpt consistently outperforms them
when a modest increase in storage is permit-
ted.

2 Related Work

Parameter-efficient Fine-tuning (PEFT) tech-
niques adapt models efficiently via training rel-
atively few parameters, making them especially
suitable for fine-tuning large language models
(Ding et al., 2022; Han et al., 2024). Low-rank-
based adapters (Hu et al., 2022; Liu et al., 2024a;
Kopiczko et al., 2024; Malinovsky et al., 2024;
Ceritli et al., 2024), in particular, have become
widely adopted, having small additional storage re-
quirements thanks to their compact size, which
makes them suitable for deployment to mobile
devices (Gunter et al., 2024). LoRA (Hu et al.,
2022) introduces two low-dimensional trainable
parameters A € R™** and B € R?*" which are
used to approximate the weight updates AW, i.e.,
AW = BA where rank r << min(d, k). Then,
the LLM parameters can be updated such that
W =W + AW. Performance of LoRA has been
further improved in its many extensions, such as
AdalLLoRA (Zhang et al., 2023) and DoRA (Liu
et al., 2024a).

Various approaches to improve efficiency of
LoRA have also been proposed (Kopiczko et al.,
2024; Renduchintala et al., 2024). In particular,
VeRA (Kopiczko et al., 2024) has become popu-
lar for improving storage and parameter efficiency
of LoRA, while maintaining competitive perfor-
mance. VeRA introduces the following model
update: AW = ApyBA4A where the parameters
B € R¥" and A € R™** are shared across the lay-
ers while the parameters A, € R? and Ay € R”
are defined per each layer. The resulting method
reduces the number of trainable parameters, as the
layer-specific parameters are defined as vectors
rather than matrices.

Model Merging: Multiple task-specific models
can be combined into a single model capable of
multi-tasking via a process called model merging.
Task Arithmetic (Wortsman et al., 2022; Ilharco
et al., 2023) represents the simplest option, and
it combines the weights of multiple models as a
weighted average. Various more advanced tech-
niques have been developed, including TIES (Ya-
dav et al., 2024) and DARE (Yu et al., 2024). TIES
first resets the values of parameters that changed
little, then elects the sign in case of conflicts, and
merges only sign-aligned parameters. DARE drops
part of the weight changes and then rescales the
remaining ones accordingly. Other methods (Xiao
et al., 2024; Huang et al., 2024; Hammoud et al.,
2024; Shenaj et al., 2025) use data to improve
merging, however, that is beyond the scope of the
present work.

On-device LLMs: LLMs typically include bil-
lions of parameters, which requires significant re-
sources, such as high-end GPUs, even for infer-
ence only (Borzunov et al., 2024). However, in
many use cases, it is desirable to perform compu-
tations locally without transferring data to remote
servers (Dhar et al., 2021), for example, when us-
ing sensitive data stored on resource-constrained
devices. Real-world examples include generat-
ing personalized replies or summarizing private
conversations, where maintaining data privacy is
paramount. As a solution, smaller LLMs (e.g., 1-3
billion parameters) have been developed for on-
device deployment. These models utilize model
compression strategies paired with a smaller size
to support efficient on-device inference. Promi-
nent examples include Llama 3.2 1B (Dubey et al.,
2024), StableLM2 1.6B (Bellagente et al., 2024)
and Qwen2.5 1.5B (Yang et al., 2024; Qwen Team,
2024). Due to their relatively small size, it is stan-
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dard practice to include single-task adapters on the
device to enable the small LLMs to perform the
individual tasks, instead of relying on instruction
following (Gunter et al., 2024; Dong et al., 2024).

3 Proposed Method

3.1 Motivation

Our work stems from the analysis of the asymmet-
ric behaviour of low-rank adaptation matrices. Zhu
et al. (2024) demonstrate that the B parameters
in LoRA exhibit distinct values when fine-tuned
across different tasks, while the A parameters re-
main relatively similar when initialized identically,
despite being fine-tuned on diverse tasks. Simi-
larly, Tian et al. (2024) observe that when multiple
LoRA adapters are trained on separate datasets, the
A parameters tend to converge to similar values,
whereas the B parameters become more differenti-
ated.

We observe similar patterns when fine-tuning
Llama-3.2-3B-Instruct on five distinct text genera-
tion tasks in English. Fig. 2 illustrates the similarity
between these LoRA adapters computed via Mean
Absolute Error. The plot indicates that the A param-
eters are more similar to each other compared to
the B parameters. We report in Fig. 10 an analysis
using Canonical Correlation Analysis (CCA), as in
Zhu et al. (2024). We further confirm these results
with t-SNE visualizations in Fig. 11 following the
approach of Tian et al. (2024).

These findings suggest that the A parameters
capture cross-domain commonalities, while the B
parameters adapt to task-specific knowledge. This
behavior may stem from the initialization schemes
for low-rank-based adapters, where B is typically
initialized as a zero matrix, while A is sampled
from a Gaussian distribution. These behaviors can
also be observed in VeRA as Ay is initialized as
zero vector and Ay is sampled from a Gaussian
distributions.

3.2 Our Method: HydraOpt

We propose HydraOpt for merging a set of
low-rank-based adapters parameters (e.g. LORA)
{B;, A;}X . As shown in Fig. 3, HydraOpt ap-
proximates the given set of parameters by learning
a shared A’ parameter and a set of B’ parameters
{B!}M, . The approximation to the original model
updates is driven by the following loss function:
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Figure 2: Similarity between A and B matrices of
LoRAs measured using Mean Absolute Error on query
matrices of Llama-3.2-3B-Instruct fine-tuned on 5 ap-
plications in English.

M
0= f|Bidi,Y o(CYT)H)BA" |, (1)
i=1 Jj=1

where f is a distance function that measures the
similarity between two model updates AW, :=
B;A; and AW; = B;A’ . Here, o denotes the
softmax function with the temperature term 7', and
C e RM is a trainable vector of coefficients with
the coefficient sz,j representing how likely it is
to use B;- for the i'" task. The softmax function
approximates categorical one-hot encoded vectors
for small values, hence guiding the model to use
mostly one B} parameter for a given task.

Given the sparsity of adapter parameters, we
choose Mean Absolute Error as the distance func-
tion f to induce sparsity (Bach et al., 2012).
We then calculate the gradients of the objec-
tive function Eq. (1) to update the parameters
A" {BI}M, {C/}K | using an iterative optimiza-
tion algorithm. For instance, the update rule for A’
using Gradient Descent becomes A’ = A" — nV/
where 7 is the learning rate and ¢ is the loss.

The coefficients C/ are initialized using a Gaus-
sian distribution and updated during training. We
remark that this only brings a minimal increase in
memory footprint during training, since the num-
ber of coefficients is much smaller than the number
of LoRA parameters. Moreover, these coefficients
are discarded once the training is over, after we
associate each task with a B” parameter. Therefore,
the inference stage is unaltered.

HydraOpt allows us to walk the efficiency-
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Figure 3: An overview of HydraOpt. We approximate
K sets of LoRA parameters by learning a shared A’
parameter and a set of task-specific parameters { B/} .

performance trade-off of model merging. In the
most aggressive parameter sharing scheme, Hy-
draOpt constructs one set of LoRA parameters
{B’, A’}, which causes performance drops due to
the reduced flexibility of the approximation simi-
larly to existing model merging techniques. How-
ever, by adjusting the level of parameter sharing,
we obtain both efficient and accurate model merg-
ing solutions.

In the special case of K = M, we omit the
coefficients C/ by learning a separate B’ parameter
for each task. Specifically, we modify the loss
function in Eq. (1) to be:

K
(=Y f(BiA;, BjA"). )

i=1

The reduction in parameter size using Hy-
draOpt depends on the number of LoRAs to merge
and the size of LoRA parameters. For one layer
of an LLM, the number of parameters required
by LoRA becomes K x r x (d + k) for K tasks,
whereas HydraOpt requires M X r x d+1r X k
parameters where M denotes the number of B’ pa-
rameters. Assuming that the A and B parameters
are the same size, the total number of parameters
reduces to 60% when merging 5 pairs of LoRA pa-
rameters (Fig. 12 in Appendix A.3). The reduction
rate asymptotically reaches 50% as the number of
LoRAs increases, while it can be greater than 50%
if the A is larger than B.

Notice that the objective functions in Eq. (1)-
(2) do not utilize any external task-specific sam-
ples. Instead, they treat the given set of LoRA
parameters { B;, A;} X | as the target pseudo-labels

Algorithm 1 HydraOpt

Require: Adapter parameters {A;, B;}X,, tar-
get number of B’ parameters M, number of
epochs F, temperature 7', optimizer

1: Initialize A’, { B/}, {CI} K,
2: for ein F do
3: if K # M then
4: Calculate the loss £ using Eq. (1)
5: else
6: Calculate the loss ¢ using Eq. (2)
7: Parameter update using the optimizer:
8: A’ < argmin £
A/
9: {BI}M, + argmin ¢
{B}L,
10: {C/}E | « argmin ¢
{CIHL,

11: Use A’ for all tasks
12: for i-thtaskin 1,2, ..., K do
13: if K # M then

14: j < argmax Cj;
je{1,2,...,M}

15: Use B; rather than B;

16: else

17: Use B; rather than B;

and updates the trainable HydraOpt parameters
A {B{}M, {C/}E | during the training. There-
fore, our technique is classified as a data-free model
merging method. Algorithm 1 provides a brief de-
scription of HydraOpt.

Note that HydraOpt differs from HydraLoRA
(Tian et al., 2024) in two main aspects. First, Hy-
dralLoRA simultaneously trains multiple adapters
for multiple tasks where the A parameters are
shared across tasks. In contrast, we tackle the
problem of merging LoRA adapters that have been
trained independently for individual tasks. Sec-
ondly, HydraOpt allows choosing the number of B’
parameters lower than the number of tasks to navi-
gate the performance-efficiency trade-off, whereas
HydralLoRA learns a separate B’ parameter for
each task, leading to a static and predefined trade-
off choice.

4 Experiments

In this section, we describe our experimental setup
(Sec. 4.1) and discuss the main results (Sec. 4.2),
the ablation studies (Sec. 4.3) and empirical com-
putational complexity analysis (Sec. 4.4).
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4.1 Setup

Tasks: We conduct experiments on 40 downstream
tasks in total, each of which is a text generation
application in a specific language. We tackle 5
applications. (i) Grammar Correction (GC): to gen-
erate the correct form of a given input containing
grammar errors. (ii) Smart Reply (SR): to generate
a response to a given textual message. (iii) Text
Summarization (TS): to generate a shorter version
of a given sentence. (iv) Tone Adjustment (TA): to
re-write a given text in a specific style. (iv) Ques-
tion Answering (QA): to answer a given question.
Each application is considered in 8 different lan-
guages: EN, DE, ES, FR, IT, JA, KO, ZH'.
Datasets: We use Cambridge English Write & Im-
prove (W&I) (Bryant et al., 2019) for GC, Persona-
Chat Synthetic (Jandaghi et al., 2024) for SR, SAM-
Sum (Gliwa et al., 2019) for TS, Sound Natural
(Einolghozati et al., 2020) rephrased using the fine-
tuned RedPajama-INCITE-Base-3B-v1 model (Ut-
sav, 2023) for TA, and SQuAD (Rajpurkar et al.,
2016) for QA. As these datasets are collected in
English, we utilize machine-translation for the re-
maining languages. Specifically, we use OPUS-
MT (Tiedemann and Thottingal, 2020) for transla-
tion to French, German, Italian and Spanish, and
M2M100 (Fan et al., 2021) for translation to Chi-
nese, Japanese and Korean. However, the transla-
tion process fixes the grammar errors in the input
text (as also mentioned in Luhtaru et al., 2024).
Therefore, we used datasets collected in the origi-
nal languages for Grammar Correction, namely EC-
Spell (Lv et al., 2023) for Chinese, Merlin (Boyd
et al., 2014) for Italian, and GitHub Typo Corpus
(Hagiwara and Mita, 2020) for the remaining lan-
guages. Table 7 presents a summary of the em-
ployed datasets, including their links and number
of samples. Table 8 lists the prompts that we have
used for each case.

Evaluation Metrics: Following the literature,
we report FO5 (T) (Bryant et al., 2017) for GC?,
Weighted Rouge (1) for SR, RougeL (1) for TS
and TA, and F1 (1) for QA. Given the page limit,
we report the average of these metrics as aggre-
gated overview when needed, with individual re-
sults reported in Appendix A.3 for completeness.
Additionally, we report the storage (S, %, |) as the
percentage of the parameters compared to storing

! Abbreviated for English, German, Spanish, French, Ital-
ian, Japanese, Korean, Chinese, respectively
2We use ChERRANT (Zhang et al., 2022) for Chinese.

Table 1: Performance on 5 English applications using
Llama-3.2-1B-Instruct LoRA-finetuned. S represents
the percentage of the parameters compared to storing 5
LoRAs.

Method S(%) GC SR TS TA QA Avg

Zero-shot 0 [13.1 5.1 23.427.6 15.8{17.0
LoRA 100 |35.1 23.0 38.2 58.1 61.5(43.2

TA 20 |25.9 11.4 32.3 51.7 28.7|30.0
TIES 20 |25.1 13.2 31.1 51.7 26.9|29.6
DARE 20 |21.6 7.4 27.1 39.0 19.7|23.0

DARE-TIES 20
HydraOpt(M=1) 20
HydraOpt(M=2) 28
HydraOpt(M=5) 52

225 7.9 274 44.0 20.9|24.5
26.3 9.0 32.3 50.4 27.6|29.1
26.9 17.6 31.7 53.0 28.2|31.5
33.1 21.7 37.1 57.1 59.9|41.8

all individual adapters.

Models: We use Llama-3.2-1B-Instruct
(Grattafiori et al., 2024) for our main exper-
iments due to its size suitable for on-device
deployment. However, we also present analyses
with different model sizes (2B, 3B, and 3.5B)
and architectures (Gemma2, Gemma Team,
2024, and Phi-3, Abdin et al., 2024) to prove the
generalization of our method.

Baseline Methods: For fair comparison, we com-
pare our method with existing data-free model
merging techniques such as Task Arithmetic (TA,
Ilharco et al. 2023), TIES (Yadav et al., 2024),
DARE (Yu et al., 2024), and DARE-TIES®.
Implementation Details: We set the LoRA rank
to 32, a to 128 and dropout to 0.05 throughout
the experiments. We utilize the AdamW optimizer
with a learning rate of 5e-5 and a batch size of 3.
Please see Appendix A.1 for further details.

4.2 Main Results

Merging 5 LoRA adapters in a language: We
first consider a typical model merging scenario
where multiple LoRA adapters are obtained by fine-
tuning the same model (Llama-3.2-1B-Instruct in
this case) across different applications. Table 1
presents a comparison of the methods in terms of
storage efficiency and performance. The highest-
performing state-of-the-art method is TA that re-
duces average performance by 13.2% at the storage
occupancy of 20%.

HydraOpt exhibits similar performance at the
same storage and starts outperforming TA as the
extent of storage size reduction is sacrificed. Specif-

3See the dare_ties function at https://github.
com/huggingface/peft/blob/main/src/peft/
utils/merge_utils.py [Accessed on 17 May 2025]
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Figure 4: Average performance on 5 applications in
different languages using Llama-3.2-1B-Instruct. In
this figure, we report the relative average score com-
pared to LoRA.

ically, we obtain a 1.5% gain over TA in average
performance when an additional 8% storage size is
used. If more storage is available, we can approach
the LoRA upper bound: namely, HydraOpt(M=5)
is only 1.4% lower than LoRA in terms of average
performance, while saving ~50% storage.

We note that HydraOpt introduces additional
runtime; however, the merging operation is still
reasonably fast with relatively small GPU memory
overhead (please see Table 6 for a comparison of
the methods in terms of runtime and memory).
Merging 5 LoRA adapters (multiple languages):
We performed the same 5-way merging experiment
in multiple languages and we observe similar im-
provements across the board as shown in Fig. 4.
Different LLMs: Next, we test the generalization
of our approach across different LLM sizes and
architectures (Llama 1B, Llama 3B, Gemma 2B,
Phi3.5B). In Table 2, we observe a consistent trend
across model types and sizes.

HydraOpt(M=5) consistently improves average

performance over the baselines at a small storage
size cost.
Different low-rank-based adapter types: In this
experiment, we demonstrate how HydraOpt can be
extended to other low-rank-based adapters. In par-
ticular, we consider VeRA (Kopiczko et al., 2024)
for its efficiency and competitive performance com-
pared to LoRA.

Similarly to the application of HydraOpt to a
set of LoRA parameters, we merge a set of VeRA
parameters by learning a new set of parameters A
and A, with the latter shared across multiple tasks.
Note that for simplicity, we discard the merging
of the parameters A and B as they are initialized
similarly across the tasks and kept frozen during

Table 2: Average performance on 5 English ap-
plications for different LoRA-finetuned LLMs.
We use Llama-3.2-1B-Instruct (L1B), Llama-3.2-3B-
Instruct (L3B), Gemma-2-2B-it (G2B), and Phi-3.5-
mini-instruct (P3.5B), and report the average of indi-
vidual metrics for each model.

Method S(%) LIB L3B G2B P35
Zero-shot 0 |170 201 208 14.9
LoRA 100 | 432 478 479 454
V- 20 [30.0 374 377 333
TIES 20 296 350 35.1 34.1
DARE 20 |23.0 386 246 20.1
DARE-TIES 20 | 245 274 257 20.1
HydraOptM=1) 20 [29.1 365 360 30.6
HydraOpt(M=2) 28 |31.5 413 403 40.8
HydraOpt(M=5) 52 |41.8 460 475 452

Table 3: Average performance on 5 English applica-
tions using Llama-3.2-1B-Instruct VeRA-finetuned.
S represents the percentage of the parameters compared
to storing 5 VeRAs.

Method S (%) Avg
Zero-shot 0.0 17.2
VeRA 100.0 39.0
“TA 200 03
TIES 20.0 27.8
DARE 20.0 28.6
DARE-TIES 20.0 27.7
HydraOptM=1) 20.0 26.9

HydraOpt(M=2) 20.7 275
HydraOpt(M=3)
HydraOpt(M=4) 22.1 3538
HydraOpt(M=5)  22.7

fine-tuning.

Table 3 presents the results. The best state-of-
the-art approach is TIES in this case, while TA,
which worked well on LoRA, achieves a signifi-
cantly lower score here. Even though TIES per-
forms better than our method at 20% storage ef-
ficiency, we remark once again that our approach
allows us to achieve much higher performance at
the minimal cost of 2.7% additional storage.

Evaluation across languages and merging se-
tups: We extend our setup to multiple languages
in Table 4. Firstly, we merge 5 LoRA adapters in
each language and report the average performance
across 8 languages (application block). Secondly,
we apply merging across languages rather than ap-
plications, i.e., merging 8 LoRA adapters for each
application (languages block). Finally, we merge
all 40 LoRA adapters, each of which corresponds to
an application in a given language (fask block). De-
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Table 4: Average performance on 40 tasks us-
ing Llama-3.2-1B-Instruct (L1B) and Llama-3.2-3B-
Instruct (L3B) LoRA-finetuned. S represents the per-
centage of parameters compared to storing all 40 Lo-
RAs.

Method S(%) LIB L3B Avg
Zero-shot 0.0 123 15.1 137
LoRA 100.0 28.1 332 30.7
(TA 200 193 241 217
2 TIES 20.0 179 20,5 192
S |DARE 20.0 150 242 19.6
§ {DARE-TIES 20.0 156 184 17.0
=, |HydraOpt(M=1) 20.0 189 233 2I1.1
g HydraOpt(M=2) 28.0 195 26.6 23.1
HydraOpt(M=5) 520 269 324 296
(TA 125 246 291 269
% TIES 125 247 253 250
o |DARE 12.5 158 19.0 174
5, {DARE-TIES 12.5 17.1  21.1  19.1
:f—; HydraOpt(M=1) 125 239 274 256
HydraOpt(M=3) 225 247 297 272
HydraOpt(M=8) 475 266 321 294
(TA 25 180 218 199
TIES 2.5 174 187 18.0
% |DARE 2.5 140 16.7 153
8 1DARE-TIES 2.5 142 166 154
HydraOpt(M=1) 2.5 175 22.0 19.8
HydraOpt(M=40) 41.5 219 252 235

tailed individual results are reported in Appendix
A3.

The results highlight that our method is in line
with existing state-of-the-art merging methods for
the highest storage efficiency levels, however, it
enables large accuracy gains when small additional
storage is available.

Merging Across Applications: Our approach per-
forms comparably to the best state-of-the-art
method (TA), with only a 0.6% drop in perfor-
mance. However, by utilizing 8% more storage,
HydraOpt achieves a 1.4% performance gain over
TA. Additionally, when a 48% reduction in stor-
age size is acceptable, the average performance
drop compared to the upper bound individual LoRA
adapters can be reduced to 1.1%.

Merging Across Languages: In this setting, TA
achieves the best performance at 12.5% storage
efficiency, with an average performance drop of
3.8% compared to individual LoRA adapters. Hy-
draOpt surpasses TA with just a 10% increase
in storage, and the performance gap continues to
widen as storage size increases. At 47.5% stor-
age efficiency, HydraOpt incurs only a 1.3% drop
compared to individual LoRA adapters.

Merging Across Tasks: In this most challenging
setup, TA and HydraOpt exhibit similar perfor-

Table 5: Impact of LoRA rank on average perfor-
mance for 5 English applications using Llama-3.2-
1B-Instruct LoRA-finetuned. We report the percent-
age of the parameters compared to storing all 5 LoRA
parameters (denoted by S) and the average score.

Method S(%) r=8 r=16 r =232
Zero-shot 0 17.0 17.0 17.0
LoRA 100 39.2 41.7 43.2
CTA 20 284 289 300
TIES 20 28.1 29.1 29.6
DARE 20 20.7 21.8 23.0
DARE-TIES 20 22.4 23.8 24.5
HydraOpt(M=1) 20 27.1 28.3 29.1
HydraOpt(M=2) 28 30.0 31.0 31.5
HydraOpt(M=5) 52 385 40.0 41.8

mance at the most constrained storage efficiency
of 2.5%. However, as storage size increases to
41.5%, our approach narrows the gap with individ-
ual LoRA adapters to as little as 7.2%.

4.3 Ablation Studies

We fine-tune Llama-3.2-1B-Instruct using the En-
glish data and perform several ablation studies
when merging 5 LoRA adapters.

Impact of LoRA rank: First, we investigate
whether the benefits of HydraOpt remain the same
across the LoRA rank r € {8,16,32}. As shown in
Table 5, HydraOpt begins to improve over the per-
formance of the leading competitor method when
the storage is increased by 8%. Moreover, a 48% re-
duction in storage size leads to competitive perfor-
mance with storing all individual LoRA adapters.
Impact of the distance function: Next, we an-
alyze the choice of distance function f used for
calculating the loss during training. In particular,
we compare mean absolute error (MAE) with three
alternative loss functions based on cosine similarity
(CS), Frobenius norm (FRO), and mean squared
error (MSE). Fig. 5 shows that MAE and FRO lead
to better performance than CS and MSE. This re-
sult is not surprising as the optimization is done
over the sparse LoRA parameters, which can be bet-
ter learned using sparsity-inducing penalties (Bach
etal., 2012).

Analysis of existing merging methods at higher
storage sizes: We apply existing merging methods
only on the A parameters for comparison with our
method at a reduced storage efficiency level. The
existing merging methods lead to a performance
drop as shown in Fig. 6, which can be explained
by the lack of adaptation on the B parameters after
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Table 6: Comparison of the methods in terms of runtime and GPU memory. Merging is applied to 5 English

applications using Llama-3.2-3B-Instruct LoRA-finetuned.

Metric TA TIES DARE DARE-TIES HydraOpt(M=1) HydraOpt(M=2) HydraOpt(M=3) HydraOpt(M=4) HydraOpt(M=5)
Runtime (mins) 0.7 0.6 0.7 0.7 10.6 13.9 17.2 20.6 8.6
GPU(GB) 196 19.6 19.6 19.6 20.5 207 21.0 21.3 20.7
. MAE fast with relatively small GPU memory overhead.

401 FRO Given that the merging operation is going to be
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Figure 5: Impact of distance function used during
training. We report average performance on 5 En-
glish applications using Llama-3.2-1B-Instruct LoRA-
finetuned.
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Figure 6: Impact of storage efficiency level. We report
average performance on 5 English applications using
Llama-3.2-1B-Instruct LoRA-finetuned.

obtaining the new shared A parameters. HydraOpt,
on the other hand, iteratively adapts the B’ parame-
ters to the shared A’ parameter to approximate the
original model updates AW

4.4 Runtime and GPU Memory Analysis

In this section, we analyze the time and GPU
memory required to merge the LoRA parameters.
Specifically, we use the LoRA parameters obtained
by fine-tuning Llama-3.2-3B-Instruct using the En-
glish data. Table 6 compares the methods, which
show that HydraOpt introduces additional runtime;
however, the merging operation is still reasonably

performed at the server side, HydraOpt provides a
practical solution for real-world scenarios.

5 Conclusion

On-device applications of LLMs often leverage
parameter-efficient fine-tuning methods, such as
low-rank-based adapters, for downstream tasks.
However, the need to deploy a separate adapter
for each task results in substantial storage over-
head, a critical challenge for resource-constrained
environments such as mobile devices. While model
merging techniques offer a potential solution by re-
ducing the storage size, they often come at the cost
of significant performance degradation on down-
stream tasks, making them impractical for real-
world deployment.

In this work, we introduce HydraOpt, a new
model merging technique that effectively addresses
the trade-off. HydraOpt achieves competitive per-
formance (0.2-1.8% drop) compared to storing all
LoRA adapters, while significantly reducing pa-
rameter size (48% reduction). Furthermore, it con-
sistently outperforms the performance of existing
model merging methods at slightly worse efficiency
levels. HydraOpt thus enables efficient storage uti-
lization without compromising task-specific perfor-
mance for deploying LLMs on-device.

Limitations

Despite the encouraging results obtained using Hy-
draOpt, there are certain limitations in our current
study that are worth acknowledging. For instance,
this paper considers the generic case of data-free
model merging where there is no assumption on
the presence of data. Therefore, its performance
is upper bounded by LoRA parameters. An in-
teresting research direction may be considering
data-driven merging scenarios, for which we ex-
pect similar gains in terms of efficiency and per-
formance. Moreover, we tested HydraOpt with
low-rank-based adapters such as LoRA and VeRA
due to their popularity and efficiency-performance
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trade-offs. Exploring its applications to other types
of adapters would be a valuable direction for fu-
ture work. Finally, we believe that our proposed
method can be used in more general cross-modal
and multi-modal tasks, which are getting more and
more attention in the literature.

Potential Risks

This work investigates the efficiency-performance
trade-off of serving LLMs for text generation appli-
cations on mass accessible devices. Even though
our work can reduce the storage costs of LLMs, it
does not change the inference complexity and its
impact on the environment. Moreover, we did not
evaluate how our method impacts LLMs in terms
of fairness across different population subgroups,
which needs to be verified using additional safe-
guarding tools.
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A Appendix

We provide information about the datasets in
Sec. A.1, report analyses about the similarity be-
tween LoRA parameters in Sec. A.2, and give more
detailed results in Sec. A.3.

A.1 Implementation Details

Table 7 provides a summary of the datasets used in
our experiments and additional information about
our implementation. Table 8 describes the prompts
that we have used. For tone adjustment, we con-
sider four tones, namely professional, casual, witty
and (neutral) paraphrasing, which are combined to
create a larger dataset. We utilize NVIDIA A40
for our experiments. Adapters are applied to the
query, key, value, and output matrices for Llama-
3.2-3B-Instruct, Llama-3.2-1B-Instruct, and Phi-
3.5-mini-instruct, and to the query and value for
Gemma-2-2B-it. Uniform merging coefficients are
used for TA and DARE, whereas unary coefficients
are used for TIES and DARE-TIES. We provide an
implementation of our method in Figures 7, 8, 9.

A.2 Similarities Between LoRA Parameters

We perform Canonical Correlation Analysis (CCA)
goodness of fit following Zhu et al. (2024) using
LoRA matrices A and B obtained by fine-tuning
Llama-3.2-3B-Instruct on English data. Fig. 10
indicates that A parameters result in higher simi-
larity scores than B parameters. Similarly, Fig. 11
illustrates a similar trend using t-SNE plots where
A parameters tend to converge to similar values.

A.3 Additional Results

Fig. 12 illustrates how the number of parameters to
store changes using HydraOpt. We also present de-
tailed evaluations for Llama-3.2-3B-Instruct when
merging across applications (Tables 9-10), lan-
guages (Tables 11-12) and tasks (Table 13). More-
over, the average scores are reported in Table 14.
Similarly, we present the detailed results under
different ranks for Llama-3.2-3B-Instruct in Ta-
ble 15, and the results for Gemma-2-2B-it LoRA-
finetuned (Table 16) and for Phi-3.5-mini-instruct
LoRA-finetuned (Table 17). Finally, we investi-
gated the impact of the machine-translated prompts
on the performance. Specifically, we used native
speakers to make the prompts more natural (see
Table 18) and repeated a subset of the experiments
(Table 19).
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class HydraOpt (nn.Module) :

def __init__ (
self,
lora_parameters,
lora_names,
M,
T,

) —> None:
super () .__init__ ()

self.K = len(lora_names)
self.M = M
self.T T

# trainable parameters

self.A_prime = nn.ModuleDict ({})

self.B_primes = nn.ModuleDict ({})

self.C_primes = None if self.K == self.M else nn.ParameterDict ({})

keys = lora_parameters[lora_names[0]].keys ()
for i in range (M) :
peft_model_id = lora_names([i]
for key in keys:
# 7.’ can’t be used in module dict
key_ = key.replace(".", "_")

# initialize the shared A _prime

if i == 0 and "lora_A" in key:
r, in_features = lora_parameters[peft_model_id] [key].shape
self.A_primelkey_] = nn.Linear (in_features, r, bias=False)

nn.init.kaiming_uniform_ (
self.A_primelkey_].weight, a=math.sqgrt (5
)

# initialize the B_primes
if "lora_B" in key:
out_features, r = lora_parameters[peft_model_id] [key].shape
self.B_primes[f"{key_}_{i}"] = nn.Linear(
r, out_features, bias=False
)

nn.init.zeros_(self.B_primes[f"{key_}_{i}"].weight)

# define coefficients if needed
if self.K != self.M:
for i in range (self.K):
for key in keys:
key_ = key.replace(".", "_")
if "lora_B" in key:
self.C_primes[f"{key_}_{i}"] = nn.Parameter (
nn.functional.softmax (
torch.randn (M) / T, dim=-1
)

def forward(self):
return self.A_prime, self.B_primes, self.C

Figure 7: Implementation of HydraOpt module.
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Table 7: Dataset statistics. Information about the datasets.

Task Dataset Language # Training Samples # Validation Samples # Test Samples
ECSpell Chinese 6,680 750 750

Cambridge English Write & Improve (W&I) English 23,523 2,526 2,639

Merlin Italian 572 79 81

Grammar Error Correction French 616 240 227
German 412 119 132

GitHub Typo Corpus Japanese 1,043 325 321

Korean 255 75 93

Spanish 348 137 116

Smart Reply Persona-Chat Synthetic English 225,061 25,847 24,479
Text Summarization SAMSum English 14,732 818 819
Tone Adjustment Sound Natural All 2,245 321 642
Question Answering SQuAD English 65,699 21,900 10,570

© ® u e E W —

def hydra_loss(

) :

A_prime, B_primes, C_primes, M, lora_parameters, lora_names, T

s = list (lora_parameters[lora_names[0]].keys())
len(lora_names)
len (keys)

=

ke
K
J

for i, peft_model_id in enumerate (lora_names) :
for j in range (J):
if 7% 2 == 0:
A_key = keys[7]]
B_key = keys[]j + 1]
A_key_ = A_key.replace(".", "_")
B_key_ = B_key.replace(".", "_")
if "lora" not in A_key or "lora" not in B_key:
continue

# calculate the original model update
delta_W = lora_parameters[peft_model_id] [B_key] @ lora_parameters|[
peft_model_id] [A_key]

if K == M:
delta_W_prime = (
B_primes[f"{B_key_}_{i}"].weight @ A_prime[A_key_].weight
)
else:
delta_W_prime = torch.stack(
[
nn.functional.softmax (
C_primes[f"{B_key_}_{i}"] = T, dim=-1
) [1]
* B_primes[f"{B_key_}_{1}"].weight
@ A_prime[A_key_].weight
for 1 in range (M)
]
) .sum (dim=0)
if i == 0 and j ==
total_loss = nn.functional.ll_loss(delta_W, delta_W_prime)
else:
total_loss += nn.functional.ll loss(delta W, delta_W_prime)

return total_loss / (K x J)

Figure 8: Implementation of HydraOpt loss function.
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def hydraopt_merging(lora_parameters, lora_names, M, 1lr=0.01, epochs=1000, T=5.0):

hydraopt = HydraOpt (lora_parameters, lora_names, M=M, T=T)
hydraopt = hydraopt.to("cuda:0")

keys = list (lora_parameters[lora_names[0]].keys())

# move each pair of LoRA parameters to GPU
for i, peft_model_id in enumerate(lora_names) :
for j in range (len (keys)):
if 3% 2 == 0:
A_key = keys[]]
B_key = keys[j + 1]
if "lora" not in A_key or "lora" not in B_key:

continue
else:
lora_parameters[peft_model_id] [B_key] = lora_parameters|
peft_model_id] [B_key].to("cuda:0")
lora_parameters[peft_model_id] [A_key] = lora_parameters|

peft_model_id] [A_key].to("cuda:0")

optimizer = torch.optim.AdamW (hydraopt.parameters(), lr=lr)
for epoch in range (epochs) :
optimizer.zero_grad()

# get the current parameters
A_prime, B_primes, C_primes = hydraopt ()

# calculate the loss based on the distance to the original LoRA updates
loss = hydra_loss(

A_prime,

B_primes,

C_primes,

M,

lora_parameters,

lora_names
)

# backward pass
loss.backward ()

# update weights
optimizer.step ()

# obtain the mapping between the lora_Bs and B _primes parameters
B_mapping = {}
for task_index in range (len(lora_names)):

B_mapping[task_index] = {}
for key in keys:
key_ = key.replace(".", "_")

if "lora_B" in key:
if hydraopt.K == hydraopt.M:
selected_B_prime = task_index
else:
selected_B_prime = nn.functional.softmax (
hydraopt.C_primes[f"{key_}_{task_index}"] / T, dim=-1
) .argmax ()
B_mapping[task_index] [key] = selected_B_prime

return A_prime, B_primes, B_mapping

Figure 9: Implementation of HydraOpt merging.
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Problem Type Language Prompt
English Remove all grammatical errors from this text:
Spanish Quita todos los errores gramaticales de este texto:
French Supprimez tous les erreurs grammaticales de ce texte:
. German Verbessere alle grammatischen Fehler in diesem Text:
Grammar Error Correction . . AR . s
Italian Rimuovi tutti gli errori grammaticali da questo testo:
Chinese B SCAR R AT A 5
Korean Z0]7 A&l Qo] @B} By @ Rk glow mATk
Japanese ZHOTXAM L TNTCOLEL T 2 HIRT 5:
English Suggest a reply for the following text:
Spanish Sugiera una respuesta para el texto siguiente:
French Propose une réponse pour le texte suivant:
German Schlagen Sie eine Antwort fiir den folgenden Text vor:
Smart Reply . .. . .
Italian Suggerisci una risposta per il seguente testo:
Chinese LU SRS
Korean 5 @A E o tf 3 TS Al FEEA 9
Japanese KT XA Mt pE2IEL 3
English Summarize the following text:
Spanish Resume el siguiente texto:
French Résume le texte suivant:
L German Zusammenfassen Sie den folgenden Text:
Text Summarization . . ..
Ttalian Riassumi il seguente testo:
Chinese — N R
Korean S B AEE Qok3lA| Q.
Japanese ROLF#FERIL % §:
English Changes a given user’s input sentence or text to the Professional style:
Spanish Cambia la oracién o el texto introducido por un usuario al estilo Profesional:
French Transforme la phrase ou le texte saisi par un utilisateur en style Professionnel:
. . German andert die Eingabe eines bestimmten Benutzers in einen Professionellen Stil:
Tone Adj. (Professional) . . . . L. .
Italian Cambia la frase o il testo immesso da un utente in stile Professionale:
Chinese TE F I A F B AR gk
Korean Fold A e AR A FAZ WA Bk
Japanese {EEENZFDOANLERET XA L E2 70729y aF NV AFA4ANVICHET 5
English Changes a given user’s input sentence or text to the Casual style:
Spanish Cambia la oracién o el texto introducido por un usuario al estilo Informal:
French Transforme la phrase ou le texte saisi par un utilisateur en style Informel:
. German andert die Eingabe eines bestimmten Benutzers in einen Freundlichen Stil:
Tone Adj. (Casual) . . R . L
Italian Cambia la frase o il testo immesso da un utente in stile Informal:
Chinese TE FARY A -8 SOAR T  H HA%:
Korean FolZ AHEALe] Y-S FHE RA R WAk
Japanese FRESNR2FDOANLERRTXALE AV 2TV AIANMICET 5:
English Changes a given user’s input sentence or text to the Witty style:
Spanish Cambia la oracién o el texto introducido por un usuario al estilo Ingenioso:
French Transforme la phrase ou le texte saisi par un utilisateur en style Spirituel:
Tone Adj. (Witty) Gerrpan andert di'e Eingabe ei.nes bes'timmten Benutzers in .eine'n Wit.zi'ger Stil:
Ttalian Cambia la frase o il testo immesso da un utente in stile Spiritoso:
Chinese TE PRI A )T 8 SR T b
Korean 202 AFg A Y S A A Qe B2 WA
Japanese fREENZ2HFDANLERBT XA E V49 PEBAKR A5 A NICET 5:
English Paraphrase the following text:
Spanish Parafrasea el siguiente texto:
French Paraphraser le texte suivant:
Tone Adj. (Paraphrase) Gerr'nan Fassen Sie den fol genden Text zusammen:
Italian Parafrasare il testo seguente:
Chinese fRLL T ST
Korean oS HAEE o931 8
Japanese DT XA 2F W2 TL2ZE
English Answer the following question:
Spanish Responde a la siguiente pregunta:
French Réponds a la question suivante:
Question Answering German Beantworten Sie die folgende Frage:
Italian Rispondi alla seguente domanda:
Chinese [ &L
Korean o2 ARl FatA L
Japanese KoBMicE2 Ly 5

Table 8: Prompts for each application and language. Details about the prompts we have used.
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Figure 10: Similarity between A and B matrices of
LoRAs measured using Canonical Correlation Analysis
(CCA) goodness of fit as conducted by Zhu et al. (2024)
on query matrices of Llama-3.2-3B-Instruct fine-tuned
on English data.

Table 9: Performance when merging across 5 applica-
tions using Llama-3.2-3B-Instruct for En (English),
De (German), Es (Spanish), and Fr (French). Re-
sults are reported per each language (L) and application

separately.
Method L S®) , GC SR TS TA QA Avg
Zero-shot 0140 54 269 30.1 242201
LoRA 100 | 39.2 245 414 3591 747 | 47.8
TA 20270 136 341 537 588|374
TIES 20| 262 149 324 533 482|350
DARE 20| 274 149 345 542 619 | 38.6
DARE TIES En 20 |21.6 83 292 452 330|274
HydraOpt(M=1) 20| 266 102 339 522 596 | 36.5
HydraOpt(M=2) 30 | 27.4 229 346 548 67.0|413
HydraOpt(M=3) 40 | 289 24.6 360 588 732|443
HydraOpt(M=4) 50| 360 247 396 57.6 723 |46.0
HydraOpt(M=5) 60 | 365 247 409 588 733|468
" Zero-shot 0] 94 28 177 203 109122
LoRA 100 | 41.2 13.8 324 448 472359
TA 20229 67 236 412 226|234
TIES 20195 68 229 409 187|218
DARE 20 | 264 6.6 205 427 29.4 |25
DARE TIES De 20121 41 209 300 156|165
HydraOpt(M=1) 201|232 56 252 371 228228
HydraOpt(M=2) 30| 258 9.6 262 434 348 |28.0
HydraOpt(M=3) 40 | 244 124 272 434 431|301
HydraOpt(M=4) 50 | 246 134 297 437 453|313
HydraOpt(M=5) 60 | 3.1 13.8 317 448 464|335
" Zeroshot 0] 77 28 224 336 166166
LoRA 100 | 343 158 349 463 538|370
TA 20| 226 79 284 442 299 | 26.6
TIES 20169 87 27.0 443 237|241
DARE 20233 79 285 452 300 |27.0
DARE TIES Es 20| 84 48 241 379 212193
HydraOpt(M=1) 20208 63 292 425 286|255
HydraOpt(M=2) 30| 247 117 303 442 352292
HydraOpt(M=3) 40253 151 315 454 468 | 328
HydraOpt(M=4) 50| 229 136 328 408 524|325
HydraOpt(M=5) 60 | 312 151 345 461 53.1 |36.0
" Zero-shot 0]102 36 208 285 113149
LoRA 100 | 30.2 150 340 47.8 428|340
TA 20208 7.6 28.1 460 290|263
TIES 20| 164 8.8 27.6 46.1 258|249
DARE 20199 83 259 471 292 |26.1
DARE TIES Fr 20| 13.1 55 235 369 145|187
HydraOpt(M=1) 20193 68 287 433 274|251
HydraOpt(M=2) 30| 204 113 302 459 327 | 28.1
HydraOpt(M=3) 40 | 224 139 30.6 468 37.7 | 30.3
HydraOpt(M=4) 50 | 249 141 316 299 413|284
HydraOpt(M=5) 60 | 30.8 149 33.8 47.8 424|340
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Table 10: Performance when merging across 5 appli-

Table 11: Performance when merging across 8 lan-
guages using Llama-3.2-3B-Instruct. Results are re-
ported per each language (L) and application separately.

cations using Llama-3.2-3B-Instruct for It (Italian), Method L S®% , GC SR TS TA QA Avg
Ja (Japanese), Ko (Korean), and Zh (Chinese). Re- ieig:hot 1008 ;g-g 22-‘5‘ if-z 28-} 323 igé
sults are reported per each language (L) and application A 125 | 276 153 358 296 755 | 40.8
separately. TIES 125|282 163 360 497 762|413

DARE 125172 7.6 294 355 345 (249

DARE TIES 125|194 86 30.5 400 416 |28.1
Method L S®%), 6 GC SR TS TA QA 6 Avg HydraOp(M=1) = 125|261 141 344 48.1 734392
Zero-shor 01269 23 189 205 135|182  HydraOp(M=2) 17.5 | 271 167 353 503 726 | 40.4
LoRA 100 1360 127 323 449 473 | 34¢  HydraOpt(M=3) 225295 179 369 516 712|414
TA 20 1340 60 253 434 210|260  HydraOpt(M=4) 275|293 194 371 534 69.8 | 418
TIES 20 | 311 67 247 434 184 | 249  HydraOpt(M=5) 325362 212 412 570 630|437
DARE 201297 60 249 445 238 |25g  HydraOpt(M=6) 375389 234 405 582 670|456
DARE TIES It 20[276 37 201 366 159|208  HydraOpuM=7) 4251391 241 410 579 724 | 469
HydraOpt(M=1) 20333 50 261 411 192|249  HydraOptM=8) 4751369 239 4l.1 585 7331467
HydraOpt(M=2) 30332 85 268 430 319|287  Zerosshot 0) 94 28 17.7 203 109 12.2
HydraOpt(M=3) 40 1359 129 274 436 421|324  LoRA 1000 | 41.2 138 324 448 4721359
HydraOpt(M=4) 50335 122 298 350 462|313 @ TA 1251305 7.7 315 412 462314
HydraOpt(M=5) 60 | 351 131 318 447 467|343  TIES 1251294 7.7 317 415 465313
Zeroshor - 0| 41 47 195 356 126|153  DARE 125|124 42 219 285 1731169
LoRA 1001233 119 202 401 311|271  DARETIES 125 | 141 49 242 313 218 | 192
TA 20109 60 250 402 207|206  HydaOpiM=D) o= 125|258 72 299 397 471|300
TIES 20| 63 70 245 399 186|192  HydraOpt(M=2) 17.5 | 268 7.8 30.6 41.6 469 |30.7
DARE 20| 94 58 252 400 220|205  HydraOpt(M=3) 225271 80 30.6 430 480|313
DARETIES ~ Ja 20| 7.1 57 220 380 140|173  HydaOp(M=4 2751257 82 306 424 4591305
HydraOpt(M=1) 20| 119 61 251 398 184 | 203  HydraOpt(M=5) 325323 97 314 435 487|331
HydraOpt(M=2) 30 [ 133 82 252 402 227|219  HydraOpt(M=6) 3751269 86 312 439 457313
HydraOpt(M=3) 101150 96 245 400 282|235  HydraOpM=7) 425|314 93 315 447 448|324
HydraOpt(M=4) 50 [ 181 112 264 377 263|240  HydraOpiM=8) 475|310 12.1 31.6 445 463|331
HydraOpt(M=5) 60 | 223 11.6 284 40. 303|265  Zeroshot 0 77 28 224 336 166166
" Zeroshot T~ 01777 09 94 257 1151110  LoRA 100.0 | 34.3 15.8 349 463 53.8 | 37.0
LoRA 100 [ 166 58 156 316 248|189  TA 1251326 94 346 340 485319
TIES 20| 86 24 124 310 83|125  DARE 125| 98 49 268 37.8 249|208
DARE 50| 71 22 132 312 99|127  DARETIES 125120 58 288 392 317|235
DARETIES Ko 20| 79 17 107 280 123|121  HydaOpM=b 0 1251261 90 33.1 326 456293
HydraOpt(M=2) 30| 90 30 124 312 157|142  HydraOpt(M=3) 225|284 103 339 442 493 | 332
HydraOpt(M=4) 50| 94 51 132 2997 202|159  HydraOpt(M=5) 325292 104 347 457 515|343
HydraOpt(M:S) 60 | 15.4 57 157 314 245 18.5 HydraOpt(M=6) 3751286 120 341 451 533|346
" Zero-shot 77~ 01737 716 202 248 1211125  HydraOpuM=7) 425|273 113 337 378 529|326
LoRA 100 | 486 7.9 27.6 373 301|303  HydraOptM=8) = 475|317 135 345 461 5251357
TIES 20| 103 39 236 370 184|186  LoRA 1000 | 302 150 340 47.8 428|340
DARE 20| 63 37 234 379 193|181 TA 1251293 94 341 453 410318
DARETIES ~ Zh 20| 62 24 210 302 146|149  TIES 12.5)304 9.6 344 450 422323
HydraOpt(M=1) 20| 117 34 242 362 180|187  DARE 125|135 55 248 357 180195
HydraOpt(M=2) 30| 170 49 249 380 232|216  DARETIES 1251143 64 265 37.6 263222
HydraOpt(M=3) 40 | 38.1 70 247 379 278|271 HydraOpt(M:l) Fr 125 | 242 9.2 326 440 385 |29.7
HydraOpt(M=4) 50 | 440 64 249 357 283|278  HydraOpt(M=2) 17.51298 9.1 335 452 39.1313
HydraOpt(M:S) 60 | 46.4 73 27.1 37.1 29.6 | 29.5 HydraOpt(M:3) 22.5 | 26.7 9.7 338 459 408|314

HydraOpt(M=4) 275295 94 336 469 419|323

HydraOpt(M=5) 325|316 9.6 337 474 402|325

HydraOpt(M=6) 375|311 103 338 47.8 418329

HydraOpt(M=7) 425303 102 33.0 468 39.0 | 319

HydraOpt(M=8) 475|314 136 339 476 419337
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Table 12: Performance when merging across 8 lan-
guages using Llama-3.2-3B-Instruct. Results are re-
ported per each language (L) and application separately.

Method L S(%) ,6 GC SR TS TA QA 6 Avg
Zero-shot 01269 23 189 295 135182
LoRA 100.0 | 36.0 12.7 323 449 473 34.6
TA 125 1340 63 324 428 453|322
TIES 125342 6.1 32,6 424 463|323
DARE 1251286 3.6 21.6 359 189|217
DARE TIES 1251303 4.1 237 37.1 233|237
HydraOpt(M=1) It 1251331 59 31.1 41.8 43.1|31.0
HydraOpt(M=2) 17.5 1338 6.6 309 421 450 31.7
HydraOpt(M=3) 2251350 63 321 426 443|321
HydraOpt(M=4) 2751353 74 310 43.1 455|324
HydraOpt(M=5) 3250355 7.7 31.0 434 46.1 | 327
HydraOpt(M=6) 375|347 9.7 318 438 455331
HydraOpt(M=7) 425|358 6.8 315 42.6 456 | 325
HydraOpt(M=8) 4751350 114 31.7 445 463|338
‘Zeroshot 0] 41 47 195 356 126153
LoRA 100.0 | 23.3 119 292 40.1 31.1 | 27.1
TA 125|188 6.1 273 404 29.6| 245
TIES 125|215 59 275 39.7 304|250
DARE 125 89 54 225 379 17.6]| 185
DARE TIES 125 | 11.1 59 236 385 223|203
HydraOpt(M=1) Ta 125150 6.1 263 402 28.6|23.2
HydraOpt(M=2) 175 | 166 64 267 40.8 28.7 | 238
HydraOpt(M=3) 2251183 69 264 404 287 | 24.1
HydraOpt(M=4) 275|191 73 274 409 295|248
HydraOpt(M=5) 3251208 80 284 40.8 29.1|254
HydraOpt(M=6) 3751213 79 287 389 285|250
HydraOpt(M=7) 4251222 50 283 375 299|246
HydraOpt(M=8) 475 |21.6 9.8 28.1 402 300|259
‘Zeroshot 0] 77 94 257 42 115|110
LoRA 100.0 | 16.6 5.8 156 31.6 248 | 189
TA 125 | 128 2.0 14.0 313 19.7 | 16.0
TIES 125 | 138 1.8 147 309 202|163
DARE 125128 1.6 113 280 17.4 | 142
DARE TIES 125139 1.6 11.8 287 192|150
HydraOpt(M=1) Ko 125 | 141 21 133 306 194 | 159
HydraOpt(M=2) 175 | 13.8 24 13.7 310 208|163
HydraOpt(M=3) 225|161 25 143 309 228|173
HydraOpt(M=4) 275|134 29 145 31.8 214|168
HydraOpt(M=5) 325|165 38 153 305 226|177
HydraOpt(M=6) 375|112 3.1 150 31.1 253 17.1
HydraOpt(M=7) 425 | 133 25 154 292 232|167
HydraOpt(M=8) 475|152 45 152 313 245|182
" Zero-shot 0] 37 1.6 202 248 12.1]125
LoRA 100.0 | 486 79 27.6 373 30.1)30.3
TA 125 1246 40 27.1 373 28.6| 243
TIES 125|284 40 274 374 292|253
DARE 125 65 22 219 301 165|154
DARE TIES 125 78 26 23.0 314 203|17.0
HydraOpt(M=1) 7h 125 | 126 3.6 26.1 364 265|210
HydraOpt(M=2) 1751 19.6 39 267 36.8 28.0]23.0
HydraOpt(M=3) 225|383 44 266 382 282|272
HydraOpt(M=4) 275|419 50 27.0 375 292 28.1
HydraOpt(M=5) 325|431 52 271 376 27.7)|28.1
HydraOpt(M=6) 375|438 49 273 351 292281
HydraOpt(M=7) 425|434 47 243 361 262|269
HydraOpt(M=8) 4751462 69 27.0 373 296|294
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Table 13: Performance when merging across 40 tasks using Llama-3.2-3B-Instruct. Results are reported per
each language (L) and application separately.

Method L S(%) GC SR TS TA QA Avg
Zero-shot 0| 14.0 54 269 30.1 242 | 20.1
LoRA 100.0 | 39.2 245 414 59.1 747 | 47.8
TA 2.5 | 239 87 30.6 49.0 40.5 | 305
TIES En 2.5 | 23.3 87 30.3 482 359|293
DARE 25 | 157 6.6 282 337 259|220
DARE-TIES 25 | 156 6.6 282 337 258 | 220
HydraOpt(M=1) 2.5 | 242 7.8 303 49.1 423 | 30.8
HydraOpt(M=40) 415 | 289 221 356 57.0 713 | 430

" Zero-shot T T T T ( 0| 94 28 177 203 109 | 122
LoRA 100.0 | 41.2 13.8 324 448 472 | 359
TA 2.5 | 20.6 6.0 249 355 194 | 213
TIES De 25| 175 6.0 242 349 18.1 | 20.2
DARE 25 | 11.5 32 193 253 126 | 144
DARE-TIES 25 | 11.8 33 19.1 254 125 | 144
HydraOpt(M=1) 2.5 | 227 56 256 343 213|219
HydraOpt(M=40) 41.5 | 20.3 72 277 424 312 | 258

" Zero-shot T T T T ( 0| 7.7 28 224 336 166 | 16.6
LoRA 100.0 | 343 158 349 463 53.8 | 37.0
TA 25| 19.2 6.8 289 415 254 | 244
TIES Es 25| 155 6.5 283 40.0 228 | 22.6
DARE 2.5 7.9 37 240 366 19.7 | 184
DARE-TIES 2.5 7.4 38 236 362 19.1 | 18.0
HydraOpt(M=1) 2.5 1203 6.2 292 423 27.6 | 25.1
HydraOpt(M=40) 415 | 17.7 88 315 426 244 | 250

" Zero-shot T T T T ( 01102 3.6 208 285 113|149
LoRA 100.0 | 302 150 340 478 42.8 | 34.0
TA 25| 175 72 275 432 233 | 23.8
TIES Fr 2.5 | 158 72 267 421 204 | 224
DARE 25 | 124 45 22,1 335 12.1 | 169
DARE-TIES 25 | 123 46 220 337 11.8 | 169
HydraOpt(M=1) 25| 19.2 6.8 289 421 246 | 243
HydraOpt(M=40) 415 | 233 84 312 452 27.1 | 270

" Zero-shot T T 01269 23 189 295 135|182
LoRA 100.0 | 36.0 12.7 323 449 473 | 346
TA 2.5 | 33.0 49 267 417 19.7 | 252
TIES It 2.5 | 30.5 48 260 40.6 18.1 | 24.0
DARE 2.5 | 26.7 27 197 346 152 | 19.8
DARE-TIES 2.5 | 26.6 27 196 347 149 | 19.7
HydraOpt(M=1) 2.5 | 335 5.1 272 412 19.1 | 252
HydraOpt(M=40) 41.5 | 332 59 292 414 207 | 26.1

" Zero-shot T T T ( 0] 41 47 195 356 126 | 153
LoRA 100.0 | 23.3 11.9 292 40.1 31.1 | 27.1
TA 2.5 9.8 6.2 225 393 189 | 193
TIES Ja 2.5 9.4 6.0 223 392 18.0 | 19.0
DARE 2.5 6.3 49 207 372 130 | 164
DARE-TIES 2.5 6.1 50 208 373 129 | 164
HydraOpt(M=1) 25 | 11.6 6.2 233 393 17.7 | 19.6
HydraOpt(M=40) 41.5 | 13.8 64 233 391 245|214

" Zero-shot 0] 77 09 94 257 115|110
LoRA 100.0 | 16.6 58 156 31.6 248 | 189
TA 2.5 9.0 1.6 10.6 30.7 13.1 | 13.0
TIES Ko 2.5 8.1 1.8 10.6 306 123 | 12.7
DARE 2.5 9.1 1.3 101 274 121 | 120
DARE-TIES 2.5 8.9 1.4 100 275 119 | 119
HydraOpt(M=1) 2.5 8.4 1.6 112 303 135 | 13.0
HydraOpt(M=40) 41.5 | 13.8 1.8 107 30.8 155 | 145

" Zero-shot 0| 37 1.6 202 248 121 | 125
LoRA 100.0 | 48.6 79 276 373 30.1 | 303
TA 2.5 7.9 31 226 352 159 | 169
TIES Zh 2.5 6.7 29 227 349 152 | 165
DARE 2.5 4.2 1.8 204 29.1 13.1 | 137
DARE-TIES 2.5 4.5 1.9 204 295 12.8 | 138
HydraOpt(M=1) 2.5 7.9 26 229 333 152 | 164
HydraOpt(M=40) 41.5 | 125 37 247 356 163 | 185
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Table 14: Performance on 40 tasks using Llama-3.2-
3B-Instruct LoRA-finetuned after merging LoRAs
across applications, languages and tasks. S represents
the percentage of parameters compared to storing all 40
LoRAs.

Method S% GC SR TS TA QA Avg
Zero-shot 001|105 30 195 285 141 | 15.1
LoRA 100.0 | 337 134 309 440 440 | 332

TTA T T 7 7 7200|195 7 67 252 422 267 | 241
TIES 200 | 149 60 229 387 201 | 205

2 | DARE 200 | 187 69 245 429 282 | 242

5| DARE-TIES 200 | 130 45 215 353 17.6 | 184

£ HydraOpt(M=1) 200 | 193 57 256 404 258 | 233

= | HydraOptM=2) 280 | 213 100 263 42.6 329 | 26.6

S| HydraOpt(M=3)  36.0 | 248 125 269 427 402 | 294
HydraOpt(M=4)  44.0 | 267 12.6 285 388 41.8 | 297
HydraOpt(M=5) 52,0 | 31.1 133 305 439 433 | 324

TTA T T T 12577263 0 75 296 402 418 | 29.1
TIES 125 | 214 63 269 375 342|253
DARE 125 | 137 44 225 337 206 | 19.0
DARE-TIES 125 | 154 50 240 355 258 | 211

% | HydraOpuM=1) 125|221 7.1 284 392 403 | 274

2| HydraOptM=2)  17.5 | 245 7.8 288 414 411 | 287

2] HydraOpuM=3) 225 | 274 82 293 421 416 | 297

2| HydraOpt(M=4) 275 | 27.6 89 29.5 427 42,0 | 30.1
HydraOpt(M=5) 325 | 30.6 94 304 432 41.1 | 31.0
HydraOpt(M=6)  37.5 | 29.6 10.0 303 43.0 420 | 31.0
HydraOpt(M=7)  42.5 | 303 92 298 416 418 | 30.6
HydraOpt(M=8) 475 | 31.1 120 304 437 43.1 | 32.1

TTA T T 25| 17.6 56 243 395 220 | 218

2| Tms 25| 137 46 222 355 177 | 187

5| DARE 25 | 117 36 205 322 154 | 167
DARE-TIES 25| 1.6 3.6 204 323 152|166
HydraOpt(M=1) 25 | 185 52 248 390 227 | 220
HydraOpt(M=40)  41.5 | 204 80 267 418 289 | 252

Table 15: Performance on 5 English applications us-
ing Llama-3.2-1B-Instruct LoRA-finetuned at vari-
able rank. S represents the percentage of the parameters
compared to storing 5 LoRAs. Results are reported per
each application separately.

Rank  Method S (%) GC SR TS TA QA Avg
Zero-shot 0.0 131 51 234 276 158 | 170
LoRA 100.0 | 269 204 354 563 572|392
CTA T T T 200 [2547 106 30.1 511 246 | 284
TIES 200 | 239 11.8 28.8 51.6 24.6 | 28.1
DARE 200 | 178 6.7 252 350 189 | 20.7
DARE TIES 200 | 199 7.5 260 386 19.8 | 224

HydraOptM=1)  20.0 | 25.1 85 299 480 238 | 27.1
HydraOpt(M=2)  28.0 | 246 155 30.0 506 29.5 | 30.0
HydraOpt(M=3) ~ 36.0 | 255 18.7 304 535 414|339
HydraOpt(M=4) 440 | 263 19.1 30.1 559 402 | 343
HydraOpt(M=5) ~ 52.0 | 26.5 20.0 328 567 564 | 385

LoRA 100.0 | 32.6 21.6 369 572 604 | 417
CTA T T T T 200 [256 106 31.2 507 265 | 289
TIES 200 | 246 131 296 526 260 | 292
DARE 200 | 187 7.0 26.1 378 19.6 | 21.8
DARE TIES 200 | 208 7.7 270 426 209 | 238

HydraOpt(M=1) ~ 20.0 | 26.1 89 316 49.6 252 | 283
HydraOpt(M=2) ~ 28.0 | 25.6 184 313 519 28.0 | 31.0
HydraOpt(M=3) ~ 36.0 | 26.7 20.7 31.1 56.1 435 | 356
HydraOpt(M=4)  44.0 | 264 20.1 34.0 56.0 57.1 | 38.7
HydraOpt(M=5)  52.0 | 29.1 203 362 563 58.0 | 40.0

Table 16: Performance on 5 English applications us-
ing Gemma-2-2B-it LoRA-finetuned. S represents
the percentage of the parameters compared to storing
5 LoRAs. Results are reported per each application
separately.

Method S(% GC SR TS TA QA Avg
Zero-shot 00 | 194 43 274 310 217|208
LoRA 100.0 | 400 244 41.1 580 758 | 479

TTA T 7 200 [295° 149 349 514 579 | 377
TIES 200 | 286 149 330 514 477 | 35.1
DARE 200 | 231 45 289 386 278 | 246
DARE TIES 200 | 240 50 290 411 295|257

HydraOpt(M=1)  20.0 | 29.3 122 359 494 535 | 36.0
HydraOpt(M=2)  28.0 | 28.7 20.7 36.1 53.6 625 | 403
HydraOpt(M=3)  36.0 | 285 23.1 372 571 673 | 426
HydraOpt(M=4) 44.0 | 26.5 232 392 565 72.8 | 437
HydraOpt(M=5)  52.0 | 39.2 237 40.8 58.1 758 | 475

Table 17: Performance on 5 English applications us-
ing Phi-3.5-mini-instruct LoRA-finetuned. S repre-
sents the percentage of the parameters compared to stor-
ing 5 LoRAs. Results are reported per each application
separately.

Method S (%) GC SR TS TA QA Avg
Zero-shot 0.0 191 26 236 215 75 | 149
LoRA 100.0 | 333 251 399 580 710 | 454
CTA T 200 [ 268 1037 33.0 494 470 | 333
TIES 200 | 267 129 321 523 464 | 34.1
DARE 200 | 223 37 259 381 108 | 20.1
DARE TIES 200 | 223 37 259 381 108 | 20.1

HydraOpt(M=1) 200 | 26.7 7.4 337 456 39.5 | 30.6
HydraOpt(M=2)  28.0 | 274 184 347 522 71.1 | 40.8
HydraOpt(M=3)  36.0 | 28.0 233 36.7 575 710 | 433
HydraOpt(M=4) 440 | 29.7 21.0 36.8 568 67.7 | 424
HydraOpt(M=5)  52.0 | 32.7 250 40.0 57.7 70.7 | 452
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Problem Type Language Prompt

Grammar Error Correction English Remove all grammatical errors from this text:
Japanese ZOTXZX ML TRToOEL 7 2HkRL £
English Suggest a reply for the following text:
Smart Repl N o g o,
mart Reply Japanese KDT XA T 2RE#BEL 7
Text Summarization English Summarize the following text:
Japanese ROLFEZTHIL 7
. . English Changes a given user’s input sentence or text to the Professional style:
Tone Adj. (Professional) Japanese {EEEN/22FOANLE 2B TXA 27072y vaF VA4V TL ET:
. English Changes a given user’s input sentence or text to the Casual style:
Tone Adj. (Casual
one Adj. (Casual) Japanese BEINEZZ2FOANILEFRLET XA LR A2 TALRAIANICEL 7
Tone Adj. (Witty) English g Cha}\nges a given user s_ input sentence or text tg Fhe V}’ltty style:
Japanese IREEN2TDOANLEFLRET XA L2749 FCEBAZAIANVICHL 23!
. English Paraphrase the following text:
Tone Adj. (Paraph N - = .
one Adj. (Paraphrase) Japanese KOTXAL 2Rz 3
. . English Answer the following question:
A
Question Answering Japanese DB 2 % 4

Table 18: New prompts for each application in Japanese. These are used for comparison with the prompts in
Table 7. Please see Table 19.

Table 19: Performance when merging across 5 ap-
plications in Japanese using Llama-3.2-1B-Instruct.
The results are consistent with our initial findings that
HydraOpt continues to provide a strong balance between
performance and efficiency.

Method L S(%), GC SR TS TA QA Avg
Zero-shot 0] 37 43 184 346 6.7 135
LoRA 100.0 | 129 9.1 275 394 23.1|224
TA 200| 60 6.0 238 395 104 17.1
TIES 200 | 3.1 57 223 394 9.6 16.0
DARE 200 | 63 52 200 371 82154
DARE TIES Old Prompt 200| 58 56 200 382 87157
HydraOpt(M=1) 200| 86 62 220 398 10.1]|17.3
HydraOpt(M=2) 280| 92 7.0 197 397 10.1]|17.1
HydraOpt(M=3) 36.0 | 104 6.5 19.0 40.1 11.6 | 175
HydraOpt(M=4) 440| 60 39 205 380 156/ 168
HydraOpt(M=5) 520|124 84 256 395 219|216
"Zeroshot T« 0| 34 48 194 344 84141
LoRA 100.0 | 11.5 8.7 27.4 392 234|220
TA 200| 29 56 200 377 134|159
TIES 200 | 22 6.1 20.1 370 116|154
DARE 200| 54 56 206 368 99157
DARE TIES New Prompt 200 | 6.1 55 214 363 10.1 159
HydraOpt(M=1) 200 | 82 64 221 394 123|177
HydraOpt(M=2) 280 | 89 75 192 386 113171
HydraOpt(M=3) 360| 95 84 194 395 128|179
HydraOpt(M=4) 440 | 62 40 138 383 17.0 159
HydraOpt(M=5) 520|139 7.6 236 392 215|212
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