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Abstract

Vision-Language-Action (VLA) models have
made substantial progress by leveraging the
robust capabilities of Visual Language Mod-
els (VLMs). However, VLMs’ significant pa-
rameter size and autoregressive (AR) decoding
nature impose considerable computational de-
mands on VLA models. While Speculative De-
coding (SD) has shown efficacy in accelerating
Large Language Models (LLMs) by incorporat-
ing efficient drafting and parallel verification,
allowing multiple tokens to be generated in one
forward pass, its application to VLA models re-
mains unexplored. This work introduces Spec-
VLA, an SD framework designed to accelerate
VLA models. Due to the difficulty of the action
prediction task and the greedy decoding mecha-
nism of the VLA models, the direct application
of the advanced SD framework to the VLA pre-
diction task yields a minor speed improvement.
To boost the generation speed, we propose an
effective mechanism to relax acceptance uti-
lizing the relative distances represented by the
action tokens of the VLA model. Empirical
results across diverse test scenarios affirm the
effectiveness of the Spec-VLA framework, and
further analysis substantiates the impact of our
proposed strategies, which enhance the accep-
tance length by 44%, achieving 1.42x speedup
compared with the OpenVLA baseline, without
compromising the success rate. The success of
the Spec-VLA framework highlights the poten-
tial for broader application of speculative exe-
cution in VLA prediction scenarios. We make
our code and data publicly available at https:
//github.com/PineTreeWss/SpecVLA.

1 Introduction

The Vision-Language-Action (VLA) models (Bro-
han et al., 2022, 2023; Mees et al., 2024; Wu
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et al.; Cheang et al., 2024; Vuong et al., 2023)
have achieved significant progress by leveraging
the rich understanding and generation capabilities
from pre-trained visual encoders or Visual Lan-
guage Models (VLMs). These models can gener-
ate robot actions following language instructions.
With the development of large-scale robot predic-
tion datasets, recently proposed VLA models such
as OpenVLA (Kim et al., 2024) demonstrate high
generalizability across diverse tasks and environ-
ments (Li et al., 2024b).

To achieve the goals above, the parameter size
of backbone VLMs is substantial, increasing the
computational demand for robot control systems.
Meanwhile, the VLMs’ Autoregressive (AR) next-
token-prediction strategy further increases the de-
coding latency of VLA models. A series of stud-
ies address the efficiency issue through model ar-
chitecture redesign (Wen et al., 2025; Liu et al.,
2024b) or task-specific optimizations (Kim et al.,
2025). Other efforts incorporate Large Language
Model (LLM) inference acceleration methods such
as Early-Exit (Schuster et al., 2022) and Jacobi-
Decoding (Kou et al., 2024) into VLA infer-
ence (Yue et al., 2024; Song et al., 2025). How-
ever, incorporating such methods requires resource-
intensive fine-tuning of the backbone VLM for
Early-Exit (Yue et al., 2024) or pretraining for
Jacobi-Decoding (Song et al., 2025). Moreover,
in Jacobi-Decoding, enabling parallel decoding de-
grades the model performance compared to AR
decoding (Song et al., 2025).

Speculative Decoding (SD) provides a lossless
solution and also allows for the parallel generation
of LLMs. A typical SD architecture, such as Ea-
gle (Li et al., 2024d), employs a draft model to
generate draft tokens efficiently, with the LLMs
serving as the verification model to ensure the cor-
rectness of these tokens. As the parameters of the
draft model are decoupled, additional fine-tuning
of the verification model is not required.
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Figure 1: Comparison of Autoregressive Decoding,
Jacobi-Decoding, and Spec-VLA Decoding Framework.
Spec-VLA framework enables parallel generation with-
out tuning or retraining for target VLA model.

Recent works have applied the SD framework
in visual generation (Jang et al., 2024; Park et al.,
2025), designing a task-specific methodology to
relax the acceptance for the verification model.
The application of SD architecture to accelerate
the VLA prediction task is intuitive, enabling ef-
ficient adaptation to speed up the generation of
downstream tasks while retaining the knowledge of
the VLA backbone model. However, its application
to the VLA model has not yet been explored.

This work introduces the speculative decoding
framework to the AR robot action generation. We
propose the Spec-VLA, the first SD framework
designed for VLA inference acceleration, which
applies the advanced features of the speculative
decoding to the robot action generation scenarios.
Surprisingly, the direct application of the SD frame-
work yields minor speed improvements due to the
intricate difficulty of VLA prediction for the draft
model and the greedy decoding strategy. To further
boost the generation speed, we propose utilizing
VLA models’ token representation to relax the ac-
ceptance based on the action distance between draft
tokens and ground-truth tokens. Empirical results
across various test scenarios demonstrate the ef-

fectiveness of the Spec-VLA framework, enabling
an acceptance length from 2.10 to 2.94. Analy-
sis confirms that our proposed relaxation of ac-
ceptance strategy significantly enhances the accep-
tance length by 26% to 44%, enhances the gener-
ation speed by 1.22x to 1.42x while maintaining
the success rate of the VLA models.

Existing reinforcement learning studies have
highlighted the importance of robustness, either
in multi-task settings where policy degradation oc-
curs (Bai et al., 2023; Liu et al., 2025), or under
adversarial perturbations where agents exhibit vul-
nerability (Bai et al., 2025). Inspired by these
studies, we further analyze the robustness of VLA
models under speculative decoding with relaxed
acceptance by exploring the relaxation threshold
under multiple tasks, demonstrating the potential
of SD frameworks in the VLA prediction domain.

2 Related Works
2.1 Acceleration for VLA Models

Recent advances in accelerating VLA models can
be broadly categorized into multiple directions.
Token-level optimization methods reduce computa-
tional redundancy through vision-language token
selection. The FastV (Pertsch et al., 2025) distills
task-relevant visual features using auxiliary trans-
formers, while Sparse VLM (Zhang et al., 2024c)
dynamically prunes tokens via spatial attention
thresholds. Though efficient without architectural
changes, these approaches rely heavily on heuristic
token selection, risking generalization failures in
novel scenarios.

Conventional LLM acceleration techniques like
quantization, pruning, and early-exit strategies
have also been adapted for VLA scenarios.
QAIL (Park et al., 2024) employs quantization-
aware fine-tuning but suffers from precision loss.
Mope-CLIP (Lin et al., 2024) explores modality-
specific pruning for vision-language models, and
DeeR (Yue et al., 2024) implements early-exit
mechanisms that compromise action trajectory co-
herence. While effective in constrained settings,
such methods often degrade cross-modal interac-
tion quality and require task-specific tuning.

Structural modifications, such as Robo-
mamba (Liu et al., 2024b) and TinyVLA (Wen
et al., 2025), redesign model backbones using
lightweight SSM or distilled vision encoders,
achieving latency reduction through structural
simplification. The Kim et al. (2025) propose
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temporal consistency losses to regularize action
smoothness, and Song et al. (2025) reformulate
decoding via Jacobi iteration for parallel trajectory
generation. The aforementioned methodologies
not only require domain-specific data fine-tuning
or retraining but also introduce augmented system
complexity through model architectural redesign.
Beyond architectural redesign and decoding
strategies, recent RL-based studies also target
efficiency in VLA inference. SEER (Bai et al.,
2024) improves sample efficiency via aligned
experience estimation and policy regularization,
while D3P (Yu et al., 2025) accelerates inference
by adaptively adjusting diffusion steps. Together,
they highlight complementary RL-driven strategies
for efficient VLA inference.

2.2 Speculative Decoding for LL.Ms

The SD has emerged as an effective paradigm for
inference acceleration in AR generative models,
such as machine translation models (Stern et al.,
2018) and decoder-only LLMs (Chen et al., 2023).
The evolutionary trajectory of SD frameworks re-
veals three distinct development phases. Pioneer-
ing SD frameworks exemplified by Medusa (Cai
et al., 2024) and Medusa-CTC (Wen et al., 2024)
introduced parallel generation capabilities through
multi-head decoding architectures coupled with
tree-attention verification mechanisms. Subsequent
developments in the Eagle series, including Ea-
gle (Zhang et al., 2024a) and Eagle-2 (Li et al.,
2024c), advanced the paradigm through architec-
tural innovations in draft modeling, achieving supe-
rior speedup ratios via high-quality draft token gen-
eration. Recently, the Eagle-3 (Li et al., 2025) and
HASS (Zhang et al., 2024b) have further improved
the generation capabilities by employing a training-
time testing strategy. The framework have shown
remakable superiority for LLM acclleration (3.2 x
- 5.6x), compared with Jacobi-Decoding (2.5x -
3.0x) (Kou et al., 2024) and Early-Exit Decod-
ing (1.9x - 1.8x) (Liu et al., 2024a).

Recent works have further extended SD appli-
cations to emerging scenarios, including retrieval-
argumented generation (Wang et al., 2024) and
long-context generation (Yang et al., 2025). How-
ever, empirical validation remains insufficient for
multimodal generation contexts. Initial investiga-
tions by Jang et al. (2024) demonstrated signifi-
cant performance degradation when applying exist-
ing SD frameworks to visual AR generation tasks.
Gagrani et al. (2024) conducted systematic analy-

ses of visual feature utilization in multimodal ap-
plications such as visual question answering and
image captioning. Despite these advances, the ap-
plication of SD methodologies within the VLA
generation scenario remains unexplored.

Relaxed acceptance proves effective in the SD
framework, demonstrating particular promise for
extending efficiency gains to novel application
scenarios. It boosts throughput by loosening the
criteria for accepting proposed tokens, striking
a balance between efficiency and fidelity. Spec-
Dec (Xia et al., 2022) replaces the strict greedy
check by accepting any drafted token appearing
in the AR model’s top-k candidates, significantly
raising token acceptance rates and overall through-
put without degrading output quality. Meanwhile,
the Lantern framework (Jang et al., 2024) accepts
the top-k similar tokens in the dictionary, which
significantly boosts the generation speed for vi-
sual generation. (Further improvements (Li et al.,
2024a; Zhang et al., 2023)). These advancements
proves the potential of relaxed acceptance in en-
hancing the efficiency of multimodal models, such
as VLA models.

3 Background

3.1 Decoding of VLA Models

Large VLA models (Ma et al., 2024), such as Open-
VLA (Kim et al., 2024) and RT-2 (Brohan et al.,
2023) series, predict action sequences to control
robots. They employ a sequence of action tokens
A = {ay, ..., ar,} which represent the actions at
each timestep. Using VLM inference, the model
autoregressively predicts seven action tokens to de-
fine a control action, including “Apos,”, “Apos,”
J“Apos,”, “Arot,” , “Arot,”, “Arot,” and “grip-
per_extension”. Specifically, they utilize greedy
decoding, predicting the most probable action to-
ken a; based on the previously predicted tokens
ap.;—1, visual observations o, language instruction
prompts p, and the learnable model parameters 6.

a; = argmax [P(a; | ap:i-1, 0, p, 0)] (1)

a;

Due to the substantial parameter size of contempo-
rary VLA models and their AR prediction strategy,
the action speed of robot is inherently limited.

3.2 Speculative Decoding Framework

The SD framework utilizes an efficient draft
model Mp to produce initial draft tokens and
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Figure 2: The overall Spec-VLA framework. The draft model predicts action tokens through AR decoding with the
fused textual and visual features. During verification, a relaxed acceptance mechanism is adopted to broadly retain
high-quality outputs. This mechanism allows synonym to be accepted, while maintaining the success rate of action
generation, achieving optimal balance between caption accuracy and efficiency.
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Figure 3: Illustration of relaxation of the acceptance
criteria. Instead of strictly accepting the predicted ver-
ify token a;, the verification model My accept action
tokens within a predefined margin.

concurrently verifies these tokens using a veri-
fication model My,. The Eagle framework (Li
et al., 2024c¢) incorporates a Llama layer as the
draft model, which predicts multiple draft tokens
a; autoregressively, conditioned on the previous
draft token states as1.;—1, hidden states and token
embeddings from verification model f1.; and eg.;.
It is noteworthy that the output states of the draft to-
kens also assist in calculations, and for the sake of
simplicity, we use the notation aG;41.,—1 to denote
both embeddings and hidden features.

2

a; = Mp(fi,€o:t, Qet1:i—1)

During the verification phase, the verification
model My ensures the generation quality of the
draft tokens by correcting the mispredicted tokens
from the draft model. When conducting a greedy
search, the draft token a; will be accepted only if
it strictly matches the token a; predicted by the
verification model.

a; = MV(al ~ &i—lu D, 0)7
Accept,
Resample a; = a;,

Noticeably, the tokens subsequent to the first re-
Jected token a(; 1 1.1) will be abandoned. Thus, the
acceptance length is critical for the SD system as it
determines the number of tokens to be predicted in
a single forward pass.

a; == a4,

4 Spec-VLA Framework

In this section, we provide a detailed description
of the Spec-VLA framework and our exploration
of the adaptation of speculative execution for VLA
prediction tasks.

4.1 Overall Framework

The Spec-VLA framework incorporates a Llama
decoder layer (Touvron et al., 2023) as its draft
generator model. It incorporates a linear layer to
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Dataset | AR | Spec-VLA | Spec-VLA (relaxed)

‘ SR ‘ Length Speedup SR ‘ Length Speedup SR
LIBERO-Goal 78.0% | 2.04 1.09x  742% | 2.94 1.42x  74.4%
LIBERO-Object | 89.0% 1.75 1.15x  89.0% | 2.38 1.38x  85.0%
LIBERO-Spatial | 85.0% 1.59 1.08x  83.8% | 2.14 1.28x  85.8%
LIBERO-Long 52.0% 1.67 1.13x  50.8% | 2.10 1.22x  55.0%

Table 1: Experimental results of the Spec-VLA framework on the LIBERO-Goal, Object, Spatial, Long dataset.
‘SR’ denotes the Success Rate of the control policy, ‘Length’ indicates the number of tokens predicted in each
forward pass, and ‘Speedup’ reflects the generation speed as compared to the AR baseline.

integrate feature-level and token-level loss data ef-
fectively. During the prefill stage, the draft gen-
erator receives hidden states from the verification
model, alongside textual and visual embeddings
from the textual tokenizer and visual encoder, re-
spectively. Mirroring the OpenVLA model, the
visual embeddings e, and textual embeddings e
are concatenated, collectively providing the feature-
level information for the draft model.

a; = Mp(fi+,concat(ey, ep), ary1:i-1))  (4)

In the draft prediction phase, the draft generator
model predicts the action token a; conditioned on
previous hidden states, embeddings, and action to-
kens. We employ the dynamic draft tree strategy of
Eagle-2 (Li et al., 2024c¢), where the Top-K predic-
tions from the draft generator M p are recorded and
subsequently form a tree structure with multiple
paths. These paths are then verified in parallel by
the verification model.

4.2 Problem by Direct Application

However, directly implementing the SD frame-
work yields only minor speed improvements, from
1.08% to 1.15x (as shown in Table 1). Surpris-
ingly, in the VLA prediction task, the draft genera-
tor models fail to predict the initial draft tokens in
about half of the samples (refer to Table 2).

In natural language generation tasks, the draft
generator of the SD framework typically produces
common words and punctuation. Conversely, the
VLA draft model must understand multiple modali-
ties and predict robotic motions in VLA prediction
tasks. Intuitively, the VLA prediction task poses
a greater complexity for the draft generator than
language generation.

Moreover, VLA models such as OpenVLA and
RT-2 incorporate greedy decoding during the draft-
ing phase. This setup requires an exact match be-

tween draft tokens a; and the verification model’s
predictions a;. Often, allowing for synonym tokens
could improve generation speed without compro-
mising quality. Building upon prior research, we
propose relaxing the acceptance criteria within the
Spec-VLA framework by allowing the acceptance
of top-k similar tokens in the action space.

4.3 Relaxation of Acceptance

We introduce the Relaxation Threshold r to facili-
tate acceptance relaxation, quantifying the permis-
sible distance between the draft action token a; and
the predicted action token a;. The draft token a;
will be accepted if the distance D between a; and
a; 1s not larger than threshold r.

ai = My (a1 ~ G;—1, p, 9),
Accept, D(a;,a;) <r s
Resample a; = a;, D(a;,a;) > 7. ©)

VLA models, notably OpenVLA and RT-2, dis-
cretize continuous dimensions into 256 bins and
map them to 256 action tokens to predict action se-
quences. The VLA token representation inherently
provides information on token similarity, where the
distance between tokens can be directly inferred
from the absolute difference between bin IDs. For
instance, the token a represents bin b and the token
a represents bin b, the distance between a and @ can
be directly determined by the absolute difference
between bin IDs b and b. The token acceptance area
will be widened from strictly bto b € (b—r, b+1),
enabling the acceptance of the top 2 x 7 similar
tokens.

By utilizing this characteristic, our proposed
method eliminates the need for additional token
similarity calculations from token embeddings, in-
troducing virtually no computational overhead.
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Figure 4: Acceptance Length and Success Rate of the Spec-VLA framework on the LIBERO-Goal, LIBERO-Spatial,
LIBERO-Object, and LIBERO-Long datasets. An increase in the Relaxation Threshold shows a minor impact on
the Success Rate while significantly boosting the Acceptance Length.

5 Experiment

5.1 Main Result

Following OpenVLA, we evaluated the Spec-VLA
framework on the LIBERO simulation bench-
mark (Liu et al., 2023). We utilized four task suites:
LIBERO-Object, LIBERO-Spatial, LIBERO-Goal,
and LIBERO-Long, each providing 10 tasks and
500 expert demonstrations. We employed the fine-
tuned OpenVLA as the verification model and used
this model to regenerate the dataset for training the
draft model. We conducted 50 trials on each task
with our SD frameworks for testing scenarios. The
training was completed in 6 hours using 4 x Tesla
A100 (80G) GPU, with a batch size of 16. We in-
herent the implementation of draft model structure
and tree decoding mechenism from Eagle-2 (Li
et al., 2024c). For tree-decoding, we set the max-
imum nodes to 50, tree depth to 4, and used the
top 8 tokens to construct the draft tree. Drawing on
prior works in SD (Jang et al., 2024), we report the

number of tokens predicted in each forward pass
and speedup compared to AR decoding.

The main results are reported in Table 1. Firstly,
the results validate the effectiveness of the SD
framework in VLA prediction scenarios. Apply-
ing the Eagle framework achieves an acceleration
ratio ranging from 1.08x to 1.15x without sac-
rificing generation quality. Secondly, the relaxed
acceptance mechanism further enhances the gen-
eration speed of the SD framework, increasing the
acceptance length by 25% to 44%, demonstrating
the potential for developing specialized SD mecha-
nisms in the VLA scenario.

5.2 Ablations on Relaxation Threshold

This section further analyzes the relationship
between the relaxation threshold, success rate,
and acceptance length (as shown in Figure 4).
We conducted analyses on the LIBERO-Goal,
LIBERO-Spatial, LIBERO-Object, and LIBERO-
Long benchmarks, each containing 10 tasks, with
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‘ Relaxed ‘

Acceptance Length

Dataset
| |0 1 2 3| 4 | s
Libero-Goal x 50.24% | 33.28% | 13.96% | 2.23% | 0.19% | 0.00%
v | 2301% | 18.98% | 39.99% | 15.41% | 2.53% | 0.08%
LiberoObicct x| 47.93% | 34.72% | 12.72% | 4.07% | 0.56% | 0.00%
ero-tibjec v | 2823% | 37.62% | 17.29% | 10.11% | 6.22% | 0.53%
Libero-Sontial | > 55.96% | 31.52% | 9.90% | 2.46% | 0.16% | 0.00%
p v 137.07% | 33.52% | 19.15% | 8.23% | 1.99% | 0.03%
Libero-Lon x 55.08% | 28.77% | 11.30% | 4.30% | 0.50% | 0.05%
g v | 4239% | 28.57% | 16.65% | 8.84% | 3.35% | 0.20%

Table 2: Acceptance length distribution on the LIBERO-Goal, LIBERO-Object, LIBERO-Spatial, and LIBERO-
Long datasets under non-relaxed and relaxed settings. Each row reports the proportion of trials that succeeded
with a specific acceptance length. The threshold for relaxation is 9 for LIBERO-Goal, LIBERO-Object, and

LIBERO-Spatial, and 5 for LIBERO-Long.

10 trials performed for each task. We tested starting
from a relaxation threshold of 0, which corresponds
to strict matching acceptance.

First, Relaxation of acceptance criteria effec-
tively enhances the acceptance length, boosting
the generation speed of the VLA models. The
increase in relaxation distance can enhance the
acceptance length by 50% to 70% across various
datasets. Moreover, we surprisingly found that
the OpenVLA model displays high robustness on
the LIBERO-Goal, LIBERO-Object, and LIBERO-
Spatial datasets. The relaxation threshold could be
relaxed from 5 to 9 without sacrificing the success
rate of the VLA model.

Additionally, the better a model performs in a
scenario, the larger the relaxation threshold it can
tolerate. In the LIBERO-Long dataset, the suc-
cess rate drops significantly when the relaxation
threshold exceeds 5. However, in LIBERO-Goal,
the success rate remains stable even with the relax-
ation threshold set to 15. This analysis verifies the
effectiveness of our proposed relaxed acceptance
strategy and also highlights the high potential for
speculative execution within the VLA framework.

6 Analysis

This section provides an analysis of the Spec-
VLA framework under non-relaxed and relaxed
acceptance conditions, focusing on acceptance
length distribution patterns and prediction perfor-
mance across distinct action tokens on four bench-
mark datasets (Libero-Goal, Libero-Object, Libero-
Spatial, and Libero-Long). Consider that the ver-

ification model invariably emits an accept length
of 1, which carries no discriminative information;
our analysis here considers only the accept lengths
produced by the draft model. Once verification
outputs are excluded, the minimum accept length
becomes 0 (indicating no speculative tokens were
accepted), so the average accept length on each
position can legitimately fall below 1.

6.1 Acceptance Length Proportion

Table 2 quantifies the distribution of acceptance
lengths (0-5) under the Spec-VLA framework,
comparing non-relaxed and relaxed conditions
across four datasets. The data reveals a dis-
tinct trend: non-relaxed acceptance dispropor-
tionately favors shorter sequences (lengths 0-1),
with proportions sharply declining for longer
lengths (2-5), whereas relaxed acceptance exhibits
a more balanced distribution. The dominance of
short sequences under non-relaxed conditions (e.g.,
50.24% at length 0) highlights a critical ineffi-
ciency: models prioritize ‘safe’ short predictions
to avoid constraint violations. This artificially low
conversion rate for longer sequences implies that
strict constraints act as a bottleneck preventing the
model from predicting longer action sequence. The
most pronounced contrast occurs in Libero-Object
at length 4: non-relaxed acceptance plummets to
0.56% versus 6.22% under relaxed conditions—an
11-fold relative increase. Similarly, Libero-Long
exhibits dramatic divergence at length 4 (0.50% vs.
3.35%, 6.7x improvement) and Libero-Spatial at
length 3 (2.46% vs. 8.23%, 3.3x improvement).
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‘ Relaxed ‘

Position

Dataset
| o |t [ 2 ]3] 415
Libero-Goal % 1047]030]073]078 ] 1.13 | 0.98
v 144 | 136 | 218 | 2.13 | 1.76 | 0.98
. . x 1060|064 1.02]067]088]099
Libero-Object v 139 | 2.09 | 1.66 | 1.46 | 1.40 | 0.99
Libero.Soaial | % | 036 [ 050 | 088 [ 0.72 ] 0.70 | 0.96
p v 1089139 155|156 1200098
Libero-Lon % 1079042 1.19] 087 | 0.65 | 0.64
g v 127 1094|170 | 135 | 1.12 | 0.72

Table 3: Average acceptance lengths at each position (0-5) on the LIBERO-Goal, LIBERO-Object, LIBERO-Spatial,
and LIBERO-Long datasets under non-relaxed and relaxed conditions. Each entry reports the average acceptance
length observed at the given token position. The relaxed setting is consistent with Table 2.

Even at maximum length 5, relaxed acceptance
achieves non-zero proportions (e.g., 0.53% for re-
laxed in Libero-Object vs. 0% non-relaxed). These
disparities highlight a critical limitation of strict
constraints: they disproportionately penalize longer
sequences. Relaxation alleviates this by allow-
ing semantically compatible draft tokens to be ac-
cepted, thereby increasing sequence diversity with-
out compromising task success rates.

6.2 Acceptance Length on Multiple Positions

We perform further analysis to evaluate the accep-
tance length in each starting position. As shown in
Table 3, relaxed acceptance consistently achieves
longer average lengths than non-relaxed acceptance
across all positions. For Libero-Object, acceptance
length at position 1 surges from 0.64 (non-relaxed)
to 2.09 under relaxation (3.3x improvement), re-
flecting reduced bias toward short-term predictions.
Similarly, Libero-Goal shows a 3.1x increase at
position 0 (0.47 — 1.44), highlighting the model’s
willingness to explore initial reasoning steps when
constraints are loosened. Libero-Spatial also ex-
hibits a 2.2x gain at position 3 (0.72 — 1.56), re-
vealing that relaxation mitigates premature trunca-
tion of valid action sequences, whereas relaxation
balances risk and exploration to unlock the poten-
tial for longer action sequence generation. These
results align with findings in Table 2.

6.3 Case Study

This section provides a representative case to show
the effectiveness of our proposed relaxation of ac-
ceptance method. As shown in Figure 5, under the

strict verification model (Non-Relaxed), the series
appends only those candidate tokens that satisfy
a stringent acceptability threshold, resulting in a
gradual accretion of the action sequence. For in-
stance, Action 1 extends from a solitary context
token [137] to the fully verified sequence [137,
128, 128, 109, 98, 82, 256] over four iterative re-
finement steps. In contrast, by relaxed acceptance,
the relaxed criterion admits a broader spectrum
of draft proposals at an earlier stage; Action 1 al-
ready incorporates the tokens [119, 121, 109] in its
initial iteration and further augments this set with
[98, 77, 256] in the second iteration. The same
pattern holds for the other cases. Action 3, for
example, reaches the whole sequence [191, 121,
123,109, 79, 69, 256] in only three iterations under
the relaxed acceptance, whereas the non-relaxed
acceptance requires five iterations. These results
show that relaxing the acceptance threshold sig-
nificantly reduces the number of iterations needed
for plan generation while still preserving the qual-
ity of the final action sequences. This relaxation
also accelerates the action sequence completion
process, reducing the number of iterations without
compromising functional validity.

7 Conclusion

In this study, we explore the application of the SD
framework in VLA prediction tasks. We propose
Spec-VLA, which enhances the Eagle framework
for VLA predictions. To further boost the gen-
eration speed of the framework, we introduce the
distance-sensitive relaxation of the acceptance strat-
egy, which utilizes the token representation of VLA
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Non-Relaxed

Relaxed

Iteration 1:[137]
- - . . c
Language Instruction | ¥ Iteration 2:[137,128,128,109] teration 1:[137,119,121,109]
“ e . i I ion 2:[137,119,121,109,98,77,256
Push the plate | 5 Iteration 3:[137,128,128,109,98] teration 2:( 137,119, 1
to the front of < )
the stove” Iteration 4:[137,128,128,109,98,82,256]
& Tteration 1:[191]
= Iteration 1:[146,116,123,109]
.S Tteration 2:[191,128,128,109]
k31 Iteration 2:[146,116,123,109,98,69,256]
< lteration 3:[137,128,128,109,84,69,256]
Iteration 1:[205]
I
4: Iteration 2:[205,128,128] Iteration 1:[191,121,123]
-§ Iteration 3:[205,128,128,107] Iteration 2:[191,121,123,109,79,69]
(5]
«

Iteration 4:[205,128,128,107,103]

Iteration 3:[191,121,123,109,79,69,256]

Iteration 5:[205,128,128,107,103,52,256]

Figure 5: Illustration of action sequence generation cases under non-relaxed and relaxed acceptance conditions in
the Spec-VLA framework. Three representative action trajectories are juxtaposed for systematic comparison across
both conditions. Gray denotes context tokens. Blue represents verification model outputs. Green indicates draft

model outputs.

models to effectively identify the distance between
action tokens and relax the acceptance threshold
within the SD framework. Experimental results ver-
ify the effectiveness of the Spec-VLA framework,
where the relaxation of acceptance criteria further
boosts the acceptance length by 25% to 44% with-
out compromising the success rate. Our findings on
the relaxation of acceptance show high robustness
of the VLA models, demonstrating the potential of
speculative systems in the VLA prediction domain.

Limitations

This work explores speculative decoding in VLA
prediction tasks. Due to time and resource con-
straints, experiments were not conducted in real-
world robotic settings. Additionally, due to limita-
tions of the verification model, Action Chunking
was not explored. Future work could incorporate
additional methodologies into the SD framework
for VLA models.
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Parameter Value

Learning Rate Se-5

Batch Size 16
Warmup Steps 2000
Pw 0.1
Vew 1.0
Gradiant Clipping 0.5
Top-k 8
Tree Depth 5
Max Nodes 50

Table 4: Parameter Settings of Spec-VLA Framework.

A Parameter Settings

This section details the parameter settings of the
Spec-VLA model. Table 4 presents the training
and inference parameters of the Spec-VLA frame-
work. For LIBERO-Goal, LIBERO-Spatial, and
LIBERO-Object, the relaxation threshold is set at 9,
while for LIBERO-Long, it is set at 5. The parame-
ters p,, and v,, represent the weights of the Cross-
Entropy loss and Regression loss, respectively, as
implemented in the Eagle configuration (Li et al.,
2024d).

B Spec-VLA Decoding Algorithm

To enhance the understanding of the decoding pro-
cess within the Spec-VLA framework, we pro-
vide pseudocode that illustrates Spec-VLA decod-
ing with relaxed acceptance, as outlined in Algo-
rithm 1.

C Accelleration for Quantilized Models

To illustrate SD’s complementary potential, we ex-
plored further by combining Speculative Decoding
with quantization.

We compared inference speeds for the OpenVLA
model using int8, int4 quantization, and BF16 rep-
resentations on the Tesla A100 (80G) GPU. We
observed that the int8 and int4 quantization lead
to decreased inference speed (Table 5). This re-
sult may be attributed to the additional overhead
incurred by the quantization operation, consistent
with the analysis of OpenVLA (Kim et al., 2024).
Additionally, we accelerated the quantized model
using the Spec-VLA framework, discovering that
SD could speed up the quantized verification model.
It achieves a significant speedup compared with AR
decoding (Table 6).

Dataset | OpenVLA

‘ Precision  Speedup

LIBERO-Goal bf16 1.00x
int8 0.24 x
int4 0.61x

LIBERO-Object bf16 1x
int8 0.21x
int4 0.59x

LIBERO-Spatial bf16 1%
int8 0.23x
int4 0.55x%

LIBERO-Long bf16 1x
int8 0.23x
int4 0.57x

Table 5: Speedup of the quantilized OpenVLA model
on the LIBERO-Goal, Object, Spatial, Long dataset.
The ‘Precision’ shows the quantization precision, and
‘Speedup’ reflects the generation speed compared to the
bf16 baseline.

Dataset | SpecVLA

‘ Precision  Speedup

LIBERO-Goal bf16 1.42 %
int8 1.61x
int4 1.34 %

LIBERO-Object bf16 1.38x
nt8 1.41x
int4 1.33x

LIBERO-Spatial bfl6 1.28 x
int8 1.31x
int4 1.29x

LIBERO-Long bf16 1.22%
int8 1.32x
int4 1.15%

Table 6: Speedup of the quantilized SpecVLA frame-
work on the LIBERO-Goal, Object, Spatial, Long
dataset. The ‘Precision’ shows the quantilization pre-
cision, ‘Speedup’ reflects the generation speed as com-
pared to the OpenVLA AR baseline.
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Algorithm 1 Spec-VLA Decoding
1: Input: Prompt p, Observation o, Verification Model My , Draft Model Mp, Verification model

hidden states f.;, Visual and textual embeddings eg.;, Search Depth d, Target Length L, Relaxation
Threshold r

2: initn <t

3: whilen < L do

4: foriin {1,....d} do

5: Sample draft in AR manner a; = Mp(fi1.¢, €0:t, Gt+1:i—1)

6: end for

7: Compute the reference token set a;11.4+1+4 in parallel: a; = My (a¢+1:i—1,0,D)
8: for i in {t+1,...,t+1+d} do

9: if D(a;,a;)<=r then
10: Set a; < a;
11: else
12: a; < a;

13: break
14: end if
15: end for
16: if all drafts accepted, sample an extra token ay1 g2 = My (at41:t+d+1,0, D)

17: end while

18: return a;i1:¢4d+1 OF Qy1:t+d+2
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