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Abstract

Multi-label text classification (MLTC) is an es-
sential task in NLP applications. Traditional
methods require extensive labeled data and are
limited to fixed label sets. Extracting labels
with large language models (LLMs) is more
effective and universal, but incurs high com-
putational costs. In this work, we introduce
a distillation-based T5 generalist model for
zero-shot MLTC and few-shot fine-tuning. Our
model accommodates variable label sets with
general domain-agnostic pretraining, while
modeling dependency between labels. Exper-
iments show that our approach outperforms
baselines of similar size on three few-shot tasks.
Our code is available at repository.

1 Introduction

Multi-label text classification (MLTC) powers
numerous NLP applications, yet supervised sys-
tems remain brittle when adapting to a new domain
with limited supervised data, while domain-specific
annotation is costly. Despite strong zero- and few-
shot capabilities (Lan et al., 2024; Zhu and Zamani,
2024; Tabatabaei et al., 2025), LLMs are expen-
sive to deploy (Park et al., 2024) and sensitive to
prompting (Zhuo et al., 2024; Peskine et al., 2023).
Most few-shot methods still train multiple one-vs-
all heads: attention-based (Chalkidis et al., 2020),
prompt-based (Schick and Schiitze, 2021a), or con-
trastive (Tunstall et al., 2022), etc. Since each label
is hard-coded into the parameters, these models
cannot be pre-trained once and reused, and they
ignore inter-label dependencies.

Smaller encoder—decoder LMs, e.g. TS5 (Raffel
et al., 2020), can instead emit labels sequentially,
capturing label dependencies. Early variants like
SGM (Yang et al., 2018), EncT5 (Liu et al., 2022;
Kementchedjhieva and Chalkidis, 2023), improve
fully supervised MLTC, but they (i) leave label se-
mantics unused and (ii) suffer from the order bias
inherited from classifier chains (Read et al., 2021).
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Figure 1: Modeling MLTC as text-to-text with T5. No-
tations: labels (1.), sentinel tokens ([E.]).
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Order-agnostic training (Tsai and Lee, 2019), DE-
former (Alcorn and Nguyen, 2021), or OTSeq2Set
(Cao and Zhang, 2022) reduce this bias yet still
deploy with an arbitrary order, while dynamic or-
der learners such as DLOL (Li et al., 2024) add
inference latency.

Our approach (section 2) trains a T5 in a three-
stage procedure, to jointly embed texts and labels,
learn a permutation-marginal set scorer, and finally
decode with a single chain. Label semantics are
encoded within the input sequence with no addi-
tional parameters. Unlike order-agnostic or dy-
namic methods, our approach balances between
order-invariance and inference efficiency. Our
method yields state-of-the-art results on three few-
shot MLTC benchmarks while preserving single-
sequence inference latency, bridging set-invariant
theory and practical few-shot deployment.

2 Sequence-to-Set TS5 Chain

We cast MLTC as sequence—to—set prediction with
a TS5 encoder—decoder (section 2.1 and figure 1)
and propose a three-stage training procedure (sec-
tion 2.2 and figure 2).

2.1 Formulation

Notation. Let L = {l4,...,1,,} be the candidate
label set. Let x be the text to classify and y its label
indicator, where y(I;) = 1 if and only if /; is a
correct label of z. Let m € &,,, a permutation over
L, or chain. The input sequence assembles z and
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Figure 2: Overall pipeline of the training process of TS
Chain (section 2).

all labels ordered by 7:

2" =z [E1]lz1) [E2] () - - - [Em] la(m), (1)

where sentinel tokens [E;] act as hard anchors, de-
marcating each multi-token label. The encoder
sees text-label and label-label interactions in a sin-
gle forward pass. The output v™ is a sequence of
YES/NO tokens and sentinel markers, where v3; is
YES if y(I(;)) = 1 and NO otherwise. This formu-
lation encapsulates the input text, label descriptors,
and the label indicator within two sequences for
text-to-text models (figure 1).

Permutation-marginal likelihood. Ideally, pre-
diction of a label set based on sequence generation
induces the Janossy mixture (Murphy et al., 2019):

1 m
log pg(y|x)= il Z Z log pg (v3; | 2™, vZs;)
’ WEGm]Zl
2

which is permutation-invariant and reduces to a
classical chain when the sum collapses to one order.
In practice, we Monte-Carlo approximate (2) by
randomly sampling 7; section 2.2 explains how the
three training stages leverage this fact.

2.2 Shuffle-then—Select Training
Stage 1: Generalist pre-training (GP)

Vanilla TS5 is pretrained for span-corruption; we
first teach it to classify topics in an order-
agnostic manner. In our work, we employ the
t5-v1.1-base, which has 220M parameters.

Data creation We sample 10,000 texts from the
PILE (Gao et al., 2020), a large-scale and diverse
corpus. Each sampled text is then processed using
GPT-40, to extract relevant topics. The resulting
dataset consists of 9,789 texts, each associated with
several topical tags, among a pool T of 63,852
unique topics.

Dataset D L D/L L/D W/D
Eurlex 45k 21 6949 324 583
AAPD | 53840 53 2429 239 163
Reuters | 7769 90 106 123 130

Table 1: Summary of datasets: training documents
(D), number of labels (L), average documents per label
(D/L), average labels per document (L /D), average
document length (W/ D).

Training For each text instance x during training,
80% positive labels are randomly sampled, while
an equal number of negative labels are drawn from
the topic pool. With these label candidates L,
and a random order 7 € &), |, we minimize the
autoregressive LM loss:

EGP = _Ex,Lm,WZInge(U?— ‘ ZﬂaUZt)v (3)
t

which amounts to a 7-SGD estimation of (2). The
resulting TS Generalist acquires a general under-
standing of the topic classification task in an order-
invariant, domain-agnostic manner.

Stage 2: Order-marginal domain adaptation
(DA)

We fine-tune with BCE objective that only scores
YES/NO token positions:

m
‘CDA = _E(x,y)ﬂr Z log qe (’Ugj | z7r’ UZQj) 5

j=1
“)
where ¢y is the softmax of py restricted to {YES,
NO}. Label shuffling induced by 7 persists, keeping
the model permutation-robust, while familiarizing
it with domain topics.

Stage 3: Chain specialisation (CS)

For each chain in a set of random chains we com-
pute the average BCE loss equation (4) on the val-
idation set and keep the best chain 7*. With this
fixed order we continue optimization:

m
£ = —Eey) Z log o (vgj* \z’r*,vgj> . (%)
j=1

Removing permutation noise polishes conditional
dependencies along 7* while keeping inference as
cheap as decoding one sequence.

2.3 Inference

At test time, the chain 7 is reused. The
model autoregressively generates v” under
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Eurlex AAPD Reuters
Method mF1  MF1 1IF1 mF1  MF1 IF1 | mF1 MF1 IF1
NSP (BERT) 1224 982 9.65 8.81 8.15 877 | 5.68 567 347
PET (RoBERTa) | 24.57 21.60 24.27 | 8.71 8.09 868 | 357 501 3.71
T5 Generalist 4239 31.22 41.85 | 16.73 1546 16.61 | 554 14.06 5.49

Table 2: Performance comparison in zero-shot setup. Best results are highlighted in bold.

Eurlex AAPD Reuters

Method mF1 MF1 IF1 mF1 MF1 IF1 mF1 MF1 IF1

Head (RoBERT32) 70.008 34.812 69219 | 41.5;1 T7.00¢ 32.009 | 55947 2.1g5 48.054
Head (T5 Encoder) 47.90_9 1 1.90.3 47-70.6 39.92.0 5.71_0 30.32.1 61 .7()_7 56.61.0 56.30_9
PET (RoBERTa) 70.806 45.826 70907 | 52.012 22.154 45251 | 85.6p5 48.6;, 87.61;
SetFit 69.909 35.756 70.603 | 58.997 30914 58210 | 84.809 36.85; 88.50¢
BERT-LWAN 69.014 35.018 68.45 |45533 11955 37.857 | 74.641 11.677 7T3.455
T5 Chain 7330, 56.404 73802 | 60304 42.60¢ 61.1ps | 84.805 57.7,5 8893

Table 3: Performance comparison in few-shot finetuning. Best results are highlighted in bold.

structural constraints (sentinel tokens at odd
steps, YES/NO at even steps). The normalized

qo (vgj* = YES | 2™, vQ;j) serves directly as a
relevant score between x and [}, calculated with no
extra latency, at the cost of a single sequence.

3 Experiments

3.1 Data

We experiment on three MLTC datasets summa-
rized in table 1: Eurlex EU legislation (Chalkidis
et al., 2019) with legislative English documents
from EUR-lex!, annotated with concepts from Eu-
roVoc?, we use top level labels of its hierarchy;
AAPD ArXiv Academic Paper Dataset (Yang et al.,
2018) consists of abstracts from arXiv academic
papers, tagged with subject categories of arXiv’s
taxonomy; and Reuters The Reuters-21578 dataset
(Apté et al., 1994), a popular dataset from the
Reuters financial newswire service in 1987.

3.2 Baselines

We compare our models with the following ap-
proaches, which we adapt and train ourselves (ap-
pendix B): Head (Sun et al., 2020), PET (Schick
and Schiitze, 2021a,b), SetFit (Tunstall et al., 2022),
BERT-LWAN (Mullenbach et al., 2018; Chalkidis
et al., 2020), and NSP (Yin et al., 2019; Ma et al.,
2021).

"https://eur-1lex.europa.eu/
2ht’cp: //eurovoc.europa.eu/

3.3 Setup and Evaluation

To simulate the few-shot setting, we sample 8|L|
training examples. The TS5 Generalist and all base-
lines are then fine-tuned on these data and evaluated
on the original test sets. Our implementation can
be found at our repository.

We report the mean and standard deviation
across five data splits. As our focus is on archi-
tectural comparisons rather than thresholding (Fan
and Lin, 2007; Al-Otaibi et al., 2014), we adopt a
fixed threshold of 0.5. Performance is measured
using F1 scores: micro (mF1), macro (MF1), and
instance-based (IF1).

4 Results and Discussion

4.1 Main Results

From Table 2, T5 Generalist shows strong zero-
shot performance against NSP and PET. Its high
MF1 scores suggest robustness to label sparsity.
Table 3 summarizes the results for few-shot
fine-tuning (additional metrics in appendix D). T5
Chain consistently outperforms all baselines across
three datasets, demonstrating robustness and strong
generalization. On Eurlex, it improves mF1 and
IF1 by around 3 points over PET. On AAPD, it
surpasses SetFit by around 2 points in both metrics.
For Reuters, TS5 Chain achieves the best MF1 and
IF1 (57.7 and 88.9, respectively), reflecting good
global performance and rare-label robustness.
Notably, T5 Chain demonstrates particularly
strong macro-level performance, surpassing other
methods by over 10 points in MF1 across all
datasets. This is important in MLTC where label
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GP DA CS | Eurlex AAPD Reuters
v v v 68.24 55.43 78.76
v v 61.00 47.13 55.17
v v | 6515531 52.06161 66.425
v v 66.30081 53.78p84 74.94¢.04

Table 4: F1 scores (averaging mF1, MF1, IF1) under
different configurations of TS Chain.

distribution is often long-tailed and dominated by
rare labels. Additionally, low standard deviations
(e.g., 0.2-0.8, except for MF1 on Reuters) highlight
the method’s stable performance across different
few-shot splits.

4.2 Ablation Studies

Q1: How do different stages of the training pro-
cedure contribute? Table 4 compares average
F1 scores of different configurations, showing that
the full procedure performs best overall. Removing
GP causes a sharp performance drop, suggesting
that foundational knowledge from diverse data is
critical for few-shot downstream tasks. CS adds an
extra fine-tuning step to refine the model’s perfor-
mance by restricting to a specific order, moderately
increases final scores, while simplifying inference.
The effect of DA and CS ? is less significant than
GP. Finally, omitting DA leads to a slightly larger
drop, highlighting its intermediate role between GP
and CS. Variation across chains decreases with DA,
showing that shuffling the labels, rather than train-
ing on a fixed chain, mitigates order dependence.
Nevertheless, the overall performance remains sta-
ble with a relative deviation below 3.5%, showing
robustness of T5 Chain to orderings.

Q2: Do TS5 models generate responses following
the given label order? *

While this behaviour is intuitively expected, the
information for such alignment is not provided: v3;
does not necessarily corresponds to ;). To ver-
ify this hypothesis, we analyse the cross-attention
matrix °, in figure 3, between output v3; and the
input tail [Eo] lx(1) [E1] ... lz(m) - The observed

3The chain selection step (section 2.2) only makes sense
after adapting to the label space (with DA) and before fixing a
chain (with CS). For the last two configurations of table 4, we
drop this step and instead report mean and standard deviation
across chains for the study of sensitivity.

*Models used for Q2 and Q3 are before CS, as we intend
to study these questions independently of the selected chain.

5 Aggregated by max pooling over decoder layers and heads
(to select the most significant signals) and mean pooling over
200 examples and 50 chains (we display the matrix of Eurlex
for readability, other datasets show similar patterns).

N
o
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=
o
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o

Figure 3: Cross attention weights, mean over chains and
examples of Eurlex.
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Figure 4: Distributions of decoder causal attention
weights by attended label category.

highlighted diagonal suggests that the output gener-
ation attends nearly linearly to the input sequence,
proving that the model truly predicts labels in the
same order as the input sequence.

Q3: Do T5 models learn label dependency and
exploit it in autoregressive prediction? We an-
alyze how the models attend to previously pre-
dicted labels by collecting decoder causal attention
weights over 200 examples and 50 chains. Each
score represents the attention from a target label
to an attended label, across 12 layers and 12 heads
inside the model, shown in figure 4. Statistically,
positive (YES) labels receive higher attention than
negative (NO) ones. This indicates that the models
leverage label dependencies during autoregressive
generation.

Q4: When is modeling label dependence not
beneficial? On Reuters, we notice that T5 Chain
improves only marginally compared to SetFit and
PET. We attribute this to sparse label correlations in
Reuters. Figure 5 shows the estimated distribution
of NPMI across all label pairs of the training sets
(Appendix E, Bouma 2009). Observe that Eurlex
and AAPD exhibit an NPMI more evenly spread
out in the range + 0.25, whereas the distribution
is heavily concentrated around O for Reuters. This
shows that in Reuters, label dependence is statisti-
cally less pronounced, explaining why the classifier
chain does not gain much advantage while predict-
ing labels sequentially.
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Figure 5: Distribution of pairwise normalized pointwise
mutual information (NPMI) over three datasets.

5 Related Work

Beyond works reviewed in previous sections and
the baselines detailed in appendix B, this section
highlights complementary threads that inform our
design and findings.

Set prediction and permutation invariance. A
complementary approach to classifier chains treats
MLTC as a set problem, using order-robust ar-
chitectures or losses. Zaheer et al. (2017) pro-
vides a representation theorem for permutation-
invariant/equivariant functions, while Lee et al.
(2019) introduces attention over sets without posi-
tional bias. In structured prediction, Hungarian
matching losses (Carion et al., 2020) align un-
ordered outputs to gold sets, inspiring sequence-
to-set objectives in NLP. Related multiset criteria
marginalize or match over permutations to reduce
order bias (Welleck et al., 2018). These works
motivate our shuffle-then-select recipe (section 2):
stochastic label shuffling approximates permuta-
tion marginalization, then a single chain is fixed to
maintain low inference cost.

Label semantics and open-vocabulary classifica-
tion. Some approaches reduce supervision using
textual labels. Shen et al. (2021) performs hierar-
chical MLTC with class names and self-training,
while Gao et al. (2023) uses label descriptions for
better zero-shot transfer (label-description tuning).
Hierarchy-aware reasoning further constrains pre-
dictions: Mao et al. (2019) combines reinforcement
learning with logical rollback for zero/few-shot tax-
onomy traversal. Inspired by these, our work joins
label texts and the input to ground predictions in
lexical semantics, aiding with rare labels. Similarly,
GLiNER (Zaratiana et al., 2024) also conditions
on text and label names for zero-shot extraction,
but differs in granularity (span vs. document) and
decoding (parallel vs. our autoregressive chain).

Meta-learning and preserving zero-shot ability.
Meta-learning allows rapid adaptation to new labels
or domains in MLTC, complementing contrastive
and prompt-based methods (Wu et al., 2019). Re-
cent work (Chen et al., 2025) shows supervised
adaptation can harm zero-shot generalization and
suggests strategies to preserve it. Similarly, we
distill a domain-agnostic generalist model, adapt
it via label shuffling, and fix a single efficient
chain, maintaining generalization while modeling
instance-level dependencies.

Set-aware generation in IE and structured NLP.
Recent generative information extraction treats out-
puts (entities, relation triplets, etc.) as sets, us-
ing permutations or set-matching losses to make
order-agnostic decorders (Paolini et al., 2021). This
reduces hallucinations and exposure errors, consis-
tent with our observation that shuffling improves
stability in few-shot MLTC.

6 Conclusion

We proposed a T5-based architecture for few-shot
multi-label text classification that captures label de-
pendencies through autoregressive generation. Our
three-stage pipeline - pretraining, adaptation, and
specialization - supports robust cross-domain gen-
eralization. Experiments demonstrate strong zero-
and few-shot performance, while ablations confirm
the model’s ability to follow MLTC structures and
effectively leverage label dependency information,
highlighting its potential for multi-label problems.

7 Limitations

Despite its strong performance, our approach has
several limitations. Firstly, the reliance on se-
quential label prediction introduces inference la-
tency, particularly when dealing with long label
sequences, both in computation time and memory
usage. Chunking label sequences would require
partition selection and loss of global dependency,
and may lead to a trade-off between efficiency and
performance. The effectiveness of our method also
hinges on selecting an optimal label order, which
currently relies on empirical evaluation. However,
a reliable and generalized method for chain selec-
tion, especially with limited supervised data, is left
for future research. Lastly, our method depends
on the quality of the distillation data used during
pretraining; denoising or enhancements of labels
from the LLM could potentially boost downstream
generalization of our approach.
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A General distilled dataset construction

We sample 10,000 texts from the PILE (Gao et al.,
2020), a large-scale and diverse corpus widely used
for pretraining LMs. Each sampled text is then
processed using GPT-40, along with the following

prompt template to extract relevant topics.

System message:

*x0bjective:*x Read the given passage and
extract important topics in the passage.

**Format Requirements:*x The output should be
formatted in JSON, containing a list of topics,
from the most general to the most specific.

**Extraction Details:*x

- The first topic should be the discipline in
which the document belongs to, the second topic
should be a sub-discipline or field that the
passage describe.

- The list should be from the most general topic
to the most specific details, and should contain
from 5 to 15 topics.

- Try not to copy keywords from the given
passage. Topics should be short terms with general
meaning, including at most 5 words

*x0utput Schema:xx

<start>

{ "topics”:

<end>

["Topic 1", "Topic 2", ...1 }

User:
{text}

After filtering out invalid responses, we obtain a
dataset Dpij, comprising 9,789 texts, each averag-
ing 813 words in length, accompanied by a pool 7
of 63,852 unique topic tags, reflecting a broad and
diverse range of topic categories spanning multi-
ple domains (appendix A). On average, each topic
appears in 1.66 texts. Each text is tagged with an
average of 10.83 topics, mimicking the long-tail
nature of labels in MLTC.

Popular topics with frequency greater than 0.1%
include Computer Science, Software Development,
Medicine, Law, Sports, Web Development, Technol-
0gy, Software Engineering, Biology, Programming,
Education, etc. On the other hand, 84% of all topics
is tagged only once in the whole dataset, account-
ing for 50.7% of the total tags, e.g. Add-ons, Con-
struction Adhesives, Data-driven Decision Making,
Higher Education Funding, Hydroelectric Power,
Industrial Practices, Marvel, Mexican Culture, No-
table individuals, Recreational Vehicles, Sin and
Redemption, Trade Rumors, Workplace Issues, etc.

The Pile corpus, which serves as the text source
for our data, is publicly available under the MIT Li-
cense (https://pile.eleuther.ai). For trans-
parency, we also acknowledge that OpenAl’s
terms of use apply to all Al-generated annotations
(https://openai.com/terms).

Each example contains a text and its positive
topics. During the GP stage, we randomly drop
20% of the positive labels and sample negative
labels from the pool of all topics in the dataset, so
that the number of additional negative samples is
equal to the number of existing positive labels. The
total number of labels is limited to 100. The order
of labels is also shuffled each time the same text
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passes through the model TS. The training process
takes about 10 hours on an A100 GPU.

B Baselines

Our models are compared with the following ap-
proaches, which we adapt and train ourselves. All
baselines are trained with the sum of the BCE loss
of individual labels.

Head The document is fed to an encoder, and the
representation of the [CLS] or <\s> token is passed
to | L| binary classifier heads, one per label.

PET (Schick and Schiitze, 2021a,b) is a prompt-
based method where z is transformed into a se-
quence with the [MASK] token. A verbalizer maps
labels to words, converting the [MASK] distribution
into class scores.

SetFit (Tunstall et al., 2022) is a metric-based
approach with two phases: finetuning a sentence
transformers (ST) (Reimers and Gurevych, 2019)
in a contrastive manner, then train a classifier
on rich text embeddings of the ST. Here we use
paraphrase-mpnet-base-v2° as ST.

BERT-LWAN LWAN (Mullenbach et al., 2018)
produced label-wise document representation by
learning attention blocks for each label, then further
improved by BERT encoder (Devlin et al., 2019;
Chalkidis et al., 2020).

NSP (Yinetal., 2019; Ma et al., 2021) show that
finetuning BERT (Devlin et al., 2019) on NLI data
helps with zero-shot topic classification.

C Finetuning hyperparameters

For few-shot experiments, we finetune TS5 mod-
els following the methods described in section 2.2.
The models are trained for a maximum of 5000
steps for DA and maximum 1000 steps for CS,
with the AdamW optimizer (Loshchilov and Hutter,
2019) and a linear decay scheduler. Between DA
and CS stages, the validation set is used to select
the optimal chain, among M = 50 chains sam-
pled randomly from permutations of labels. The
training batch size is fixed at 4 due to memory
limitations, and the gradient accumulation value
is 4. For each dataset and each split of training
data, the base learning rate is tuned in {2e-5, Se-
5, le-4, 2e-4}. During training, evaluation on the

6https://huggingface.co/sentence—transformers/
paraphrase-mpnet-base-v2

validation set is done every 50 steps to select the
best checkpoint. Our implementation is based on
transformers (Wolf et al., 2020) and experiments
are conducted on A100 GPU. Each training step
takes approximately 1.04 seconds on average.

D Extended results on few shot finetuning

Table 5 summarizes micro/macro/instance preci-
sion and recall for T5 Chain and other baselines
over three studied datasets.

E Normalized Pointwise Mutual
Information

Pointwise mutual information of a couple of events
(x,y) is a measure of how much the actual prob-
ability of their co-occurrence p(z,y) differs from
the case of independence, p(z)p(y) (Bouma, 2009).
PMI can be normalized to [—1, +1], with —1 for
never occurring together, 0 for independence, and
+1 for complete co-occurrence, giving the normal-
ized pointwise mutual information (NPMI)

p(:r,y)
IOg p(z)p(y) (6)

—logp(z,y)

NPMI(z,y) =

Particularly in our case, for a pair of labels
lj, I € L of adataset D = {(x,y;)}Y, of texts
and label indicators, the NPMI is calculated with
their occurrence (y;(l;) = 1, yi(lx) = 1):

N yi(ly)yi(lg)
l0g =~ 00, S5 il

—log % 32 wil)wi(lx)
Figure 5 illustrates the distribution of this index

over all pairs of labels for each dataset, using Gaus-
sian kernel density estimation.

NPMI(L;, 1) = (7)
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Method ‘ mP mR mF1 MP MR MF1 1P IR IF1
Eurlex

Head (RoBERTa) 80.01'4 62.3].2 70-00.8 56.73.1 30.51'1 34.8].2 79.41.5 65.7].0 69.21'0

Head (T5 Encoder) 68.72‘6 36.70.4 47.90.9 14-31.8 1 1.90.2 1 1.90.3 64.81.6 40.40.4 47~7O.6

PET (ROBERTB_) 73.92‘5 68.22.4 70.80.6 59.00.7 4353.8 45.82.6 76.21‘9 71.42.2 70.9().7

SetFit 79.000 62.812 69999 | 58.8,4 31.609 3576 | 80905 67.0;1 70.603

BERT-LWAN 77127 62411 69.014 | 58.002 31416 35.018 | 77.3,, 65812 6845

T5 Chain 71.7()_3 74.90,3 73.30_2 54.90,5 59-90.6 56.40,4 74.80_2 77.80,3 73.8()_2
AAPD

Head (ROBERT&) 79.82_7 28.1 1.1 41 .51_1 ]4.62.5 5.8()_5 7'00.6 37.5()_7 29.40.9 32.0()_9
Head (T5 Encoder) 79.63_3 26.7241 39.92_0 8.91_9 5.11_0 5.71.0 34.72_3 28.32.0 30.32_1
PET (RoBERTa) 74750 40.019 52.01, | 40.836 17.651 22.1p4 | 53.124 42251 4529,

SetFit 65908 53309 58997 | 39.0190 28916 309;4 | 65.01, 56209 5829

BERT-LWAN 75547 33.05q7 45535 | 20289 10.144 11955 | 44.7¢5 34.75¢ 37.857

T5 Chain 59.6p7 61.00¢ 60304 | 42.61c 44.7p7 42.6p0¢ | 63.197 63.80¢ 61.15
Reuters

Head (RoBERTa) 98.60.5 39.14_5 55.94.7 3-40.8 1.80.3 2.10‘3 48.55‘6 47.95_4 48.05.4
Head (T5 Encoder) 95.30_3 45-70.8 61.70_7 3.00_4 2.1()_1 56.61,0 56.61_0 56.20,9 56.3()_9
PET (RoBERTa) 89.134 824, 85.603 | 59.0,; 46.9;, 48.61, | 88.619 88.815 87.61

SetFit 87.613 823pg 84.808 | 42.2,3 35.721 36.821 | 90.207 89.297 88.506
BERT-LWAN 89.7905 64.16o, 74.641 | 147736 10.8¢5 11.671 | 75556 72957 73.455
T5 Chain 82.31_1 87.50.7 84.80_8 58.43.0 66.92_0 57-72.8 88.80_9 91-20.8 88.90_8

Table 5: Performance comparison in few-shot finetuning. Scores include precision (P), recall (R), and F1-score (F1),
with different views: micro (m), macro (M), or instance (I). Best results are highlighted in bold.
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