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Abstract

Dense Retrieval Models (DRMs) estimate the
semantic similarity between queries and docu-
ments based on their embeddings. Prior studies
highlight the importance of embedding contex-
tualization in enhancing retrieval performance.
To this aim, existing approaches primarily
leverage token-level information derived from
query/document interactions. In this paper,
we introduce a novel DRM, namely DenseC3,
which leverages query/document interactions
based on the full embedding representations
generated by a Transformer-based model. To
enhance similarity estimation, DenseC3 inte-
grates external linguistic information about
the Cognitive Complexity of texts, enriching
the contextualization of embeddings. We em-
pirically evaluate our approach across seven
benchmarks and three different IR tasks to as-
sess the impact of Cognitive Complexity-aware
query and document embeddings for contextu-
alization in dense retrieval. Results show that
our approach consistently outperforms stan-
dard fine-tuning techniques on lightweight bi-
encoders (e.g., BERT-based) and traditional
late-interaction models (i.e., ColBERT) across
all benchmarks. On larger retrieval-optimized
bi-encoders like Contriever, our model achieves
comparable or higher performance on four of
the considered evaluation benchmarks. Our
findings suggest that Cognitive Complexity-
aware embeddings enhance query and docu-
ment representations, improving retrieval ef-
fectiveness in DRMs. Our code is available
online at: https://github.com/FaySokli/
DenseC3.

1 Introduction

Information Retrieval (IR) systems aim to retrieve
relevant documents in response to users’ queries.
The current state of the field includes lexicon-based
models (e.g., BM25 (Robertson et al., 1994)), neu-
ral IR models that exploit semantic similarities, and
hybrid architectures that combine lexicon-based

Figure 1: DenseC3. Our architecture employs a bi-
encoder that exploits late query/document interactions
on a full embedding level, leveraging the Mixture-
of-Experts framework. The enhanced part displays
DenseC3’s main components: (i) the gating mechanism
(CLS); (ii) the six experts (one for each Cognitive Com-
plexity level of Bloom’s Taxonomy); and (iii) the pool-
ing module, which aggregates the output of the experts
and defines the final query or document embedding.

with neural models used for re-ranking (e.g., cross-
encoders). Based on their architecture, neural IR
models can be categorized as follows: (i) Cross-
encoders (e.g., Rosa et al. (2022)), (ii) Bi-encoders
(e.g., Contriever (Izacard et al., 2022)), and (iii)
Late query/document interaction models (e.g., Col-
BERT (Khattab and Zaharia, 2020)). The latter
two constitute key categories of Dense Retrieval
Models (DRMs). Depending on their architec-
ture, DRMs often enhance retrieval effectiveness
but introduce computational overhead, leading to
increased query latency (see Section 5). DRMs
project both queries and documents into a shared
dense vector space and rank documents based on
their similarity to queries (e.g., by using a dot prod-
uct). In this scenario, contextualization techniques
aim to enrich query and document embeddings
by injecting contextual knowledge and enhance
their representations to improve the performance
of DRMs. Prior studies leverage linguistic features
to contextualize embeddings with external infor-
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Figure 2: Schematic diagrams illustrating query/document matching neural IR models. The figure contrasts existing
approaches (a), (b), and (c) (Khattab and Zaharia, 2020) with the architecture of DenseC3 (d).

mation (Miaschi et al., 2024). Other approaches
exploit query/document interactions for embedding
contextualization, either at the token-level (Liu
et al., 2019; Khattab and Zaharia, 2020; Formal
et al., 2021) or using full-text semantics (Pang et al.,
2020; Zerveas et al., 2022), enriching representa-
tions with contextual and structural information.
In this paper, we introduce a novel approach that
contextualizes query and document embeddings
beyond their interactions, through the notion of
Cognitive Complexity.

By Cognitive Complexity of texts, we refer to
their characterization based on their understand-
ability and the intended usage of their content (An-
derson and Krathwohl, 2001; Bai et al., 2023). To
integrate this notion into embedding representa-
tions, we rely on Bloom’s Taxonomy, originally
developed to help educators structure learning ma-
terials (e.g., books, documents) and define targeted
learning objectives. A learning objective is a clear
statement that specifies what a learner is expected
to understand or achieve after a learning experi-
ence. Consequently, Cognitive Complexity does
not reflect a text’s structural complexity or linguis-
tic difficulty, but rather the conceptual difficulty
of its content. It captures the required level of
expertise for a user to understand the content of
a document. Bloom’s Taxonomy classifies texts
into six different levels of increasing Cognitive
Complexity, namely, Remember, Understand, Ap-
ply, Analyze, Evaluate, and Create. The Remember
category represents the basic level of Cognitive
Complexity and refers to texts that provide term
definitions or event descriptions. When reading
such texts, the learner is expected to only remem-
ber specific information. On the highest level of
Cognitive Complexity stands the Create category,

where the learner, after reading such documents, is
expected to generate new ideas or produce original
work. Academic papers are an example of docu-
ments that may belong to this category. To create
contextualized query and document representations
based on Cognitive Complexity, we introduce a
dense retrieval architecture (Figure 1), which lever-
ages a Mixture-of-Experts (MoE) framework (Ja-
cobs et al., 1991) with a supervised gating mecha-
nism (CLS). The CLS estimates the likelihood of
a given document belonging to each of Bloom’s
Taxonomy levels and ensures that each expert spe-
cializes in a specific level. During training, our
model learns to encode the Cognitive Complexity
of queries and documents into their embeddings,
aligning query representations closer to those of
documents with similar complexity. We evaluate
our approach on three IR tasks across seven bench-
marks, showcasing the effectiveness of Cognitive
Complexity-aware embeddings in dense retrieval.

The contributions of this work are twofold.
First, we integrate into a DRM a modular MoE
framework, which leverages Cognitive Complex-
ity to contextualize query and document embed-
dings and improve similarity estimation (Sec-
tion 2.2.1). We show that this approach signif-
icantly enhances DRM performance compared
to non-contextualized embeddings and existing
query/document interaction contextualization meth-
ods (Section 4). Second, we introduce a novel
query/document matching paradigm that combines
a bi-encoder architecture with a late-interaction
strategy at the full embedding level. Our approach
leverages MoE to enhance the query and document
embedding contextualization beyond their inter-
actions, by injecting external information about
Cognitive Complexity (Section 2.2.2).
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2 The Proposed Methodology

This Section presents the motivations that led to the
identification of Cognitive Complexity as a contex-
tualization factor in dense retrieval (Section 2.1). It
also details DenseC3’s architecture (Section 2.2).

2.1 Motivation
Prior work has shown that injecting linguistic
features (Miaschi et al., 2024) and semantic in-
formation derived from query/document interac-
tions into textual embeddings enhances the quality
of the resulting representations and improves the
model’s performance on downstream NLP and IR
tasks (Khattab and Zaharia, 2020; Pang et al., 2020;
Formal et al., 2021; Luan et al., 2021; Zerveas et al.,
2022; Yang, 2024). We argue that Cognitive Com-
plexity is a textual characteristic that reflects the
level of conceptual difficulty in a text and can be
used to contextualize embeddings. Our hypothe-
sis is based on the assumption that queries defined
by expert users and expressing complex informa-
tion should require documents of high Cognitive
Complexity to be effectively answered (Sokli et al.,
2024b). For example, a complex query in the med-
ical domain is more likely to be better answered by
documents such as academic publications, which
typically exhibit higher Cognitive Complexity. A
more generic query in the same domain could in-
stead be adequately addressed by documents with
lower complexity, as it demands less specialized or
analytical content. Our model leverages Cognitive
Complexity as defined in Bloom’s Taxonomy to
categorize and represent documents according to
their conceptual difficulty. To estimate similarity,
the query representation is adapted based on the
complexity level of the document it is compared
with. Since the model is trained in this way, we
hypothesize that relevance estimation is most ac-
curate when the Cognitive Complexity levels of
the query and document are aligned.1 DenseC3
employs a MoE framework, where each expert
is specialized in a specific Cognitive Complexity
level, under the assumption that these specialized
experts produce higher-quality representations than
a single, general-purpose encoder. Our empirical
evaluation (Section 4) validates our intuition, show-
ing that our model achieves better retrieval perfor-
mance than approaches using non-contextualized

1In our experiments, we also evaluate a query representa-
tion computed as the average of six separate representations,
each corresponding to one of the six Cognitive Complexity
levels defined by Bloom’s Taxonomy (see Section 2.2.2).

embeddings and not Cognitive Complexity-aware
query/document representations.

2.2 Incorporating Cognitive Complexity of
Texts in Dense Retrieval through MoE

This section details DenseC3’s architecture and
training process (2.2.1). We also describe how Cog-
nitive Complexity can enrich query and document
embeddings and position their representations into
the contextualized dense vector space(s) (2.2.2).

2.2.1 DenseC3
Figure 1 illustrates the model’s architecture, which
consists of four components: (1) an underlying
DRM that encodes text inputs and creates em-
beddings capturing full-text semantics rather than
token-level information; (2) the gating mechanism,
a multi-head BERT multi-label classifier trained to
classify texts into the six levels of Cognitive Com-
plexity provided by Bloom’s Taxonomy; (3) the
six experts each trained to specialize in one of the
six different levels of Cognitive Complexity; and
(4) the pooling module used in the final stage to
aggregate the experts’ outputs and produce a single
Cognitive Complexity-aware embedding to be used
for similarity estimation between queries and doc-
uments. The gating mechanism (CLS - Figure 1)
takes the document text as input and outputs a six-
dimensional vector, where the weights represent
the likelihood of the document to be characterized
by each of the six Cognitive Complexity levels of
Bloom’s Taxonomy. For its implementation, we
independently train a multi-label text classifier fol-
lowing the approach of Li et al. (2022), by using
their publicly available external datasets. Once
trained, the classifier is employed as a frozen mod-
ule, acting as the gating mechanism to estimate the
Cognitive Complexity of documents in an offline
setting. The gating mechanism operates in conjunc-
tion with the pooling module to effectively guide
the experts and the representation learning process.
This process is described in Section 2.2.2, where
we explain how a document’s Cognitive Complex-
ity drives the creation of both query and document
representations, ensuring their alignment within the
same complexity space. The experts receive either
the query (q′) or the document (d′) embedding as in-
put. These embeddings are generated by an under-
lying DRM (e.g., BERT-Base), which is employed
as a bi-encoder. For this reason, the document em-
beddings are computed once, offline. Since the
gating and the pooling mechanisms ensure that em-
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Figure 3: The six distinct dense vector spaces of different complexity levels as expected to be formed by the
specialization of the experts. Each space contains documents of the same complexity. Each black dot depicts a
unique representation of the same query, driven by and contextualized with each document’s Cognitive Complexity.

beddings of the same Cognitive Complexity level
are routed to the corresponding expert, each expert
specializes in processing inputs of a specific level
of Bloom’s Taxonomy. Accordingly, our model
includes six experts—one for each Cognitive Com-
plexity level. For instance, Expert1 processes em-
beddings of texts at the Remember level, Expert2
for Create, and so on. Consequently, each query
and document will have six representations. These
must then be aggregated to form a single, contextu-
alized representation for each query and document,
which will be used for the semantic similarity es-
timation. This aggregation is performed by the
pooling module, which defines how the experts’
outputs are combined. We explore two pooling
strategies, resulting in two distinct retrieval settings
detailed in Section 2.2.2.

2.2.2 Cognitive Complexity-Aware Retrieval:
Aligning Query and Document
Representations

This section details how our model’s gating and
pooling modules interact to generate Cognitive
Complexity-aware query and document represen-
tations for semantic similarity estimation in dense
retrieval. We introduce two distinct pooling strate-
gies, each defining a unique retrieval setting.

The first, called DenseC3_top1, produces six
separate dense vector spaces (one for each Cogni-
tive Complexity level) by selecting solely the rep-
resentation corresponding to the most likely com-
plexity level as determined by the gating mecha-
nism. Every document is embedded only in the
space associated with the expert corresponding to
its Cognitive Complexity (Figure 3). For example,
an academic paper is expected to be represented
solely in Space VI, as it exhibits the highest level of
Cognitive Complexity. Formally, let x be the docu-
ment’s embedding and fi(x) the output of function
fi learned by the i-th expert. If gi(x) is the weight

Figure 4: The common contextualized space. Each doc-
ument representation is the weighted sum of all experts’
outputs, maintaining Cognitive Complexity contextual-
ization. The black dot depicts the query representation
derived from the averaged experts’ outputs.

assigned to the i-th expert by the gating mechanism
given the input document x, then:

m = arg max
i=1,...,N

(gi(x)), (1)

y = fm(x), (2)

where N is the total number of experts (in our
case N = 6), and m represents the document’s
assigned Cognitive Complexity level. This leads
to the final representation y of the given document,
which is the one outputted by the expert that spe-
cializes in the selected Cognitive Complexity level.
To estimate retrieval scores, our model uses the
query representation generated by the same expert
function fm that has been used to represent the
document to be ranked. This ensures that the query
representation is contextualized to match the docu-
ment’s assigned Cognitive Complexity level, align-
ing them for similarity estimation. Formally, each
query z is represented by a unique contextualized
embedding per document, fm(z), driven by the
document’s Cognitive Complexity level. The un-
derlying assumptions of this retrieval setting are
relatively strong. It enforces the assignment of each
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document to a single Cognitive Complexity level,
assuming that its dominant Cognitive Complexity
level is the most suitable for retrieval (I). It assumes
that the gating mechanism accurately classifies the
documents’ Cognitive Complexity (II). Finally, the
model presumes that semantic similarity is bet-
ter estimated within Cognitive Complexity-specific
spaces rather than a shared, global space. This set-
ting can lead to significant computational overhead
during inference, as it requires a unique query rep-
resentation for each document being scored (III).

To cope with the above limitations, we intro-
duced DenseC3_w, where we exploit the experts’
specialization in Cognitive Complexity collectively
to create a common contextualized dense vector
space (Figure 4). This approach removes the as-
sumption that each document belongs to a single
Cognitive Complexity level (I), and it represents a
document as the weighted sum of the outputs from
all experts rather than assigning it to a unique Cog-
nitive Complexity level. Formally, the document
representation is the weighted sum of the outputted
embeddings from all six experts:

y =

N∑

i=1

fi(x) · gi(x) (3)

Therefore, DenseC3_w eliminates the need for sep-
arate spaces of Cognitive Complexity (III), as it po-
sitions all documents within a shared space while
preserving their Cognitive Complexity distinctions
through weighted expert contributions. Nonethe-
less, the model still assumes that the gating mecha-
nism provides meaningful complexity weights (II)
and that documents of the same Cognitive Com-
plexity will cluster together in the shared space.
Additionally, this approach assigns to each query a
single representation by averaging the outputs of all
experts. Since queries can convey complex infor-
mation needs that may not reflect the user’s exact
Cognitive Complexity level on the topic, averaging
helps mitigate this issue. Formally, the query repre-
sentation is the average of all six experts’ outputs:

y =
N∑

i=1

fi(z)

N
(4)

This retrieval strategy enables greater flexibility
and generalizability in representation learning,
while still incorporating Cognitive Complexity into
semantic similarity estimation2.

2Refer to Appendix D for additional illustrations of the
embedding space formulation.

Figure 2d illustrates how DenseC3 combines
both bi-encoder and late query/document interac-
tion paradigms: the DenseC3_w variant works as
a bi-encoder by independently encoding queries
and documents into a shared dense space; the
DenseC3_top1 variant additionally incorporates
late interactions during inference by conditioning
query embeddings on the Cognitive Complexity of
the document being ranked. Computational aspects
of both variants are further discussed in Section 6.

3 Experiments

In this section, we report the empirical evaluation
conducted to address the following research ques-
tions (RQs): RQ1. How Cognitive Complexity-
specific spaces (DenseC3_top1) do compare to a
shared contextualized space (DenseC3_w) in terms
of retrieval effectiveness? RQ2. How does incor-
porating Cognitive Complexity into both query and
document embeddings impact relevance estimation
in DRMs compared to standard embeddings? RQ3.
Are the observed improvements in retrieval effec-
tiveness directly attributable to the use of Cognitive
Complexity-aware embeddings?

To address the above research questions, we con-
duct an empirical evaluation on three IR tasks: pas-
sage retrieval, open-domain Q&A (following the
formulation as a search task proposed by Chen
et al. (2017)), and domain-specific search. The
experimental framework uses seven publicly avail-
able benchmarks (Table 1) from the TREC Deep
Learning Tracks (TREC DL 19 (Craswell et al.,
2020) & 20 (Craswell et al., 2021)), the BEIR
Collection proposed by Thakur et al. (2021) (MS-
MARCO (Nguyen et al., 2016), NQ (Kwiatkowski
et al., 2019), and HotpotQA (Yang et al., 2018)),
and a multi-domain benchmark for search evalu-
ation proposed by Bassani et al. (2022) (PS and
CS). These datasets contain queries and documents
of diverse Cognitive Complexity levels, from fact-
based (NQ) to reasoning-intensive questions (Hot-
potQA) and from general-domain passages (MS-
MARCO, TREC DL 19 & 20)3 to specialized aca-
demic texts of the Plotical & Computer Science
domains (PS and CS). This diversity makes them
suitable for evaluating the effectiveness of Cogni-
tive Complexity-aware representations in improv-
ing query/document matching in DRMs.

3These three benchmarks share the same corpus, but differ
in their query sets and relevance judgments (see Table 1).
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3.1 Experimental Setup

This section presents the experimental setup used in
our study. The code is publicly available for repro-
ducibility4. To estimate the Cognitive Complexity
of documents, we independently trained the CLS
module (Figure 1) on external datasets annotated
with Bloom’s Taxonomy labels and evaluated its
performance on their respective test sets (refer to
Appendix A for further details on the CLS perfor-
mance). The CLS effectively distinguished among
all six Cognitive Complexity levels, exhibiting ro-
bust classification performance. However, since
the employed experimental datasets do not include
explicit Cognitive Complexity labels, we cannot
directly assess the classifier’s accuracy. Neverthe-
less, the classification distributions presented in
Figures 5 & 6 follow an expected pattern based on
the characteristics of each dataset. For instance,
collections with academic documents are predom-
inantly classified into the highest Cognitive Com-
plexity levels, which aligns with our expectations
(more details are provided in Appendix A).

Architecture Details. We used four different
models, namely TinyBERT (14.5M, Jiao et al.
(2020)), BERT (110M, Devlin et al. (2019)), Con-
triever (110M, Izacard et al. (2022)), and ColBERT
(110M, Khattab and Zaharia (2020)) to serve as
underlying DRMs and encode text inputs to create
full-text embeddings. The MoE architecture con-
sists of six experts corresponding to the six Cogni-
tive Complexity levels of Bloom’s Taxonomy and
a skip connection. Following Houlsby et al. (2019),
each expert consists of a Feed-Forward Network
(FFN) with a down-projection layer that reduces
the input dimension by half, followed by an up-
projection FFN layer that restores the dimensional-
ity to match the original input embedding.

Training. We configure the training batch size
to 64, setting the learning rate at 10−6 for the un-
derlying model and 10−4 for the experts. Tiny-
BERT is trained for 30 epochs (GPU hours: 5-10
mins/epoch) across all datasets, due to its small size.
For the remaining models, training is conducted
for 20 epochs (GPU hours: 20-60 mins/epoch)
across all datasets, except for Computer Science,
where training is limited to 10 epochs (GPU hours:
~2 hrs/epoch) due to the large number of training
queries (approximately 3.5% more than the second-
largest dataset). We employ 5% of the training data
for validation and retain the checkpoint with the

4https://github.com/FaySokli/DenseC3

Table 1: Dataset Statistics. The average number of rele-
vance judgments per query is indicated in parentheses.

Dataset Corpus Size Train Queries Test Queries
MSMARCO v1 passage corpus (MSMARCO) 8.8M passages 532k (1.1 avg rel.) 7k
TREC Deep Learning Track 2019 (TREC DL 19) 8.8M passages 503k (215 avg rel.) 43
TREC Deep Learning Track 2020 (TREC DL 20) 8.8M passages 503k (211 avg rel.) 54
Natural Questions (NQ) 2.6M passages 132k (1.2 avg rel.) 3.5k
HotpotQA 5.2M documents 85k (2 avg rel.) 7.4k
Political Science (PS) 4.8M documents 160k (3.8 avg rel.) 5.7k
Computer Science (CS) 4.8M documents 550k (3.25 avg rel.) 6.5k

Figure 5: Distributions of documents across Cognitive
Complexity levels, based on our independently trained
classifier (CLS - Figure 1). Additional graphs are shown
in Figure 6.

lowest validation loss. We set the random seed to
42 and use contrastive loss (Izacard et al., 2022)
with a temperature of 1 for all models except Con-
triever, where the authors report an optimal temper-
ature of 0.05. To train the DenseC3_top1 variant,
we used Top-1 gating for both queries and docu-
ments. The same setting (Top-1 gating for both
queries and documents) applies during inference,
which leads to the creation of the six distinct dense
vector spaces (Figure 3) and separates documents
based on their Cognitive Complexity level. We
trained the DenseC3_w variant by selecting the
document representation of the Top-1 expert, while
for the query we used the averaged representations
of the six experts5. However, during inference,
while we keep the averaged query representations,
for the documents, we use the weighted sum of the
six experts’ outputs. We select this approach to al-
low for the unification of the six spaces (Figure 4)
while maintaining the encoding of the documents’
Cognitive Complexity into their embeddings.

3.2 Metrics & Baselines

We evaluate the experimental results using
NDCG@10, the designated metric for model eval-
uation in the employed TREC (Craswell et al.,
2020, 2021) and BEIR (Kamalloo et al., 2024) col-
lections. We also report Recall@100, a metric

5We also trained a variant with weighted sum document
and averaged query representations, but found that it did not
train effectively. This aligns with related studies showing that
training MoE with Top-1 gating can outperform training with
averaged representations (Shazeer et al., 2017).
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Table 2: Results on all datasets. Metrics refer to Recall@100 and nDCG@10. Symbol * indicates a statistically
significant difference over fine-tuned, calculated using the ASPIRE toolkit (Peikos et al., 2024). Best results for
each dataset are in bold.
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MSMARCO
recall .682 .686 .688* .666* .689* .791 .788* .790 .777* .793 .850 .838* .839* .819* .850 .820 .818 .821 .817 .822
nDCG .244 .243 .246 .234* .249* .293 .286* .290* .277* .294 .321 .310* .309* .290* .323 .309 .310 .312* .307 .314*

TREC DL 19
recall .421 .418 .422 .400 .435 .531 .509 .530 .491* .527 .605 .592 .584 .586 .602 .549 .552 .554 .544 .562
nDCG .449 .444 .440* .452 .452 .507 .508 .506 .468* .501 .540 .533 .545 .504* .556* .567 .565 .571 .566 .573

TREC DL 20
recall .521 .516 .516 .506 .522 .614 .615 .620 .603 .621 .678 .665 .683 .659 .681 .628 .622 .628 .629 .632
nDCG .466 .466 .468 .454* .479* .516 .508* .516 .473* .518 .544 .504* .542 .508* .547 .579 .574 .574 .560* .580

NQ
recall .722 .726 .730* .704* .743* .879 .873 .874 .879 .886* .933 .926 .932 .928 .933 .884 .877 .888 .885 .893*
nDCG .261 .262 .263 .256 .287* .353 .350 .346* .362* .374* .426 .403 .416* .414* .428 .383 .372 .375 .381 .402*

HotpotQA
recall .463 .468 .472* .446* .473* .700 .703 .689* .690* .707* .862 .855 .861 .839* .842* .684 .680 .683 .678 .692*
nDCG .240 .243 .248* .223 .249* .441 .448 .432* .433* .458* .672 .653 .667* .624* .630* .419 .415 .416 .411 .437*

PS
recall .275 .274 .283* .278 .294* .384 .382 .387 .389* .402* .483 .471* .483 .466* .476* .385 .375* .378* .388 .400*
nDCG .136 .134 .140* .142* .151* .192 .189 .194 .200 .207* .251 .243* .251 .243* .251 .200 .196 .196 .204 .212*

CS
recall .319 .322 .326* .305* .332* .383 .375* .376* .362* .397* .437 .435 .438 .418* .439 .395 .393 .392 .376* .412*
nDCG .161 .159 .163 .159 .175* .192 .190 .188* .187* .205* .224 .224 .223 .213 .225 .201 .199 .197 .194 .213*

commonly used in the literature for the evaluation
of IR models on the selected datasets (Hashemi
et al., 2023; Kasela et al., 2024; Rau and Kamps,
2024). Statistical significance has been evaluated
based on two-sided paired Student’s t-tests with
Bonferroni multiple testing correction, at signifi-
cance levels of 0.05. To address RQ1, we com-
pare the performance of the two variants between
them (DenseC3_top1 & DenseC3_w). For RQ2,
we consider as baseline the fine-tuned version of
the underlying DRM (fine-tuned), trained on the
available dataset-specific training data using the
same hyperparameters as our models. For RQ3, we
reproduce experiments with unsupervised training
of the experts as proposed by Sokli et al. (2024a)
(unsupervised). This approach relies on a gating
mechanism operating without any awareness of
Cognitive Complexity trained in an unsupervised
manner along with the experts. Additionally, we
implement a baseline in which the gating mecha-
nism assigns random weights to the experts during
training (random).

4 Results & Discussion

This section presents the results of the empirical
evaluations conducted to address our research ques-
tions. Table 2 compares the performance of the
DenseC3_top1 and DenseC3_w variants in terms
of retrieval effectiveness against various baselines
on four different underlying DRMs.

RQ1. The obtained results show that
DenseC3_w consistently outperforms
DenseC3_top1 across all retrieval settings,
achieving significant performance gains up to
9.67% in Recall@100 and 12.10% in nDCG@10.
Notably, the most significant improvements
are observed on the CS collection, where the
DenseC3_w variant outperforms DenseC3_top1

across all four models, with gains ranging from
5.05% to 9.67%. The observed performance
gains can be attributed to several factors. Firstly,
DenseC3_w mitigates the impact of classifi-
cation errors by distributing representations
across multiple Cognitive Complexity levels.
DenseC3_top1 relies on the gating mechanism to
assign documents to a single Cognitive Complexity
level, making misclassifications more detrimental.
Moreover, DenseC3_w allows for both query
and document embeddings to capture multiple
levels of Cognitive Complexity. This leads to
a common contextualized dense space during
inference, which improves semantic alignment
between queries and documents. In contrast,
DenseC3_top1 confines embeddings to separate
Cognitive Complexity-specific spaces, potentially
limiting cross-complexity generalization. Addi-
tional experiments that we have conducted further
strengthen the finding that integrating a MoE
framework into a DRM leads to higher retrieval
performance when all experts are used to compute
the final query and document representations (see
Appendix B). Our findings suggest that unifying
the six Cognitive Complexity spaces into a shared
contextualized dense vector space enhances the
effectiveness of Cognitive Complexity-aware
representations for relevance estimation in DRMs.

RQ2. To answer RQ2, we compare the standard
fine-tuned versions of the underlying DRMs (non-
Cognitive Complexity-aware embeddings) with
our model (Cognitive Complexity-aware embed-
dings). We observe that DenseC3_w consistently
yields greater retrieval performance across all seven
benchmarks, on both evaluation metrics, and for
three of the four DRMs employed. The most no-
table gains are marked on TinyBERT in nDCG@10,
ranging from a 2.05% to 11.03% increase for all
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collections except TREC DL 19 and HotpotQA.
When integrated with Contriever, DenseC3_w re-
sulted in marginal gains in four datasets and slight
performance degradations in others. This can
be attributed to Contriever’s unsupervised con-
trastive pre-training on mined hard negative text
pairs, which may already capture semantic re-
lationships effectively. In contrast, models like
TinyBERT, BERT, and ColBERT leverage labeled
data or knowledge distillation, potentially allow-
ing greater benefit from additional contextualiza-
tion introduced by DenseC3_w. Nevertheless, as
shown in Table 2 (comparing the unsupervised
and DenseC3_w columns), Cognitive Complexity-
aware embeddings still benefit Contriever, as our
model matches or surpasses the unsupervised base-
line across all collections except HotpotQA. This
observation suggests that the Cognitive Complex-
ity supervision positively impacts Contriever’s per-
formance in terms of retrieval effectiveness. Fur-
ther details on our model’s performance when inte-
grated with Contriever are discussed in Section 6.

RQ3. To further investigate whether the im-
proved retrieval performance of DenseC3_w can
be genuinely attributed to Cognitive Complexity-
aware embeddings, we compare it against two ad-
ditional baselines: random and unsupervised. This
comparison helps to isolate the impact of Cognitive
Complexity-aware representations and the role of
the gating mechanism. We observe that the random
baseline is mostly on par with fine-tuned, indicating
that simply extending the Transformer architecture
with additional MoE layers without any specific
training strategy or supervision of the gating mech-
anism and the experts does not enrich the embed-
dings nor improve retrieval effectiveness. Compar-
ing the DenseC3_w and unsupervised columns of
Table 2, we observe consistent performance gains.
These results suggest that the selected supervision
strategy actually contextualizes embeddings with
useful information, resulting in higher-quality rep-
resentations for relevance estimation. Our findings
showcase that Cognitive Complexity-aware embed-
dings as derived from DenseC3_w outperform both
the fine-tuned and unsupervised MoE baselines.

5 Related Work

Neural IR models can exhibit strong retrieval per-
formance; however, depending on their architec-
ture, this often entails substantial computational
overhead (Mitra et al., 2018). Cross-encoders (Fig-

ure 2a) exploit early token-level query/document
interactions to create a unified representation of
the query and document. While effective, this ap-
proach is computationally expensive, hence limited
to multi-stage retrieve-then-rerank pipelines (Rosa
et al., 2022). In contrast, DRMs based on bi-
encoders (Figure 2c) disregard all query/document
interactions, which allows for the independent cre-
ation of query and document embeddings and the
usage of these models directly as first-stage re-
trievers (Yu et al., 2022; Izacard et al., 2022).
However, the lack of interactions prevents em-
bedding contextualization, potentially reducing ef-
fectiveness. Late-interaction models (Figure 2b)
retain a bi-encoder structure while introducing
token-level query/document interactions at retrieval
time (Khattab and Zaharia, 2020). Other mod-
els achieve embedding contextualization by ex-
ploiting query/document interactions on a full em-
bedding level (Pang et al., 2020; Zerveas et al.,
2022). These approaches improve the embed-
dings without sacrificing efficiency but rely solely
on the query/document interactions for their con-
textualization. In our work, we achieve embed-
ding contextualization by introducing a novel late
query/document interaction strategy based on a
modular MoE framework, which operates at the
full embedding level. Our approach enriches both
query and document representations with informa-
tion about Cognitive Complexity before similarity
estimation. Prior research in IR has leveraged MoE
for tasks such as passage retrieval (Cai et al., 2023;
Ma et al., 2023) and Q&A (Dai et al., 2023; Kasela
et al., 2024; Shen et al., 2024). These studies ex-
ploit MoE in two ways. One approach integrates
experts within the feed-forward block of the Trans-
former model’s layers. While beneficial for the
underlying model, this substantially increases pa-
rameter count and only permits a token-level em-
bedding contextualization. Another approach par-
tially expands the underlying DRM by applying
a MoE architecture solely on the outputted query
embedding. Our model improves dense retrieval
by contextualizing both query and document repre-
sentations within Cognitive Complexity space(s),
enhancing query/document alignment. Unlike prior
MoE approaches, it applies global embedding-level
adjustments rather than token-wise refinements, in-
troduces a single MoE module for efficiency, and
employs a supervised gating mechanism to ensure
well-defined expert specialization, yielding a more
interpretable and effective retrieval process.
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6 Conclusions

In this work, we leverage the Cognitive Complex-
ity of texts as defined in Bloom’s Taxonomy to
contextualize DRM query and document represen-
tations. Our approach leverages MoE for con-
textualization at the full embedding level, ensur-
ing that queries and documents are aligned within
Cognitive Complexity-aware space(s). We eval-
uated two retrieval settings: DenseC3_top1 that
enforces Cognitive Complexity-specific spaces,
and DenseC3_w that creates a unified contextu-
alized space by aggregating expert representations.
Results show that DenseC3_w consistently out-
performs standard fine-tuned baselines and other
MoE approaches. Our model introduces a novel
late-interaction strategy that combines bi-encoder
efficiency with query/document interactions for
the contextualization of embeddings with Cogni-
tive Complexity. Our findings highlight the ben-
efits of injecting external linguistic information
into DRMs, suggesting that Cognitive Complexity-
aware embeddings improve retrieval performance
across multiple IR tasks.

Limitations

The DenseC3_w variant exhibits strong retrieval
effectiveness in passage retrieval, open-domain
Q&A, and domain-specific search, outperform-
ing fine-tuned baselines and existing MoE-based
approaches (see Table 2 in Section 4). How-
ever, it eliminates explicit Cognitive Complexity-
specific space separation, which may be benefi-
cial in scenarios such as educational search or per-
sonalized IR models with a focus on user exper-
tise, where preserving distinct Cognitive Complex-
ity levels can potentially improve retrieval. The
DenseC3_top1 variant, on the other hand, ensures
strict query/document alignment based on Cog-
nitive Complexity levels, enhancing retrieval in
specialized settings. However, this approach does
not fully leverage the benefits of the bi-encoder
architecture and increases query latency, due to
the introduced query/document interactions dur-
ing inference, making it computationally expen-
sive for large-scale and real-time retrieval tasks.
Nonetheless, document representations can still be
computed independently and stored offline, retain-
ing the key efficiency advantages of a bi-encoder.
Hence, this variant appears to have potential to be
used as a re-ranker, although its effectiveness in this
capacity is yet to be investigated. Moreover, enforc-

ing Cognitive Complexity-specific vector spaces
introduces strong retrieval assumptions, which may
not generalize well across diverse datasets. Such
retrieval settings could be open-domain collections
(e.g., NQ, HotpotQA - Table 2), where the docu-
ment distributions showcase stronger imbalances
among Cognitive Complexity levels (see Appendix
A for further details).

When integrated with Contriever, DenseC3_w
yielded only marginal improvements on certain
datasets and even slight decreases on others
(columns fine-tuned and DenseC3_w - Table 2).
This outcome may be linked to Contriever’s distinct
pre-training strategy and hyperparameter configu-
rations, which set it apart from the other DRMs em-
ployed (i.e., TinyBERT, BERT, and ColBERT). For
instance, the reported optimal temperature for Con-
triever (0.05) differs notably from that of the other
models (1). These discrepancies suggest that the
hyperparameter optimization of our model could
be sub-optimal for Contriever. As future work, we
intend to further investigate the unique behavior of
our model with Contriever and propose a tailored
experimental setup for this setting.

Both of the proposed variants rely on a classifier
(CLS - Figure 1) pre-trained on external datasets to
estimate the Cognitive Complexity of documents.
Yet the benchmarks we used for evaluation lack
explicit Cognitive Complexity labels, preventing
the assessment of the classifier’s accuracy on these
collections. Potential misclassifications could lead
to suboptimal expert assignments, negatively af-
fecting the retrieval quality. Annotating additional
collections based on their Cognitive Complexity
could overcome this issue. We also observed an un-
derrepresentation of two out of six Bloom’s Taxon-
omy levels in the selected datasets, namely Remem-
ber and Understand. Remember is significantly
underrepresented, while Understand has limited
presence, as shown in Figure 5. An overview of
document distributions across datasets is also pre-
sented in Figure 6 of Appendix A. This imbalance
may limit the contributions of experts specialized
in these two Cognitive Complexity levels to the
model’s overall performance. To address this limi-
tation, we aim to identify collections with balanced
Cognitive Complexity level representation to eval-
uate our model.

Additionally, our approach demands significant
computational resources, particularly for large
datasets like CS, making it less feasible for low-
resource environments. Since our model is fine-
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tuned separately for each dataset, it requires a large
number of training queries (minimum 85k), increas-
ing training costs and limiting its generalization
capabilities. To overcome this issue, we are work-
ing towards the direction of exploiting a single
collection for the training of our model (i.e., MS-
MARCO) and evaluating it on other collections in
a zero-shot setting. Preliminary empirical evidence
shows the potential of this approach to improve re-
trieval effectiveness while reducing computational
costs (see Appendix C for further details).
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A The Gating Mechanism

As outlined in Section 2.2.1, the gating mecha-
nism is implemented as a multi-head BERT-based
multi-label text classifier (CLS), which is trained
once offline using the external datasets provided
by Li et al. (2022) and remains frozen throughout
all retrieval settings. Since the datasets used in our
evaluation do not include explicit Cognitive Com-
plexity labels (see Section 6), a direct assessment of
the CLS on these collections is not feasible. To vali-
date its effectiveness, we evaluated the trained CLS
on the test sets of the external datasets and found
its performance to be consistent with the results
reported in the original work, across all levels and
evaluation metrics. As shown in Table 3, the CLS
is trained effectively and achieves F1-scores above
0.88 for all Cognitive Complexity levels, with an
average F1-score of 0.913. These results suggest
that the CLS is likely to perform adequately on the
unlabeled collections as well.

Table 3: The Classifier’s performance (CLS - acting as
the gating mechanism in Figure 1) on the test sets of the
external datasets of learning objectives provided by (Li
et al., 2022).

Remember Understand Apply Analyze Evaluate Create
Precision .840 .941 .910 .945 .929 .916
Recall .932 .925 .934 .902 .930 .861
F1-score .884 .933 .922 .923 .929 .888

Figure 6 shows the distributions of Cognitive
Complexity levels, as predicted by the CLS, for
the documents in our evaluation datasets. All three
datasets from the BEIR collection (MSMARCO,
NQ, and HotpotQA) are based on the same open-
domain Wikipedia corpus (Thakur et al., 2021),
which explains the similar distribution patterns
noted. The observed distributions on these three
collections are anticipated, given that open-domain
collections contain a wide range of articles that can
vary in conceptual difficulty. In contrast, the PS
and CS collections consist of academic texts from
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Figure 6: Documents’ Cognitive Complexity distribu-
tions based on the independently trained CLS. Given
that MSMARCO and TREC DL 19 & 20 share a com-
mon corpus, they are represented jointly in a single
subfigure.

the domains of Political Science and Computer
Science, respectively. Given the high conceptual
difficulty of academic content, these datasets ex-
hibit a predominance of documents classified to
the highest level of Cognitive Complexity, in line
with our expectations. Based on these observations,
we can conclude that the CLS assigns Cognitive
Complexity levels in a manner that aligns with the
nature of the underlying document collections.

B Expert Aggregation Strategies

To further investigate RQ1 discussed in Section 4,
we compare our model with an approach proposed
in the literature (Sokli et al., 2024a) that trains
the experts, gating mechanism, and base model to-
gether in an unsupervised manner. The authors re-
port results for two different variants: SB-MoETOP-1
and SB-MoEALL, both trained using a Top-1 gat-
ing strategy and a temperature of 0.05. During
inference, SB-MoETOP-1 retains the Top-1 strategy
while SB-MoEALL uses the weighted sum of all ex-
perts’ outputs. In this work, we reproduced both
variants, denoted as unsupervisedTOP-1 and unsu-
pervisedALL, and evaluated them on our datasets.
Results presented in Table 4 show that the vari-
ant that leverages all experts (unsupervisedALL)
outperforms unsupervisedTOP-1, suggesting that ag-

Table 4: Results for SB-MoE on all benchmarks. Metrics
refer to Recall@100 and nDCG@10. For these experi-
ments, we set the temperature to 1 for all models except
Contriever, where the reported optimal temperature is
0.05. Best results for each dataset are in bold.

unsupervised
TinyBERT BERT Contriever ColBERT

TO
P-
1

AL
L

TO
P-
1

AL
L

TO
P-
1

AL
L

TO
P-
1

AL
L

MSMARCO
recall .688 .688 .790 .790 .839 .839 .820 .821
nDCG .245 .246 .289 .290 .309 .309 .313 .312

TREC DL 19
recall .421 .422 .528 .530 .582 .584 .553 .554
nDCG .438 .440 .502 .506 .539 .545 .562 .571

TREC DL 20
recall .520 .516 .617 .620 .683 .683 .627 .628
nDCG .452 .468 .513 .516 .535 .542 .568 .574

NQ
recall .727 .730 .871 .874 .930 .932 .888 .888
nDCG .260 .263 .343 .346 .416 .416 .375 .375

HotpotQA
recall .460 .472 .686 .689 .853 .861 .680 .683
nDCG .232 .248 .425 .432 .653 .667 .411 .416

PS
recall .276 .283 .385 .387 .479 .483 .378 .378
nDCG .137 .140 .193 .194 .250 .251 .196 .196

CS
recall .322 .326 .374 .376 .435 .438 .392 .392
nDCG .161 .163 .185 .188 .222 .223 .195 .197

gregating all experts’ outputs is more effective for
retrieval than relying solely on the top expert. This
performance gap suggests that aggregating all ex-
perts’ outputs enables the model to better handle
the diversity of user queries and document content.
This outcome aligns with our findings (see Table
2 and Section 4), where DenseC3_w outperforms
DenseC3_top1.

C Zero-shot Evaluation

In the main experiments reported in this paper, we
fine-tuned our model separately on the training set
of each dataset. While this approach is effective,
it increases training costs and may be less prac-
tical in low-resource environments (a limitation
already discussed in Section 6). For example, train-
ing on the largest collection (CS) with BERT-based
retrieval models like ColBERT or Contriever re-
quires approximately 2 hours per epoch on a single
NVIDIA RTX 6000 Ada Generation GPU. In this
appendix, we explore the performance of our model
in a zero-shot retrieval setting as a step towards ad-
dressing this limitation.

Table 5: Preliminary results on the zero-shot evaluation
of DenseC3 with two different DRMs on two BEIR
collections, namely Natural Questions and HotpotQA.
Best results for each model are indicated with bold text.

NQ HotpotQA
Retriever Variant Recall@100 NDCG@10 Recall@100 NDCG@10

Contriever
fine-tuned .896 .376 .799 .650
DenseC3_w .901 (0,56%↑) .379 (0,80%↑) .796 (0,38%↓) .647 (0,46%↓)

ColBERT
fine-tuned .814 .341 .584 .430
DenseC3_w .810 (0,49%↓) .338 (0,88%↓) .593 (1,54%↑) .443 (3,02%↑)

While this remains an area of ongoing research,
our preliminary results in Table 5 suggest that
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Figure 7: Dense vector space 3D t-SNE visualizations
of query and document embeddings from the original
DRM (left) and DenseC3 (right) on the MSMARCO,
TREC19 & 20 benchmarks. Queries are shown as black
crosses, their relevant documents as red circles, and
the remaining points represent the top 1000 retrieved
documents. Color figure online.

DenseC3_w may already be effective in such set-
tings. For this evaluation, we annotated all MS-
MARCO training set documents using our frozen
CLS for Cognitive Complexity. MSMARCO
is widely adopted for zero-shot retrieval evalua-
tion (Kamalloo et al., 2024). We then fine-tuned our
model on the annotated MSMARCO training set
and evaluated it in a zero-shot setting on the BEIR
test sets of NQ and HotpotQA. For this prelimi-
nary analysis, we used Contriever and ColBERT
as the underlying DRMs, as they are two of the
best-performing retrievers in the IR literature.

D Query and Document Alignment

Figures 7 & 8 display 3D t-SNE visualizations of
queries and their top 1000 retrieved documents
as embedded in the Dense Vector Space (DVS) by
TinyBERT6. The illustrations compare embeddings

6Additional visualizations derived from all four employed
DRMs are presented in the provided code repository.

Figure 8: Dense vector space 3D t-SNE visualizations
of query and document embeddings from the original
DRM (left) and DenseC3 (right) on the NQ, HotpotQA,
PS, and CS benchmarks. Queries are shown as black
crosses, their relevant documents as red circles, and
the remaining points represent the top 1000 retrieved
documents. Color figure online.

derived from the original DRM (Figures 7 & 8 –
left) with those derived from DenseC3 (Figures
7 & 8 – right) across all seven benchmarks. Our
analysis reveals that queries and their relevant doc-
uments undergo substantial positional shifts within
the DVS when embedded with DenseC3 (Cogni-
tive Complexity-aware embeddings) compared to
their initial position given by the original DRM.
DenseC3 enriches the query and document repre-
sentations and better aligns them in the DVS for
similarity estimation, leading to the retrieval effec-
tiveness improvements noted in Table 2.
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