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Abstract

Logical reasoning is essential for large lan-
guage models (LLMs) to ensure accurate and
coherent inference. However, LLMs strug-
gle with reasoning order variations and fail
to generalize across logically equivalent trans-
formations. LLMs often rely on fixed se-
quential patterns rather than true logical un-
derstanding. To address this issue, we intro-
duce an order-centric data augmentation frame-
work based on commutativity in logical rea-
soning. We first randomly shuffle indepen-
dent premises to introduce condition order aug-
mentation. For reasoning steps, we construct
a directed acyclic graph (DAG) to model de-
pendencies between steps, which allows us
to identify valid reorderings of steps while
preserving logical correctness. By leverag-
ing order-centric augmentations, models can
develop a more flexible and generalized rea-
soning process. Finally, we conduct extensive
experiments across multiple logical reasoning
benchmarks, demonstrating that our method
significantly enhances LLMs’ reasoning perfor-
mance and adaptability to diverse logical struc-
tures. We release our codes and augmented
data in https://github.com/qianxiHe147/
Order-Centric-Data-Augmentation.

1 Introduction

Large language models (LLMs) have demonstrated
exceptional performance across various real-world
applications (Jaech et al., 2024; Dubey et al., 2024;
Liu et al., 2024a). Logic reasoning (Cummins et al.,
1991) is essential for LLMs. It allows models to
draw valid conclusions, maintain coherence, and
make reliable decisions across tasks (Pan et al.,
2023; Liu et al., 2023a).

However, LLMs are sensitive to reasoning order
and struggle with logically equivalent transforma-
tions (Chen et al., 2024; Berglund et al., 2023b;

†Corresponding authors.

1. All mammals are living beings.                 2. All elephants are mammals.
3. All baby elephants are elephants.            4. Some baby elephants are sleepy.
5. If Jumbo is a living being, then Jumbo is not both an elephant and a mammal.
6. If Jumbo is sleepy, then Jumbo is either a baby elephant or a mammal.
Is conclusion “Jumbo is not sleepy” ture, false, or uncertain ?

1. If Jumbo is not sleepy, there is no conflict.

2. If Jumbo is sleepy, Jumbo is a living being.

 

3. If Jumbo is a living being, Jumbo cannot be both an elephant and a mammal.

4. All elephants are mammals, which conflicts with the conclusion in step 3.

5. Therefore, Jumbo is not sleepy.
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Figure 1: A logical reasoning example. Independent
premises can be freely reordered, while reasoning steps
must be reordered without violating dependencies.

Tarski, 1956). First, the models are highly sensitive
to the order of premises, with perturbing the order
leading to up to a 40% performance drop (Chen
et al., 2024; Liu et al., 2024b). Additionally, if the
testing order is reversed compared to the training
order, accuracy drops drastically. For example, in
the case of data involving two entities within a sin-
gle factual statement, accuracy drops from 96.7%
to 0.1% when training is left-to-right and testing is
right-to-left. (Berglund et al., 2023b,a; Allen-Zhu
and Li, 2023). This suggests that LLMs follow
a rigid logical reasoning order driven by learned
patterns rather than true logical understanding.

Existing LLM logical data augmentation meth-
ods do not effectively address the sensitivity to
equivalent transformations. First, many logical
datasets are specifically designed for certain do-
mains, such as specialized fields or exam ques-
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tions, primarily to broaden the scope of logical
reasoning data collection and application (Han
et al., 2022; Liu et al., 2020; Yu et al., 2020). Sec-
ond, a line of work aims to enhance the model’s
reasoning by mapping natural language to sym-
bolic reasoning (Olausson et al., 2023; Xu et al.,
2024; Pan et al., 2023), but it primarily provides
symbolic tools for understanding logical language
rather than enhancing the logical structure itself.
Lastly, another augmentation method creates a
“vacuum” world to block interference from real-
world logic (Saparov and He, 2022), but it focuses
on the impact of the model’s prior experience on
reasoning, without addressing the design of logical
equivalence.

In fact, commutativity is a fundamental prop-
erty of logical reasoning, ensuring that indepen-
dent logical units can be reordered without altering
their meaning. As established by Gödel’s complete-
ness theorem (Gödel, 1930) and Tarski’s model the-
ory (Tarski, 1956), commutativity means that inde-
pendent logical units can be freely reordered with-
out changing the essence of the logical structure.
Therefore, in logical reasoning, first, independent
premises are commutative. As shown in the upper
half of Fig. 1, different orders of premises repre-
sent equivalent problem structures. Furthermore, as
demonstrated by Gentzen’s proof theory (Gentzen,
1935), reasoning steps are also commutative, pro-
vided their dependencies are intact. As shown in
the lower half of Fig. 1, changing the order of steps
without disrupting the dependencies results in an
equivalent reasoning process. However, altering
the order of dependent steps disrupts inference and
prevents a coherent path to the correct conclusion.

In this work, we propose an order-centric data
augmentation framework that explicitly incorpo-
rates logical commutativity into LLM training. For
condition order, we randomly shuffle all indepen-
dent premises. For reasoning steps, we construct a
structured, step-by-step reasoning process, identify
step dependencies using a directed acyclic graph
(DAG), and apply topological sorting to reorder rea-
soning steps while preserving logical dependencies.
Order-centric data augmentation allows models to
learn logical equivalence through commutativity,
leading to a deeper understanding of logic, rather
than relying solely on fixed patterns to solve prob-
lems. Our experiments show that order-centric aug-
mentation outperforms training on datasets with a
fixed logical structure, enhancing the model’s over-
all reasoning ability and improving its performance

in complex shuffled testing scenarios.
Our contributions are summarized as follows:

(1) We propose an order-centric logic data aug-
mentation method based on commutativity, which
permutes both condition order and reasoning step
order, helping models gain a deeper understanding
of logical equivalence. (2) We introduce a method
that uses DAGs to model the dependencies between
reasoning steps, helping to identify valid step re-
orderings. (3) We conduct extensive experiments
to prove the effectiveness of our approach in en-
hancing logical reasoning.

2 Related Work

2.1 Order Effect of Language Models

Large language models are sensitive to reasoning
order (an example is shown in Appendix A.1).
While word order variations in natural language
have little impact (Cao et al., 2023; Abdou et al.,
2022), disrupting the order in reasoning tasks sig-
nificantly degrades performance. Chen et al. (2024)
show that models perform optimally only when the
premise order matches the sequence required for
the reasoning process. To address this, Liu et al.
(2024b) propose reorganizing premise order to re-
duce order sensitivity. However, this approach is
task-specific and lacks generalizability. Further-
more, the Reversal Curse reveals that models fail
to grasp logical equivalence when trained with
a fixed linguistic order (Berglund et al., 2023b).
Golovneva et al. (2024) mitigate this by proposing
reverse training, where LLMs learn both forward
and reverse reasoning by randomly shuffling words
or segments within a sentence. This highlights the
need for diverse training data with varied orderings.

Compared to the above works, we extend to
more complex logical reasoning scenarios, build-
ing upon this concept by leveraging commutativity
for data augmentation in logical reasoning, which
helps models generalize across different reasoning
structures and enhances robustness.

2.2 Logical Reasoning Enhancing

Existing methods to enhance LLMs’ logical reason-
ing ability mainly fall into three categories: inte-
grating symbolic reasoning, training and inference
strategies, and leveraging data augmentation.

Symbolic reasoning enhances LLMs by trans-
forming natural language into formal logic, pro-
viding a symbolic approach that helps models un-
derstand logic (Olausson et al., 2023; Xu et al.,
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A. All mammals are living beings. 

B. All elephants are mammals.

C. All baby elephants are elephants.           

D. Some baby elephants are sleepy.

E. If Jumbo is a living … a mammal.

F. If Jumbo is sleepy, … a mammal.

Premises 

1. If Jumbo is not sleepy, there is no conflict.

2. If Jumbo is sleepy, Jumbo is a living being. 

3. If Jumbo is a living being, Jumbo cannot 

be both an elephant and a mammal.

4. All elephants are mammals, which 

conflicts with the conclusion in step 3.

5.Therefore, Jumbo is not sleepy.
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4. If Jumbo is not sleepy, there is no conflict
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Figure 2: The framework of order-centric data augmentation method. First, we apply condition augmentation by
randomly reordering independent premises. Then, we enhance reasoning step order through a directed acyclic graph
(DAG) to identify step dependencies and reorder them while preserving logical correctness.

2024; Zhang et al., 2023). Training and inference
strategies use adversarial pre-training, contrastive
learning, and multi-step explicit planning to im-
prove training efficiency and reasoning effective-
ness (Pi et al., 2022; Jiao et al., 2022; Zhao et al.,
2023). Data augmentation creates diverse training
and testing data, aiding models in generalizing bet-
ter across logical tasks (Han et al., 2022; Tafjord
et al., 2021; Clark et al., 2020). LogiGLUE (Luo
et al., 2023) builds a large-scale logical benchmark
through instruction fine-tuning across deductive,
abductive, and inductive tasks. LogicBench (Par-
mar et al., 2024) focuses on single-rule inference,
evaluating LLMs on 25 reasoning patterns and ex-
posing their weaknesses in complex reasoning and
negation handling.

Our work falls into the last category. Unlike
the previous approaches, we perform order-centric
data augmentation on existing logical reasoning
datasets, leveraging logical commutativity to en-
hance the model’s understanding of logical equiva-
lence and improve overall logical reasoning ability.

3 Problem Formulation

In this paper, we formulate the problem of log-
ical reasoning in a unified representation. Let
D = {P,C, L} represent a logical reasoning prob-
lem, where P = {P1, P2, . . . , Pn} is the set of
premises, C is the conclusion, and L is the la-
bel, which takes a value from a finite set, such
as {true, false, uncertain}, indicating whether C
can be logically inferred from P . In step-based
data augmentation, we extend the representation to

include a solution S = {S1, S2, . . . , Sm}, where
S consists of reasoning steps that derive the con-
clusion from the premises. This process can be
abstracted as a directed acyclic graph (DAG). Typi-
cal logical reasoning datasets only provide labels.
Therefore, we construct S ourselves. The specific
construction of S will be detailed in Sec. 4.2.

4 Method

In this section, we introduce condition order aug-
mentation in Sec. 4.1 and answer order augmenta-
tion in Sec. 4.2. The framework is shown in Fig.
2.

4.1 Condition Order Augmentation
Due to the commutativity of premises, swapping
independent premises results in the same solution.
Hence, we perturb the order of premises, enabling
models to learn the logical equivalence of condition
reordering.

4.1.1 Shuffling the Order of Premises
Given a logical reasoning dataset DC =
{P,C, L}, we first extract the premise set P =
{P1, P2, . . . , Pn}. To generate augmented data, we
apply a random permutation σ to the premise set P ,
producing a new ordered premise set Pran. Specif-
ically:

Pran = {Pσ(1), Pσ(2), . . . , Pσ(n)}
For example, if the original order is
[P1, P2, P3, P4, . . . , Pn], after applying the
permutation σ, the new order might be
[P3, P4, P1, Pn, . . . , P2, . . . ].
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(3) Premise and Prerequisite Step Used

Using Premise 6, Premise 3,
Premise 2, Premise 1

Using Premise 5, Step 2

Using Premise 2, Step 3

Using Step 1, Step 4

Data Instance

1. If Jumbo is not sleepy, there is no conflict.
2. If Jumbo is sleepy, Jumbo is a living being.
3. If Jumbo is a living being, Jumbo cannot be both an elephant and a mammal.
4. All elephants are mammals, which conflicts with the conclusion in step 3.
5. Therefore, Jumbo is not sleepy.

2

1
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4

1
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5

Dependency DAG

Premises:
1. All mammals are living beings.                 2. All elephants are mammals.
3. All baby elephants are elephants.            4. Some baby elephants are sleepy.
5. If Jumbo is a living being, then Jumbo is not both an elephant and a mammal.
6. If Jumbo is sleepy, then Jumbo is either a baby elephant or a mammal.
Conclusion: Jumbo is not sleepy
Label: True

(2) Reasoning Steps

(1) FOL
Premises:
1. ∀x(Mammal(x)→LivingBeing(x)).                 2. ∀x(Elephant(x)→Mammal(x)).
3. ∀x(BabyElephant(x)→Elephant(x)).            4. ∃x(BabyElephant(x)∧Sleepy(x)).
5. LivingBeing(Jumbo)→¬(Elephant(Jumbo)∧Mammal(Jumbo)).
6. Sleepy(Jumbo)→(BabyElephant(Jumbo)∨Mammal(Jumbo)).
Conclusion:
¬Sleepy(Jumbo)

Figure 3: An example of generating a specific solu-
tion from data containing only labels and constructing
a Directed Acyclic Graph (DAG) to represent the de-
pendencies between steps. Due to space limitations, we
only list the conclusions of each step without showing
the detailed content.

4.1.2 Generating Augmented Data

We denote the original dataset as DC = {P,C, L}
and the augmented dataset as D′

C = {Pran, C, L},
where Pran represents the randomly shuffled
premises. The transformation from DC to D′

C in-
volves perturbing the order of the premises while
keeping the conclusion C and the label L un-
changed. Each original data sample generates k
instances of condition order augmentation, leading
to an augmented dataset D′

C containing k × |DC |
instances, where |DC | is the size of the original
dataset.

4.2 Answer order Augmentation

Due to the commutativity of reasoning steps, we
perturb the order of solution steps to help mod-
els learn the logical equivalence of the reasoning
process. However, reasoning steps often have de-
pendencies, where the execution of one step may
rely on the result of another. To address this, we
propose a method for identifying valid step reorder-
ings that ensures these dependencies are preserved.

4.2.1 Leveraging LLMs for Logical Reasoning
Solutions

Since logical reasoning datasets typically provide
only a single label (e.g., true/false) without a Chain-
of-Thought (CoT) reasoning process, we generate
detailed step-by-step reasoning solutions to bridge
this gap (Xu et al., 2024). We use LLMs† for this
process. As shown in Fig. 3, the methodology
consists of three main steps: (1) For datasets with-
out First-Order Logic (FOL) expressions, We ex-
tract their premises and conclusion and convert
them into the corresponding FOL representations.
(2) The FOL-augmented premises, along with the
ground truth labels, are fed into the model, prompt-
ing it to generate a step-by-step solution. Each
step must clarify its purpose and reasoning, leading
to a final conclusion. (3) The generated solutions
are then reprocessed by the model to extract the
premise indices and prerequisite step indices used
in each reasoning step.

4.2.2 Constructing the Step Dependency DAG
After obtaining the logical reasoning solutions,
the current data can be represented as DS =
{P,C, L, S}, where S = {S1, S2, . . . , Sm} con-
sists of reasoning steps. We represent S as a
directed acyclic graph (DAG), denoted as G =
(V,E), where V = {S1, S2, . . . , Sm} is the set of
reasoning steps, and E ⊆ V × V is the set of di-
rected edges. An edge (Si, Sj) indicates that step
Sj depends on the result of step Si.

Each step Si is represented as a tuple:

Si = (Goali,P(i)
used,S

(i)
used,Resulti)

where Goali describes the goal of the step, P(i)
used

represents the directly used atomic premises,
S(i)
used ⊆ V denotes the prerequisite steps that must

be executed before Si, and Resulti is the result
derived from the execution of Si.

4.2.3 Generating Augmented Solution
Sequences

A valid reasoning process must maintain all logical
dependencies between steps while allowing flexi-
bility in ordering interchangeable steps. We define
the dependency constraints as follows:

• A step Si is independent if S(i)
used = ∅ (i.e., it

has no prerequisite steps).

†In our experiment, we use GPT-4o-mini.
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• A step Sj is dependent if S(i)
used ̸= ∅, meaning

that it requires prior steps to be completed
before execution.

• Two steps Si and Sj are order-invariant if
neither step appears in the other’s prerequisite
set, i.e., Si /∈ S(j)

used and Sj /∈ S(i)
used.

Our goal is to generate a reasoning sequence that
integrates all steps while maintaining dependency
constraints, based on the principles outlined above.
We represent the dependency graph as a dictionary,
where each key is a step name and its value is
a list of steps it depends on. First, we identify
all independent steps where S(i)

used = ∅ from the
dataset, remove them from the DAG, and add them
to the list of feasible step sequences List. Then,
we iterate over all possible combinations of these
steps to generate multiple different lists of valid
sequences. Next, for each step still present in the
DAG, we iterate through the steps of its Sused. If
Sused contains a step from the current List, we
remove that step from Sused.

We repeat these two steps until every List con-
tains all the steps from S, resulting in a collection
of new valid step sequences. We refer to each newly
generated sequence as Sran. The final augmented
dataset is represented as D′

S = {P,C, L, Sran}.
Details of the prompts used in order-centric data

augmentation are provided in Appendix A.2.

5 Experiments

We conduct experiments to evaluate the effective-
ness of our method, focusing on overall perfor-
mance, training efficiency, and generalization capa-
bility.

5.1 Experiment Setup
Datasets (1) FOLIO (Han et al., 2022) is a natu-
ral language inference dataset annotated with first-
order logic (FOL), consisting of 1001 training sam-
ples and 231 test samples. (2) RuleTaker (Clark
et al., 2020) requires models to determine whether
a conclusion is entailed by a set of premises, cover-
ing various reasoning difficulties. Due to its large
scale, we uniformly sample 1000 training and 1000
test instances across different difficulty levels. (3)
LogicNLI (Tian et al., 2021) is an NLI-style dataset
that isolates first-order logic reasoning from com-
monsense inference for precise logical evaluation.
Similarly, we sample 1000 instances from both its
training and test sets.

Models We conduct experiments on Llama-
3-8B-Instruct (AI@Meta, 2024), Llama-2-13B-
Chat (Touvron et al., 2023) and Mistral-7B-Instruct-
v0.3 (Jiang et al., 2023), evaluating model per-
formance under five training conditions: (1) Un-
trained: The original model without any additional
training. (2) Vanilla SFT: Models fine-tuned only
on the original training set, i.e., DC = {P,C, L}.
(3) Vanilla SFT + Condition Shuffling: Models
trained on both the original dataset and an aug-
mented version with shuffled condition orders, i.e.,
DC = {P,C, L} and D′

C = {Pran, C, L}. (4)
SFT with COT: Models fine-tuned with training
data that includes Chain-of-Thought (COT) reason-
ing steps, i.e., DS = {P,C, L, S}. (5) SFT with
COT + Answer Steps Shuffling: A model trained
with COT data and additional augmentations with
shuffled reasoning steps, i.e., DS = {P,C, L, S}
and D′

S = {P,C, L, Sran}.
All models are trained using full fine-tuning,

with a 1:1 mix of ShareGPT (Chiang et al., 2023) in
each dataset. Training is conducted on four A100
GPUs for four epochs. Each model is trained ex-
clusively on a single dataset, with augmentation
applied only to that dataset, and evaluated on the
corresponding test set without cross-dataset mix-
ing.

Set Type FOLIO RuleTaker LogicNLI

Train
Original 1001 1000 1000
Condition Shuffled 1001 1000 1000
Answer Step Shuffled 619 594 627

Test
Original 203 2000 2000
Condition Shuffled 406 2000 2000

Table 1: The data sizes of the training and test sets used
in the main experiments.

We applied random shuffling to the premises
of each training sample to generate one condition-
augmented instance. Due to some data containing
multiple valid step orderings, we randomly selected
one transformation from each original data to con-
trol the data size. Additionally, we shuffled the
premises in the test set to create a condition shuffled
test set, enabling better evaluation of the model’s
performance across different logical orders. The
data sizes for both the training and test sets are
provided in Tab. 1.

5.2 Overall Performance

Tab. 2 shows that our method effectively im-
proves model reasoning performance. Compared
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Models Training
FOLIO RuleTaker LogicNLI Avg.

Seq. Shf. Seq. Shf. Seq. Shf. Seq. Shf.

LLaMA3-8B-Instruct

Untrained 57.64% 55.17% 57.95% 57.95% 28.85% 25.50% 48.15% 46.21%
Vanilla SFT 63.55% 61.82% 70.65% 68.65% 54.40% 54.90% 62.87% 61.79%
+ Condition Shuffled 70.44%(+6.89) 67.49%(+5.67) 81.70%(+11.05) 80.15%(+11.50) 59.95%(+5.55) 59.45%(+4.55) 70.70%(+7.83) 69.03%(+7.24)
SFT with COT 76.35% 73.65% 81.05% 78.80% 42.20% 41.65% 66.53% 64.70%
+ Answer Steps Shuffled 77.34%(+0.99) 76.85%(+3.20) 84.60%(+3.55) 82.70%(+3.90) 43.80%(+1.60) 42.80%(+1.15) 68.58%(+2.05) 67.45%(+2.75)

LLaMA2-13B-Chat

Untrained 39.16% 35.47% 53.30% 52.50% 28.45% 26.95% 40.30% 38.31%
Vanilla SFT 53.69% 51.71% 65.35% 62.80% 45.65% 44.20% 54.90% 52.90%
+ Condition Shuffled 63.05%(+9.36) 62.32%(+10.61) 72.20%(+6.85) 71.30%(+8.50) 54.00%(+8.35) 54.10%(+9.90) 63.09%(+8.19) 62.57%(+9.67)
SFT with COT 73.40% 70.69% 76.60% 74.65% 43.70% 39.30% 64.57% 61.55%
+ Answer Steps Shuffled 76.35%(+2.95) 73.89%(+3.20) 75.50%(-1.10) 72.25%(-2.40) 46.90%(+3.20) 42.75%(+3.45) 66.25%(+1.68) 62.97%(+1.42)

Mistral-7B-Instruct-v0.3

Untrained 56.16% 57.39% 54.55% 54.55% 26.55% 24.90% 45.75% 45.61%
Vanilla SFT 54.68% 55.17% 52.90% 53.20% 25.15% 25.05% 44.24% 44.47%
+ Condition Shuffled 62.07%(+7.39) 61.82%(+6.65) 70.95%(+18.05) 69.20%(+16.00) 43.00%(+17.85) 44.20%(+19.15) 58.67%(+14.43) 58.41%(+13.94)
SFT with COT 67.47% 66.75% 81.55% 77.00% 46.40% 44.85% 65.14% 62.87%
+ Answer Steps Shuffled 72.91%(+5.44) 72.17%(+5.42) 84.10%(+2.55) 82.80%(+5.80) 47.35%(+0.95) 47.30%(+2.45) 68.12%(+2.98) 67.42%(+4.55)

Table 2: The overall performance on FOLIO, RuleTaker, and LogicNLI, where the value in parentheses after each
model’s Condition Shuffled represents the improvement relative to Vanilla SFT, and the value in parentheses after
each model’s Answer Steps Shuffled represents the improvement relative to SFT with COT.
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Figure 4: The performance of training efficiency across
different training steps in condition order augmentation.

to Vanilla SFT, condition shuffling significantly en-
hances results across multiple datasets, with over-
all gains ranging from 7% to 15%. Notably, it
improves not only robustness to perturbed input
order but also accuracy on original sequential test
sets, suggesting enhanced logical reasoning ability
rather than mere order tolerance. Further incor-
porating answer step shuffling brings additional
improvements over CoT training, contributing an
average boost of 2% to 3%, highlighting the benefit
of diversified reasoning paths.

While LLaMA models tend to perform slightly
better on sequential evaluations (typically 2–3%
higher), our shuffling strategies help mitigate this
gap.

5.2.1 Training Efficiency
To ensure fairness and exclude the effect of in-
creased data size, we test the accuracy of check-
points with the same number of training steps, com-
paring the performance of condition order augmen-
tation with the original order. As shown in Fig.
4, even with the same data size, condition shuffle

training consistently outperforms the original order,
with the performance gap widening as training pro-
gresses. This highlights that the improvement in
accuracy is due to the augmentation process itself,
rather than the increase in data.

Models Training Data
Performance

GSM8K MATH

LLaMA3-8B-Instruct

mathematics_trainset+FOLIO_trainset 65.28% 21.20%

+ FOLIO Condition Shuffled 65.81% 21.58%

+ FOLIO Answer Steps Shuffled 68.16% 22.56%

Table 3: Performance comparison of LLaMA3-8B-
Instruct on GSM8K and MATH benchmarks when
trained with different augmentation strategies.

5.2.2 Generalization

To validate whether our order-centric data augmen-
tation on logical datasets can generalize to other
reasoning domains, we conduct experiments on
two mathematical datasets: GSM8K and MATH.
Specifically, for these two datasets, we mix their
training sets with the original FOLIO dataset,
the condition-shuffled augmented dataset, and the
answer-shuffled augmented dataset during training.
The results in Tab. 3.

The results demonstrate that our method can ef-
fectively generalize to other reasoning tasks, im-
proving their reasoning performance. We believe
this provides promising evidence of the broader
applicability of our approach.

We further analyze the impact of reasoning step
counts and compare with prompt-based methods;
see Appendix A.4 and A.5.
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Model Test -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 Random

LLaMA3-8B-Instruct
Sequential 69.45% 80.00% 80.55% 75.90% 64.25% 74.80% 69.65% 73.15% 74.40% 67.50% 81.05%
Shuffled 67.55% 77.90% 77.95% 74.85% 64.10% 72.90% 68.50% 70.05% 73.30% 66.20% 78.80%

LLaMA2-13B-Chat
Sequential 68.20% 65.25% 71.40% 66.90% 70.60% 60.40% 71.65% 70.35% 72.50% 73.20% 72.20%
Shuffled 67.65% 63.65% 69.60% 65.10% 69.40% 58.75% 69.00% 68.75% 69.55% 70.60% 71.30%

Mistral-7B-Instruct-v0.3
Sequential 64.75% 64.80% 54.50% 65.60% 69.05% 50.95% 68.95% 69.65% 67.55% 54.65% 70.95%
Shuffled 64.80% 64.10% 55.55% 66.25% 67.75% 51.15% 67.90% 66.70% 67.40% 54.55% 69.20%

Table 4: The performance of the models on RuleTaker with conditionally shuffled premises at different tau values.
Tau = 1 represents the original order, tau = -1 indicates a complete reversal, tau = 0 means uniform shuffling, and
"Random" refers to a fully random shuffle.

6 Analysis

6.1 Condition Augmentation with Varying
Shuffling Degrees

To investigate the effects of premise order trans-
formations, we divide the Kendall tau distance τ
between different premise orders and the original
order into 10 groups, each spanning a 0.2 range
within [-1,1). A τ value of 1 indicates forward
order, -1 indicates a complete reversal, and 0 rep-
resents a more uniform shuffling. Additionally,
random shuffle means that τ values from the entire
range may be included. We conduct experiments
on RuleTaker using different τ values for condition-
based data augmentation.

As shown in Tab. 4, random shuffling provides
the best performance across all τ values. The level
of perturbation in premise order significantly af-
fects model accuracy, with differences exceeding
10%. LLaMA3-8B-Instruct excels with negative
τ values, while LLaMA2-13B-Chat and Mistral-
7B-Instruct-v0.3 do better with positive τ values.
Random shuffled in training data achieves the best
overall performance, emphasizing the value of di-
verse data augmentation for more flexible and ro-
bust models.

6.2 The Importance of DAG-based Step
Dependency

To explore the importance of using DAG for step
dependencies in step augmentation, we use the An-
swer Step Shuffled data from Tab. 1 as a baseline.
We randomly shuffle the steps in the original COT
process and assess its performance to evaluate the
impact of random step reordering without DAG
dependencies.

As shown in Tab. 5, not utilizing DAG dependen-
cies leads to a performance drop compared to DAG-
based augmentation. The decline is particularly
severe on FOLIO, where LLaMA3-8B-Instruct and
LLaMA2-13B-Chat show a drop of 7.64% and

49.9%

30.1%

2.2%
7.0%

6.2%4.7%

FOLIO

19.3%

13.6%

2.9%
5.7%

14.5%

44.0%

RuleTaker

19.8%

18.5%

11.2% 16.7%

6.7%

27.0%

LogicNLI

0-0.1
0.1-0.2

0.2-0.3
0.3-0.4

0.5-0.6
0.9-1.0

Figure 5: The distribution of TFI index across different
intervals in the training sets of FOLIO, RuleTaker, and
LogicNLI. Since none of the datasets contain data in
the [0.6-0.9) interval, this portion is omitted from the
presentation.

4.68% in the shuffled test. In contrast, Ruletaker
and LogicNLI experience a smaller decline.

To explore the underlying cause of this phe-
nomenon, we investigate the degree of dependency
between steps in the step dependency DAG. We
introduce the Topological Freedom Index (TFI).
This metric measures how loosely or tightly con-
nected a DAG is, and it is calculated as follows:

TFI =
Number of valid sequences

Factorial of the number of steps
(1)

The number of valid sequences reflects the count
of topological orderings consistent with the DAG’s
dependencies, while the factorial of step count rep-
resents all possible orderings without constraints.
A TFI value near 1 indicates weak dependencies
and high reordering flexibility; a value near 0
suggests strong dependencies and strict sequenc-
ing. Fig. 5 shows the TFI distribution across three
datasets, highlighting variations in step dependency
among reasoning tasks.

In FOLIO, nearly half of the samples (49.9%)
have low TFI (0.0–0.1), indicating strong step de-
pendencies. In contrast, RuleTaker and LogicNLI
have more high-TFI samples (44.0% and 27.0%
in the 0.9–1.0 range), reflecting looser reasoning
structures. These differences align with our Ran-
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Models Training data
FOLIO Ruletaker LogicNLI

Sequential Shuffled Sequential Shuffled Sequential Shuffled

LLaMA3-8B-Instruct
Answer Steps Shuffled 77.34% 76.85% 84.60% 82.70% 43.80% 42.80%

Random Steps Shuffled 76.85%(-0.49) 69.21%(-7.64) 82.10%(-2.50) 81.20%(-1.50) 45.20%(+1.40) 42.75%(-0.05)

Condition&Answer Shuffled 74.88% (-2.46) 75.86% (-0.99) 81.15% (-3.45) 79.60% (-3.10) 42.80% (-1.00) 43.50% (+0.70)

LLaMA2-13B-Chat
Answer Steps Shuffled 76.35% 73.89% 75.50% 72.25% 46.90% 42.75%

Random Steps Shuffled 71.92%(-4.43) 69.21%(-4.68) 74.75%(-0.75) 72.75%(+0.50) 43.70%(-3.20) 42.45%(-0.30)

Condition&Answer Shuffled 70.94% (-5.41) 67.24% (-6.65) 77.40% (+1.90) 73.80% (+1.55) 44.20% (-2.70) 41.60% (-1.15)

Mistral-7B-Instruct-v0.3
Answer Steps Shuffled 72.91% 72.17% 84.10% 82.80% 47.35% 47.30%

Random Steps Shuffled 71.43%(-1.48) 72.41%(+0.24) 82.95%(-1.15) 79.95%(-2.85) 44.75%(-2.60) 45.25%(-2.05)

Condition&Answer Shuffled 70.94% (-1.97) 70.44% (-1.73) 82.55% (-1.55) 81.70% (-1.10) 41.50% (-5.85) 42.00% (-5.30)

Condition&Answer Shuffled on Stronger LLM

Llama-3.3-70B-Instruct
Answer Steps Shuffled 80.30% 78.08% 79.90% 80.00% 51.05% 49.65%

Condition&Answer Shuffled 78.82% (-1.48) 79.80% (+1.72) 83.95% (+4.05) 82.65% (+2.65) 52.00% (+0.95) 51.40% (+1.75)

Table 5: The performance of three different augmentation methods: the first row represents the original DAG-based
Answer Steps Shuffled augmentation, the second row represents random step shuffling without dependencies in Sec.
6.2, and the third row represents the combined condition and answer augmentation method in Sec. 6.3. The last two
rows show our new results using Llama-3.3-70B-Instruct model.

dom Step Shuffling results—datasets with stronger
dependencies suffer more from shuffling. Thus,
preserving dependency integrity is crucial when
applying answer order augmentation.

6.3 Combined Condition and Step Shuffling

To investigate the combined effect of condition and
step order perturbations, we apply premise shuf-
fling on top of the Answer Steps Shuffled data,
adjusting premise references in the answers accord-
ingly. As shown in Table 5, Condition&Answer
Shuffled slightly underperforms compared to step-
only shuffling in most cases.

This is likely because the two augmentations
serve different purposes: condition shuffling
teaches the model that independent premises are
commutative, while step shuffling helps it under-
stand that different reasoning paths under the same
condition can lead to the same conclusion. When
applied separately, each enhances logical equiva-
lence learning; when combined, the dual perturba-
tion increases learning difficulty, making it harder
for smaller models to generalize.

To test this hypothesis, we evaluate the stronger
LLaMA-3.3-70B-Instruct model. The results show
a consistent 2–4% improvement from joint pertur-
bation over step-only shuffling on most datasets,
suggesting that larger models are better equipped
to handle complex logical variations and capture
underlying equivalence.

6.4 Effect of Augmentation Frequency

In the main experiment, we set |D′
C | = |DC |,

meaning that the parameter k = 1. To investigate

Test k=1 k=2 k=3 k=4 k=5

Sequential 77.30% 81.35% 83.45% 83.15% 77.65%
Shuffled 76.65% 80.35% 81.95% 83.55% 79.85%

Table 6: The performance under different augmentation
frequencies, where k represents the number of condi-
tion order augmentation instances applied per training
sample.

the impact of augmentation quantity, we increase k
and generate k = 5 augmented instances for each
original training sample in RuleTaker. This leads to
an augmented dataset D′

C containing 5× |DC | in-
stances. As shown in Tab. 6, adding a few shuffled
instances improves model accuracy, but excessive
augmentation results in performance degradation.
This highlights the need to control the augmenta-
tion frequency. The increase in k can lead to a
certain degree of performance improvement, in-
dicating that our order-centric data augmentation
method has room for further enhancement.

7 Conclusion

In this paper, we propose an order-centric data aug-
mentation framework to improve LLMs’ logical
reasoning by addressing their sensitivity to rea-
soning order. By leveraging principles of inde-
pendency and commutativity, we shuffle indepen-
dent premises and use DAGs to guide valid step
reorderings. Experiments across multiple bench-
marks show that our method enhances reasoning
performance and adaptability to diverse logical
structures.
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8 Limitations

Our work primarily focuses on logical commutativ-
ity within propositional reasoning tasks. However,
this property extends beyond these tasks. It is also
prevalent in many other reasoning scenarios, such
as mathematical problems and other logic-based
tasks. This remains an area for future exploration.
Additionally, while we have explored the impact
of condition order and answer order augmentations
on model performance, how to further integrate
and refine these augmentations for better logical
reasoning capability is still an open question. We
believe our exploration will provide valuable in-
sights for future work on logical equivalence and
commutativity in reasoning.
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A Appendix

A.1 Premise Matter

From an overall performance perspective, in our
main experiments, we observed that models gener-
ally perform worse on the shuffled testset compared
to the sequential testset, as shown in the first row
of results for each model in Tab. 2.

There is an examples in Tab. 7 that illustrate
the importance of premise order. In the original
order, the model correctly follows logical steps to
reach the right conclusion. However, in the shuffled
order, it fails to connect key premises, leading to an
incorrect answer. This suggests that models may
rely on surface-level cues rather than true logical
understanding.

A.2 Details of Generating Solutions

In Sec. 4.2, We discuss how to generate step-by-
step solutions through D = {P,C, L}. Specifi-
cally, we follow these steps:

(1) For datasets that do not have first-order logic
(FOL) expressions, such as RuleTaker and Log-
icNLI, we extract their premises and conclusions,
and use GPT-4o-mini with prompts as shown in
Tab. 10 to convert them into corresponding FOL
representations. FOLIO, on the other hand, already
includes FOL expressions, so no conversion is re-
quired.

(2) The FOL-enhanced premises and ground
truth labels are input into the model, prompting
it to generate step-by-step solutions. As shown
in the prompt in Tab. 11, we add two domain-
specific examples from each dataset to the prompt,
requiring the model to clearly define the purpose
and reasoning for each step, eventually leading
to the final conclusion. The Task prompt speci-
fies the possible values for the label. Specifically,
in FOLIO, the label values are {True, False, Un-
known}, in RuleTaker they are {entailment, not
entailment}, and in LogicNLI they are {entailment,
neutral, self_contradiction, contradiction}.

(3) The model then reprocesses the generated
solutions, using prompts like the one shown in Tab.
12, to extract the premise indices and premise step
indices used in each reasoning step.

A.3 Kendall Tau Distance

In our study, we investigate the effects of premise
order transformations by using the Kendall tau dis-
tance τ . This coefficient measures the correlation
between two ordered lists, providing a quantitative

way to assess how much one order differs from an-
other. We use τ to categorize various permutations
of premise orders and assess their impact on model
performance.

The Kendall tau coefficient τ is calculated as
follows:

τ =
C −D(

n
2

)

where C is the number of concordant pairs (pairs
of items that are in the same relative order in both
lists), and D is the number of discordant pairs
(pairs that are in opposite order in both lists). The
total number of possible pairs is

(
n
2

)
, where n is

the number of items being compared.
We divide τ values into 10 groups, each span-

ning a 0.2 range within the interval [-1, 1). A τ
value of 1 indicates that the order of the premises is
exactly as required for the reasoning process, while
-1 indicates a complete reversal of order. A τ value
of 0 indicates that the order is completely random,
with no correlation to the original sequence.

For example, if the original premise order is
[P1, P2, P3, . . . , Pn], a permutation function σ
might rearrange it to [P3, P1, P2, . . . , Pn]. This
process allows us to explore different levels of or-
der perturbation, with the goal of analyzing how
such variations affect model performance. Exam-
ples of premise orders corresponding to different τ
values can be seen in Fig. 6.

A.4 Impact of Reasoning Step Length in
Answer Order Augmentation

To investigate the impact of reasoning step count on
our method, we conduct experiments using the Log-
icNLI dataset, which features a relatively balanced
distribution of reasoning chains with different step
lengths. Specifically, there are 647 instances suit-
able for answer shuffling, from which we select 150
samples with step lengths of 3, 4, and 5. These sam-
ples are combined with 1,000 original CoT samples
to perform answer-shuffling-based data augmen-
tation. The results on LLaMA3-8B-Instruct and
Mistral-7B-Instruct-v0.3 are shown in Tab. 8.

The results indicate that using only Step-3 an-
swer shuffling unexpectedly outperforms the origi-
nal Answer Steps Shuffled method. Additionally,
as the number of steps increases from 3 to 5, the
model’s performance gradually declines. This sug-
gests that excessively complex reasoning step per-
turbations may negatively impact the model’s abil-
ity to learn logical commutativity and equivalence.
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Original Premises:
1. Beethoven leads the Vienna Music Society.
2. Beethoven wrote Symphony No. 9.
3. Composers write music pieces.
4. Vienna Music Society premiered Symphony No. 9.
5. Symphony No. 9 is a music piece.
6. Orchestras are led by conductors.
7. Vienna Music Society is an orchestra.
Conclusion: Some orchestras premiered music pieces.
Label: True
Model’s answer:
Step 1: Identify the orchestra and the music piece. From premise 7, we know that Vienna Music Society is an orchestra:
Orchestra(viennaMusicSociety) From premise 5, we know that Symphony No. 9 is a music piece: MusicPiece(symphony9)
Step 2: Premiere of the music piece by the orchestra. From premise 4, we know that Vienna Music Society premiered
Symphony No. 9: Premiered(viennaMusicSociety, symphony9)
Step 3: Draw the conclusion. There exists an orchestra (Vienna Music Society) that premiered a music piece (Symphony No.
9). The conclusion is true.
Shuffled Premises:
1. Symphony No. 9 is a music piece. 2. Composers write music pieces. 3. Beethoven wrote Symphony No. 9. 4. Vienna
Music Society premiered Symphony No. 9. 5. Vienna Music Society is an orchestra. 6. Beethoven leads the Vienna Music
Society. 7. Orchestras are led by conductors.
Model’s answer:
Step 1: Identify the orchestra and its leader. From premise 5, Vienna Music Society is an orchestra. From premise 6,
Beethoven leads the Vienna Music Society.
Step 2: Analyze the relationship between orchestras and music pieces Premise 3 states that composers write music pieces,
but it does not mention orchestras premiering music pieces.
The conclusion claims "Some orchestras premiered music pieces," but the premises do not provide information about which
orchestras premiered music pieces.
Step 3: Evaluate the conclusion Since the premises do not provide sufficient information to support the claim that "Some
orchestras premiered music pieces," the conclusion cannot be confirmed.

Table 7: An example where the order of premises affects the reasoning outcome.

Models Training LogicNLI Sequential LogicNLI Shuffled

LLaMA3-8B-Instruct

SFT with COT 42.20% 41.65%

+ Answer Steps Shuffled 43.80% 42.80%

+ 3_Steps Shuffled 51.9% 50.15%

+ 4_Steps Shuffled 46.85% 44.95%

+ 5_Steps Shuffled 41.3% 40.85%

Mistral-7B-Instruct-v0.3

SFT with COT 46.40% 44.85%

+ Answer Steps Shuffled 47.35% 47.30%

+ 3_Steps Shuffled 52.25% 51.10%

+ 4_Steps Shuffled 45.90% 41.30%

+ 5_Steps Shuffled 41.85% 41.05%

Table 8: Performance on answer order augmentation
LogicNLI subsets with different reasoning step lengths.

Models Method FOLIO

GPT-4
Logic-LM 78.92%

SymbCoT 82.33%

GPT-3.5-turbo

Logic-LM 62.74%
SymbCoT 57.84%

COP 47.00%

LLaMA3-8B-Instruct
+ Condition Shuffled 70.44%

+ Answer Steps Shuffled 77.34%

Table 9: Performance comparison of different models
and methods on the FOLIO benchmark. Our proposed
Answer Steps Shuffled augmentation method achieves
strong.

A.5 Comparison to Prompt_Based Methods
To further validate the effectiveness of our ap-
proach, we conduct a comparative study against
three representative symbolic reasoning methods:
Logic-LM (Pan et al., 2023), SymbCoT (Xu et al.,
2024), and COP (Liu et al., 2023b). These methods
were primarily evaluated using proprietary large
language models such as GPT-3.5-turbo and GPT-
4. Among the datasets used in these works, FOLIO
is included in our evaluation as well, enabling a
direct performance comparison.

As shown in Tab. 9, our method, despite
being trained on the smaller open-source model
LLaMA3-8B-Instruct, consistently outperforms
GPT-3.5-turbo across all three symbolic reason-
ing baselines. Although it does not surpass GPT-4,
our approach achieves competitive results given the
substantial gap in model scale and computational
resources. These findings underscore the efficiency
and effectiveness of our training framework, partic-
ularly in enhancing logical reasoning capabilities
without reliance on proprietary or excessively large
models.
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/* Task prompt */
Please parse the context and question into First-Order Logic formulas. Please use symbols as much as possible to express,
such as ∀, ∧, →, ⊕, ¬, etc.

/* Example */
Premises:
If a cartoon character is yellow, it is from the Simpsons.
If a cartoon character is from Simpsons, then it is loved by children.
Ben is ugly or yellow.
Ramon being real is equivalent to Rhett being not modest and Philip being lazy.
Hypothesis:
James does not have lunch in the company.
Premises-FOL:
∀x(Y ellow(x) → Simpsons(x))
∀x(Simpsons(x) → Loved(x))
(Y ellow(ben) ∨ Ugly(ben))
real(Ramon) ⇐⇒ (modest(Rhett) ∧ lazy(Philip))
Hypothesis-FOL:
¬HasLunch(james, company)

/* Input */
—INPUT—
Premises:
{Given_premises}
Hypothesis:
{Given_hypothesis}
—OUTPUT—

Table 10: The prompt for generating First-Order Logic (FOL) expressions corresponding to natural language logical
propositions.

Data Instance

Premises:

1. The lion needs the squirrel.

2. The lion visits the squirrel..

3. The squirrel visits the lion.

4. If someone visits the lion then the lion eats the squirrel.

5. If someone eats the lion then the lion is round.

6. If someone eats the squirrel and the squirrel eats the lion then the squirrel is big.

7. If someone eats the lion then they are kind.

8. If someone visits the lion then they visit the squirrel.

9. If someone eats the squirrel then the squirrel eats the lion.

10. If someone is nice then they are big.

11. If someone needs the lion then they visit the lion.

1 2 3 4 5 6 7 8 9 10 11

Data Instance

Tau=1.0

3 4 1 2 5 6 10 9 11 7 8Tau=0.6

1 6 10 5 3 2 11 8 7 4 9Tau=0.2

5 7 11 3 4 1 10 8 6 2 9Tau=0.0

3 6 11 7 10 5 1 9 4 8 2Tau=-0.2

6 11 10 7 3 9 5 8 4 2 1Tau=-0.6

11 10 9 8 7 6 5 4 3 2 1Tau=-1.0

Figure 6: An example of showing the arrangement of
premises with different tau values. The tau values do
not represent exact values but rather the closest intervals
for demonstration purposes.
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/* Task prompt */
Please solve the question step by step based on First-Order Logic rules such as Modus Ponens, determine whether the
hypothesis is true, false, or unknown based on these premises.

/* Example */
Premises:
1. Walter Folger Brown was an American politician and lawyer who served as the postmaster general.
2. Walter Folger Brown graduated from Harvard University with a Bachelor of Arts.
3. While they were both in Toledo, Walter Folger Brown’s father practiced law with Walter Folger Brown.
4. Katherin Hafer married Walter Folger Brown.
Premises-FOL:
1. AmericanPolitician(walterBrown) ∧ Lawyer(walterBrown) ∧ ServedAs(walterBrown, postMasterGeneral)
2. Graduated(walterBrown, harvard) ∧ GraduatedWith(walterBrown, bachelorsOfArt)
3. ∃t (In(walterBrown, toledo, t) ∧ In(walterBrownFather, toledo, t) ∧ PracticedLawTogether(walterBrown, walterBrownFa-
ther, t))
4. Married(katherinHafer, walterBrown)
Hypothesis:
Walter Folger Brown was not in Toledo.
Hypothesis-FOL:
∃t (¬In(walterBrownFather, toledo, t))
Label:
False
Solution:
Step 1: Analyze Walter Folger Brown’s presence in Toledo
The third premise states that there exists a time t such that:
In(walterBrown, toledo, t) ∧ In(walterBrownFather, toledo, t) ∧ PracticedLawTogether(walterBrown, walterBrownFather, t).
This means that Walter Folger Brown and his father were both in Toledo at the same time, and they practiced law together
there.
Thus, we have clear evidence that Walter Folger Brown was indeed in Toledo at some point.
Step 2: Analyze the hypothesis’s claim
The hypothesis states that Walter Folger Brown was not in Toledo, represented in FOL as:
∃t (¬In(walterBrownFather, toledo, t))
However, this contradicts the third premise, which explicitly states that both Walter Folger Brown and his father were in
Toledo at the same time.
Therefore, the hypothesis that Walter Folger Brown was not in Toledo is False based on the premises.
Final Hypothesis:
The hypothesis "Walter Folger Brown was not in Toledo" is False.

/* Input */
—INPUT—
Premises:
{Given_premises and premises-FOL}
Hypothesis:
{Given_hypothesis and hypothesis-FOL}
Label:
{Given_label}
—OUTPUT—

Table 11: The prompt for generating a step-by-step Chain of Thought (CoT) process based on premises, hypothesis,
and label. Different datasets have different sets of labels and examples. For convenience, we only show the prompt
on FOLIO here. In practice, we listed two examples, but for brevity and clarity in display, we only present one.
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/* Task prompt */
I will provide you with a description of the question and its answer, and the condition of the question is specific. The answer
is done in steps. I hope you can extract the conditions and prerequisite steps used in each step of the answer. Please note that
I am not asking you to regenerate the answer yourself, but rather to extract the conditions and prerequisite steps used in each
step from the answer I have given you. Meanwhile, the conditions used in the steps are quite explicit, but the prerequisite
steps used are quite implicit. I hope you can understand and summarize the prerequisite steps used in each step. Your answer
should only include Conditions and prerequisite steps used.

/* Example */
Question:
Premises:
1. Lana Wilson directed After Tiller, The Departure, and Miss Americana.
2. If a film is directed by a person, the person is a filmmaker.
3. After Tiller is a documentary.
4. The documentary is a type of film.
5. Lana Wilson is from Kirkland.
6. Kirkland is a US city.
7. If a person is from a city in a country, the person is from the country.
8. After Tiller is nominated for the Independent Spirit Award for Best Documentary.
Premises-FOL:
1. DirectedBy(afterTiller, lanaWilson) ∧ DirectedBy(theDeparture, lanaWilson)
∧ DirectedBy(missAmericana, lanaWilson)
2. ∀ x ∀ y (DirectedBy(x, y) → Filmmaker(y))
3. Documentary(afterTiller)
4. ∀ x (Documentary(x) → Film(x))
5. From(lanaWilson, kirkland)
6. In(kirkland, unitedStates)
7. ∀ x ∀ y ∀ z ((From(x, y) ∧ In(y, z)) → From(x, z))
8. Nomination(afterTiller, theIndependentSpiritAwardForBestDocumentary)
Conclusion:
Miss Americana is not directed by a filmmaker from Kirkland.
Conclusion-FOL: ¬ ∃t x (Filmmaker(x) ∧ From(x, kirkland) ∧ DirectedBy(missAmericana, x))
Answer:
Step 1: Analyze the premises regarding Lana Wilson’s role as a filmmaker
From premise 1, we know that Lana Wilson directed Miss Americana. Therefore, we can conclude that Lana Wilson is a
filmmaker based on premise 2, which states that if a film is directed by a person, that person is a filmmaker. Thus, we have:
DirectedBy(missAmericana, lanaWilson) → Filmmaker(lanaWilson)
Step 2: Analyze Lana Wilson’s origin
From premise 5, we know that Lana Wilson is from Kirkland. Therefore, we can conclude: From(lanaWilson, kirkland)
Step 3: Combine the information
Since we have established that Lana Wilson is a filmmaker and she is from Kirkland, we can conclude: Filmmaker(lanaWilson)
∧ From(lanaWilson, kirkland)
Step 4: Analyze the conclusion’s claim
The conclusion states that Miss Americana is not directed by a filmmaker from Kirkland, represented in FOL as: ¬ ∃t x
(Filmmaker(x) ∧ From(x, kirkland) ∧ DirectedBy(missAmericana, x))
However, we have already established that Lana Wilson, who directed Miss Americana, is indeed a filmmaker from Kirkland.
This directly contradicts the conclusion.
Final Conclusion:
The conclusion "Miss Americana is not directed by a filmmaker from Kirkland" is False.
Conditions and prerequisite steps used:
step 1: condition 1, condition 2
step 2: condition 5
step 3: step 1, step 2
step 4: step 3

/* Input */
—INPUT—
Question:
{Given_question}
Answer:
{Given_answer}
—OUTPUT—

Table 12: The prompt for extracting Conditions and prerequisite steps used in each step of step-by-step solutions.
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